بِسْمِ اللَّهِ الرَّحْمَٰنِ الرَّحِيمِ

اقْرَأْ بِاسْمِ رَبِّكَ الَّذِي خَلَقَ (1) خَلَقَ الْإِنْسَانَ مِنْ عَلَقٍ (2) اقْرَأْ وَرَبُّكَ الْأَكْرَمُ (3) الَّذِي عَلَمْ (5) كَلَّا إِنَّ الْإِنْسَانَ لَيَطْغَىٰ (6) أَنْ رَآهُ اسْتَغْنَىٰ (7) عَلَّمَ بِالْقَلَمِ (4) عَلَّمَ الْإِنْسَانَ مَا لَمْ يَعْلَمْ (5) كَلَّا إِنَّ الْإِنْسَانَ لَيَطْغَىٰ (6) أَنْ رَآهُ اسْتَغْنَىٰ (7) إِنَّ أَلِي رَبِّكَ الرُّجْعَىٰ (8) أَرَأَيْتَ الَّذِي يَنْهَىٰ (9) عَبْدًا إِذَا صَلَّىٰ (10) أَرَأَيْتَ إِنْ كَانَ عَلَى اللهُدَىٰ (11) أَوْ أَمَرَ بِالتَّقُوٰ عَلٰ (12) أَرَأَيْتَ إِنْ كَذَّبَ وَتَوَلِّىٰ (13) أَلُمْ يَعْلَمْ بِأَنَّ اللهَ يَرَىٰ اللهَ يَرَىٰ اللهَدَىٰ (11) أَوْ أَمَرَ بِالتَّقُوٰ عَلٰ (12) أَرَأَيْتَ إِنْ كَذَّبَ وَتَوَلِّىٰ (13) أَلُمْ يَعْلَمْ بِأَنَّ اللهَ يَرَىٰ اللهَ يَرَىٰ (14) كَلَّا لَئِنْ لَمْ يَنْتَهِ لَنَسْفَعًا بِالنَّاصِيَةِ (15) نَاصِيَةٍ كَاذِبَةٍ خَاطِئَةٍ (16) فَلْيَدْعُ نَادِيَهُ (17) سَنَدْعُ الزَّبَانِيَةَ (18) كَلَّا لَئِنْ لَمْ يَنْتَهِ لَنَسْفَعًا بِالنَّاصِيَةِ (15) نَاصِيَةٍ كَاذِبَةٍ خَاطِئَةٍ (16) فَلْيَدْعُ نَادِيَهُ (17) سَنَدْعُ الزَّبَانِيَةَ (18) كَلَّا لَا تُطِعْهُ وَاسْجُدْ وَاقْتَرِبْ (19)

سورة العلق الآيات 1-19

DEDICATION

To my parents, to my family, to all greater who worked hard providing knowledge for me, to all persons whom did their best to made happiness and to plant smiles on people faces around them.

ACKNOWLEDGMENT

Firstly I thank my God for his blessing me in particular with the opportunity to pursue a master. I thank him for supporting me in the face of challenges with His mercy and guidance, and for facilitating the completion of this thesis.

The completion of my research work would not have been possible without the support of several people who supported me in one way or other. I express my sincere appreciation to you all, for your help and guidance during my research course time.

I am extremely grateful to my primary supervisor Dr. FATH ELRAHMAN ISMAEL for all his support and valuable guidance. Also I thank my parents who always supported me to take up research studies and encouraged me at every stage of my academic and personal life.

Last but not least, I thank my God for giving me strength, health, power and knowledge to take up and complete this research work.

ABSTRACT

The ongoing development of mobile devices and their applications increases the requirements for high data rates and large capacity of the wireless communication networks rapidly. There are Different types of wireless network systems have been developed to offer the user requirement and fitful anywhere and anytime bases. Typical examples of this wireless networks are UMTS, WIMAX and WLAN. An important issue is to integrate these heterogeneous networks and manage the mobile nodes while moving across heterogeneous networks with session continuity, lower handover failure between networks and reduce the number of unnecessary handover. To achieve this, it is important to find the right point in time to perform a handover between networks and to find a new network that, in fact, improves the connectivity over a reasonable time span.

In this thesis, vertical handover techniques for mobile users were proposed in order to reduce the unnecessary handover and handover failure. By takes the receive signal strength (RSS), available bandwidth, Travelling time prediction and mobility as decision parameters. MATLAB-2013 simulation program is used to make handover decision. It is found that when the handover delay is $(\tau i = 1s)$ the probability of unnecessary handover is equal ZERO. And when the handover delay is $(\tau i = 455 \text{ms})$ the probability of unnecessary handover failure when the handover delay is $(\tau i = 1s)$ it is reduced by 69.28% .And when the handover delay is $(\tau i = 455 \text{ms})$ the probability of handover failure is reduced by 85.71%.

المستخلص

نتيجة لتطور الموبايل وتطبيقاتة فاننا نحتاج لزيادة السعة وسرعة وصول البيانات، هنالك عدد من انواع الشبكات اللاسلكية تم تطوير ها لكي توفر للمستخدم حوجتة في استخدام الشبكات في اي مكان واي زمان وهذة الشبكات هي النظام العالمي للاتصالات المتنقلة،واي ماكس، الشبكات المحلية اللاسلكية ،ولكن من المهم جدا تجميع هذة الشبكات الهجينية وادارتها بالصورة المطلوبة لكي تسهل للمستخدم التحرك بينها من دون حدوث فشل في التنقل العمودي و الانتقال العمودي الغير ضروري وانهيار الاتصال لكي نحل هذه المشاكل لابد من ان نختار الزمن والنقطة الصحيحة عند اتخاذ القرار في الانتقال العمودي . في هذا البحث تم تقليل فشل الانتقال العمودي و الانتقال العمودي غير الضروري وانهيار الاتصال باستخدام عدة عوامل مثل قوة الاشارة المستقبلة ،سعة النطاق ،توقع زمن وصول والتجوال. بأستخدام هذة العوامل وادخالها في برنامج الماتلاب وجد انه عندما يكون تأخر زمن التسليم والتسلم يساوى واحد ثانية فأن احتمالية الانتقال العمودي الغير ضروري يساوي صفر وعندما يقل تأخر زمن التسليم والتسلم الى 455 مل ثانية فأن احتمالية الانتقال العمودي الغير ضروري يساوى 0.04 وكذلك احتمالية فشل الانتقال العمودي عندما يكون تأخير زمن التسليم والتسلم يساوي واحد ثانية وسرعة الهاتف الجوال (100km/h) فأنة يقل بمقدار 69.28% وعندما يقل تأخر زمن التسليم والتسلم الى 455 مل ثانية فأن احتمالية فشل الانتقال العمودي يقل بمقدار 1 85.7%.

TABLE of CONTENTS

الاية	i
DEDICATION	i
ACKNOWLEDGMENT	iii
ABSTRACT	iv
المستخلص	v
TABLE of CONTENTS	X
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	Vi
ABBREVIATIONS	xvi
Chapter 1 Introduction	2
1.1 Preface	2
1.2 Problem Statement	3
1.3 Proposed Solutions	3
1.4 Objectives	4
1.5 Methodology	4
1.6 Thesis Outlines	5
Chapter 2 Literature Review	7
2.1 Background	7
2.2.1 Evaluation of Mobile Communication System	
2.2.2 Mobile broadband wireless technology evolution	
2.2.2 Moone orougound wheress technology evolution	
2.2.2.1 Wireless fidelity	9

2.2.2.2 Worldwide interpretability of microwave access	10
2.2.2.3 Key feature of WIMAX	10
2.2.2.4 UMTS Network Architecture	11
2.3 heterogeneous networks	13
2.4 handover management in 4G network	14
2.4.1 Classification of handover	15
2.4.1.1 Horizontal handoff	15
2.4.1.2 Vertical handoff	16
2.4.1.3 Hard and Soft handover	17
2.4.1.4 Softer handover	18
2.4.1.5 Mobile controlled-Network control handover	18
2.5 Vertical handover process	19
2.5.1 Handover Initiation	19
2.5.2 Handover Decision	19
2.5.3Handover Execution.	20
2.6 Vertical handover criteria	21
2.7 Related works.	22
Chapter 3 Vertical Handover Decision and Execution	25
3.1 Network Model description	25

3.2 Vertical Handover decision Algorithm (VHD)26
3.2.1 Vertical Handover algorithm for user connected to WIFI28
3.2.2 Vertical Handover algorithm for user connected to 3G29
3.3 Equation Description and Parameter30
3.3.1 Probability of Handover Failure30
3.3.2 Probability of Unnecessary Handover31
3.3.3 Number of Handover Failure
3.3.4 Number of Unnecessary Handover
3.3.5 Spectral Efficiency
3.3.6 Throughput34
3.3.7 Probability of Connection Breakdown34
Chapter 4 Results and Discussions
4.1 simulation parameter
4.2 Simulation Results
4.2.1 Probability of Handover Failure37
4.2.2 Probability of Unnecessary Handover39
4.2.3 Number of Handover Failure41
4.2.4 Number of Unnecessary Handover42
4.2.5 Total Number of Handover44
4.2.6 Probability of Connection Breakdown45
4.2.7 Spectral Efficiency46
4.2.8 Throughput
Chapter 5 Conclusion and Recommendations
5.1 Conclusion

5.2 Recommendations	55
Reference	52
Appendices A-B.8	57-72

LIST OF TABLES

Table No	Title	Page
(4-1)	Different Networks Characteristics	38
(4-2)	Networks Parameter	39

LIST OF FIGURES

Figure No	Title	Page
(2-1) Evolution of w	vireless communications	7
(2-2) UMTS Netwo	rk Architecture	12
(2-3) HETNET example (2-3)	mple	13
(2.4) Horizontal Ha	ndover descriptions	16
(2-5) Vertical Hande	over description	16
(2-6) Hard Handove	er descriptions	17
(2-7) Soft Handover	r descriptions	18
(2-8) Softer Handov	vers descriptions	18
(2-9) General Hando	over Process	20
(2-10) Parameters u	sed for making VHD decision	21
(3-1) Heterogeneous	s network System Description	25
	rithm of vertical handover dec	
(3-3) proposed algor	rithm of vertical handover dec	ision from UMTS
to WIMAX /WLAN	N	30
(4-1) Handoff Failur	re	40

(4-2) Unnecessary Handover41
(4-3) Number of Handoff failure
(4-4) Number of Unnecessary Handover
(4-5) Total Number of failure and total Number of unnecessary
(4-6) Spectral efficiency for WLAN, WIMAX, UMTS45
(4-7) Throughput for WLAN, WIMAX, UMTS network46
(4-8) Connection Breakdown47

LIST OF SYMBOLS

 β Path loss coefficient

 d_{reF} Distance between the AP and a reference point.

 L_0p Distance between the AP and point P.

Lop_i Distance between the AP and the entry point of the WLAN cell coverage

los Distance between the AP and where the MT takes an RSS sample

los₁ Distance between AP location O and sampling point S1

los2 Distance between AP location O and sampling point S2

M Middle point of the traveling trajectory

 pL_{re} F Path loss at the reference point

PTX the transmit power of the WLAN AP in dBm

Pb Connection breakdown probability

Pf Probability of a handover failure

Pi Entry point of the WLAN cell coverage

Po Exit point of the WLAN cell coverage

Pu Probability of an unnecessary handover

 $Rssp_i$ RSS at point p_i

RSSs RSS at the sampling point S

T₁ Time threshold for minimizing handover failures from WLAN

T₂ Time threshold for minimizing unnecessary handover

τ WLAN to 3G handover delay

 σ Standard deviation of the shadow fading before averaging RSS

ABBREVIATIONS

1G 1st Generation

2G 2nd Generation

2.5G 2.5 Generation

3G 3rd Generations

3.5 Generation

4G 4th Generations

3GPP Third-Generation Partnership Project

AMPS Advanced Mobile Phone System

BS Base station

CS Circuited switched

FEC Forward Error Correction

GSM Global System for Mobile Communication

GPRS General Packet Radio Service

HN Handoff Need

HNE Handover necessity estimation

JTACS Japanese Total Access Communication system

LTE Long Term Evolution

MIMO Multiple-Input Multiple-Output

MSC Mobile switch center

MT Mobile terminal

MUs Mobile Users

NMT Nordic Mobile Telephone

OFDMA Orthogonal Frequency Division Multiple

PS Packet switch

PoA Point of attach

RSS Receive signal strength

SC-FDMA Single Carrier Frequency Division Multiple Access

TACS Total Access Communication System

TD-SCDMA Time Division-Synchronous Code Division multiplex

TNS Target Network Selection

UMTS Universal Mobile Telecommunications System

UMB Ultra-Mobile Broadband

VHO Vertical Handover

Wi-Fi Wireless Fidelity

WiMAX Worldwide Interoperability for Microwave Access