

بسم الله الرحمن الرحيم

The Quran verse

قال تعالى :

(لقد أرسلنا رسلنا بالبيانات وأنزلنا معهم الكتاب والميزان ليقوم الناس بالقسط وأنزلنا الحديد فيه
بأس شديد ومنافع للناس وليرعلم الله من ينصره ورسله بالغيب ان الله قوي عزيز)

صدق الله العظيم

سورة الحديد

Dedication

To my father... who teach me the meaning of allegiance

To my mother...who feeds me volition and consistency

To my wife...who sustains a lot to ease my life

To myfamily

I dedicate this research

Acknowledgement

"That who never thank people, never thank God"

As per prophet Mohammed said

I would particularly like to thank the following persons for their help and encouragement:

Dr. Abdelfattah Bilal for his considerable help and valuable advises which lead me directly to accomplish this work.

The family of Sudan University of Science and Technology Mechanical Engineering Department.

And.....

I will never forget to thank my amazing workmates whom show a considerable amount of patience in their help

Thanks again

ABSTRACT

Heavy vehicles are made specially to work on uneven road surfaces and they contain some attachment that to be used for such soil and are used upon wheeled or trucked systems, this attachment is used to help generate very high torque of pulling to be used for all types of soils. These vehicles are different in designs, shapes, establishments, capabilities and attachments. The transmission system of the vehicle consists of several components which sometimes encounter unfortunate failures, some of these failures maybe caused by the manufacturer and design faults, material faults, maintenance faults as well as user originated faults. In the heavy vehicle under study which consists of four driving axles, the transfer gear box of the vehicle is used for transmitting power to appropriate axles two, three or four axles. The two front axles can be engaged when needed through a cluster gear which is mounted in the primary shaft of the transfer gear box. The cluster gear of the transfer gear box breaks very frequently, which result in a low reliable performance of the vehicle. Reliability is a major importance for this heavy vehicle. In this research, a modification of the transfer gear box which includes two additional clutches to smooth the engagement of the cluster gear is presented. The clutches were designed to carry a torque of 1852 Nm. The friction surfaces which are made of carbon graphite are of diameter 260 mm outer and 160 mm inner diameter.

مستخلص

صنعت المركبات الثقيلة خاصة للعمل في سطح الارض الغير مستوية (الطرق الغير معبدة) وتحتوي هذه المركبات على بعض الملحقات لاستخدامها في هذه الأسطح بواسطة انظمة العجلات المدولبة أو المجنزرة. هذه الملحقات استخدمت للمساعدة في توليد عزم سحب(جر) كبير جدا لاستخدامه لمختلف انواع الاراضي. هذه المركبات تختلف من حيث التصميم ، الشكل، التأسيس والمقدرات الملحة بها. نظام نقل الحركة لهذه المركبات يحتوي على عدة مكونات ولكنها في بعض الاحيان تتعرض لبعض الاعطال (الفشل) والتي من الممكن ان تكون بسبب التصنيع، التصميم، المواد ، الصيانة أو الأعطال التي يتسبب فيها المستخدم . المركبة موضوع البحث تحتوي على اربعة محاور قائدة (مديرة) وصندوق تحويل يستخدم لنقل القدرة للمحاور المختارة . المحورين الاماميين يمكن توصيلهما عند الحاجة لهما (عن طريق) خلال مجموعة تروس مركبة في العمود الابتدائي لصندوق التحويل. هذه المجموعة تتعرض للكسر المتكرر مما يؤدي الي خفض إعتمادية التشغيل . الإعتمادية عامل مهم لهذه المركبة . في هذا البحث تم تعديل صندوق التحويل للمركبة بالإضافة عدد اثنين (كلتش) لتسهيل عمل مجموعة التروس . صممت هذه (الكلتشات) لتحمل عزم بقدار 1852 نيوتن متروصممت اسطح الاحتكاك من مادة الكاربون قرافيت قطرها الخارجي 260 ملم وقطرها الداخلي 160 ملم.

Table of Contents

The Quran Verse	
Dedication.....	
Acknowledgement.....	
Abstract.....	
Table Of Contents.....	
List Of Figures.....	
Chapter One: Introduction	
1.1 General.....	1
1.2 The Problem Statement.....	1
1.3 Research Objectives.....	2
1.4 Methodology.....	2
Chapter Two: Literature Review	
2.1 preface	3
2.2 Transmission.....	4
2.3 Clutch.....	14
Chapter Three: Design Modification	
3.1 Preface	24
3.2 Modification of transfer	29
Chapter Four: Conclusion and Recommendations	
4.1 Conclusion.....	36
4.2 Recommendation	36

List of Figures

Fig. No.		Page
2.1	Transmission Types	6
2.2	Transmission Types Chart	7
2.3	Transmission System	8
2.4	Transmission System-Layout	9
2.5	Single Plate Dry Clutch-Automotive Application	15
2.6	Positive clutch	15
2.7	Cone-Clutch	16
2.8	Single Plate Clutch	17
2.9	Multi-Plate Clutch	18
2.10	Diaphragm Clutch	18
2.11	Fluid Coupling	19
2.12	Hydraulic Torque Converter	20
2.13	Centrifugal Clutch	21
2.14	Semi-Centrifugal Clutch	22
2.15	Electro-Magnetic Clutch	22
3.1	Power Train	25
3.2	Transfer Gearbox	26
3.3	Study Area (Section)	30
3.4	Clutch Design	34
3.5	Additional clutches modification	35

