الآية

قال تعالى:

(قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ

الْحَكِيمُ (32)

صدق الله العظيم سورة البقرة

DEDICATION

To my father

To my mother's soul

To my brothers and sister

To my colleagues
To my teachers

Acknowledgement

I would like to express my deepest gratitude to Dr. Mohamed Elfadil
without his help this work could not have been accomplished
I also would like to thanks my friends and colleagues for their
motivation and constant encouragement

Abstract

The main objective is to apply a new quantitative uniformity analysis technique to the gamma camera uniformity test. The results in this study carried out using computerized method in which a home-built Matlab program has been used. The images offered as a (TIFF) format then using Matlab the images were accessed. The region of interest was determined using crop function, and then it was smoothed by (7×7) window to reduce image noise. Then the uniformity parameters were calculated by finding the maximum and the minimum counts intensity. The regions of interest have been displayed in a (3D) surface for better visualization of the uniformity as an objective method rather than the subjective method (the visual perception). The result of this study showed that there is a strong correlation between the intensity (maximum & minimum) of the image and the uniformity parameters (integral uniformity & differential uniformity).In conclusion, we create own program to quantify uniformity data base.

ملخص البحث

الهدف الرئيسي من هذه الدراسة هو دراسة وتطبيق تقنية تحليل كمي لاختبار التماثل لجهاز الغاما كاميرا باستخدام تقنيه معالجه الصوره. في هذه الدراسة تم استخدام طريقة المحوسب الذي تم استخدام برنامج ماتلاب. بعد ذلك، تم تحديد المنطقة ذات الاهتمام باستخدام وظيفة (imcrop ومن ثم تم تنعيم الصوره للحد من الضوضاء في الصورة. ثم تم حساب باراميترات التماثل من خلال إيجاد الحد الأقصى والحد الأدنى للشدة. تم عرض المناطق ذات الاهتمام على شكل ثلاثي الابعاد لرؤية التماثل في الصوره بشكل أفضل من باعتبارها طريقة موضوعية بدلا من طريقة ذاتية (الإدراك البصري). أظهرت نتائج هذه الدراسة أن هناك علاقة قوية بين الشدة (الحد الأقصى والحد الأدنى) من الصورة وباراميترات التماثل. في الختام، فإنه من الممكن أن يكون لدينا برنامجنا الخاص لتحديد التماثل وبالتالي يمكن أن يكون لدينا قاعدة البيانات الخاصة.

Table of Contents

No.	Items	Page No
	الآية	i
	Dedication	ii
	Acknowledgements	iii
	Abstract [English]	iv
	Abstract [Arabic]	V
	Contents	vi
	Chapter One: <u>General Introduction</u>	
1.1	Introduction	1
1.1.1	The Gamma Camera	1
1.1.2	Gamma camera performance & quality control	3
1.1.3	Uniformity	4
1.2	Problem of the study	6
1.3	Objective of the study	6
1.4	Thesis outline	7
	Chapter Two: <u>Literature Review</u>	
2.1	The Gamma camera System	8
2.1.1	Introduction	8
2.2	Mode of Operation of the Gamma Camera	9
2.3	Collimators	11

No.	Items	Page No
2.4	Detector	14
2.5	Signal Processing	15
2.5.1	Analogue Systems	15
2.5.2	Digital Systems	16
2.5.3	Accuracy of Signal Processing	16
2.6	Pulse Height Analysis	16
2.7	Correction Circuits	18
2.8	Image Display	22
2.9	Types of Gamma Cameras and Their Clinical Uses	24
2.10	Gamma camera performance and quality control	27
2.10.1	Spatial Resolution	27
2.10.2	Sensitivity	28
2.10.3	Linearity	28
2.10.4	Energy Resolution	29
2.10.5	Count Rate Characteristic	29
2.10.6	Uniformity	30
2.10.7	Center of Rotation	31
2.11	National Electrical Manufacturers Association (NEMA)	32
2.12	Image Quality	34
2.12.1	Contrast	34

No.	Items	Page No
2.12.2	Spatial Resolution	35
2.12.3	Noise	35
2.13	Previous Studies	36
	Chapter Three: <u>Materials and Methods</u>	
3.1	Materials	37
3.2	Methods	38
3.2.1	Area of study	38
3.2.2	Method of data collection	38
3.2.3	Data analysis method	38
	Chapter Four: Results	
	Results	40
	Chapter Five: <u>Discussions & Conclusion and</u>	
	Recommendations	
5.1	Discussions	49
5.2	Conclusion	52
5.3	Recommendations	53
	References	54
	Appendix	56