

الآية

قال الله تعالى :

إِنَّمَا يُنْهَا نَفَّاثَاتُهُ عَلَىٰ تَقْوَىٰ مِنَ الْمُلْكِ
وَرَضِيَ اللَّهُ عَنْهُ أَمْ مَنْ أَسَسَ بُنْيَانَهُ عَلَىٰ
شَفَّا جُرْفٍ هَارِ فَانْهَارَ بِهِ فِي نَارٍ
نَّمَ وَاللَّهُ لَا يَهْدِي الْقَوْمَ الظَّالِمِينَ }

صدق الله العظيم

سورة التوبه الآية (

(109)

Dedication

I dedicate this work to my respective parents who have been the constant source of inspiration .Without their love and support this research would not have been made possible .And also to my wife who supported me in each step of the way , and to my wonderful son.

And I dedicate this fruitful work to my honorable teachers and my colleagues.

Acknowledgement

Great thanks to Allah the greatest. I would like to express my deepest appreciation to my supervisor, Dr. Nuha Meawia Akasha for her kind patience and invaluable guidance throughout this study, and I would like to extend my thanks for teacher Dr. Fath-Alrahaman Adam for his help and appreciative efforts. Thanks also to the teachers at university of Sudan Faculty of civil Engineering. Last but not least, my heartfelt gratitude to my family and friends who believed in me and stuck by me from day one.

Abstract

This research concentrate on design a multi storey building consist of twenty storeys building by using manual calculations(BS81101997code) and computer programmes named Etabs and Safe according to different international codes such as: BS8110-1997, ACI-2005, Eurocode 2-1992. The building consist of flat slabs, columns, raft foundation, shear wall and staircases. Moreover, the comparison was made and it was found that: firstly, the area of steel for flat slab by using ACI-2005 is greater than the area of steel for flat slab by using manual calculations(BS81101997code) about 3% ,and greater than the area of steel by using both codes BSI8110-1997 and EC2-1992 codes about 1% . Secondly: the area of steel for columns by using ACI-2005 is greater than the area of steel for columns by using manual calculations(BS81101997code) about 0.2% ,and greater than the area of steel by using both codes BSI8110-1997 and EC2-1992 codes about 2%. Thirdly: the area of steel for raft foundation by using EC2-1992 code is greater than the area of steel in manual calculations(BS81101997code) about 29% ,and greater than the area of steel by using BSI8110-1997 code about 5% and greater than the area of steel by using ACI-2005 code about 3%.

المستخلص

هذا البحث يختص بتصميم مبنى متعدد الطوابق مكون من عشرين طابق يدوياً وباستخدام برنامج الایتابس (Etabs) وبرنامج السيف (Safe) لمدونات مختلفة وهى: المدونة البريطانية Eurocode 2-1997، المدونة الأمريكية ACI-2005،المدونة الأوربية- BS8110-1992. المبنى مكون من بلاطات مسطحة واعمدة واساس حصيري وحوائط قص وسلام. قورنت نتائج التصميم اليدوى مع نتائج التصميم بواسطة البرامج المستخدمة . وعليه وجد أن : أولاً: حديد التسليح الناتج من المدونة الامريكية فى البلاطه المسطحة أكبر من حديد التسليح الناتج من التصميم اليدوى بنسبة 3% وايضاً أكبر من حديد التسليح الناتج من المدونتين البريطانية و الأوربيه بنسبة 1%. ثانياً: حديد التسليح الناتج من المدونة الامريكية فى الاعمدة أكبر من حديد التسليح الناتج من التصميم اليدوى بنسبة 2% وايضاً أكبر من حديد التسليح الناتج من المدونتين البريطانية و الأوربيه بنسبة 2%. ثالثاً: حديد التسليح الناتج من المدونة الأوربيه فى اللبسة أكبر من حديد التسليح الناتج من التصميم اليدوى بنسبة 29% وايضاً أكبر من حديد التسليح الناتج من المدونة البريطانية بنسبة 5% واكبر من المدونة الامريكية بنسبة 3%.

Contents

Topic	Page
الآد	I
Dedication	II
Acknowledgement	III
Abstract in English	IV
Abstract in Arabic	V
Table of Contents	VI
List of Figures	IX
List of Tables	XII
List of Abbreviation (Symbols)	XIII
Chapter One: Introduction	
1.1 Introductory remark	1
1.2 Statement of problem	2
1.3 Research objectives	2
1.4 Methodology	3
1.5 Outlines of thesis	3
Chapter Two: Literature review	
2.1 Introduction	4
2.2 Structural elements and frames	5
2.3 Structural design	5
2.4 Design standards	6
2.5 Structural design and limit states	7
2.6 Criteria for a Safe Design: Limit States	8
2.6.1 Ultimate Limit State	8
2.6.2 Serviceability Limit States	10
2.7 EC2 Code philosophy	11

2.7.1 Scope of Eurocode 2	11
2.7.2 Scope of Part 1 of Eurocode 2	12
2.8 Scope of ACI 318-05 code	13
Chapter Three: Requirements of Design	
3.1Design of Reinforced Concrete flat Slab by using British code BS8110- 1997	14
3.1.1Definition and Construction	14
3.1.2 General Code Provisions	14
3.1.3 Analysis	16
3.1.4 Division of panels and moments	17
3.1.5 Design of internal panels and reinforcement details	18
3.1.6 Design of edge panels	18
3.1.7 Shear force and shear resistance	18
3.1.8 Deflection	20
3.1.9 Crack control	20
3.2 Design of Reinforced Concrete Slabs by using American code ACI- 2005	21
3.2.1 Design for Flexural Reinforcement	21
3.2. 2 Punching shear	23
3. 3Design of reinforced concrete slabs by using Eurocode 2	25
3.4 Design of Reinforced Concrete Columns by using British code 1997	28
3.4. 1 Design of short columns	28
3.4.2Design of column to biaxial bending and direct load	29
3.5 Column design by using ACI-2005 code	30
3.5.1 Design of short concrete columns	32
3.6Column design by using Eurocode2-1992	33
3.6.1Short columns resisting moments and axial forces	33

3.6.2 Simplified design method	33
3.6.3 Biaxial bending of short columns	34
3.7 Design of raft Foundations	35
3.8 Shear wall design	36
Chapter Four: Analysis and Design calculations	
4.1 Introduction	39
4.2 Manual calculations	40
4.3 Design by Etabs and Safe programmes	82
4.3.1 flat Slab design	82
4.3.2 Column design	93
4.3.3 Shear wall design	108
4.3.4 Raft foundation design	109
4.4 Comparison between different results	120
4.5 Discussions of result	124
Chapter Five: Conclusion and Recommendations	
5.1 Conclusion	125
5.2 Recommendations	126
References	127

List of Figures

Figure No	Figure Description	Page
(3.1)	Punching shear perimeter in flat slab	19
(3.2)	Raft foundation	36
(3.3)	Raft foundation subject to uplift	36
(4.1)	Unsymmetrical arrangement of shear wall	78
(4.2)	Flat slab top reinforcement for span 5m for BS-8110-1997code	84
(4.3)	Flat slab bottom reinforcement for span 5m for BS-8110-1997code	84
(4.4)	Flat slab top reinforcement for span 7m for BS-8110-1997code	85
(4.5)	Flat slab bottom reinforcement for span 7m for BS-8110-1997code	85
(4.6)	Flat slab top reinforcement for span 5m for ACI 2005 code	88
(4.7)	Flat slab bottom reinforcement for span 5m for ACI 2005 code	88
(4.8)	Flat slab top reinforcement for span 7m for ACI 2005 code	89
(4.9)	Flat slab bottom reinforcement for span 7m for ACI 2005 code	89
(4.10)	Flat slab top reinforcement for span 5m EC2-1992 code	91
(4.11)	Flat slab bottom reinforcement for span 5m EUC2-1992 code	91
(4.12)	Flat slab top reinforcement for span 7m EC2-1992 code	92
(4.13)	Flat slab Bottom reinforcement for span 7m EC2-1992 code	92
(4.14)	BS8110-1997 internal column from storey1 to storey5	94
(4.15)	BS8110-1997 internal column from storey6 to storey10	94
(4.16)	BS8110-1997 internal column from storey11 to storey15	95
(4.17)	BS8110-1997 internal column from storey16 to storey20	95
(4.18)	BS8110-1997 edge and corner column from storey1 to storey5	96
(4.19)	BS8110-1997 edge and corner column from storey6 to storey10	96
(4.20)	BS8110-1997 edge and corner column from storey11 to storey15	97
(4.21)	BS8110-1997 edge and corner column from storey16 to storey20	97

(4.22)	ACI-2005 internal column from storey1 to storey 5	99
(4.23)	ACI-2005 internal column from storey6 to storey10	99
(4.24)	ACI-2005 internal column from storey11 to storey15	100
(4.25)	ACI-2005 internal column from storey16 to storey20	100
(4.26)	ACI-2005 edge and corner column from storey1 to storey5	101
(4.27)	ACI-2005 edge and corner column from storey6 to storey10	101
(4.28)	ACI-2005 edge and corner column from storey11 to storey15	102
(4.29)	ACI-2005 edge and corner column from storey16 to storey20	102
(4.30)	EC2-1992 internal column from storey1 to storey5	104
(4.31)	EC2-1992 internal column from storey6 to storey10	104
(4.32)	EC2-1992 internal column from storey11 to storey15	105
(4.33)	EC2-1992 internal column from storey16 to storey20	105
(4.34)	EC2-1992 edge and corner column from storey1 to storey5	106
(4.35)	EC2-1992 edge and corner column from storey6 to storey10	106
(4.36)	EC2-1992 edge and corner column from storey11 to storey15	107
(4.37)	EC2-1992 edge and corner column from storey16 to storey20	107
(4.38)	BS-8110-1997 shear wall design	108
(4.39)	AC1-2005- shear wall design	108
(4.40)	ECU2-1992- shear wall design	109
(4.41)	Raft foundation top reinforcement for span 5m for BS8110- code	111
(4.42)	Raft foundation bottom reinforcement for span 5m for BS8110- code	111
(4.43)	Raft foundation bottom reinforcement for span 7m for BS8110- code	112
(4.44)	Raft foundation top reinforcement for span 7m for BS8110- code	112
(4.45)	Raft foundation top reinforcement for span 5m for AC1 2005 code	115
(4.46)	Raft foundation bottom reinforcement for span 5m for AC1 2005 code	115
(4.47)	Raft foundation bottom reinforcement for span 7m for AC1 2005 code	116

(4.48)	Raft foundation top reinforcement for span 7m for ACI 2005 code	116
(4.49)	Raft foundation bottom reinforcement for span 5m for EC2-1992 code	118
(4.50)	Raft foundation top reinforcement for span 5m for EC2-1992 code	118
(4.51)	Raft foundation bottom reinforcement for span 7m for EC2-1992 code	119
(4.52)	Raft foundation top reinforcement for span 7m for EC2-1992 code	119

List of Tables

Table No	Table Description	Page
(3.1)	Distribution of moments in flat slabs	16
(4.1)	Wind load analysis	76
(4.2)	Earth quake forces in each floor	77
(4.3)	The torsional moment (m_t)	79
(4.4)	The distribution of loads in each wall	79
(4.5)	The distribution of torsional moment in each wall	80

List of Abbreviations

ACI 2005 Code:

M_0 = total factored static moment, N/mm²

q_u = factored load per unit area

l_2 = length of span in direction perpendicular to l_1

l_n = length of clear span measured face-to-face of supports, mm

M_2 = factored moment at section, N/mm²

d = distance from extreme compression fiber to centroid of longitudinal tension reinforcement

f_c = specified compressive strength of concrete, MPa

f_y = specified yield strength of reinforcement, MPa

$A_{s,min}$ = minimum area of flexural reinforcement, mm²

b_w = web width, or diameter of circular section

c_c = clear cover of reinforcement, mm

d_b = nominal diameter of bar, wire, or pre-stressing strand, mm

f_s = calculated tensile stress in reinforcement at service loads, MPa

S = snow load, or related internal moments and forces

V_u = factored shear force at section, N

r = radius of gyration of cross section of a compression member, mm,

f_{yt} = specified yield strength f_y of transverse reinforcement, MPa

A_v = area of shear reinforcement spacing s , mm²

ϕ = strength reduction factor

β = ratio of long to short dimensions: clear spans for two-way slabs

α_s = constant used to compute V_c in slabs and footings

ψ = is the effective length factor at the restrained end

b_0 = perimeter of critical section for shear in slabs and footings, mm

β_1 = factor relating depth of equivalent rectangular compressive stress block to neutral axis depth

T = cumulative effect of temperature, creep, shrinkage, differential settlement, and shrinkage-compensating concrete

P_u = factored axial force; to be taken as positive for compression and negative for tension, N

ϵ_t = net tensile strain in extreme layer of longitudinal tension steel at nominal strength, excluding strains due to effective pre stress, creep, shrinkage, and temperature.

P_n = nominal axial strength of cross section, N

l_u = unsupported length of compression member, mm

k = effective length factor for compression members

K = wobble friction coefficient per meter of tendon

M_2 = larger factored end moment on compression member, always positive, N.mm.

M_1 = smaller factored end moment on a compression member, to be taken as positive if member is bent in single curvature, and negative if bent in double curvature, N.mm.

A_g = gross area of concrete section, mm^2 For a hollow section, A_g is the area of the concrete only and does not include the area of the void(s)

M_n = nominal flexural strength at section, N.mm

h = overall thickness or height of member, mm

E = load effects of earthquake, or related internal moments and forces

M = maximum unfactored moment due to service loads, including P effects, N.mm

E_s = modulus of elasticity of reinforcement and structural steel, MPa.

A_{st} = total area of nonprestressed longitudinal reinforcement, (bars or steel shapes),

mm^2

$P_{n,max}$ = maximum allowable value of P_n , N,

V_n = nominal shear strength, N,

ρ = reinforcement ratio Eurocode 2

Euro codes 2-1992:

M = moment or bending moment breadth or width b

f_{ck} = characteristic cylinder strength of concrete

b_w = minimum width of section

h = overall depth of section in plane of bending

t = thickness

i = radius of gyration

A_s = cross-sectional area of tension reinforcement

f_{ctm} = mean tensile strength of concrete

x = neutral axis depth

A_s = cross-sectional area of compression reinforcement

d = depth to compression reinforcement

f_{yk} = characteristic yield strength of reinforcement

$A_{s,prov}$ = cross-sectional area of tension reinforcement provided at the ultimate

limit state

$A_{s,req}$ = cross-sectional area of tension reinforcement required at the ultimate limit state

δ = moment redistribution factor

L_0 = effective height of column or wall

L_a = lever-arm factor = z/d

s = spacing of shear reinforcement or depth of stress block

A_{sw} = cross-sectional area of shear reinforcement in the form of links or bent-up bars

α = coefficient of thermal expansion

I = second moment of area

k_1 = average compressive stress in the concrete for a rectangular parabolic stress

k_2 = a factor that relates the depth to the centroid of the rectangular parabolic stress

L = Length or span

E = modulus of elasticity

n = ultimate load per unit area

A_c = concrete cross-sectional area

N_{Ed} = design value of axial force

M_{Ed} = design value of moment

s_r = is the radial spacing of perimeters of shear reinforcement

$f_{ywd,es}$ = is the effective design strength of shear reinforcement

V = shear force

N = axial load

$V_{Rd,es}$ = is the punching shear resistance of the reinforced slab

s_t = is the spacing of links around the perimeter and.

$A_{sw,min}$ = is the area of an individual link leg

$V_{Ed,max}$ = maximum design shear force

$V_{Rd,max}$ = crushing strength of the concrete diagonal strut at the section of maximum shear

ϕ_{ef} = effective cr.]

British code B8110-1997:

d = Effective depth of tension reinforcement

g_k = characteristic dead load

q_k = characteristic live load

L_x = the length of the shorter side

z = lever arm

l_e is the effective span in the shorter direction

M = moment after redistribution

M' = moment before redistribution

β_{sy} = moment coefficient

L_x = the length of the longer side

f_y = Characteristic strength of reinforcement

f_{yv} = Characteristic strength of link reinforcement

f_{cu} = Characteristic concrete cube strength

N = Ultimate load per unit area

P = Final prestress force

ρ = percentage of total reinforcement in a column= $100A_s/bd$

ρ = percentage of tensile reinforcement in a beam= $100A_s/bd$

h = Overall depth of section In plane of bending

N =Axial load

B =Width of section

M = design ultimate moment.

V = design ultimate shear force

V_c =Ultimate shear stress in concrete

C_x = horizontal dimension of a column, parallel to l_x

x = Neutral axis depth

C_y = horizontal dimension of a column, parallel to l_y

s_v = Spacing of links along the member

l_0 = Effective height of a column or wall

e_x = is the resultant eccentricity of load at right angles to the plane of the wall (with minimum value $h/20$)

A_{sc} = Area of steel in column

A_{sv} = Cross-sectional area of shear reinforcement in the form of links

A_s = Cross-sectional area of compression reinforcement

A_{sreqd} = area of steel required from calculations

A_{sprov} = area of steel actually provided.

A_c = net area of concrete

f_s = Service stress or steel stress.

Z = Seismic zone factor

I = Importance factor

W = Total seismic dead load

C = Numerical coefficient

Rw = Numerical seismic coefficient

S = Site coefficient for soil characteristic

T = Fundamental period of vibration of structure

hn = Height in meter above the base to level N