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Chapter 4 

Symmetries and Lie algebras 

4.1  Introduction  

Symmetry is a characteristic of geometrical shapes, equations and other objects; we say that 

such an object is symmetric with respect to a given operation if this operation, when applied 

to the object, does not appear to change it. The three main symmetrical operations are 

reflection, rotation and translation. A reflection "flips" an object over a line, inverting it as if 

in a mirror. A rotation rotates an object using a point as its center. A translation "slides" an 

object from one area to another by a vector. Even more complex operations on a geometric 

object, like shrinking or shape warping, can be reduced to the operation of translation of every 

point within the object. Symmetry occurs in geometry, mathematics, physics, biology, art, 

literature (palindromes), etc
1
.  

Although two objects with great similarity appear the same, they must logically be different. 

For example, if one rotates an equilateral triangle around its center 120 degrees, it will appear 

the same as it was before the rotation to an observer. In theoretical Euclidean geometry, such 

a rotation would be un recognizable from its previous form. In reality however, each corner of 

any equilateral triangle composed of matter must be composed of separate molecules in 

separate locations. Symmetry therefore, is a matter of similarity instead of sameness. The 

difficulty for an intelligence to differentiate such a seemingly exact similarity might for a 

responsible for the mild altered state of consciousness one gets by observing intricate patterns 

based on symmetry.  

4.1.1.   Symmetry in Geometry  

The object with the most symmetry is empty space because any part of it can be rotate, 

reflected or translated without apparent change.  

The most familiar and conventionally taught type of symmetry is the left-right or mirror 

image symmetry exhibited for instance by the letter 𝑇: when this letter is reflected along a 

vertical axis, it appears the same. An equilateral triangle exhibits such a reflection symmetry 

along three axes, and in addition it shows rotational symmetry: if rotated by 120 or 240 

degrees, it remains unchanged. An instance of a shape which exhibits only rotational but no 

reflectional symmetry is the swastika. The German geometer Felix Klein enunciated a very 

influential Erlangen programme in 1872, suggesting symmetry as unifying and organizing 

principle in geometry ( at a time when that was read 'geometries' ). This is a broad rather than 

                                                           
1
 " file:localhost/Noether’s 20%/Symmetric group/Wikipedia/20%/free/com” Wikipedia paper.  
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deep principle. Initially it led to interest in the group attached to geometries, and the slogan 

transformation geometry ( an aspect of the New Math, but hardly controversial in modern 

mathematical practice ). By now it has been applied in numerous forms, as kind of standard 

attack on problems.  

  A fractal, coined by Mandelbrot is symmetry involving scale. For example an equilateral 

triangle can be shrunk so that each of its sides is one third the length of the original's sides. 

These smaller triangles can be rotated and translated until they are adjacent and in the center 

of each of the larger triangle's lines. The smaller triangles can repeat the process, resulting in 

even smaller triangle's on their sides. Fascinating intricate structures can be created by 

repeating such scaling symmetrical operations many times.  

4.1.2.   Symmetry in Mathematics  

An example of a mathematical expression exhibiting symmetry is 𝑎2𝑐 + 3𝑎𝑏 + 𝑏2𝑐. If 𝑎 and 

𝑏 are exchanged, the expression remains unchanged due to the commutatively of addition and 

multiplication.  

In mathematics, one studies the symmetry of a given object by collecting all the operations 

that leave the object unchanged. These operations form a group. For a geometrical object, this 

is known as its symmetry group; for an algebraic object one uses the term auto Orphism 

group. The whole subject of galios Theory deals with well-hidden symmetries of fields.  

4.1.3.  Generalization of Symmetry  

 If we have a given set of objects with some structure, then it is possible for symmetry to 

merely convert only one object into another instead of acting upon all possible objects 

simultaneously. This requires a generalization from the concept of symmetry groups to that of 

a groupoid.  

4.1.4.   Symmetry in Physics  

The generalization of symmetry in physics to mean invariance under any kind of 

transformation has become one of the most powerful tools of theoretical physics. See 

Noether's theorem for more details. This has led to group theory being one of the areas of 

mathematics most studied by physicists.   

4.1.5.  Symmetry in the arts and crafts  

You can find the use of symmetry across a wide variety of arts and crafts. Symmetry has long 

been a predominant design element in architecture; prominent examples include the Leaning 
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Tower of Pisa, Monticello, the Astrodome, the Sydney Opera House, Gothic church windows, 

and the Pantheon. Symmetry is used in the design of all overll floor plan of buildings as well 

as the design of individual building elements such as doors, windows, floors, frieze work, and 

ornamentation; many facades adhere to bilateral symmetry.  

4.1.6.  Symmetry Group  

The symmetry group of an object (image, signal,etc) is the group of all isometries under 

which it's invariant with composition as the operation. It's a subgroup of the isometry group of 

the space concerned. If not stated otherwise; this article considers symmetry groups in 

Euclidean geometry.  

The symmetry group is sometimes also called full symmetry group in order to emphasize that 

it includes the orientation-reversing isometries like reflections, glide reflections and improper 

rotations under which the figure is invariant.  

The subgroup of orientation-preserving isometries (i.e. transformations, rotations, and 

composition of these) which leave the figure invariant is called its proper symmetry group. 

The proper symmetry group of an object is equal to it's full symmetry group if and only if the 

object is chiral (and thus there are no orientation-reversing isometries under which it's 

invariant). Any symmetry group whose elements have a common fixed point, which is true 

for all finite symmetry groups and also for the symmetry groups of bounded figures, can be 

represented as a subgroup of orthogonal 𝑂(0) by choosing the origin to be a fixed point. The 

proper symmetry group is a subgroup of the special orthogonal group 𝑆𝑂(𝑛) then, and 

therefore also called rotation group of the figure.  

4.1.7. Discrete symmetry groups  

Finite point groups, which include only rotations, reflections, inversion and roto inversion- 

they are in fact just the finite subgroups of 𝑂(0).  

Infinite lattice groups which include only translations, and infinite space groups which 

combines elements of both previous types, and may be also include extra transformations like 

screw axis and glide reflection . There are also continuous symmetry groups, which contains 

of arbitrary small angles or translations of arbitrary small distance.  

The group of all symmetries of a sphere 𝑂(3) is an example of this, and in general such 

continuous symmetry groups are studied a Lie groups. With a categorization of subgroups of 

the Euclidean group corresponds a categorization of symmetry groups.  
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Two geometry figures are considered to be of the same symmetry type if their symmetry 

groups are conjugate subgroups of the Euclidean group  𝐸(𝑛) ( the isometry group of 𝑅2). 

Where two subgroups 𝐻1 , 𝐻2 of a group 𝐺 are conjugate, if there exists 𝑔 ∈ 𝐺 such that  

𝐻1 = 𝑔−1𝐻2 𝑔  

Examples   4.1.1.   

i. Two 3𝐷 figure have mirror symmetry, but with respect to different mirror planes.  

ii. Two 3𝐷 figures have 3-fold rotational symmetry, but with respect to different axes.  

iii. Two 2𝐷 patterns have translational symmetry,each in one direction; the two translation 

vectors have the same length but a different direction.  

4.2  Symmetric Group  

 In Mathematics, the symmetric group on a set is the group consisting of all bijections of the 

set (all one-to-one and on to functions from the set to itself) with function composition as the 

group operation.  

Definition  4.2.1.   

 The symmetric group on a set 𝑋 is the group whose underlying set is the collection of all 

bijections from  𝑋 to 𝑋 and whose group operation is that of function composition. The 

symmetric group of degree 𝑛 is the symmetric group on the set [𝑋 = 1,2,…… , 𝑛].  

The symmetric group on a set 𝑋 is dented in various ways including 𝑆𝑋  , 𝐺𝑋  , Σ𝑋  and 𝑠𝑦𝑚(𝑥). 

If 𝑋 is the set  1,2,…… , 𝑛  when the symmetry group on 𝑋 is also dented 𝑆𝑛  , 𝐺𝑛  , Σ𝑛  and 

𝑠𝑦𝑚(𝑛). 

i. Elements  

 The elements of symmetric group on a set 𝑋 are the permutations of 𝑋.  

ii. Multiplication:  

 The group operation in a symmetric group is function composition,deonted by juxtaposition 

of the permutations. The composition 𝑓 ∘ 𝑔 of permutations 𝑓 and 𝑔, pronounced 𝑓 after 𝑔, 

maps any element 𝑥 of 𝑋 to 𝐹(𝑔 𝑥 ). Concretely, let  

𝑓 =  1 3  4 5 =  
1 2 3
3 2 1

    
4 5
5 4
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And    

𝑔 =  1 2 5  3 4 =  
1 2 3
2 5 4

    
4 5
3 1

  

Applying 𝑓 and 𝑔 maps 1 first to 2 and then 2 to it self. 2 to 5 and then to 4,3 to 4 and then to 

5, and so on. So composing  𝑓 and 𝑔 gives  

𝑓𝑔 = 𝑓 ∘ 𝑔 =  1 2 4  3 5 =  
1 2 3
2 4 5

    
4 5
1 3

  

A cycle of length 𝐿 = 𝐾. 𝑚, taken to 𝑘-th power, will decompose into 𝑘 cycles of length 𝑚. 

For example :  𝑘 = 2, 𝑚 = 3   

 1 2 3    4 5 6 2 =  1 3 5  4 5 6  

4.3    Symmetry Sets  

Reflections and Symmetries  

Let 𝐺 
2
be a group with identity 1 and let 𝑅 be a subset of 𝐺 containing 1. Then 𝑅 has a partial 

product  𝜋 𝑎, 𝑏 = 𝑎𝑏 defined on 𝐷 =    𝑎, 𝑏 ∈ 𝑅 × 𝑅 𝑎𝑏 ∈ 𝑅 , and 𝑅 together with 𝜋 is a 

product set in the sense of the following definition.  

Definition  4.3.1.   

A product set is a set 𝑅 together with a function 𝜋 from a subset 𝐷 of  𝑅 × 𝑅 to 𝑅, denoted 

𝜋 𝑎, 𝑏 = 𝑎𝑏 and called the partial product of  𝑅, such that :  

1. 𝑅 has an identity element 1 such that  1, 𝑎 ,  𝑎, 1 ∈ 𝐷 and 1𝑎 = 𝑎1 = 𝑎 for all 𝑎 ∈ 𝑅;  

2. 𝑎𝑏 = 𝑎𝑐 implies 𝑏 = 𝑐 for all  𝑎, 𝑏 ,  𝑎, 𝑐 ∈ 𝐷.  

If  𝑎, 𝑏 ∈ 𝐷 implies  𝑏, 𝑎 ∈ 𝐷 and 𝑎𝑏 = 𝑏𝑎 for all , 𝑏 ∈ 𝑅 , 𝑅 is abelian.  

Here we will denote 𝑅 as a finite product set with identity 1, partial product 𝜋 and the domain 

𝐷 of 𝜋. The motivating example is that of a subset 𝑅 of a group 𝐺, such as the set 𝑅 of roots 

of a Lie algebra.  

We define 𝑎𝑖𝑏 for 𝑎, 𝑏 ∈ 𝑅, 𝑖 ∈ ℤ as follows:  

1. 𝑎∘𝑏 = 𝑏  

2. 𝑎𝑖𝑏 = 𝑎 𝑎𝑖−1𝑏   for all 𝑖 ≥ 1 for which 𝑎𝑖−1𝑏 and 𝑎 𝑎𝑖−1𝑏   are defined:  

                                                           
2
 Symmetry sets – David J. Winter- Department of Mathematics, University of Michigan, Ann Arbor, 

Michigan 48109 communicated by Walter Feit – April 16,1980.  
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3. 𝑎−𝑖𝑏 = 𝑑 if = 𝑎𝑖𝑑  𝑖 ≥ 0 .  

We let 𝑎𝑖𝑏 ∈ 𝑅 indicate that 𝑎𝑖𝑏 is defined, and we let 𝑎𝑖𝑏 ∉ 𝑅 indicate that 𝑎𝑖𝑏 is not 

defined ( an abuse of language). Note that 𝑎𝑖 𝑎𝑗𝑏 = 𝑎𝑖+𝑗𝑏 for all 𝑖, 𝑗 ∈ ℤ for which  𝑎𝑗𝑏, 

𝑎𝑖 𝑎𝑗𝑏 ∈ 𝑅.  

4.4   Homomorphisms of product sets   

Definition   4.4.1.  

Let 𝑅1 , 𝑅2 are mapping 𝑓: 𝑅1 ⟶ 𝑅2 such that 𝑓 𝑎𝑏 = 𝑓 𝑎 𝑓(𝑏) for all 𝑎, 𝑏 𝑎𝑏 ∈ 𝑅1. A 

homomorphism of product sets 𝑓: 𝑅1 ⟶ 𝑅2 is an isomorphism ( automorphism 𝑅1 = 𝑅2) if 𝑓 

is bijective and both 𝑓 and 𝑓−1 are homomorphism. The set of homomorphisms from 𝑅1to 𝑅2 

is denoted 𝐻𝑜𝑚(𝑅1 , 𝑅2), and 𝐴𝑢𝑡 𝑅 denotes the group of automorphism of 𝑅.  

Note that 𝑓 𝑎𝑖𝑏 = 𝑓 𝑎 𝑖𝑏 for 𝑓 ∈ 𝐻𝑜𝑚(𝑅1 , 𝑅2), 𝑖 ∈ ℤ, 𝑎, 𝑏 𝑎𝑏 ∈ 𝑅1.  

For  𝑎 ∈ 𝑅 and 𝑺 ⊂ 𝑅, the relation    𝑥, 𝑦 ∈ 𝑺  𝑦 = 𝑎𝑥  generates an equivalence relation on 

𝑺. The corresponding equivalence class of  𝑏 ∈ 𝑺 is the string 𝑺𝑏 𝑎 =  𝑎−𝑟𝑏, … , 𝑏, … , 𝑎𝑞𝑏 . 

If 𝑎−(𝑟+1)𝑏, 𝑎𝑞+1𝑏 ∉ 𝑺, we say that the string 𝑺𝑏 𝑎  is bounded of length 𝑞 + 𝑟.  

If all strings 𝑺𝑏 𝑎   𝑏 ∈ 𝑺  are bounded, we introduce the reflection 𝑟𝑎 : 𝑺 ⟶ 𝑺, which is the 

bijection from 𝑺 to itself reversing each string 𝑺𝑏 𝑎 =  𝑎−𝑟𝑏, … , 𝑎𝑞𝑏  : 𝑟𝑎 𝑎
𝑖𝑏 = 𝑎𝑞−𝑟−𝑖 𝑏.  

In particular, 𝑟𝑎 𝑏 = 𝑎−𝑎∗(𝑏) 𝑏, where 𝑎 ∗  𝑏 = 𝑟 − 𝑞, the Cartan integer of 𝑏 at 𝑎. Clearly, 

𝑟𝑎  is a symmetry of  𝑺 at 𝑎 in the following sense.  

Definition  4.4.2.   

A symmetry of 𝑺 at 𝑎 is a bijection 𝑠 ∶ 𝑺 ⟶ 𝑺 such that  

(i) 𝑠 𝑺𝑏 𝑎 = 𝑺𝑏 𝑎  for all 𝑏 ∈ 𝑺  

(ii) 𝑠 𝑎𝑖𝑏 = 𝑎−𝑖 𝑠(𝑏) for all 𝑏 ∈ 𝑺 and all 𝑎𝑖𝑏 ∈ 𝑺𝑏 𝑎   −𝑟 ≤ 𝑖 ≤ 𝑞 .  

Clearly, a symmetry 𝑠 of 𝑺 at 𝑎 has period 2. Moreover, if all strings  𝑺𝑏 𝑎   𝑏 ∈ 𝑺  are 

bounded, 𝑟𝑎  is the only symmetry of 𝑺 at 𝑎.  

4.5   Reflection Sets and Symmetry Sets  

Definition  4.5.1.   

A reflection set is a finite product set 𝑅 such that :  
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1. The strings 𝑅𝑏 𝑎   𝑎, 𝑏 ∈ 𝑅 , 𝑎 ≠ 1  are all bounded  

2. The reflections 𝑟𝑎 𝑎 ∈ 𝑅 , 𝑎 ≠ 1  are automorphisms of 𝑅.  

3. The subgroup 𝑊(𝑅) of 𝐴𝑢𝑡 𝑅 generated by the reflections 𝑟𝑎 𝑎 ∈ 𝑅 , 𝑎 ≠ 1  is called the 

Weyl group of 𝑅.  

Clearly, a reflection set is a symmetry set in the following sense,  

Definition  4.5.2.   

A symmetry set is a finite product set 𝑅 such that 𝐴𝑢𝑡 𝑅 contains a symmetry 𝑠𝑎  of 𝑅 at 𝑎 for 

all  𝑎 ∈ 𝑅 , 𝑎 ≠ 1.  

In a symmetry set 𝑅, each element 𝑎 ∈ 𝑅 has a unique inverse 𝑏 ∈ 𝑅 such that 𝑎𝑏 = 𝑏𝑎 = 1. 

This follows from the equations 

 𝑠𝑎 𝑎 = 𝑠𝑎 𝑎1 = 𝑎−1𝑠𝑎 1 = 𝑎−1 1,  

1 = 𝑎 𝑎−1 1    

1 = 𝑠𝑎 𝑎 𝑎
−1 1  = 𝑠𝑎 𝑎  𝑠𝑎 𝑎

−1 1 =  𝑎−1 1  𝑎𝑠𝑎 1  =  𝑎−1 1 𝑎  

Clearly, the inverse of 𝑎 is 𝑎−1 1, which we denote henceforth by 𝑎−1 . Clearly,  𝑠𝑎 𝑎 = 𝑎−1 

If 𝑠𝑎  is the reflection 𝑟𝑎 𝑏 = 𝑎−𝑎∗(𝑏) 𝑏, we have 𝑎 ∗  𝑎 = 2. For example ,  

𝑅𝑎 𝑎 =  𝑎−𝑟𝑎, … . , 𝑎𝑞𝑎 =  𝑎1−𝑟1,… . , 𝑎−11,1. 𝑎1, … . , 𝑎𝑞+11   

And 𝑟𝑎 1 = 1, implies that –  1 − 𝑟 = 𝑞 + 1 and 𝑎 ∗  𝑎 = 𝑟 − 𝑞 = 2. This is needed for 

(Theorem 4.5.1)  

Definition   4.5.3.   

a root system is a finite product set 𝑅 such that for all 𝑎 ∈ 𝑅, 𝑎 ≠ 1, there exists  

 𝑎 ∈ 𝐻𝑜𝑚(𝑅, ℤ) such that 𝑎.  𝑎 = 2 and 𝑠𝑎 𝑏 = 𝑎−𝑎 . (𝑏) 𝑏 defines an automorphism and 

symmetry 𝑠𝑎  of 𝑅 at 𝑎.  

Theorem  4.5.1.  

 The following conditions are equivalent:  

1. 𝑅 is a root system  
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2. 𝑅 is a symmetry set and 𝐻𝑜𝑚(𝑅, ℤ) separates 𝑅  

3.  𝑅 is reflection set and 𝑎∗ ∈ 𝐻𝑜𝑚(𝑅, ℤ) for all 𝑎 ∈ 𝑅, 𝑎 ≠ 1  

4.  𝑅 is isomorphic to 𝑎 system of roots in the sense of Bourbaki with 0 added.  

Proof:  

We show that  𝟏 ⟹  𝟐 ⟹  𝟑 ⟹  𝟒 ⟹ (𝟏). Suppose first that 𝑅 is a root system, 

𝑏, 𝑐 ∈ 𝑅, 𝑏 ≠ 𝑐 and 𝑎. 𝑏 = 𝑎.(𝑐) for all 𝑎 ∈ 𝑅, 𝑎 ≠ 1. Consider, first the possibility that 

𝑐−1𝑏 ∈ 𝑅 − {1}. Then 𝑐 ∈ 𝑅, 𝑐−1𝑏 ∈ 𝑅 and 𝑐 𝑐−1𝑏 = 𝑏 ∈ 𝑅 implies that 

 𝑎. 𝑏 = 𝑎. 𝑐 𝑐−1𝑏  = 𝑎. 𝑐 + 𝑎. 𝑐−1𝑏 ,  

so that  𝑎. 𝑐−1𝑏 = 𝑎. 𝑏 − 𝑎. 𝑐 = 0 for all 𝑎 ∈ 𝑅, 𝑎 ≠ 1.  

In particular, 2 =  𝑐−1𝑏 . 𝑐−1𝑏 = 0,   a contradiction.  

Thus,  𝑐−1𝑏 ∉ 𝑅 − {1}, so that  𝑅𝑏 𝑐 = {𝑏, … , 𝑐𝑞𝑏} and 𝑅𝑏 𝑐  is bounded of length 𝑞. It 

follows that  𝑠𝑐 𝑏 = 𝑐𝑞𝑏, so that  𝑠𝑐 𝑏 = 𝑐−𝑐∙(𝑏)𝑏 implies that – 𝑞 = 𝑐∙ 𝑏 = 𝑐∙ 𝑐 = 2, a 

contradiction. We must conclude that   𝑐∙ 𝑎 ∈ 𝑅, 𝑎 ≠ 1  separates 𝑅, so that   𝟏 ⟹  𝟐 .  

For  𝟐 ⟹  𝟑 , suppose that 𝑅 is symmetry set and 𝐻𝑜𝑚(𝑅, ℤ), let 𝑅∗∗ be the group 

𝐻𝑜𝑚(𝑅∗, ℤ) and define 𝑎 ∈ 𝑅∗∗ for  𝑎 ∈ 𝑅 by 𝑎  𝑓 = 𝑓 𝑎  𝑓 ∈ 𝑅∗  :  

𝑎  𝑓 + 𝑔 =  𝑓 + 𝑔  𝑎 = 𝑓 𝑎 + 𝑔 𝑎 = 𝑎  𝑓 + 𝑎 (𝑔) 

Then  : 𝑎 ⟼ 𝑎  is a homomorphism from 𝑅 to 𝑅 = { 𝑎  𝑎 ∈ 𝑅} which is bijective, since 

𝐻𝑜𝑚(𝑅, ℤ) separates 𝑅. Since 𝑅  is contained in the torsion free group 𝑅∗∗, the strings 𝑅 𝑏 (𝑎 ) 

are bounded for all 𝑎 , 𝑏 ∈ 𝑅 , 𝑎 ≠ 1 . It follows that the strings  𝑅𝑏 𝑎  are bounded for all 

𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 1, so that the symmetries 𝑠𝑎  are the reflection set. Finally, for  𝑏, 𝑐 , 𝑏𝑐 ∈ 𝑅 we 

have 𝑎−𝑎∗(𝑏𝑐) 𝑏𝑐 = 𝑟𝑎 𝑏𝑐 = 𝑟𝑎 𝑏 𝑟𝑎 𝑐 =  𝑎−𝑎∗(𝑏) 𝑏  𝑎−𝑎∗(𝑐) 𝑐 , so that  

𝑏 + 𝑐 − 𝑎∗ 𝑏𝑐 𝑎 = 𝑏 − 𝑎∗ 𝑐 𝑎 , and 𝑎∗ 𝑏 = 𝑎∗ 𝑏 + 𝑎∗ 𝑐  , since the additive group  𝑅∗∗ is 

torsion free. Thus, 𝑎∗ ∈ 𝐻𝑜𝑚(𝑅, ℤ) for all  𝑎 ∈ 𝑅, 𝑎 ≠ 1. Clearly,   𝟒 ⟹ (𝟏). It remains to 

show that  𝟑 ⟹  𝟒 . For this assume that 𝑅 is a reflection set and 𝑎∗ ∈ 𝐻𝑜𝑚(𝑅, ℤ) for all 

𝑎 ∈ 𝑅, 𝑎 ≠ 1. As in  𝟏 ⟹  𝟐 , { 𝑎∗ 𝑎 ∈ 𝑅, 𝑎 ≠ 1} separates 𝑅. Therefore, as in  𝟐 ⟹  𝟑 , 

𝑅 ⟶ 𝑅  is a bijective homomorphism with 𝑅  abelian. But his homomorphism is an 

isomorphism by (Theorem 4.5.2) below, and 𝑅  is isomorphisc to a system of roots with 0 

added by the discussion below.  
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The strategy in the above is to pass from a symmetry set 𝑅 to its image 𝑅 under the closure 

homomorphism  : 𝑅 ⟼ 𝑅∗∗  where 𝑎  is defined by 𝑎  𝑓 (𝑓 ∈ 𝑅∗) for  𝑎 ∈ 𝑅. Here                

𝑅∗ = 𝐻𝑜𝑚(𝑅, ℤ) and 𝑅∗∗ = 𝐻𝑜𝑚(𝑅, ℤ) are torsion free additive groups. Since 

automorphisms 𝑠 of 𝑅 determine adjoints 𝑠∗ ∈ 𝐴𝑢𝑡 𝑅∗ and 𝑠∗∗ =  𝑠∗ ∗ ∈ 𝐴𝑢𝑡 𝑅∗∗ such that  

𝑠∗∗ 𝑎  = 𝑠( 𝑎), the image  𝑅  of the symmetry set 𝑅 is a reflection set called the closure of R . 

here 𝑠∗ is defined, as one would expect, by 𝑠∗ 𝑓 = 𝑓 ∘ 𝑠 for 𝑓 ∈ 𝑅∗. More specifically, a 

symmetry  𝑠𝑎 ∈ 𝐴𝑢𝑡 𝑅 of 𝑅 at 𝑎 ≠ 1 determines a symmetry 𝑠 𝑎 =   𝑠𝑎 
∗∗ 𝑅 ∈ 𝐴𝑢𝑡 𝑅  of 𝑅  at 𝑎  

which, since 𝑅∗∗ is torsion free, is the reflection of 𝑅∗ at  𝑎 ∶ 𝑠 𝑎 = 𝑟𝑎 . As in the above proof, 

we have 𝑎 ∗ ∈ 𝐻𝑜𝑚(𝑅 , ℤ) for all 𝑎 ∈ 𝑅, 𝑎 ≠ 0. Since  𝑟𝑎 = 𝑏 − 𝑎 ∗ 𝑏  𝑎  𝑎 ∈ 𝑅 , 𝑎 ≠ 0 , 𝑅  is 

isomorphic to a system of roots in the sense of Bourbaki
3
 with 0 added, the system of roots 

being the subset  𝑅 − {0} ⨂1 of the subspace 𝑉 which it generates in 𝑅∗∗⨂ℤℝ .  

The closure homomorphism   ⟶ 𝑅  is an isomorphism if and only if it is injective, that is if 

and only if  𝐻𝑜𝑚(𝑅, ℤ) separates points, by the following theorem .  

Theorem  4.5.2.   

 Let 𝑠: 𝑅 ⟶ 𝑅′ be a surjective homomorphism of product sets, denoted 𝑠 𝑏 = 𝑏′. Suppose 

that all strings 𝑅𝑏 𝑎 (𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 1  ) and 𝑅′
𝑏 ′  𝑎′ (𝑎′ , 𝑏′ ∈ 𝑅′ , 𝑎′ ≠ 1′) are bounded and 

𝑟𝑎 ′  𝑏′ = 𝑟𝑎 𝑏
′  for all 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 1, 𝑎′ ≠ 1′. Then  

𝑎′∗ 𝑏 = 𝑎∗(𝑏) for all 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 1, 𝑎′ ≠ 1′ 

For any 𝑎 ∈ 𝑅 , 𝑐′ ∈ 𝑅′ , 𝑎′ ≠ 1′, there exists 𝑏 ∈ 𝑅 such that 𝑏′ = 𝑐′ and 𝑠 maps 𝑅𝑏 𝑎  

bijectively to 𝑅𝑏′ 𝑎
′  . 𝑠 is an isomorphism if and only if 𝑠 is bijective  

Proof:  

For (1), we have 𝑟𝑎′ 𝑏
′ = 𝑟𝑎 𝑏 

′ =  𝑎−𝑎∗(𝑏) 𝑏 
′

= 𝑎′  −𝑎∗(𝑏) 𝑏′ and 𝑟𝑎′ 𝑏
′ = 𝑎′  −𝑎∗(𝑏 ′ ) 𝑏′. 

Since 𝑠 is a homomorphism, we have – 𝑟′ ≤ −𝑟 ≤ −𝑎∗(𝑏) ≤ 𝑞 ≤ 𝑞′, where 𝑅𝑏 𝑎 =

{𝑎−𝑟𝑏, … , 𝑎𝑞𝑏} and 𝑅𝑏 ′  𝑎′ = {𝑎1−𝑟 ′
𝑏′,… , 𝑎′𝑞 ′

𝑏′}. This implies that  𝑎∗ 𝑏 = 𝑎′  ∗(𝑏′), 

proving (1). For (2), let 𝑅′
𝑐 ′  𝑎′ =  𝑎1−𝑟 ′

𝑐′ , … , 𝑎′𝑞 ′
𝑐′  =  𝑐0

′ , … . , 𝑐𝑛
′   with 𝑛′ = 𝑞′ + 𝑟′  and 

𝑐𝑖
′ = 𝑎′ 𝑖𝑐0

′  for 0 ≤ 𝑖 ≤ 𝑛′.  

Let 𝑅𝑐0
 𝑎 =  𝑏0 , … , 𝑏𝑛 , where 𝑏𝑗 = 𝑎𝑗𝑏0  0 ≤ 𝑗 ≤ 𝑛 , and note that 𝑐0 = 𝑏0 , since 

𝑐0 = 𝑎𝑗𝑏0 for some 𝑗 and 𝑎′−1𝑐0
′ ∉ 𝑅′ . Then 

                                                           
3
 N.Bourbaki. "Groupes et alge'bres de Lie" Chaps 4-6, Hermann, Paris, 1968.  
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 𝑐𝑛 ′
′ = 𝑟𝑎 ′  𝑐0

′  = 𝑟𝑎 𝑐0 
′ = 𝑟𝑎 𝑏0 

′ = 𝑏𝑛
′ =  𝑎𝑛𝑏0 

′ = 𝑎′𝑛𝑏0
′ = 𝑎′𝑛𝑐0

′ = 𝑐𝑛
′  

Thus, 𝑛′ = 𝑛 and 𝑏𝑗
′ =  𝑎𝑗𝑏0 

′
= 𝑎′ 𝑗 𝑐0

′ = 𝑐𝑗
′  for 0 ≤ 𝑗 ≤ 𝑛, so that 𝑠 maps 𝑅𝑐0

 𝑎 =

{𝑏0, … , 𝑏𝑛} bijectively to  𝑐0
′ , … . , 𝑐𝑛

′  = 𝑅𝑐 ′
′ (𝑎′). Clearly,  𝑅𝑐0

 𝑎 = 𝑅𝑏 𝑎 , where 𝑏 = 𝑏𝑖 , 

and 𝑖 is chosen with 1 ≤ 𝑖 ≤ 𝑛 so that 𝑏𝑖
′ = 𝑐′ and 𝑏′ = 𝑐′.  

For (3), let 𝑠 be bijective and 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 1 such that 𝑎′𝑏′ ∈ 𝑅′. With notation as in (2) 

above, we then have  𝑅𝑎 𝑎 
′ =  𝑏0 , … , 𝑏𝑛 

′ =  𝑏0
′  , … . , 𝑏𝑛

′  = 𝑅𝑏 ′ (𝑎′), 𝑏 = 𝑏𝑟 = 𝑎𝑟𝑏0 for 

some 𝑟, 0 ≤ 𝑟 ≤ 𝑛, 𝑏′ =  𝑎𝑟𝑏0 
′ = 𝑎′𝑟𝑏′0 and  

𝑎′𝑏′ = 𝑎′𝑟+1𝑏0
′ = 𝑏𝑟+1

′ =  𝑎𝑟+1𝑏0 
′ =  𝑎𝑎𝑟𝑏0 

′ =  𝑎𝑏 ′   

Thus, 𝑎𝑏 ∈ 𝑅 and 𝑠−1 𝑎′𝑏′ = 𝑎𝑏 = 𝑠−1 𝑎′ 𝑠−1(𝑏′). This shows that 𝑠−1 ∈ 𝐻𝑜𝑚(𝑅′ , 𝑅), so 

that 𝑠 is an isomorphism.  

Definition   4.5.4.     (Direct Sums) 

Let 𝑅1 , … , 𝑅𝑛  be product sets. Resituate them (up to isomorphism) so that their identities all 

coincide (call it 1) and 𝑅𝑖 ∩ 𝑅𝑗 = {1] for all 𝑖 ≠ 𝑗. Then the outer direct sum  

𝑅 = 𝑅1 ⊕ …⨁𝑅𝑛  of  𝑅1 , … , 𝑅𝑛  is the product set 𝑅 = 𝑅1 ∪ …∪ 𝑅𝑛  such that 𝑎𝑏 = 𝑐 in 𝑅 if 

and only if there exists 𝑖 such that 𝑎, 𝑏, 𝑐 ∈ 𝑅𝑖  and 𝑎𝑏 = 𝑐 in 𝑅𝑖  .  

Conversely, for any product set 𝑅 with identity 1, 𝑅 is the inner direct sum 𝑅 = 𝑅1 + ⋯ + 𝑅𝑛  

of subsets   𝑅1 , … , 𝑅𝑛  of 𝑅 if 𝑅 = 𝑅1 ∪…∪ 𝑅𝑛  , 𝑅𝑖 ∩ 𝑅𝑗 = {1] for all 𝑖 ≠ 𝑗 and 𝑎𝑏 = 𝑐 in 𝑅𝑖  . 

note that if 𝑅 is an inner direct sum 𝑅 = 𝑅1 + ⋯ + 𝑅𝑛  , then 𝑅1 , … , 𝑅𝑛  are product sets whose 

outer direct sum is 𝑅 . 

𝑅𝑏(𝑎) = 𝑅𝑗𝑏 (𝑎) for 𝑎 ∈ 𝑅, 𝑏 ∈ 𝑅𝑗  , and 𝑅𝑏 𝑎 = {𝑏} if 𝑏 ∈ 𝑅𝑗  and 𝑎 ∈ 𝑅 − 𝑅𝑗  .  

𝑅 is symmetry set ( respectively reflection set) if and only if the 𝑅1 , … , 𝑅𝑛  are also a 

symmetry ( respectively reflection) 𝑠𝑎  of 𝑅 at 𝑎 ∈ 𝑅𝑖  is the same as a symmetry (respectively 

reflection) 𝑠𝑖𝑎  of 𝑅𝑖  at extended to 𝑅 by fixing the elements of 𝑅 − 𝑅𝑗  .  

Let 𝑅 be a symmetry set and let 𝑆 , 𝑇 ⊂ 𝑅. We let = { 𝑎𝑏 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇, 𝑎𝑏 ∈ 𝑅}  , 

 𝑆−1 = { 𝑎−1 𝑎 ∈ 𝑆} and 𝑆 = 𝑆 − {1}. We say that 𝑆 is 𝜋 −closed if 𝑆 𝑆 ⊂ 𝑆 and symmetric if 

𝑆−1 ⊂ 𝑆.  

A subset  𝑆  of 𝑅  is closed in 𝑅  if 𝑅 = 𝑆 + 𝑆  (inner direct sum), where 𝑆 = 𝑆 ∪ {1} and 

𝑆 = 𝑅 − 𝑆 . For 𝑆  is closed, 𝑆 and 𝑆  are clearly 𝜋 −closed and symmetric, and they can 
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viewed as symmetry sets. Moreover, 𝑆  is closed and 𝑆  = 𝑆. For 𝑆  and  𝑇  closed in 𝑅, the 

inner direct sum.  

𝑅 =  𝑆 ∪ 𝑆  ∩  𝑇 ∪ 𝑇  = 𝑆 ∩ 𝑇 + 𝑆 ∩ 𝑇 + 𝑆 ∩ 𝑇 + 𝑆 ∩ 𝑇  , can be used to show that 𝑆 ∩ 𝑇  

and 𝑆 ∪ 𝑇  are closed in 𝑅 . Thus, the set 𝔇 = { 𝑆  𝑆  is closed in 𝑅 } is a topology for 𝑅 . Since 𝑆  

is closed if and only if 𝑆  is open, the connected components of 𝑅  are the minimal elements 

𝑆 1 , … . . , 𝑆 𝑛  of 𝔇 and 𝑅 = 𝑆1 + ⋯ + 𝑆𝑛  is the unique inner direct sum decomposition of 𝑅 

which cannot further be refined. If 𝑛 = 1, we say that 𝑅 is irreducible. The irreducible 

symmetry sets 𝑆𝑖  are the components of 𝑅.  

If 𝑅 is a subset of a group, then the topology 𝔇 introduced here for 𝑅  coincides with the 

symmetric 𝐺 −topology. For any finite subset  𝑅  of a group 𝐺 by the 𝑆 ⊂ 𝑅  is closed if 𝑆 and 

𝑅 − 𝑆 are both 𝜋 −closed and symmetric.  

Examples of Symmetry sets   4.5.1.  

1. Symmetry sets which are not root systems are symmetry sets having a component which is 

a nonzero finite vector space 𝑉 =  ℤ𝑝 
𝑑

, a symmetry 𝑠𝑎(𝑣) at a being defined for any 

𝑎 ∈ 𝐻𝑜𝑚(𝑉, ℤ𝑝) such that :  

𝑎  𝑎 = 2  by 𝑠𝑎 𝑣 = 𝑣 − 𝑎  𝑣 𝑎    𝑎 ∈ 𝑉, 𝑎 ≠ 0  

2. Any two symmetries 𝑠1𝑎  , 𝑠2𝑎  are conjugate in 𝐴𝑢𝑡 𝑉 by a unipotent 𝑢𝑎 ∈ 𝐴𝑢𝑡 𝑉 of 𝑉 at 

𝑎: 𝑢𝑎 𝑎 + 𝑏 = 𝑎 + 𝑢𝑎(𝑏) for all 𝑏 ∈ 𝑉 (𝑝 > 2). In fact, it the conjugate of 2 − Sylow 

groups in the dihedral group  𝑠1𝑎  , 𝑠2𝑎 . This unicity can be generalized along the lines of 

Winter
4
.  

Definition  4.5.4.   (Reduced Symmetry Sets in an Abelian Group)  

 Let 𝑅 be a sub set containing 0 of an additive abelian group 𝐺 having no 2,3,5,7 torsion, and 

assume that 𝑅 is a symmetry set which is reduced, that is 2𝑎 ∉ 𝑅 for all a∈ 𝑅, 𝑎 ≠ 0.  

Using simple modifications of techniques of Seligman, we show that 𝑅 is root system. We 

first  note that a string 𝑅𝑏(𝑎) can not contain 𝑏 , 𝑏 + 𝑎, 𝑏 + 2𝑎 , 𝑏 + 3𝑎 , 𝑏 + 4𝑎. For suppose 

otherwise.  

Since  ±2𝑎 ∉ 𝑅, the elements  𝑏 , 𝑏 + 𝑎, 𝑏 + 2𝑎 , 𝑏 + 3𝑎 , 𝑏 + 4𝑎 are nonzero. Since        

2(𝑏 + 𝑎) ∉ 𝑅 and −2𝑎 ∉ 𝑅, 𝑅𝑏 𝑏 + 2𝑎 = {𝑏}, so that 𝑠𝑏+2𝑎 𝑏 = 𝑏. Since 2(𝑏 + 3𝑎) ∉ 𝑅 
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 D.J.Winter, A combinatorial theory of symmetry and applications to Lie algebras, in "Algebra 

Carbondale 1980" Lecture Notes in Matematics No.848, Spring-Verlag, Berlin/ New York,1981.  
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and 2𝑎 ∉ 𝑅,  𝑅𝑏+4𝑎 𝑏 + 2𝑎 = {𝑏 + 4𝑎} so that 𝑠𝑏+2𝑎 𝑏 + 4𝑎 = 𝑏 + 4𝑎. Letting             

𝑠 = 𝑠𝑏+2𝑎 , we then have 𝑏 + 4𝑎 = 𝑠 𝑏 + 4𝑎 = 𝑠 𝑏 + 4𝑠 𝑎 = 𝑏 + 4𝑠(𝑎). Thus,         

4𝑎 = 4𝑠(𝑎) and 𝑎 = 𝑠(𝑎). But then − 𝑏 + 2𝑎 = 𝑠𝑏+2𝑎 𝑏 + 2𝑎 = 𝑠 𝑏 + 2𝑎 = 𝑏 + 2𝑎, so 

that 2 𝑏 + 2𝑎 = 0 and −2𝑎 ∉ 𝑅, a contradiction.  

It follows that the strings 𝑅𝑏 𝑎  are bounded of length at most 3. Therefore, the symmetries 

𝑠𝑎 𝑏  are the reflections 𝑟𝑎 𝑏 = 𝑏 − 𝑎∗ 𝑏 𝑎, 𝑎∗ 𝑏 = 𝑟 − 𝑞.  

Since 𝑟𝑎 𝑏 + 𝑐 = 𝑟𝑎 𝑏 + 𝑟𝑎 𝑐 , we have 𝑎∗ 𝑏 + 𝑐 𝑎 =  𝑎∗ 𝑏 + 𝑎∗ 𝑐  𝑎 for all 𝑏, 𝑐, 𝑏 +

𝑐 ∈ 𝑅. Since 𝐺 has no 2,3,5,7 torsion, the order of 𝑎 is at least 11, so that the restrictions on 

the Cartan integers 𝑟 − 𝑞 that 𝑟, 𝑞 ≥ 0 and 𝑟 + 𝑞 ≤ 3 lead us to conclude that 𝑎∗ 𝑏 + 𝑐 =

𝑎∗ 𝑏 + 𝑎∗ 𝑐 . It follows that 𝑎∗𝐻𝑜𝑚 𝑅, ℤ  for all 𝑎 ∈ 𝑅, 𝑎 ≠ 0, so that 𝑅 is a root system. 

4.6  Classical Lie Algebras  

 Let 𝔤 be a classical Lie algebra with classical Cartan subalgebra 𝐻 and corresponding set of 

roots 𝑅 = 𝑅(𝔤, 𝐻). Suppose that the characteristic of 𝔤 is not 2,3,5,7. Then 𝑅 = 𝑅(𝔤, 𝐻) is a 

reduced reflection set with reflections 𝑟𝑎 𝑏 = 𝑏 − 2 𝑏(𝑕𝑎) 𝑎(𝑕𝑎)  𝑎, by the beautiful results 

of Lemma II2.2, II3.1, IIe.2, II4.2 of Seligman
5
. Thus, 𝑅 = 𝑅(𝔤, 𝐻) is isomorphic to a 

reduced system of roots with 0 added, by (Theorem 4.1). since 𝔤 together with 𝐻 is 

determined uniquely up to isomorphism by  𝑅 = 𝑅(𝔤,𝐻), by a version of (Theorem 3.7.4.9) 

of winter, the classical Lie algebras 𝔤 with 𝐻 are classified by systems of roots in the sense of 

Bourbaki with zero added by the correspondence  𝔤, 𝐻 ⟼ 𝑅(𝔤,𝐻). In this approach to the 

classification, we transfer 𝑅 together with its combinatorial structure from the hostile 

environment of characteristic 𝑝 to real Euclidean space by passing to 𝑅 ⊂ 𝑅∗∗ rather than 

classify 𝑅 "on the spot" using orderings, fundamental systems of roots and their Cartan 

matrices.  

Definition  4.6.1.   (Relation Sets and Symmetry Sets)   

  A relation set is a set 𝑅 and a subset 𝜋 of 𝑅3, such that 𝑅 has an identity element 1 such that 

 𝑥, 1, 𝑥 ,  1, 𝑥, 𝑥 ∈ 𝑅 for all 𝑥 ∈ 𝑅. We let 𝑎𝑥 = 𝑦 indicate that  𝑎, 𝑥, 𝑦 ∈ 𝜋. Note that 𝑦 

need not be uniquely determined by 𝑎 and 𝑥.  

Clearly, a product set is just a relation set such that :  

1. 𝑎𝑥 = 𝑦 and 𝑎𝑥 = 𝑧 implies 𝑦 = 𝑧  
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 G.Seligman, "Modular Lie algebras" Ergebnisse der Mathematik u. ihrer Grenzegbeite Bd 40, Spring – Verlag, 

Berlin 1967.  
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2. 𝑎𝑦 = 𝑥 and a𝑧 = 𝑥 implies 𝑦 = 𝑧 for all 𝑎, 𝑥, 𝑦, 𝑧 ∈ 𝑅.  

In this section we let 𝑅 be a finite relation set. Our objective is to :  

i. Indicate briefly how the above theory of symmetries generalizes from product sets to 

relation sets  

ii. Describe the root system 𝑆(𝑅 ) which 𝑅 determines.  

  A homomorphism of relation sets 𝑅1 , 𝑅2 is a mapping 𝑓: 𝑅1 ⟶ 𝑅2 such that 𝑎𝑥 = 𝑦 implies 

𝑓 𝑎 𝑓 𝑥 = 𝑓(𝑦) for all 𝑎, , 𝑥, 𝑦 ∈ 𝑅. And 𝑓 is an isomorphism (automorphism if 𝑅1 = 𝑅2) if 

𝑓 is bijective and 𝑓, 𝑓−1 are homomorphisms. We let  𝐻𝑜𝑚(𝑅1 , 𝑅2) denote the set of 

homomorphism from 𝑅1 to 𝑅2 and we let 𝐴𝑢𝑡 𝑅 denote the automorphism group of 𝑅.  

For 𝑎 ∈ 𝑅 and 𝑆 ⊂ 𝑅, a determines the equivalence relation on 𝑆 generated by the relation 

  (𝑥, 𝑦) ∈ 𝑆 × 𝑆 𝑎𝑥 = 𝑦 . We let 𝑆𝑏(𝑎) denote the corresponding equivalence class of 𝑏 ∈ 𝑆.  

A symmetry of 𝑆 at 𝑎 is a bijection 𝑠𝑎 : 𝑆 ⟶ 𝑆 such that : 𝑠𝑎𝑆𝑏 𝑎 = 𝑆𝑏(𝑎) for all 𝑏 ∈ 𝑆 

𝑎𝑥 = 𝑦 implies 𝑎 𝑠𝑎 𝑦 = 𝑠𝑎(𝑥) for all 𝑥, 𝑦 ∈ 𝑆  

Note that if 𝑅 is a product set, condition (2) is equivalent to 𝑠𝑎 𝑎
𝑖𝑥 = 𝑎−𝑖𝑠𝑎(𝑥)  for all 

𝑎𝑖𝑥 ∈ 𝑅.  

A symmetry set is a finite relation set 𝑅 such that 𝐴𝑢𝑡 𝑅 contains a symmetry 𝑠𝑎  of 𝑅 at 𝑎 fro 

every 𝑎 ∈ 𝑅. Clearly, this coincides with our earlier definition if 𝑅 is a product set.  

Consider the additive group 𝑅∗ = 𝐻𝑜𝑚(𝑅, ℤ), where 𝑓 + 𝑔 = 𝑕 is the function defined by 

𝑕 𝑎 = 𝑓 𝑎 + 𝑔 𝑎 (𝑎 ∈ 𝑅) for 𝑓, 𝑔 ∈ 𝑅∗. Similarly, consider the additive group  

𝑅∗∗ = 𝐻𝑜𝑚(𝑅∗, ℤ). As in previous section we get the closure homomorphism  :𝑅 ⟶ 𝑅∗∗ 

with 𝑎  𝑓 = 𝑓 𝑎 (𝑓 ∈ 𝑅∗) for  𝑎 ∈ 𝑅:  

𝑥𝑦 = 𝑧 in 𝑅 ⟹ 𝑓 𝑥 + 𝑓 𝑦 = 𝑓(𝑧)                     ∀𝑓 ∈ 𝑅∗ 

                     ⟹ 𝑥  𝑓 + 𝑦  𝑓 = 𝑧 (𝑓)                     ∀𝑓 ∈ 𝑅∗  

                     ⟹ 𝑥 + 𝑦 = 𝑧                                        in 𝑅∗∗  

The subset 𝑅 =   𝑎  𝑎 ∈ 𝑅  of torsion free additive group 𝑅∗∗ is a product set called the 

closure of 𝑅.  
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 If 𝑅 is a symmetry set in the sense of this section, then the product set  𝑅  is a symmetry set 

since, as one easily checks, the double adjoint 𝑠𝑎
∗∗ of 𝑠𝑎  restricted  to a symmetry 𝑠 𝑎 =  𝑠𝑎

∗∗ 𝑅  

of 𝑅  at 𝑎  in 𝐴𝑢𝑡 𝑅 . In fact, 𝑅  is a system of roots with 0 added, as we now show in greater 

generality.  

For any relation set 𝑅 we let 𝑆 𝑅 = { 𝑎 ∈ 𝑅 there exists a symmetry 𝑠𝑎 ∈ 𝐴𝑢𝑡 𝑅 of 𝑅 at 𝑎}. 

Clearly, 𝑆 𝑅  is stable under 𝐴𝑢𝑡 𝑅, so that  𝑠𝑎𝑆 𝑅 = 𝑆(𝑅) for all 𝑎 ∈ 𝑆(𝑅). Thus, 𝑆(𝑅) is a 

symmetry set in 𝑅 in the following sense.  

Definition  4.6.2.  

A symmetry set in 𝑅 is a subset 𝑆 of 𝑅 containing 1 such that for each 𝑎 ∈ 𝑆, there exists a 

symmetry 𝑠𝑎 ∈ 𝐴𝑢𝑡 𝑅 of 𝑅 at 𝑎 such that 𝑠𝑎 𝑆 = 𝑆. The closure of 𝑆 in 𝑅 is the image 

𝑆 = { 𝑠  𝑠 ∈ 𝑆 of under the closure mapping  :𝑅 ⟶ 𝑅  of 𝑅. For 𝑎 ∈ 𝑆(𝑅), the double adjoint 

𝑠𝑎
∗∗ is an automorphism of the torsion free group 𝑅∗∗ and 𝑠 𝑎 =  𝑠𝑎

∗∗  𝑅 ∈ 𝐴𝑢𝑡  𝑅   satisfies 

𝑠 𝑎(𝑏) ≡ 𝑏(𝑚𝑜𝑑 ℤ𝑎 ) for 𝑏 ∈  𝑅  . Thus, there exists 𝑎 . ∈ 𝐻𝑜𝑚( 𝑅  , ℤ) such that 𝑠 𝑎 𝑏 = 𝑏 −

𝑎 . 𝑏 𝑎  𝑏 ∈  𝑅   . Clearly,  𝑎 . 𝑎  = 2 since            −𝑎 = 𝑠 𝑎(𝑎 ).   

Theorem 4.6.1.   

𝑆(𝑅 ) is a system of roots with 0 added
6
.  

Proof:  

By the above discussion, 𝑆(𝑅 ) has the required reflections 𝑟𝑎  𝑏  = 𝑏 − 𝑎 . 𝑏  𝑎   𝑎 ∈

𝑆𝑅, 𝑎≠0.  

In taking the closure 𝑆(𝑅) of 𝑆(𝑅) in 𝑅 rather than in 𝑆(𝑅 ) in the above discussion, we assure 

the validity of the otherwise unwarranted step  𝑠 𝑎(𝑏) ≡ 𝑏(𝑚𝑜𝑑 ℤ𝑎 )  for 𝑏 in the closure of 

𝑆(𝑅) in 𝑆(𝑅). ( the symmetry 𝑠𝑎  might not preserve the sets 𝑆(𝑅)𝑎  (𝑎)) . 

4.7      Root Systems  

Definition  4.7.1.   

A root system
7
 is a pair  𝑉, 𝑅 , where 𝑉 is a vector space and 𝑅 is a finite subset of 𝑉 

containing 0 which has a symmetry 𝑟𝑎 𝑣 = 𝑣 − 𝑎0 𝑣 𝑎     (𝑣 ∈ 𝑉) for each 𝑎 ∈ 𝑅 − {0}: 

𝑎0 ∈ 𝐻𝑜𝑚𝑘(𝑉, 𝑘) and 𝑎0 𝑎 = 2 

                                                           
6
 Symmetry sets – David J. Winter- Department of Mathematics, University of Michigan, Ann Arbor, Michigan 

48109 communicated by Walter Feit – April 16,1980. 
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𝑟𝑎 𝑅𝑏 𝑎  = 𝑅𝑏(𝑎) for every bounded 𝑎-orbit 𝑅𝑏 𝑎  (𝑏 ∈ 𝑅)  

We also assume that 𝑅 spans 𝑉.  

The rank of  𝑉, 𝑅  is the dimension of the span 𝑉 = 𝑘𝑅 of 𝑅. The ℤ-rank of 𝑅 is the rank of 

the groupoid dual 𝐻𝑜𝑚(𝑅, ℤ).  

We let 𝑅𝑎 = 𝑅 ∩ ℤ𝑎 and define the set 𝑅∙ = {𝑎 ∈ 𝑅 − {0} 𝑅𝑎 = 𝑅0 ∪ 𝑅⋅   and 𝑅𝑏 𝑎  has 1 or 

𝑝 − 1 or 𝑝 elements for every 𝑎 ∈ 𝑅0 − {0}, 𝑏 ∈ 𝑅.  

We call the orbits 𝑅𝑏 𝑎    𝑎 ∈ 𝑅⋅  𝑏 ∈ 𝑅   classical orbits, and the orbits 𝑅𝑏 𝑎    𝑎 ∈ 𝑅0 −

 0 , 𝑏 ∈ 𝑅   Witt orbits. Accordingly, a root system is a Lie root system if all are roots are 

either classical or Witt and every Witt orbit has 1 or 𝑝 − 1 or 𝑝 elements.  

Note that if 2𝑎 ,2 𝑏 + 𝑎 , 2(𝑏 + 3𝑎) ∉ 𝑅. Then 𝑅𝑏(𝑎) doesnot contain 𝑎, 𝑏 + 𝑎, 𝑏 + 2𝑎, 𝑏 +

3𝑎, 𝑏 + 4𝑎 and therefore, is bounded of length at most 3. Thus, orbits 𝑅𝑏(𝑎) of length greater 

than there exist only when 𝑅0 contains one of 𝑎, 𝑏 + 𝑎, 𝑏 + 2𝑎, 𝑏 + 3𝑎. It follows that if 𝑅0 is 

a group, that is , 𝑅0 + 𝑅0 = 𝑅0. Then 𝑅𝑏(𝑎) with 𝑏 ∈ 𝑅0 has length greater than three only 

for 𝑎 ∈ 𝑅0.  

Proposition 4.7.1.   

Let 𝑅0 be a group, 𝑏 ∈ 𝑅0 and 𝑅𝑏 𝑎 ≠ {𝑏]. Then :  

For 𝑝 > 5, 𝑎 ∈ 𝑅0 if and only if 𝑅𝑏 𝑎  has 𝑝 − 1 or 𝑝 elements,For 𝑝 = 5, 𝑎 ∈ 𝑅0 if  

𝑅𝑏 𝑎 = ℤ𝑎 + 𝑏.  

By the same argument, it follows that 𝑅 = 𝑅⋅ ∪ {0} if and only if every orbit 

 𝑅𝑏 𝑎   𝑎 ∈ 𝑅 −  0 , 𝑏 ∈ 𝑅 is bounded, in which case the Lie root-system 𝑅 is a reduced 

symmetry set.  

Definition   4.7.2. 

A classical root system is a Lie root system all of whose nonzero roots are classical, that is 

𝑅 = 𝑅⋅ ∪ {0}.  

Theorem   4.7.2.  

A root system  𝑉, 𝑅  is classical if and only if 𝑅 is isomorphic as groupoid to a reduced root 

system in the sense of Bourbaki with 0 added.  

                                                                                                                                                                      
7
David. J.Winter, Symmetric Lie algebras, Depatement of Mathematics, University of Mishigan, Ann Arbor, 

Michigan 48109, Communicated by N.Jacobson, Received April 10, 1982.   
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In the next section, we classify the rank two Lie root systems 𝑅𝑎𝑏 = 𝑅 ∩ (ℤ𝑎 + ℤ𝑏) up to 

isomorphism. All turn to be symmetry sets. At the same time, only two rank 1 Lie root system 

are symmetry sets, namely 𝐴1 and 𝑊1 as the Lie root systems of rank 1 defined over ℤ𝑝 . The 

general situation for rank one is as follows.  

Theorem  4.7.3.  

Let 𝑅 be a rank one Lie root system. Then either 𝑅 = 𝑅0 and 𝑅 is a group, or 𝑅 = {−𝑎, 0, 𝑎}.  

Proof:  

Let 𝑎 ∈ 𝑅0 − {0}, 𝑏 ∈ 𝑅 − {0} and write 𝑏 = 𝑚𝑎, where 𝑚 ∈ 𝑘 ( which is possible since 𝑅 is 

of rank 1). If 𝑅𝑏(𝑎) is bounded, then 𝑎0 𝑏 = 2𝑚 is in the prime field ℤ𝑝 = ℤ1, so that 

𝑏 = 𝑚𝑎 is in ℤ1 = 𝑅0(𝑎).  

But then 𝑅𝑏 𝑎 = 𝑅0 𝑎 = ℤ𝑎 and 𝑅𝑏 𝑎  is not bounded, acontradiction.  

Thus, 𝑅𝑏 𝑎 = ℤ𝑎 + 𝑏. Iterating, we have 𝑅0 + 𝑅 ⊂ 𝑅, 𝑅0 + 𝑅0 + 𝑅 ⊂ 𝑅, … ., 𝐺 = 𝑅0 +

⋯ + 𝑅0 (𝑛 times) ⊂ 𝑅. Since 𝑅 is finite , 𝐺 isb a group for some 𝑛.  

Since every subgroup of 𝑅 is in 𝑅0, 𝐺 = 𝑅0 and 𝑅0 is a group. Next, let 𝑎 ∈ 𝑅0 − {0}, 

𝑏 ∈ 𝑅 − {0} and consider 𝑅𝑎 𝑏 . If it is unbounded, we have 𝑏 ∈ 𝑅0, by (Prop 4.7.1) Suppose 

that it is bounded : 𝑅𝑎 𝑏 =  𝑎 − 𝑟𝑏, … . , 𝑎 + 𝑞𝑏 = 𝑅𝑐 𝑏 = {𝑐, … , 𝑐 +  𝑟 + 𝑞 𝑏}. Then  

𝑏0 𝑐 = −(𝑟 + 𝑞) ∈ ℤ𝑝 . We may write 𝑐 = 𝑠𝑏 with 𝑠 ∈ 𝑘, by invoking " rank 1", so that 

2𝑠 = 𝑟 + 𝑞 and 𝑠 ∈ ℤ𝑝 . Then we have 𝑏 ∈ 𝑅0: 𝑐 = 𝑠𝑏 ∈ ℤ𝑝  𝑏 ⟹ 𝑎 = 𝑐 + 𝑟𝑏 ∈ ℤ𝑝𝑏 =

ℤ𝑝𝑎 ⊂ 𝑅0 ⟹ 𝑏 ∈ 𝑅0. Thus, an element 𝑏 ∈ 𝑅 − {0} is in 𝑅0 in all cases, so that 𝑅 = 𝑅0 if 

and only if 𝑅0 is nonzero. Suppose, finally that 𝑅0 = {0}, so that  𝑅 = 𝑅∙ ∪ [0}. By the 

remarks preceding (Def 4.7.2) , each orbit 𝑅𝑏 𝑎  is bounded :  

 𝑅𝑏 𝑎 = {𝑏 − 𝑟𝑎, … . , 𝑏 + 𝑞𝑎}  𝑎 ∈ 𝑅⋅ = 𝑅 −  0 , 𝑏 ∈ 𝑅).  

Then 𝑏 + 𝑞𝑎 = 𝑟𝑎(𝑏 − 𝑟𝑎), 𝑎0 𝑏 = 𝑟 − 𝑞 and 2𝑠 = 𝑎0 𝑠𝑎 = 𝑎0 𝑏 = 𝑟 − 𝑞, where 

𝑏 = 𝑠𝑎  𝑠 ∈ 𝑘 , so that 𝑠 ∈ ℤ𝑝  and 𝑏 ∈ 𝑠 ∩ ℤ𝑝 = 𝑟𝑎 = {−𝑎, 0, 𝑎}. It follows that 𝑅 =

{−𝑎, 0, 𝑎}.  

Any finite subgroup 𝐺 of 𝑘+ determines the Lie root system  𝑘, 𝐺 . For the others, define 

𝑆⋁𝑇 = {(𝑠, 𝑡) ∈ 𝑆 × 𝑇 𝑠 = 0   or 𝑡 = 0} and 𝑆⨁𝑇 = {  𝑠, 𝑡  𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}, where 𝑆 and 𝑇 are 

sets with a distinguished element : 0 ∈ 𝑆, 0 ∈ 𝑇. Identify 𝑠 =  𝑠, 0 , 𝑡 =  0, 𝑡  and write 

𝑠 + 𝑡 =  𝑠, 𝑡 . Let 𝐴 = {−𝑎, 0, 𝑎} ⊂ 𝑘𝑎 and 𝑊 = {−𝑎, 0, … , 𝑝 − 2} ⊂ 𝑘𝑎, the rank 1 Lie root 

systems defined over ℤ𝑝 .  



 

196 

Next construct 𝐴⋁𝐴, 𝐴⋁𝑊 , 𝑊⋁𝑊, the reducible rank 2 Lie root systems defined over ℤ𝑝 .  

Let 𝐴2 = { 0,0 , ± 1,0 , ± 0,1 , ± 1,1 }, 𝐵2 = { 0,0 , ± 1,0 , ± 0,1 , ± 1,1 , (1, −1)}, 

𝐺2 = { 0,0 , ± 1,0 , ± 0,1 , ± 1,1 , ± 1,2 , ± 2,1 , ±(1,−1)}, which are symmetry sets in 

ℤ𝑝
2  whose groupoid reflections 𝑟𝑎 𝑏 = 𝑏 − 𝑎∗ 𝑏 𝑎 determine 𝑎∗ ∈ 𝐻𝑜𝑚(𝑅, ℤ) and 𝑎0 ∈

𝐻𝑜𝑚(ℤ𝑝
2  , ℤ𝑝) (𝑎∗ reduced modulo 𝑝) for 𝑎 ∈ 𝑅 − {0} and 𝐵 = 𝐴2 , 𝐵2 , 𝐺2. These are the 

irreducible rank 2 classical root systems. Note that the irreducible nonreduced classical 

symmetry sets   

2𝐴 = {0, ±𝑎, ±2𝑎},𝐵𝐶2 = { 0,0 , ± 1,0 , ± 0,1 , ± 1,1 , ± 1, −1 , ± 0,2 , ± 2,0 } are not 

Lie root systems, due to the occurrence of 𝑎, 2𝑎 ∈ 𝑅, 3𝑎 ∉ 𝑅.  

Finally, construct 𝑊2 = 𝑊⨁𝑊, 𝑊⨁𝐴, 𝑆2 =   𝑖, 𝑗 ∈ ℤ𝑝
2  𝑖, 𝑗 ≠ 0  ∪ {(0,0)}, 𝑇 = 𝑇2 𝑛 =

𝑆2 ∪  ± 𝑛, −𝑛  = 𝑆2 ∪ 𝐴 = 𝑆2 + 𝐴, where 𝐴 =   0,0 , ± 𝑛, −𝑛  (1 ≤ 𝑛 ≤ 𝑝 − 1), the 

irreducible rank 2 nonclassical Lie root systems defined over ℤ𝑝 .  

To see that 𝑊⨁𝐴 = ℤ𝑎 − 𝑏 ∪ ℤ𝑎 + 0 ∪ ℤ𝑎 + 𝑏 , 𝑆2  and 𝑇2(𝑛) are Lie root systems, we 

define the symmetries 𝑟𝑐 𝑏 = 𝑏 − 𝑐0 𝑏 𝑐 in the three cases 𝑊⨁𝐴. 𝑆2 , 𝑇2(𝑛) by specifying 

the appropriate Cartan function 𝑐0 ∈ 𝐻𝑜𝑚(ℤ𝑝
2  , ℤ𝑝) :  

 𝑖𝑎 0 𝑖𝑎 = 2  ,       𝑖𝑎 0 𝑏 = 0  

 ±𝑏 + 𝑗𝑎 0 ±𝑏 + 𝑗𝑎 = 2                         ±𝑏 + 𝑗𝑎 0 𝑎 = 0  

  𝑖, 𝑗 0 𝑟, 𝑠 = 2
𝑟+𝑠

𝑖+𝑗
                                     𝑖, 𝑗 ∈ 𝑆2 ,  𝑟, 𝑠 ∈ ℤ𝑝

2    

   𝑛, −𝑛 0 𝑛, −𝑛 = 2                                 𝑛, −𝑛 0 1,0 = anything  

Definition  4.7.3.   

A root system  𝑉, 𝑅  is defined over ℤ𝑝  if 𝑅 is contained in some ℤ𝑝 -form 𝑉ℤ𝑝
 of 𝑉: any ℤ𝑝 -

basis for  𝑉ℤ𝑝
 is a 𝑘-basis for 𝑉.  

The following propositions are straight fro ward. In the first proposition, 𝑅𝑎1 , … . . , 𝑎𝑛 = 𝑅 ∩

(ℤ𝑎1 , … . , ℤ𝑎𝑛).  

Proposition  4.7.2.  

A Lie root system 𝑅 of rank 𝑛 is defined over  ℤ𝑝  if and only if  𝑅 = 𝑅𝑎1 , … . . , 𝑎𝑛  for some 

𝑎1 , … . . , 𝑎𝑛 ∈ 𝑅. 
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4.8   Classification of Lie Root System of Rank   

We now determine Recognition properties for all possible for all possible 𝑘-independent pairs 

𝑎, 𝑏 of roots in a Lie root system 𝑅, and classify all corresponding Lie root systems 𝑅𝑎𝑏 of 

rank 2 up to isomorphism. The results are given in Table 1, the irreducible root systems of 

rank 2 defined over ℤ𝑝  being 𝐴2 , 𝐵2.  

 

 𝐺2 ,𝑊2 , 𝑊⨁𝐴, 𝑆2 , 𝑇2. In this table, diagrams are introduced to represent each of the 11 

classes of 𝑘-independent root pairs 𝑎, 𝑏. Classical and Witt roots are denoted by black and 

white nodes, respectively. The number of solid lines is the product 𝑎0 𝑏 𝑏0(𝑎). No lines 

indicates that 𝑎 and 𝑏 are orthogonal : 𝑎 ± 𝑏 are not roots and 𝑎0 𝑏 𝑏0 𝑎 = 0. A dotted line 

indicates that 𝑎 and 𝑏 are not orthogonal and 𝑎0 𝑏 𝑏0 𝑎 = 0, which occurs for types 𝑆2 , 𝑇2 

and for type 𝑊2 if 𝑚 = 0 or 𝑛 = 0.  

Orientation indicats which root is shorter, for types 𝐵2 , 𝐵2. Orientation indicates that 𝑎 + 𝑏 is 

classical or Witt, for types 𝑊⨁𝐴 and 𝑇2, depending on whether the black or white nodes is 

"less" ( which suffices to distinguish between types 𝑊⨁𝐴 and 𝑇2). Actual values for 𝑚, 𝑛 in 

7,8,10,11 are suppressed in the diagrams. Adjustments in 𝑎, 𝑏 would lead to default values 

−1,−1 in 7, −1,0 ( or – 𝑝) in 8, −2 ,−2 in 10 and 0 ( or – 𝑝), −1 in 11, which bring the use 

of orientation ( or lack thereof) in these diagrams in line with its conventional use in the 

diagrams of the classical root systems 1,2,3,4.  
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Here and in the sequel, we decompose a root system into its irreducible components as 

follows. We say that 𝑆 ⊂ 𝑅 is closed if 0 ∈ 𝑆, 𝑆 = −𝑆 and 𝑎 + 𝑏 ∈ 𝑆 whenever  𝑎, 𝑏 ∈ 𝑆 and 

𝑎 + 𝑏 ∈ 𝑅. If   𝑅 − 𝑆 ∪ {0} is closed, we say that 𝑆 ⊂ 𝑅 is open. Then { 𝑆 − {0} 𝑆 is open 

and closed in 𝑅} is a topology for  𝑅 − {0},whose connected components 𝑅1 −  0 ,… , 𝑅𝑛 −

{0} determine the irreducible components 𝑅1 , … , 𝑅𝑛  of 𝑅:  

𝑅 = 𝑅1 ∪ …∪ 𝑅𝑛  with 𝑅𝑖 ∩ 𝑅𝑗 = {0} for 𝑖 = 𝑗  

𝑎 = 𝑎1 + ⋯ + 𝑎𝑛 ∈ 𝑅 with 𝑎𝑖 ∈ 𝑅𝑖   1 ≤ 𝑖 ≤ 𝑛  implies 𝑎 = 𝑎𝑖 ∈ 𝑅𝑖  for some 𝑖  

We use the notation 𝑅 = 𝑆⨃𝑅 = 𝑆 ∪ 𝑇 = {0}, where 𝑆, 𝑇 are open and closed in 𝑅. Then 𝑅 is 

irreducible if only if 𝑅 = 𝑅1 if and only if 𝑅 = {0} is connected if and only if 𝑅 = 𝑆⨃implies 

𝑅 = 𝑆 or 𝑅 = 𝑇.  

Proposition  4.8.1.  

The irreducible components  𝑅𝑖  of a Lie root system are Lie root systems.  

We begin with the following theorem, which establishes Recognition Conditions 1,5,6. It is 

proved in the cases of 𝑎 ∈ 𝑅0, 𝑏 ∈ 𝑅 needed for the ensuing rank 2 classificaation. The case 

𝑎 ∈ 𝑅⋅ then follows from the classification.  

Theorem  4.8.1.  

Let 𝑅 be a Lie root system and let  𝑎, 𝑏 ∈ 𝑅 − {0}. Then 𝑅𝑎𝑏 = 𝑅𝑎 ∪ 𝑅𝑏 with 

 𝑅𝑎 ∪ 𝑅𝑏 = {0} if only if 𝑅𝑏 𝑎 = {𝑏}.  

Proof:  

For one direction, note that 𝑎 ± 𝑏 ∈ 𝑅𝑏 𝑎 ⊂ 𝑅𝑎 ⊂ ℤ𝑎, say implies that 𝑅𝑎𝑏 = {−𝑎, 0, 𝑎} or 

ℤ𝑎 and 𝑅𝑏 𝑎 = 𝑅𝑎𝑏.  

For the other direction, suppose first that 𝑎 ∈ 𝑅0 , 𝑏 ∈ 𝑅⋅ and 𝑅𝑏 𝑎 = {𝑏}. Thus, we know 

that 𝑎 ± 𝑏 ∉ 𝑅. We claim that = 𝑅𝑎 ∪ 𝑅𝑏 , 𝑅𝑎 ∪ 𝑅𝑏 = {0}. Suppose, otherwise that there 

exist 𝑏′ = 𝑟𝑎 + 𝑠𝑏 ∈ 𝑅 with 𝑟, 𝑠 ≠ 0. We claim that 𝑠 ∈ { 𝑝 − 1 2 , (𝑝 + 1) 2 }, and that 

𝑅 = 𝑠  𝑅𝑎 + 𝑅𝑏 − 𝑅𝑏 ∪ 𝑅𝑏 = 𝑠( 𝑊 + 𝐴 − 𝐴) ∪ 𝐴. Where 𝑅𝑎 = 𝑊 = ℤ𝑎,  𝑅𝑏 = 𝐴 =

{−𝑏, 0, 𝑏}. For this, note first that 𝑟𝑎 𝑏 = 𝑏 and 𝑎0 𝑏 = 0, so 𝑎0 𝑏′ ≠ 0 and 𝑟𝑎 𝑏′ ≠ 𝑏′. It 

follows that 𝑅𝑏 ′  𝑎 ≠ {𝑏′} and therefore, has 𝑝 or 𝑝 − 1 elements, by (Def 4.7.1), since 

𝑎 ∈ 𝑅0. We refer to Table II in what follows.  
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Note that  𝑅𝑏 ′  𝑎  is contained in Column 𝐶𝑠, among the columns 𝐶0 =Column 0, … , 𝐶−1 =

𝐶𝑝−1 =Column 𝑝 − 1 of Table II, each of which has at most 𝑝-elements. Since 𝑅 ∩ 𝐶±1 

exclude ± 𝑏 − 𝑎 , ± 𝑏 + 𝑎 , we must have 𝑠 ≠ ±1. Thus, since  𝑏 ∈ 𝑅⋅, we have 𝑠𝑏 ∉

𝑅𝑏 ′  𝑎 . These constraints force 𝑅𝑏 ′  𝑏 = ℤ 𝑎 + 𝑠𝑏 −  𝑠𝑏 . Moreover, the constraint 

𝑠 ≠ ±1 forces  𝑅𝑏 ′  𝑏  to have fewer than 𝑝-elements, so that 𝑏′′ =𝑑𝑒𝑓 𝑟𝑏 𝑏
′ = 𝑟𝑎 − 𝑠𝑏 ∈

𝑅. repeating the above argument, we have 𝑅𝑏 ′′  𝑎 = ℤ 𝑎 − 𝑠𝑏 −  −𝑠𝑏 . Thus, 

 𝑅 ⊃   ℤ𝑎 + 𝑠 −𝑏, 0, 𝑏  − 𝑠 −𝑏, 0 , 𝑏  ∪  −𝑏, 0, 𝑏 =   𝑊 + 𝑠𝐴 − 𝑠𝐴 ∪ 𝐴 

= 𝑠  𝑊 + 𝐴 − 𝐴 ∪ 𝐴.  

It  follows that 𝑠 𝑏 − 𝑎 ∈ 𝑅. Since  𝑏 − 𝑎 ∉ 𝑅, 𝑠 can take on only two values, by (Prop 

4.7.1). It follows that 𝑅 = 𝑠  𝑊 + 𝐴 − 𝐴 ∪ 𝐴. Interchanging signs, if necessary we have 

2 ≤ 𝑠 ≤ ⋯ ≤  𝑝 − 1 𝑠 ≤ ⋯ ≤ 𝑝 − 2. It follows that 𝑅𝑠𝑏+𝑎 = {𝑠𝑏 + 𝑎,  𝑠 + 1    𝑏 + 𝑎} and 

, therefore that 𝑠 + 1 = −𝑠 and 𝑠 = −
1

2
, as asserted. Now compute  𝑅𝑏(𝑠𝑏 + 𝑎) =

 𝑏,
1

2
 𝑏 + 𝑎, 0 + 2𝑎, −

1

2
𝑏 + 3𝑎 .Then 𝑠𝑏 + 𝑎 0 𝑠𝑏 + 𝑎 −  𝑠𝑏 + 𝑎 0 𝑏 = −3 and  𝑠𝑏 +

𝑎 0 𝑠𝑏 =
2

3
. Thus,  

 𝑠𝑏 + 𝑎 0 𝑎 =  𝑠𝑏 + 𝑎 0 𝑠𝑏 + 𝑎 −  𝑠𝑏 + 𝑎 0 𝑠𝑏 = 2 −
2

3
=

1

2
  

But 𝑅𝑎(𝑠𝑏 + 𝑎) =  𝑎, 𝑠𝑏 + 2𝑎  implies , to the contrary that  𝑠𝑏 + 𝑎 0 𝑎 = −1. We must 

therefore conclude that 𝑅 = 𝑅𝑎⨃𝑅𝑏  for 𝑏 ∈ 𝑅⋅ and 𝑅𝑏 𝑎 = {𝑏}.  

Next, suppose that 𝑏 ∈ 𝑅0 and 𝑅𝑏 𝑎 =  𝑏 . We begin claim that 𝑅𝑎𝑏 = 𝑅𝑎 ∪ 𝑅𝑏 , 

𝑅 𝑎 ∪ 𝑅𝑏 = [0} . Note that 𝐶1 ∩ 𝑅 exclude 𝑏 ± 𝑎 and therefore no 𝑏′ = 𝑏 + 𝑟𝑎  𝑟 = 0  is 

in 𝑅: 𝑏′ ∈ 𝑅 ⟹ 𝑅𝑏 ′  𝑎 =  𝑏′  ⟹ 𝑎∗ 𝑏′ = 0 ⟹ 0 = 𝑎∗ 𝑟𝑎 = 2𝑟 ⟹ 𝑟 = 0 
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Similarly, no 𝑎′ = 𝑎 + 𝑠𝑏 (𝑠 ≠ 0) is in 𝑅. But then every column 𝐶𝑠 excludes 𝑠𝑏 ± 𝑎, so that 

each 𝑅𝑏 ′  𝑎  is  𝑏′  for 𝑏′ ∈ 𝐶𝑠 − {𝑠𝑏}, which is impossible since : 

 0 = 𝑎∗ 𝑏′ = 𝑎∗ 𝑠𝑏 + 𝑟𝑎 = 2𝑟 implies 𝑟 = 0. Thus, = 𝑅𝑎 ⨃𝑅𝑏 .  

The remaining case 𝑎, 𝑏 ∈ 𝑅⋅ is not needed for the rank 2 classification given below. 

Applying this classification, we need only observe that one of the conditions  𝑅𝑏 𝑎 =  𝑏  or 

𝑎∗ 𝑏 = 0 is not met for each pair 2,3,4,9, to complete the proof.  

Theorem  4.8.2. 

Let 𝑅 be a Lie root system and let 𝑎 ∈ 𝑅0 , 𝑏 ∈ 𝑅. with 𝑅𝑎𝑏 irreducible. Then 𝑏 − 𝑎 ∈ 𝑅 and 

𝑅𝑎𝑏 ⊃ 𝑅𝑎 + 𝑅𝑏 = 𝑊⨁𝐴.  

Proof:  

Suppose that 𝑏 − 𝑎 ∉ 𝑅. Since 𝑅𝑎𝑏 is irreducible, 𝑏 + 𝑎 ∈ 𝑅, by (Theorem 4.8.1). Thus, 

𝑅𝑏 𝑎 = 𝑏, … , 𝑏 +  𝑝 − 2 𝑎 , by (Def 4.7.1). It follows  that  𝑎0 𝑏 = 2 = 𝑎0 𝑎  and 

𝑎0 𝑏 − 𝑎 = 0. Thus, 𝑎0 2𝑏 − 4𝑎 = 2𝑎0 𝑏 − 𝑎 − 2𝑎0 𝑎 = −4 and  

𝑟𝑎 2𝑏 − 4𝑎 = 2𝑏 − 4𝑎 − 𝑎0 2𝑏 − 4𝑎 𝑎 = 2𝑏 ∉ 𝑅. It follows that 2𝑏 − 4𝑎 ∉ 𝑅. Since 

2𝑏, 2𝑏 − 4𝑎 ∉ 𝑅 and −2𝑏, −2𝑏 + 4𝑎 ∉ 𝑅, 𝑅 contains no root ± 2𝑏 + 𝑟𝑎  otherwise 

𝑅2𝑏+𝑟𝑎 (𝑎), say has fewer than 𝑝 − 1 elements, so 𝑅2𝑏+𝑟𝑎  𝑎 = {2𝑏 + 𝑟𝑎}, which contradicts 

the irreduciblility of 𝑅𝑎𝑏. It follows that 𝑅𝑎 𝑏 = {𝑎, 𝑎 + 𝑏}, whereas 𝑅2𝑎 𝑏 = {−𝑏 +

2𝑎, 2𝑎, 𝑏 + 2𝑎}. Thus, −1 = 𝑏0(𝑎) and −2 = 𝑏0 −𝑏 + 2𝑎 = −2 + 2𝑏0 𝑎 = −1 and 

2 = 0, a contradiction. We conclude that 𝑏 − 𝑎 ∈ 𝑅 for all 𝑏 ∈ 𝑅⋅. If ℤ𝑎 + 𝑏 ⊂ 𝑅𝑎𝑏, we are 

done.  

Otherwise, choose 𝑟 such that 𝑏′ = 𝑏 − 𝑟𝑎 ∈ 𝑅 and 𝑏′ − 𝑎 ∉ 𝑅. From our discussion above, 

we conclude that 𝑏′ ∈ 𝑅0. But then the classification below, which does not depend on this 

case, implies that 𝑅𝑎𝑏′ is 𝑊2 , 𝑆2 , or 𝑇2: Nos. 7, 10, 11 of Table I. But then 𝑅𝑎𝑏′ = 𝑇1, since 

𝑅. is empty for   𝑅 = 𝑊2 or 𝑆2 in which case 𝑏 ∈ 𝑇2
.  and 𝑇2 = 𝑅 ⊃ 𝑅𝑎 + 𝑅𝑏 = 𝑊⨁𝐴 as 

asserted.  

Theorem  4.8.3.  

Every non classical irreducible rank 1 or 2 Lie root system defined over ℤ𝑝  𝑅 is one of 

𝑊, 𝑊⨁𝐴, 𝑊2 , 𝑆2 , 𝑇2 .  
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Proof:  

Let 𝑅 be non classical, irreducible and not one of  𝑊, 𝑊⨁𝐴, 𝑊2. We claim that 𝑅 is 𝑆2 , or 𝑇2, 

as asserted. Since 𝑅 is not classical it is not reduced, so that there exist 𝑎 ∈ 𝑅0 by (Def 4.7.1). 

We know that 𝑅 is an irreducible rank 2 root system defined over ℤ𝑝 . Letting 𝑉 be the ℤ𝑝 -

span of 𝑅, we have 𝑅 ⊂ ℤ𝑎 + ℤ𝑏 = 𝑉 for any 𝑏 ∈ 𝑉 − ℤ𝑎.  

Suppose first that  𝑏 + ℤ𝑎 ∩ 𝑅 = 𝜙 for some 𝑏 ∈ 𝑉 − ℤ𝑎. Then 𝑐 ∈ 𝑅 − ℤ𝑎 implies that 

𝑐 ∉ 𝑅0, so that 𝑐 ∈ 𝑅.. But then it follows from the proven part of (Theorem 4.8.2) that 

𝑐 + ℤ𝑎 ⊆ 𝑅, so that 𝑅 ⊇ ℤ𝑎 +  −𝑐, 0, 𝑐 = 𝑊⨁𝐴. Moreover, any element 𝑑 ∈ 𝑅 − ℤ𝑎 has 

the form 𝑑 = 𝑟(𝑐 + 𝑡𝑎) with 𝑐 + 𝑡𝑎 ∈ 𝑅. (just as in the above case 𝑟 = 1, 𝑡 = 0), so that 

𝑟 = ±1 and 𝑑 ∈ ±𝑐 + ℤ𝑎. It follows that  𝑅 = 𝑊⨁𝐴.  

Suppose next that  𝑏 + ℤ𝑎 ∩ 𝑅 ≠ 𝜙 for every  𝑏 ∈ 𝑉 − ℤ𝑎. Then  𝑏 + ℤ𝑎 ∩ 𝑅 has more 

than one element for every  𝑏 ∈ 𝑉 − ℤ𝑎, by (Theorem 4.8.1) and the irreducibility of 𝑅. But 

then  𝑏 + ℤ𝑎 ∩ 𝑅 has at least 𝑝 − 1 elements for every 𝑏 ∈ 𝑉 − ℤ𝑎, by (Def 4.7.1). Take 

𝑐 ∈ 𝑉 − ℤ𝑎 with ℤ𝑐 ∩ 𝑅 as small as possible. Then 𝑅 ⊆ ℤ𝑎 + ℤ𝑐 and ℤ𝑐 ∩ 𝑅 has one or three 

or 𝑝 elements. If  ℤ𝑐 ∩ 𝑅 has 𝑝 elements, then 𝑅 = 𝑊2. If ℤ𝑐 ∩ 𝑅 has only one element, 

namely 0, then each set  ℤ𝑎 + 𝑗𝑐 ∩ 𝑅  𝑗 ≠ 0  has exactly 𝑝 − 1 elements in it and 𝑅 =

  ℤ𝑎 + ℤ𝑐 − ℤ𝑐 ∪  0 = 𝑆2. In the remaining case, ℤ𝑐 ∩ 𝑅 has three elements, which we 

may take to be  – 𝑐, 0, 𝑐  with no loss in generality. Then 𝑅 contains 𝑖𝑎 + 𝑗𝑐 when 𝑖 ≠ 0 and 

𝑗 ≠ ±1. It follows that 𝑅 contains four or more, hence all 𝑝, multiples of every 𝑏 ∈ 𝑉 − ℤ𝑐. 

Thus,  𝑅 =  ℤ𝑎 + ℤ𝑐 − ℤ𝑐 ∪  −𝑐, 0, 𝑐 = 𝑇2.  

4.9   Base and Closure  

Let  𝑉, 𝑅 ,  𝑊, 𝑆  be root systems and consider 𝑅⨁𝑆 = { 𝑎⨁𝑏 𝑎 ∈ 𝑅, 𝑏 ∈ 𝑆} ⊂ 𝑉⨁𝑊.  

Introduce 

 𝑟𝑎⨁𝑏 𝑐⨁𝑑 = 𝑐⨁𝑑 −  𝑎⨁𝑏 0 𝑐⨁𝑑   𝑎⨁𝑏 b  specifying 𝑎⨁𝑏 0 ∈ 𝐻𝑜𝑚(𝑉⨁𝑊, ℤ𝑝) as 

follows:  

 𝑎⨁0 0 𝑐 ⨁𝑑 = 𝑎0 𝑐    

 𝑎⨁𝑏 0 𝑐 ⨁𝑑 = 𝑏0 𝑑                       𝑏 ≠ 0   

Note that 𝑅 + 𝑆𝑐⨁𝑑 𝑎⨁0 = 𝑅𝑐(𝑎)⨁𝑑 and 𝑟𝑎⨁0 𝑐⨁𝑑 = 𝑐⨁𝑑 − 𝑎0 𝑐   𝑎⨁0 = 𝑟𝑎 𝑐 ⨁𝑑. 

Next, suppose that 𝑅 is a group, that is , 𝑅 + 𝑅 = 𝑅, and note that  

𝑅 + 𝑆𝑐⨁𝑑 𝑎⨁𝑏 =  𝑐⨁𝑑 − 𝑟 𝑎⨁𝑏 ,… , 𝑐⨁𝑑 + 𝑞 𝑎⨁𝑏  , where  



 

202 

 𝑆𝑑 𝑏 = {𝑑 − 𝑟𝑏, … , 𝑑 + 𝑞𝑏}, so that 𝑑 + 𝑞𝑏 = 𝑟𝑏 𝑑 − 𝑟𝑏 =  𝑑 − 𝑟𝑏 − 𝑏0 𝑑 − 𝑟𝑏 𝑏 

implies   𝑐⨁𝑑 + 𝑞 𝑎⨁𝑏 = 𝑟𝑎+𝑏 𝑐⨁𝑑 − 𝑟(𝑎⨁𝑏) . It follows that  𝑉⨁𝑊, 𝑅⨁𝑆 is a root 

system, provided that 𝑅 is a group ( TableIII).  

Next, let 𝑉 = ℤ𝑝
𝑛  with basis 𝑎1 , … . , 𝑎𝑛 . Consider 𝑆𝑛 =  0 ∪ { 𝑟1𝑎1 + ⋯ . +𝑟𝑛𝑎𝑛  𝑟1 +

⋯ . +𝑟𝑛 ≠ 0} and note that 𝑆𝑛 =   𝑣 ∈ 𝑉 𝑓(𝑣, 𝑣) ≠ 0 , where 𝑓 is the symmetric bilinear form 

𝑓 𝑎𝑖  , 𝑎𝑗  = 1 for all 𝑖, 𝑗. Then 𝑆𝑛  is a Lie root system  

With the symmetries 𝑟𝑎 𝑏 = 𝑏 − 2 𝑓(𝑎, 𝑏) 𝑓(𝑎, 𝑎)  𝑎 = 𝑏 − 2  𝑠𝑖  𝑟𝑖  𝑎 for  𝑎 =  𝑟𝑖𝑎𝑖  , 

𝑏 =  𝑠𝑖𝑎𝑖 . The condition 0 = 𝑓 𝑎, 𝑏 =   𝑟𝑖 
2 defines the hyper-plane 𝑉 − 𝑆𝑛 = 𝑊 of 

dimension 𝑛 − 1. Let  𝑊, 𝑅  be any Lie root system in 𝑊. Then 𝑆𝑛 + 𝑅 = 𝑆𝑛 ∪ 𝑅 is a Lie 

root system:  

 𝑆𝑛 + 𝑅 𝑏 𝑎 = ℤ𝑎 + 𝑏 and 𝑎∗ 𝑏 = 0 for 𝑎 ∈ 𝑆𝑛 − {0},  𝑏 ∈ 𝑅  

 𝑆𝑛 + 𝑅 𝑎 𝑏 = 𝑎 + ℤ𝑏 for 𝑎 ∈ 𝑆𝑛 − {0},  𝑏 ∈ 𝑅 − [0}  

 𝑆𝑛 + 𝑅 𝑐 𝑏 = 𝑅𝑐(𝑏) for ∈ 𝑅 , 𝑏 ∈ 𝑅 − {0},  

 𝑆𝑛 + 𝑅 𝑏 𝑎 =  𝑆𝑛 𝑏(𝑎) or  𝑏 + ℤ𝑎 for  𝑎, 𝑏 ∈ 𝑆𝑛 − {0}, ( use the latter if 𝑏 + 𝑖𝑎 ∈ 𝑅 for 

some 𝑖).  

Definition  4.9.1.  

We define base for a Lie root system  𝑉, 𝑅  to be a basis 𝜋 =  𝑎1 , … . , 𝑎𝑛  for 𝑉 contained in 

𝑅 such that  

1. If 𝑅𝑎𝑖𝑎𝑗  is type 𝐴2 , 𝐵2 or 𝐺2 then the diagram for  𝑎𝑖 , 𝑎𝑗  is  

  

Fig (4.1) 

2. 𝑅 = 𝑅− 𝜋 ∪ {0} ∪ 𝑅+(𝜋), where  𝑅− 𝜋 = −𝑅+(𝜋) and 𝑅+(𝜋) is the set of those 𝑎 ∈ 𝑅 

for which there exist 𝑎𝑖1
, … . , 𝑎𝑖𝑠 ∈ 𝜋 such that  𝑎𝑖𝑗 ∈ 𝑅𝑟

𝑗=1   for 1 ≤ 𝑟 ≤ 𝑠 and =  𝑎𝑖𝑗
𝑠
𝑗=1  . 
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In characteristic 0, this is the usual concept of base, since condition (1) implies that  

 𝑎𝑖 , 𝑎𝑗  ≤ 0 for all 𝑖 ≠ 𝑗 and condition (1) implies condition (2).  

If 𝑅 has base 𝑎1 , … . , 𝑎𝑛 , then 𝑊𝑚⨁𝑅 has base 𝑏1 , … . , 𝑏𝑚  , 𝑎1 , … . , 𝑎𝑛 , where 𝑏1 , … . , 𝑏𝑚  is a 

basis for 𝑊𝑚  as a group. And 𝑆𝑚 + 𝑅(𝑚 > 𝑛) has base 𝑎1 , … . , 𝑎𝑛  , 𝑎𝑛+1 , … . , 𝑎𝑚  obtained by 

taking any ∈ 𝑆𝑚  , forming the independent set 𝑎 + 𝑎1 , … . , 𝑎 + 𝑎𝑛  , 𝑎, showing that it is part 

of a base 𝑎 + 𝑎1 , … . , 𝑎 + 𝑎𝑛  , 𝑎 = 𝑎𝑛+1 , … . , 𝑎𝑚  for 𝑆𝑚  and then returning to 

𝑎1 , … . , 𝑎𝑛  , 𝑎𝑛+1 , … . , 𝑎𝑚  .  

Definition 4.9.2:  

A Lie root system  𝑉, 𝑅  which has a base is said to be regular. A Lie root system  𝑉, 𝑅  need 

not be regular. In fact, a classical root system  𝑉, 𝑅  of type 𝐴𝑟   where   𝑝 (𝑟 + 1) need not be 

regular, since it is possible that dim𝑉′ < 𝑟. We illustrate this by describing two root systems 

 𝑉, 𝑅 ,  𝑉′, 𝑅′  of type 𝐴𝑟    𝑝 (𝑟 + 1)  with  𝑉, 𝑅  regular and  𝑉′, 𝑅′  not regular.  

For this , let 𝑘 be a field of characteristic 𝑝 > 0, let  𝑒0 , … . , 𝑒𝑟  be the basis of 𝑘𝑟+1 with 

coordinate conditions  𝑒𝑖 𝑗 = 𝛿𝑖𝑗 , let 𝑅 = { 𝑒𝑖 − 𝑒𝑗  𝑖 ≠ 𝑗, 0 ≤ 𝑖, 𝑗 ≤ 𝑟}, let 𝜋 =   𝑎𝑗  1 ≤ 𝑖 ≤

𝑟  with 𝑎𝑗 = 𝑒𝑗−1 − 𝑡𝑗  and let 𝑉 be the 𝑘-span of 𝑅. Then  𝑉, 𝑅  is a root system of type 𝐴𝑟 ,𝜋 

is a basis for  𝑉, 𝑅  in the sense of (Def 4.9.1) and  𝑉, 𝑅  is regular.  

Next assuming that   𝑝 𝑟 + 1, note that 𝑉 contains 𝑒0 + ⋯ . +𝑒𝑟  and pass to quotients of 𝑉 

modulo 𝑘 𝑒0 + ⋯ . +𝑒𝑟 . Let 𝑓 𝑣 = 𝑣 + 𝑘 𝑒0 + ⋯ . +𝑒𝑟  be the quotient map and define 

𝑣 ′ = 𝑓(𝑣), 𝑉 ′ = { 𝑣 ′  𝑣 ∈ 𝑉}, 𝑉 ′ = { 𝑎′ 𝑎 ∈ 𝑅}. Then  𝑉′, 𝑅′  is a root system of type 𝐴𝑟  and 

𝑓: 𝑅 ⟶ 𝑅′ is an isomorphism of groupoids. Since a dimension is lost in passing from 𝑉 to 𝑉′, 

𝜋′ is not a basis for 𝑉′ and  𝑉′, 𝑅′  is not regular.  

To by pass this pathology for classical root systems   𝑉, 𝑅 , we pass to their 𝑘-closures 

 𝐻∗, 𝑅 , described below. This passage corresponds, for certain Lie algebras 𝔤 to passage 

certain Lie algebras 𝐻∗ +ad 𝔤∞  of derivations, 𝐻∗ = 𝐻𝑜𝑚 𝑅, 𝑘 , where  𝑕∗ , 𝑥 = 𝑕∗ 𝑎 𝑥 for 

𝑎 ∈ 𝑅, 𝑥 ∈ 𝔤𝑎 , 𝑕∗ ∈ 𝐻∗. When 𝔤 is classical, this Lie algebra is Der  𝔤 = 𝐻∗ + ad 𝔤, which 

since 𝔤 is center less and idempotent.  

Definition   4.9.3.  

𝐻 = 𝐻𝑜𝑚 𝑅, 𝐾 = {𝑓: 𝑅 → 𝐾 𝑓 𝑎 + 𝑏 = 𝑓 𝑎 + 𝑓(𝑏)  for all 𝑎, 𝑑 , 𝑎 + 𝑏 ∈ 𝑅} iscalled the 

Cartan space of  𝑉, 𝑅  and 𝐻∞  denotes the 𝑘-span of its subset    𝑎0 𝑅 𝑎 ∈ 𝑅 − {0} . The 

groupoid homomorphism 𝑅 → 𝐻∗ = 𝐻𝑜𝑚𝑘(𝐻, 𝑘) which sends 𝑎 ∈ 𝑅 to 𝑎 ∈ 𝐻∗ defined by 
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𝑎  𝑓 = 𝑓(𝑎) is called the 𝑘-closure homomorphism, and 𝑅 =  𝑎  𝑎 ∈ 𝑅 is the set of roots of 

the Cartan space 𝐻.  

We identify  𝑎0 and 𝑎0 𝑅 . Then the 𝑘-closure  𝐻∗, 𝑅   of  𝑉, 𝑅  is a root system with Cartan 

functions 𝑎 0 𝑏  = 𝑎0(𝑏) and symmetries𝑟𝑎 𝑏  = 𝑟𝑎(𝑏)            𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0  .  

Using 𝑘-closures and regular functions, we show in (Theorem 4.9.2) that we can pass from a 

classical root system  𝑉, 𝑅  that may not be regular to an isomorphic root system  𝐻∗, 𝑅   

which is regular .  

If the 𝑘-closure homomorphism 𝑅 → 𝑘  is an isomorphism of groupoids, and if it can be 

extended to an isomorphism of vector-spaces from 𝑉 to 𝐻∗, then we say that  𝑉, 𝑅  coincides, 

up to identification, with its 𝑘-closures.  

Definition   4.9.4  

 𝑉, 𝑅  is 𝑘-closed if  𝑉, 𝑅  coincides, up to identifications, with its 𝑘-closure. It is convenient 

to have passed from a root system  𝑉, 𝑅  to its 𝑘-closure  𝐻∗, 𝑅  , in order to have realized all 

latent independence among roots, as in the case of passage from 𝐴𝑟(𝑘)  𝑝 𝑟 + 1  covered by 

(Theorem 4.9.2) below.  

Moreover, 𝑅 is isomorphic to  𝑅  in the absence of the root system 𝑆2, in which case we may 

simplify notation and work with the closed root system   𝐻∗, 𝑅  with  𝑅 ⊂ 𝐻∗, 

 𝑎0 =𝑑𝑒𝑓 𝑕𝑎 ∈ 𝐻∞  and  𝑎0 𝑏 = 𝑏(𝑕𝑎) ∈ 𝑘 for all 𝑎 ∈ 𝑅 − {0}..  

We recall from Winter, the  ℤ-closure homomorphism 𝑅 → 𝑅 = { 𝑎  𝑎 ∈ 𝑅} from 𝑅 into 

𝐻ℤ = 𝐻𝑜𝑚 𝑅, ℤ ⊂ 𝐻𝑄 = 𝐻𝑜𝑚 𝑅, 𝑄 ⊂ 𝐻ℝ = 𝐻𝑜𝑚(𝑅, ℝ), defined by 𝑎  𝑓 = 𝑓(𝑎), is an 

isomorphism of groupoids to a ℤ-root system, provided that 𝑅 is reduced. Thus, there exists a 

regular function on 𝑅 that is a function 𝑓 ∈ 𝐻ℝ such that 𝑓(𝑎) ≠ 0 for all 𝑎 ∈ 𝑅 − {0}, and 

we then define 𝑅± = 𝑅± 𝑓 = { 𝑎 ∈ 𝑅 ± 𝑓(𝑎) > 0} and  𝜋± = 𝜋± 𝑓 = { 𝑎 ∈ 𝑅±(𝑓) 𝑎 is 

not contained in 𝑅± 𝑓 = 𝑅± 𝑓 }. Conversely, let there exist a regular function 𝑓 ∈ 𝐻ℝ for 

𝑅. Then  𝑓 𝑅𝑎𝑏  is a regular function on the rank 2 root system 𝑅𝑎𝑏. A look at the possibilities 

for 𝑅𝑎𝑏,  

Theorem 4.9.1.   

A root system  𝑉, 𝑅  is classical if and only if there is a regular function 𝑓 ∈ 𝐻ℝ on 𝑅. For 

any regular function 𝑓 ∈ 𝐻ℝ , 𝜋+(𝑓) is base for 𝑅 if and only if 𝜋+(𝑓) is linearly 

independent.  
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We observe that the closure  𝐻∗, 𝑅   of a classical root system 𝑅 is a regular root system 𝑅  

isomorphic to 𝑅 as groupoid such that:  

 𝜋+ 𝑓         = {𝑎 1 , … . . , 𝑎 𝑟} is a base for 𝑅  for any regular function 𝑓 ∈ 𝐻ℝ on 𝑅. For this, define 

𝑑 𝑖 ∈ 𝐻𝑜𝑚(𝑅 , ℤ) such that 𝑑 𝑖 𝑎 𝑗  = 𝛿𝑖𝑗  (1 ≤ 𝑖, 𝑗 ≤ 𝑟). This is possible since 𝜋+ 𝑓  =

{𝑎 1 , … . , 𝑎 𝑟} is a base for 𝑅 , where 𝑓 ∈ 𝐻𝑜𝑚(𝑅 , ℤ) is defined by 𝑓  𝑎  = 𝑓 𝑎 (𝑎 ∈ 𝑅). Then 

define 𝑑𝑖 : 𝑅 → 𝐾 by taking 𝑑𝑖(𝑎) to be 𝑑 𝑖(𝑎 ) reduced modulo 𝑝. Then 𝑑𝑖 𝑎 𝑗  = 𝛿𝑖𝑗 , so that   

𝜋+(𝑓)         is a basis for  𝑅  and 𝑅  is a regular root system isomorphic to 𝑅.  

Theorem   4.9.2. 

The closure   𝐻∗, 𝑅   of a classical root system  𝑉, 𝑅  is a regular root system with 𝑅 

isomorphic to 𝑅  as groupoid and base 𝜋 = 𝜋+ 𝑓         .  

4.10   Rigidity and Collapse under Core  

In studying a root system 𝑅 of Lie algebra 𝔤, it is important to understand the passage from 𝑅 

to Core 𝑅 and from 𝔤 to Core 𝔤 = 𝔤∞ 𝑁𝑖𝑙 𝔤∞ . For this, we further develop concepts 

introduced in (Def 4.3.1).  

Definition   4.10.1  

The core of a root system  𝑉, 𝑅  is  𝐻∞
∗ , 𝑅∞ , where core 𝑅 = 𝑅∞ = { 𝑎∞  𝑎 ∈ 𝑅} and 

𝑎∞ =  𝑎  𝐻∞
. Here, 𝑎 ⟼ 𝑎  is the closure map and 𝐻∞  is the 𝑘-span o  𝑎0 𝑎 ∈ 𝑅 −  0  . We 

call 𝑅 ⟼ 𝑅∞ , sending 𝑎 to 𝑎∞(𝑎 ∈ 𝑅), the core map. If the core map is bijective, we say that 

𝑅 is rigid.  

The following proposition is evident.  

Proposition   4.10.1.   

If 𝑅 is rigid, the closure mapping is an isomorphism.  

We say that a set  𝑎1 , … . , 𝑎𝑛   (𝑛 ≥ 2) of 𝑛 distinct roots collapse if 𝑎1∞
= ⋯ = 𝑎𝑛∞

. The 

following theorem on collapse shows that 𝑅 is rigid ( has no collapse) if 𝑅 has no root system 

𝑅𝑎𝑏 of type 𝑆2.  

Theorem  4.10.1.   

Let   𝑎1 , … . , 𝑎𝑛  collpase. Then  𝑅𝑎1 …𝑎𝑛 = 𝑅 ∩  ℤ𝑎1 + ⋯ + ℤ𝑎𝑛  is a root system of type 

𝑆𝑚  for some 𝑚.  
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Proof:  

Without loss of generality, take 𝑎1 , … . , 𝑎𝑛  linearly independent.  

First, take distinct elements 𝑎, 𝑏 ∈  𝑎1 , … . , 𝑎𝑛 . Note that 𝑏 − 𝑎 ∉ 𝑅: for otherwise  

2 =  𝑏 − 𝑎 0 𝑏 − 𝑎 =  𝑏 − 𝑎 0 𝑏∞ − 𝑎∞ = 0. Thus, 𝑅𝑏 𝑎 = {𝑏, … , 𝑏 + 𝑞𝑎}, where 

– 𝑞 = 𝑎0 𝑏 = 𝑎0 𝑏∞ = 𝑎0 𝑏∞ = 𝑎0 𝑏 = 0, and 𝑅𝑏 𝑎 = {𝑏, … , 𝑏 − 2𝑎}.  

Similarly, 𝑅𝑏 𝑎 = {𝑎, … , 𝑎 − 2𝑏}.As in section 4.8, we now proceed to cogenerate roots and 

non-roots of 𝑆2, as in Table II. Note that no difference 𝑚𝑏 − 𝑚𝑎 = 𝑚(𝑏 − 𝑎) is a root.  

For this, observe that  2𝑏 − 𝑎, 𝑎 ∈ 𝑅 with 2𝑏 − 𝑎 ∉ 𝑅: for otherwise  

 2𝑏 − 2𝑎 0 2𝑏 − 2𝑎 =  2𝑏 − 2𝑎 0 2𝑏∞ − 2𝑎∞ = 0. Similarly, 2𝑎 − 𝑏, 𝑏 ∈ 𝑅 with 

2𝑎 − 2𝑏 ∉ 𝑅. This generalizes easily to 𝑚𝑏 −  𝑚 − 1 𝑎, 𝑎 ∈ 𝑅, with 𝑚(𝑏 − 𝑎) ∉ 𝑅. 

Therefore, this cogeneration leads to 𝑅𝑎𝑏 =   𝑟𝑎 + 𝑠𝑏 𝑟 + 𝑠 ≠ 0 = 𝑆2. Next, suppose that 

we have 𝑚 ≥ 2 such that 𝑎 =  𝑟𝑖𝑎𝑖 ∈ 𝑅𝑚
1  for   𝑟𝑖

𝑚
1 ≠ 0. For any such 𝑎,consider  𝑏 =

  𝑟𝑖
𝑚
1   𝑎𝑚+1 and note that 𝑏 − 𝑎 ∉ 𝑅; otherwise  

2 =  𝑏 − 𝑎 0 𝑏 − 𝑎 =  𝑏 − 𝑎 0 𝑏∞ − 𝑎∞ =  𝑟𝑖
𝑚
1  𝑏 − 𝑎 0 𝑏𝑚+1∞ − 𝑎𝑖∞ = 0. 

Thus, 𝑅𝑏 𝑎 = {𝑏, … , 𝑏 + 𝑞𝑎}, where – 𝑞 = 𝑎0 𝑏 = etc.= 𝑎0 𝑏 = 2, and 

 𝑅𝑏 𝑎 = {𝑏, … , 𝑏 − 2𝑎}. Similarly,  𝑅𝑏 𝑎 = {𝑎, … , 𝑎 − 2𝑏}. It follows that 

 𝑎 =  𝑟𝑖𝑎𝑖 ∈ 𝑅𝑚
1 , provided that   𝑟𝑖

𝑚+1
1 ≠ 0. By induction, therefore, 𝑅 contains 𝑆𝑛 . 

Finally, let  𝑎 =  𝑟𝑖𝑎𝑖 ∈ 𝑅𝑛
1  and suppose that   𝑟𝑖

𝑛
1 = 0. Then 𝑎∞ = 0, which is impossible:  

2 =  𝑎 0(𝑎) =  𝑎 0 𝑎∞ = 0 . it follows that 𝑅𝑎1 ……𝑎𝑛 = 𝑆𝑛 .  

4.11  Lie Root System Excluding 𝑻𝟐  

A Lie root system 𝑅 has a closure 𝑅 = { 𝑎  𝑎 ∈ 𝑅} over the field ℝ of real numbers, and a 

closure homomorphism  𝑅 → 𝑅  sending  𝑎 ∈ 𝑅 to 𝑎 ∈ 𝐻∗ = 𝐻𝑜𝑚ℝ(𝐻, ℝ), where 𝑎  is 

defined by 𝑎  𝑓 = 𝑓(𝑎) for 𝑓 ∈ 𝐻 = 𝐻𝑜𝑚𝐺𝑟𝑜𝑢𝑝𝑜𝑖𝑑 (𝐻, ℝ+), ℝ+ = (ℝ, +): 𝑎 + 𝑏 = 𝑎 + 𝑏  

for 𝑎, 𝑏, 𝑎 + 𝑏 ∈ 𝑅. We let ℝ𝑅  denote the ℝ-sapn of 𝑅  in 𝐻∗. The closure  ℝ𝑅 , 𝑅    of  𝑉, 𝑅  

is a root system over ℝ in the sense of Winter :  

1. Each 𝑎 ∈ 𝑅 − {0 } has an associated 𝑎 0 ∈ 𝐻𝑜𝑚ℝ ℝ𝑅 ,ℝ  , with 𝑎 0 𝑎  = 2 defined by the 

condition 𝑟𝑎  𝑏  = 𝑏 − 𝑎 0 𝑏   𝑎 , where 𝑟𝑎  is defined as in (2) below;  
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2. Each 𝑎 ∈ 𝑅 − {0 } has an associated symmetry  𝑟𝑎 ∈ 𝐴𝑢𝑡ℝ ℝ𝑅   defined as 𝑟𝑎 = 𝑟 𝑎 , where 

𝑠 ∈ 𝐴𝑢𝑡ℝ ℝ𝑅   is as defined below for 𝑠 ∈ 𝐴𝑢𝑡 𝑅.  

Here, we define 𝑠 =  𝑠∗∗ ℝ𝑅 , where 𝑠∗ ∈ 𝐴𝑢𝑡ℝ 𝐻 and 𝑠∗∗ ∈ 𝐴𝑢𝑡ℝ 𝐻∗ are the adjoints of 

𝑠, 𝑠∗ 𝑓 = 𝑓 ∘ 𝑠(𝑓 ∈ 𝑕), 𝑠∗∗ 𝑔 = 𝑔 ∘ 𝑠∗(𝑔 ∈ 𝐻∗), 𝑠  𝑎  = 𝑠∗∗ 𝑎  = 𝑎 ∘ 𝑠∗,  

𝑠  𝑎   𝑓 = 𝑎 ∘ 𝑠∗ 𝑓) =  𝑠∗ 𝑓  9𝑎 =  𝑓 ∘ 𝑠  𝑎 = 𝑓 𝑠 𝑎  = 𝑠(𝑎 ) 𝑓 (𝑎 ∈ 𝑅, 𝑓 ∈ 𝐻).  

Thus, 𝑠  𝑎  𝑠(𝑎 ) and  𝑟𝑎  𝑏  = 𝑟𝑎(𝑏 ).  

Note that 𝑎 ∈ 𝑅 − {0 } implies that 𝑅 𝑏 (𝑎 ) is bounded, thus that 𝑅𝑏(𝑎) is bounded and 

𝑎0 𝑏 = 𝑎∗(𝑏) mod 𝑝, where  𝑎∗(𝑏) is the Cartan integer in the sense of Bouraki with 0 

added.  The following theorem is needed for the proof of the main theorem. It is a variation of 

(Theorem 4.5.2 ).  

Theorem  4.11.1.  

Let 𝑅 be a Lie root system. Then  

1. 𝑅𝑎(𝑏) is bounded and 𝑎 ∗ 𝑏  = 𝑎∗(𝑏) for all 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0 ;  

2. For any 𝑎, 𝑏 ∈ 𝑅, 𝑎 = 0 , there exists 𝑐 ∈ 𝑅 such that the closure mapping maps 𝑅𝑐(𝑎) 

bijective onto 𝑅𝑏 (𝑎 );  

3. The closure mapping 𝑅 → 𝑅  is an isomorphism (of groupoids) if and only if it is bijective.  

𝑅𝑎(𝑏) is bounded for 𝑎 ≠ 0 , as noted above, so that 𝑟𝑎  can be written in terms of the Cartan 

integers 𝑎∗ 𝑏 = 𝑟𝑎 𝑏 = 𝑏 − 𝑎∗(𝑏)𝑎. Hence forth, we assume that no pair of type 𝑇2 occurs 

in 𝑅. We then proceed to prove the Decomposition Theorem announced in the introduction.  

Theorem  4.11.2.  

Let 𝑅 be a Lie root system excluding 𝑇2 and let 𝑎 1 , … . , 𝑎 𝑟  be a base for the classical root 

system  𝑅 . Then 𝑆 = {𝑛1𝑎1 + ⋯ + 𝑛𝑟𝑎𝑟  𝑛𝑖
 ∈ ℤ, 𝑛 1𝑎 1 + ⋯ + 𝑛 𝑟𝑎 𝑟 ∈ 𝑅 } is a classical root 

system isomorphic to 𝑅  and 𝑅 ⊂ 𝑅0 + 𝑆, where 𝑅0 is a Witt root system given by  

𝑅0 = { 𝑎 ∈ 𝑅 𝑎 = 0 }.  

Proof:  

From Table I, 𝑏∗ 𝑎 = 0,−1, −1,−1,−2, −3,0,0,−2 in types 𝐴⋁𝐴, 𝐴2 , 𝐵2 long 𝐺2 long 𝐵2 

short 𝐵2 short, 𝑊⋁𝐴, 𝑊⨁𝐴, mixed 𝑊⨁𝐴 classical, since 𝑅 excludes 𝑇2. These are the 
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Cartan integers, up to sign, for all classical 𝑏 and all classical or Witt 𝑎. Since 𝑏0 𝑐 + 𝑑 =

𝑏0 𝑐 + 𝑏0 𝑑  𝑐, 𝑑 ∈ 𝑘𝑅 , it follows that 𝑏∗ 𝑐 + 𝑑 = 𝑏∗ 𝑐 +  𝑏∗(𝑑)  𝑐, 𝑑 ∈ 𝑘𝑅  for 𝑏 ∈

𝑅.. this verified for 𝑝 > 7 by considering the integers   𝑏∗ 𝑐  modulo 𝑝: 

 𝑏∗ 𝑐 + 𝑑 = 𝑏∗ 𝑐 +  𝑏∗(𝑑)  𝑐, 𝑑 ∈ 𝑘𝑅 modulo 𝑝 with −3 ≤ 𝑏∗ 𝑐 , 𝑏∗ 𝑑 , 𝑏∗ 𝑐 + 𝑑 ≤ 3 

implies 𝑏∗ 𝑐 + 𝑑 = 𝑏∗ 𝑐 + 𝑏∗(𝑑). For 𝑝 = 5 and 7, it follows from the characteristic 5 

and 7 theory developed in (Section 4.1).  

Consequently,  the groupoid dual 𝐻 = 𝐻𝑜𝑚  𝑅, ℝ  of 𝑅 over ℝ contains 𝑏∗ 𝑏 ∈ 𝑅. .  

Consider the ℤ-closure mapping 𝑅 ⟶ 𝑅 = { 𝑎  𝑎 ∈ 𝑅} described in (section 4.9), which a 

groupoid homomorphism from 𝑅 to the classical root system 𝑅 . Note that  𝑎 = 𝑏 ⟺ 𝑓 𝑎 =

𝑓(𝑏) for all 𝑓 ∈ 𝐻 = 𝐻𝑜𝑚  𝑅, ℝ . We claim that 𝑅0 = { 𝑎 ∈ 𝑅 𝑎 is Witt root } is the kernel 

{ 𝑎 ∈ 𝑅  𝑎 = 0    of 𝑅 ⟶ 𝑅 . Since 𝑎 , 2𝑎 , … . ,  𝑝 − 1 𝑎 ∈ 𝑅  for 𝑎 ∈ 𝑅0, and since 𝑅  is classical, 

we have 𝑎 = 0  for  𝑎 ∈ 𝑅0. 

Next, let 𝑏 ∈ 𝑅.. then  𝑏∗ ∈ 𝐻 = 𝐻𝑜𝑚  𝑅, ℝ , as observed above , so that 𝑏  𝑏∗ = 𝑏∗ 𝑏 = 2.  

It follows that  𝑏 ≠ 0 . Thus, 𝑅0 = 𝑅 − 𝑅. is the kernel { 𝑎 ∈ 𝑅 𝑎 = 0 } is a Lie root system, 𝑅0 

is Witt Lie root system. We now construct a copy 𝑆 of the classical root system 𝑅  in 𝑅 such 

that 𝑅 ⊂ 𝑅0 + 𝑆. A part of this construction was done in collaboration with 𝑀. Let 𝑓 ∈ 𝐻 =

𝐻𝑜𝑚ℝ  ℝ𝑅 ,ℝ  be regular on the root system 𝑅 , that is  𝑓 (𝑎 ) ≠ 0  for 𝑎 ∈ 𝑅 − {0}.  

Define 𝑓: 𝑅 → ℝ by 𝑓 𝑎 = 𝑓 (𝑎 ). Let  𝑎 , 𝑏   be a positive definite symmetric bilinear form on 

ℝ𝑅  such that 𝑎 ∗ 𝑏  = 2  𝑎 , 𝑏   𝑎 , 𝑎    𝑎 , 𝑏 ∈ 𝑅 − {0 }    , define  𝑎, 𝑏 =  𝑎 , 𝑏    𝑎 ∈ 𝑅., 𝑏 ∈

𝑅  and note that 𝑎∗ 𝑏 = 𝑎 ∗ 𝑏  =  𝑎 , 𝑏  =  𝑎, 𝑏   𝑎 ∈ 𝑅., 𝑏 ∈ 𝑅 .  

Observe, accordingly that if  𝑎, 𝑏 > 0, then 𝑏 − 𝑎 ∈ 𝑅  𝑎 ∈ 𝑅., 𝑏 ∈ 𝑅 .  

Let 𝑅 + = { 𝑎 ∈ 𝑅  𝑓 (𝑎 ) > 0} and 𝑅+ = { 𝑎 ∈ 𝑅 𝑓(𝑎) > 0}.  

Let 𝑎1 , … . . , 𝑎𝑟  be any elements of 𝑅 such that 𝜋 = {𝑎 1 , … . . , 𝑎 𝑟} is the set of simple roots 𝑅 + 

in the classical root system 𝑅 . We claim first that  

𝑆+ = { 𝑛1𝑎1 , … . . , 𝑛𝑟𝑎𝑟  𝑛𝑖 ∈ ℤ, 𝑛1 𝑎 1 , … . . , 𝑛1𝑎 𝑟 ∈ 𝑅 +} is contained in 𝑅+ and that 

 𝑅𝑏(𝑎𝑗 ) = 𝑅𝑏 (𝑎 𝑗 ) for 𝑏 =  𝑛𝑖𝑎 𝑖 ∈ 𝑅 +. We proceed by induction on the height 𝑕(𝑏 ) =  𝑛𝑖  

of 𝑏 . If 𝑕 𝑏  = 1, 𝑏 = 𝑎 𝑖  and 𝑎𝑖 ∈ 𝑆+ for some 𝑖. Moreover, 𝑎𝑖 − 𝑎𝑗 ∉ 𝑅, since 𝑎 𝑖 − 𝑎 𝑗 ∉ 𝑅 : 

𝑎𝑖 − 𝑎𝑗 ∈ 𝑅 ⟹ 𝑎 𝑖 − 𝑎 𝑗 = 𝑎 𝑖 +  −𝑎 𝑗  − 𝑎𝑖 − 𝑎𝑗 ∈ 𝑅. Since 𝑎𝑗
∗ 𝑎𝑖 = 𝑎 𝑗

∗ 𝑎 𝑖  and  
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𝑅𝑎𝑖
  𝑎𝑗  =  𝑎𝑖 , … . , 𝑎𝑖 − 𝑎𝑗

∗(𝑎𝑖)𝑎𝑗   maps onto 𝑅 𝑎 𝑖   𝑎 𝑗  =  𝑎 𝑖 , … . , 𝑎 𝑖 − 𝑎 𝑗
∗(𝑎 𝑖)𝑎 𝑗  , which 

establishes over assertion for 𝑏 = 𝑎 𝑖 and 𝑕 𝑏  = 1  

Next, let  𝑕 𝑏  > 1 and suppose that our assertion has been establish for  𝑕 − 1. Since  

𝑎1 ,… , 𝑎𝑟 ,  𝑏  are lineary dependent elements of 𝑅 + and  𝑎𝑖 , 𝑎𝑗   < 0 for all 𝑖 ≠ 𝑗, we have  

 𝑏 , 𝑎𝑗   > 0 for some 𝑖. But then 𝑏 − 𝑎𝑗 =  𝑗𝑛 𝑎𝑗 − 𝑎𝑖 ∈ 𝑅 +. With 𝑕 𝑏 − 𝑎𝑖  = 𝑕 𝑏  − 1. 

By induction, therefore 𝑐 =  𝑛𝑗𝑎𝑗 − 𝑎𝑖  is in 𝑅 and 

 𝑅𝑐(𝑎𝑖
 ) = 𝑅𝑐  𝑎𝑖  = 𝑅𝑏 −𝑎𝑖 

  𝑎𝑖  = 𝑅𝑏  𝑎𝑖  ∋ 𝑏 = 𝑐 + 𝑎𝑖 .  

We do not yet know that  𝑛𝑗𝑎𝑗 ∈ 𝑅. However, we know that some element of 𝑅𝑐 𝑎𝑖  maps 

to 𝑐 + 𝑎𝑖  , and this element, by virtue of its 𝑓-value, must be 𝑐 + 𝑎𝑖 =  𝑛𝑗𝑎𝑗 =𝑑𝑒𝑓 𝑏. This 

said, we may conclude that 𝑏 =  𝑛𝑗𝑎𝑗 ∈ 𝑅+ and moreover, that  

𝑅𝑏 𝑎𝑖  = 𝑅𝑏−𝑎𝑖
 𝑎𝑖  = 𝑅𝑐 𝑎𝑖  = 𝑅𝑏  𝑎𝑖   by what are shown above.  

It remains to show that 𝑅𝑏 𝑎𝑗  = 𝑅𝑏  𝑎𝑗   for 𝑗 ≠ 𝑖. If 𝑏 − 𝑎𝑗 ∈ 𝑅 +, we argue by induction, 

just as in the case  𝑗 = 𝑖 above. We conclude, by induction that 𝑆+ ⊂ 𝑅+ and 

𝑅𝑏 𝑎𝑗 =  𝑅𝑏  𝑎𝑗 
 , since 𝑎𝑗

∗ 𝑏  = 𝑎 𝑗 ∗  𝑏  , with details as in the similar case encountered 

above. We conclude, by induction that 𝑆+ ⊂ 𝑅+ and 𝑅𝑏 𝑎𝑗 =  𝑅𝑏  𝑎𝑗 
 = 𝑅𝑏 𝑎𝑗   for 

𝑏 ∈ 𝑆+, as asserted.  

Implicitly derived in the above considerations is the decisive identity 𝑏 =  𝑛𝑖 𝑎𝑖  , valid for 

any  𝑛𝑖 𝑎𝑖 ∈ 𝑅 + and 𝑏 =  𝑛𝑖 𝑎𝑖 ∈ 𝑆+. This is based on the implicit iterative construction/ 

reconstruction of elements 𝑏 ∈ 𝑆+ 𝑏  ∈ 𝑅 + as 𝑏 = 𝑎𝑖1
, … . . , 𝑎𝑖𝑘  and 𝑏 = 𝑎 𝑖1

, … . . , 𝑎 𝑖𝑘 , where 

all partial sums are roots in 𝑆+, respectively in 𝑅 +.  

We claim next that  𝑅 ⊂ 𝑅0 + 𝑆. Suppose not, and take 𝑏 ∈ 𝑅+ −  𝑅0 + 𝑆  with 𝑓(𝑏) 

minimal, noting that  𝑏 ∈ 𝑅 +. We claim, firstly that  𝑏 − 𝑎𝑖 ∈ 𝑅 for some  1 ≤ 𝑖 ≤ 𝑟. For this, 

note that 𝑎 1 , … . . , 𝑎 𝑟  , 𝑏 ∈ 𝑅 + are linearly dependent and  𝑎𝑖 , 𝑎𝑗  < 0 for all  1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟, so 

that  𝑏 , 𝑎𝑖  > 0 for some 𝑖. But then  𝑏, 𝑎𝑖 > 0 for some 𝑖, so that 𝑏 − 𝑎𝑖 ∈ 𝑅.  

Next, we observe that  𝑏 ∈ 𝑅0 + 𝑆, contrary to assumption. In the case 𝑏 = 𝑎 𝑖 , we have 

𝑏 − 𝑎𝑖 ∈ 𝑅 (see above) and  𝑏 − 𝑎 𝑖 = 0 , so that 𝑏 − 𝑎𝑖 ∈ 𝑅0 and 𝑏 =  𝑏 − 𝑎𝑖 + 𝑎𝑖 ∈ 𝑅0 +

𝑆. In the case  𝑏 ≠ 𝑎𝑖 , 𝑏 − 𝑎𝑖 ∈ 𝑅, we have 𝑏 − 𝑎𝑖 ∈ 𝑅 (as above), 𝑏 − 𝑎𝑖  ∈ 𝑅 +. But then 
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𝑏 − 𝑎𝑖 ∈ 𝑅+ with 𝑓(𝑏 − 𝑎𝑖) < 𝑓(𝑏). By minimality of 𝑓(𝑏), 𝑏 − 𝑎𝑖 ∈ 𝑅0 + 𝑆. But then 

𝑏 ∈ 𝑅0 + 𝑆.  

To see this, write 𝑏 − 𝑎𝑖 = 𝑎 +  𝑛𝑗𝑎𝑗 , where 𝑎 ∈ 𝑅0 and  𝑛𝑖 𝑎𝑖 ∈ 𝑅 +.  

Then 𝑏 − 𝑎 𝑖 =  𝑛𝑖 𝑎𝑖 ∈ 𝑅 + and 𝑏 = 𝑛1𝑎 1 + ⋯+ 𝑛𝑖−1𝑎 𝑖−1 +  𝑛𝑖 + 1 𝑎 𝑖 + 𝑛𝑖+1𝑎 𝑖 + ⋯ +

𝑛𝑟𝑎 𝑟  . Thus, 𝑏 = 𝑎 + 𝑛1𝑎1 + ⋯ + 𝑛𝑖−1𝑎𝑖−1 +  𝑛𝑖 + 1 𝑎𝑖 + 𝑛𝑖+1𝑎𝑖 + ⋯ + 𝑛𝑟𝑎𝑟 . 

 And 𝑏 ∈ 𝑅0 + 𝑆, by the definition of 𝑆, contrary to assumption. Thus, 𝑅 ⊂ 𝑅0 + 𝑆 as 

asserted.  

Finally, 𝑆 has at most as many elements as 𝑅 , by its constructional definition, and 𝑅 ⊂

𝑅0 + 𝑆  = 𝑆 , so that 𝑆 ⟶ 𝑆  is surjective from 𝑆 to 𝑅 . It follows that 𝑆 ⟶ 𝑆  is bijective from 

𝑆 to 𝑅 , so that 𝑆 ⟶ 𝑅  is an isomorphism ,by (Theorem 4.11.1) , which completes the proof of 

(Theorem 4.11.2), since the root system  𝑅  is classical.  

Finally, we briefly consider subsystems. Consider a subset 𝜎 of 𝜋 = {𝑎1 , … , 𝑎𝑟}, where  

𝜋 = {𝑎 1 , … , 𝑎 𝑟} is a simple system of 𝑅 , 𝜎 = {𝑎1, … , 𝑎𝑘}. Construct 𝑅𝜎 = 𝑅𝑎1…..𝑎𝑘
=

  𝑛1𝑎1 + ⋯ + 𝑛𝑘𝑎𝑘  𝑛1𝑎 1 + ⋯ + 𝑛𝑘𝑎 𝑘 ∈ 𝑅  . Then 𝑅 𝜎 = 𝑅 ∩  ℤ𝑎 1 + ⋯+ ℤ𝑎 𝑘 = 𝑅𝑎 1 …𝑎 𝑘  

is a classical root system and 𝑅 𝜎
−1 =𝑑𝑒𝑓 { 𝑎 ∈ 𝑅 𝑎 ∈ 𝑅 𝜎 } is a root system 𝑅𝜎 . Relative to the 

global closure maps 𝑅 ⟶ 𝑅 , the same arguments as above show that 𝑅𝜎 ⊂ 𝑅𝜎0
+ 𝑅𝜎 , where 

𝑅𝜎 , as defined above is a classical subsystem of 𝑅𝜎 . Both the global closure map and the 

closure map defined relative to 𝑅𝜎  map 𝑅𝜎  isomorphically to the image ( closure in either 

sense) of 𝑅𝜎 .  

Taking 𝜋 = 𝜋 1 ∪ …∪ 𝜋 𝑛  to be the decomposition of 𝜋  into connected components, and 

letting 𝑅𝑖 = 𝑅𝜋𝑖  and 𝑅𝑖 = 𝑅𝜋𝑖
, one now easily sees that :  

1. 𝑅 = 𝑅1 ∪ … .∪ 𝑅𝑛   

2. 𝑎, 𝑏 ∈ 𝑅𝑖 , 𝑎 + 𝑏 ∈ 𝑅 ⟹ 𝑎 + 𝑏 ∈ 𝑅𝑖   

3. 𝑅𝑖 ⊂ 𝑅𝑖0 + 𝑅𝑖  with 𝑅𝑖  irreducible and classical and 𝑅𝑖0 Witt.  

Next, take any 𝑏 ∈ 𝑅 − 𝑅0, so that 𝑏 ≠ 0 , and take a simple system 𝜋 = {𝑎 1 , … , 𝑎 𝑟} for 𝑅  

such that 𝑏 = 𝑎 1. This is possible, since 𝑅  is reduced and a classical root system. In this case, 

𝑅𝑏  as define above is 𝑅𝑏 = {−𝑏, 0, 𝑏}.  

We write 𝑅𝑏 = 𝑅{𝑏} = 𝑅 𝑏
−1 = { 𝑎 ∈ 𝑅 𝑎 ∈ 𝑅 𝑏}. Then  𝑅𝑏 ⊂ 𝑅𝑏0 + 𝑅𝑏 .  
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Let 𝑎 ∈ 𝑅𝑏0. If 𝑎 + 𝑏 ∈ 𝑅, then 𝑅𝑎𝑏 = 𝑅 ∩  ℤ𝑎 + ℤ𝑏  is type 𝑊⨁𝐴, by the exclusion of 𝑇2 

and consequently, 𝑎 − 𝑏 is in 𝑅𝑏  as well. It follows that 𝑎 + 𝑅𝑏 ⊂ 𝑅𝑏0 if 𝑎 + 𝑏 ∈ 𝑅, so that 

𝑅𝑏 = 𝑈𝑎∈𝑅0 ,𝑏∈𝑅 ;𝑎+𝑏∈𝑅  𝑎 + 𝑅𝑏  , where 𝑅1 = 𝑅𝜋  and 𝑎 + 𝑅𝑏 = 𝑎 + [−𝑏, 0, 𝑏} 

By the above arguments and the inclusion 𝑅 ⊂ 𝑅0 + 𝑅1 established in ( Theorem 4.11.2).   

4.12   Lie Algebras  

i. Preliminaries  

Throughout previous part of this chapter, 𝑘 denotes a field of characteristic 𝑝 > 3. The 

following results of part I on Lie root systems  𝑉, 𝑅  and Cartan functions 𝑎0 ∈ 𝐻𝑜𝑚𝑘(𝑉, 𝑘) 

play key roles in part II.  

Proposition  4.12.1.  

A reduced nonzero symmetry set in ℤ𝑝  whose symmetries are the reversals 𝑟𝑎 𝑏 = −𝑏 must 

be {−𝑎, 0, 𝑎} for some   𝑎 ∈ ℤ𝑝 .  

Theorem  4.12.1.   

Let 𝑅 be a classical Lie symmetry system or reduced symmetry set. Then 𝑅 is isomorphic as 

groupoid to a root system in the sense of Bouraki.  

Theorem  4.12.2.  

Let 𝑅 have rank 1. Then 𝑅 = {−𝑎, 0, 𝑎} or 𝑅 is a subgroup of 𝑘+.  

Theorem 4.12.3.  

Let 𝑐, 𝑏 ∈ 𝑅 be 𝑘-linearly independent. Then 𝑅 ⊂ 𝐷 is classical or one of 𝑊 (irreducible 

rank), 𝑊⨃𝐴 , 𝑊⨃𝑊 ( reducible rank 2), 𝑊⨁𝐴, 𝑊⨁𝑊, 𝑆2 , 𝑇2 ( irreducible rank 2), there 

𝑊 =  0, 𝑎, … . ,  𝑝 − 1 𝑎 = ℤ𝑎 , 𝐴 =  −𝑏, 0, 𝑏 , 𝑊⨁𝐴 =   𝑖𝑎 + 𝑗𝑏 𝑗 = ±1 𝑜𝑟 0 , 𝑊⨁𝑊 =

ℤ𝑝
2  , 𝑆2 =    𝑖, 𝑗  𝑖 + 𝑗 ≠ 0 , 𝑇2 = 𝑆2 ∪   𝑚, −𝑚 ,  0,0 ,  −𝑚, 𝑚  .  

Theorem 4.12.4. 

Let 𝑅 →  𝑅 𝐻∞
= 𝑅∞  be the core map and let 𝑎1 , … . , 𝑎𝑛  (𝑛 ≥ 2) be 𝑘-independent elements 

of 𝑅 such that  𝑎1∞
= ⋯ . = 𝑎𝑛∞

. Then 𝑅𝑎1 … . 𝑎𝑛 = 𝑅 ∩  ℤ𝑎1 + ⋯ . +ℤ𝑎𝑛  is type of 𝑆𝑛 .  

We need the following theorems on representations of 3 dimensional Lie algebra 𝐿 = 𝑘𝑒 +

𝑘𝑕 + 𝑘𝑓 with  𝑒, 𝑓 = 𝑕,  𝑕, 𝑒 = 𝑒,  𝑕, 𝑓 = −𝑓. Suppose that the set of characteristic roots 

is  𝑏, 𝑏 + 1, … . , 𝑏 + 𝑗 . Then 𝑗 = 𝑝 − 1 or 2𝑏 = −𝑗.  
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In any 𝔤-module 𝑉, 𝔤 a Lie algebra over 𝑘, we define  𝑥 − 𝑎 𝑣 = 𝑥𝑣 − 𝑎𝑣  and  𝑥 −

𝑎 𝑛+1𝑣 =  𝑥 − 𝑎  𝑥 − 𝑎 𝑖𝑣 recursively for 𝑥 ∈ 𝔤, 𝑎 ∈ 𝑘, 𝑣 ∈ 𝑉; and we let 𝑉𝑎
𝑖 𝑥 =

{ 𝑥 ∈ 𝑉  𝑥 − 𝑎 𝑖𝑣 = 0}.  

Theorem 4.12.5.   

Let 𝔤 = 𝑘𝑒 + 𝑘𝑕 + 𝑘𝑓, where  𝑒, 𝑓 = 𝑕 and  𝑕, 𝔤 = 0. Let 𝑉 be an 𝔤-module such that 

𝑒𝑝−1𝑉 = 0. Then 𝑕𝑛𝑉 = 0 for some 𝑛.  

Proof:  

Let 𝑏 ∈ 𝑘, be an eigen value for 𝑕 on 𝑉. Choose 𝑣 ∈ 𝑉 − {0} satisfying 𝑕𝑣 = 𝑏𝑣, subject to 

the constraint that the corresponding integer 𝑛 such that 𝑒𝑛𝑣 ≠ 0 and 𝑒𝑛+1𝑣 = 0 is maximal. 

Note that 𝑛 + 1 ≤ 𝑝 − 1. Define  𝑒𝑛 , 𝑓 𝑣 = 𝑒𝑛 𝑓𝑣 − 𝑓 𝑒𝑛𝑣 , and note that  𝑒𝑛 , 𝑓 𝑣 = 0, 

since 𝑓 𝑓𝑣 = 𝑏𝑣 and consequently, 𝑒𝑛+1 𝑓𝑣 = 0 by the constraint on 𝑣. Once  can show, 

by induction, that 0 =  𝑒𝑛+1 , 𝑓 𝑣 =  𝑛 + 1 𝑏 𝑒𝑛𝑣. Thus, 0 =  𝑛 + 1 𝑏 and 𝑏 = 0. 

Consequently, 𝑕 is nilpotent on 𝑉.  

ii. Reductive Lie algebras  

Let 𝔤 be a Lie algebra. Let 𝔤 = 𝔤1 ≱ 𝔤2 ≱ ⋯ ≱ 𝔤𝑛+1 = 0 be a maximally refined chain of 

ideals of 𝔤 and  𝔤2⨁…⨁𝔤𝑛   where 𝔤 𝑖 = 𝔤𝑖 𝔤𝑖+1  (1 ≤ 𝑖 ≤ 𝑛). Then the ideal Nil  

𝔤 = { 𝑥 ∈ 𝔤 [𝑥, 𝔤1] ⊂ 𝔤𝑛+1 (1 ≤ 𝑖 ≤ 𝑛)} consists of nilpotent elements and is called the nil 

radical of 𝔤. Note that  𝔤 Nil 𝔤  has the faithful completely reducible module 𝔤 = 𝔤 2⨁…⨁𝔤 𝑛  

it follows, as in the proof of (Theorem 4.12.6) below, that Nil 𝔤 contains every other ideal 𝐼 of 

𝔤 such that 𝑎𝑑𝔤𝐼 consist of nilpotent elements : 𝐼𝔤 = {0 } and therefore 𝐼 ⊂ Nil 𝔤. That is Nil 𝔤 

is the unique maximal ideal such that ad Nil 𝔤 consists of nilpotent elements.  

Definition  4.12.1.  

𝔤 is reductive if Nil 𝔤 is central in 𝔤.  

Theorem  4.12.6.   

𝔤 is reductive if and only if ad 𝔤 has a faithful completely reducible representation which 

preserves nilpotency of elements of ad 𝐿.  

Proof :  

If 𝔤 is reductive, the representation afforded to ad 𝔤 by the 𝔤-module 𝔤 = 𝔤 2⨁…⨁𝔤 𝑛  is such 

a faithful completely reducible representation. Conversely, let 𝑉 = 𝑁1⨁…⨁𝑉𝑛  be a 
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representation for ad 𝔤 with nonzero irreducible submodules 𝑉1 , … , 𝑉𝑛 . Let ad 𝑁 be an ideal of 

ad 𝔤 consisting of nilpotent elements, and assume that ad 𝑁 acts by nilpotent transformations 

on 𝑉. Since ad 𝑁 is an ideal of ad 𝔤, 𝑉𝑖𝑜 = { 𝑣 ∈ 𝑉𝑖 ad 𝑁, 𝑣 = 0} is a nonzero ad 𝔤-submodule 

of 𝑉𝑖 , so that 𝑉𝑖 = 𝑉𝑖𝑜  for 1 ≤ 𝑖 ≤ 𝑛. Thus,  ad 𝑁 𝑉 = 0. It follows that 𝑁 = {0} and 𝑁 is 

central in 𝔤 if 𝑉 is faithful. Thus, 𝔤 is reductive.  

Theorem 4.12.7.  

𝔤 is reductive if and only if every solvable ideal is central in 𝔤.  

Proof:  

One direction is trivial, since Nil 𝔤 is nilpotent and therefore solvable. For the other, suppose 

that 𝔤 is reductive and let 𝐼 be a solvable ideal of 𝔤. We show by induction on the dimension 

of 𝐼 that 𝐼 is central.  

Suppose first that 𝐼 is nilpotent. Then ad 𝐼 is an ideal consisting of nilpotent elements since 

 𝐼, … .  𝐼, 𝔤 …  ⊂ 𝐼𝑛 = {0}. Thus, 𝐼 is central, by (Def 4.12.1). Next suppose that the assertion 

is true for solvable ideals of lower dimension than that of 𝐼 and let 𝐽 be the ideal 𝐽 = [𝐼, 𝐼] by 

induction, 𝐽 is central in 𝔤. Thus, 𝐼 is nilpotent. But then 𝐼 is central, as shown above.   

Definition 4.12.2.  

𝔤 is semisimple if every solvable ideal of 𝔤 is 0. 

Corollary  4.12.1.  

𝔤 is semisimple if and only if 𝔤 is reducible with center 0 if and only if Nil 𝔤 = 0.  

Proof:  

One direction of the first implication is clear. For the other, suppose that 𝔤 is reductive with 

center 0, and let 𝐼 be a solvable ideal of 𝔤. Then 𝐼 is central , by ,(Theorem 4.12.7). Thus, 

𝐼 = {0}. The remaining implication follows easily.  

Definition  4.12.3.    

Core 𝔤 = 𝔤∞ Nil 𝔤∞ , where 𝔤∞ =  𝔤𝑖∞
𝑖=1 . Since Center 𝔤 is the kernel of ad ∶ 𝔤 → Der 𝔤, 

and since  d, ad 𝑥 = ad 𝑑(𝑥) for 𝑑 ∈ Der 𝔤, 𝑥 ∈ 𝔤, C = Center 𝔤 is stabilized by Der 𝔤. It 

follows that  Der  𝔤, 𝐶 =   𝑑 ∈ Der 𝔤 𝑑 𝔤 ⊂ 𝐶 = 𝐻𝑜𝑚 (𝔤 𝔤(1) , 𝐶) is an ideal in 

Der 𝔤: 𝑑 ∈ Der (𝔤, 𝐶), 𝑒 ∈ Der𝔤 ⇒  𝑑, 𝑒 = 𝑑𝑒 − 𝑒𝑑 maps 𝔤 to 0. Note that Der  𝔤, 𝐶 ∩
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ad 𝔤 = Center ad 𝔤 : ad 𝑥  𝔤 ⊂ 𝐶 ⟺  𝑥, 𝔤 ⊂ 𝐶 ⟺  ad 𝑥, ad 𝔤 = 0. We can now easily 

prove the following theorem.  

Theorem  4.12.8.  

Let 𝔤 be reductive. Then the solvable radical of Der 𝔤 is contained in Der (𝔤, 𝐶).  

Proof:  

 Let 𝐼 be a solvable ideal of Der 𝔤, so that  𝐼, ad 𝔤  = ad 𝐼 (𝔤) ⊂ 𝐼 ∩ ad 𝔤 is solvable ideal of 

ad 𝔤. Then 𝐼 𝔤 + 𝐶 is central in 𝔤, since 𝔤 is reductive, so that 𝐼(𝔤) ⊂ 𝐶 and 𝐼 ⊂ Der (𝔤, 𝐶).  

Corollary   4.12.2.   

Suppose that 𝔤 is semisimple or that 𝔤 is reductive and idempotent in the sense that 𝔤 = 𝔤2. 

Then Der 𝔤 is semisimple.  

Proof :  

In either case, Der  𝔤, 𝐶 = 𝐻𝑜𝑚  𝔤 𝔤 1  , 𝐶 = 0.  

Now consider Cartan decomposition 𝔤 =  𝔤𝑎𝑎∈𝑅  of 𝔤 with Cartan sub-algebra 𝐻 = 𝔤0. Note 

that 𝐻∞ = 𝐻 ∩ 𝔤∞ =   𝔤−𝑎  , 𝔤𝑎  𝑎∈𝑅−{0}  is a Cartan sub-algebra of 𝔤∞  if and only if 

 𝐻∞  , 𝔤𝑏  = 𝔤𝑏  for all 𝑏 ∈ 𝑅 − {0}, in which case ad 𝐿  𝐻∞  contains Center ad 𝔤 𝔤∞ .  

Theorem  4.12.9.  

Let  Der  𝔤∞ , 𝐶  denote the set of derivatives of 𝔤 mapping 𝔤∞  into 𝐶. Then Der  𝔤∞ , 𝐶  is 

deal of Der 𝔤 and  Der  𝔤∞ , 𝐶 ∩ ad 𝔤∞ = Center ad 𝔤∞ .  

Proof:  

We have Der 𝔤 = 𝐷 ⊳ ad 𝔤 > 𝑎𝑑 𝐻 with  𝐷, ad 𝐻  ⊂ ad 𝔤, so that 𝐷 = 𝐷0 ad 𝔤∞  where 

𝐷0 = 𝐷0  ad ad 𝐻 . We then have 𝐷 = Der 𝔤 =  𝐷𝑏𝑏∈𝑅  with 𝐷𝑏 = ad 𝔤𝑏   𝑏 ∈ 𝑅 − {0} .  

It  suffices to show that  𝐷0 , Der  𝔤∞ , 𝐶   ⊂  Der  𝔤∞ , 𝐶 , since  ad 𝔤∞ , Der  𝔤∞ , 𝐶  = 0. 

Thus, take  𝑑0 ∈ 𝐷0 , 𝑑 ∈ Der  𝔤∞ , 𝐶  and observe that  𝑑0 , 𝑑 = 𝑑0𝑑 − 𝑑𝑑0 maps : 

𝔤𝑎 𝑎 ∈ 𝑅 − {0}  to 𝐶: 𝑑0𝑑(𝔤𝑎) ⊂ 𝑑0(𝐶) ⊂ 𝐶 and 𝑑𝑑0(𝔤𝑎) ⊂ 𝑑(𝔤𝑎) ⊂ 𝐶. Thus,  𝑑0 , 𝑑  maps 

𝔤∞  to 𝐶 and  𝑑0 , 𝑑 ∈ Der  𝔤∞ , 𝐶 .  

Definition   4.12.4. 

A Lie algebra 𝔤 is complete if 𝔤 has center 0 and Der 𝔤 = ad 𝔤.  

Theorem   4.12.10.   
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Let 𝔤 be a Lie algebra over any field such that 𝔤 = 𝔤2 and Center 𝔤 = 0. Then  Der 𝐿 is 

complete semisimple.  

Corollary  4.12.3.   

Let 𝔤 be semisimple with 𝔤 = 𝔤2. Then Der 𝔤 is complete semisimple.  

Corollary   4.12.4.  

Let 𝔤 be simple. Then Der 𝔤 is complete semisimple.  

Theorem   4.12.11.  

 Let 𝔤 be semisimple. Then Der 𝐼 is complete semisimple and Der 𝐼 ≥ 𝔤 ≥ 𝐼 ( up to 

identifications) for 𝐼 = 𝔤(∞), in fact, for any idempotent ideal 𝐼 of 𝔤 containing Scole 𝔤. If 𝐼 is 

Der 𝔤 − stable, then  Der 𝔤 is normalize of 𝔤 in Der 𝐼.  

4.13  Reflective and Toral Lie Algebras  

Let 𝐿 be a finite dimensional Lie algebra over 𝑘 with split Cartan sub-algebra 𝐻 = 𝐿0 and 

root space decomposition 𝔤 =  𝔤𝑎𝑎∈𝑅 . Thus,  𝔤𝑎 = {𝑥 ∈ 𝔤 ∤  𝑎𝑑 𝑕 − 𝑎 𝑕  
dim 𝐿

𝑥 = 0 for 

all 𝑕 ∈ 𝐻} for 𝑎 in the additive group 𝐻∗ of functions from 𝐻 to 𝑘, and 𝑅 = 𝑅 𝔤, 𝐻 =

{ 𝑎 ∈ 𝐻∗ 𝔤𝑎 ≠ {0}} is the set of roots of  𝐻 on 𝔤.  

Let 𝑉 be an 𝔤-module, 𝑉𝑏 = { 𝑣 ∈ 𝑉  𝑕 − 𝑏 𝑕  
dim 𝑉

, 𝑣 = 0 for all 𝑕 ∈ 𝐻 } and 𝑆 𝑉, 𝐻 =

{ 𝑏 ∈ 𝐻∗ 𝑉𝑏 = {0}}, the set of weights of 𝐻 in 𝑉.  

Theorem  4.13.1.   

 Let 𝑎 ∈ 𝑅 and let 𝑆𝑏(𝑎) = {𝑏 − 𝑟𝑎, … , 𝑏 + 𝑞𝑎} be a bounded 𝑎-orbit in 𝑆 = 𝑆(𝑉, 𝐻). 

Suppose that 𝑕 = [𝑒, 𝑓],  𝑕, 𝑒 = 𝑎 𝑕  𝑒,  𝑕, 𝑓 = −𝑎 𝑕 𝑓 with 𝑒 ∈ 𝔤𝑎  , 𝑓 ∈ 𝔤−𝑎  . Then  

2𝑏 𝑕 =  𝑟 − 𝑞 𝑎(𝑕). If 𝑎(𝑕) ≠ 0, then the reflection 𝑟𝑎  reversing 𝑆𝑏(𝑎) is given by 

𝑟𝑎 𝑐 = 𝑐 − 2 𝑐(𝑕) 𝑎(𝑕)   𝑎 𝑐 ∈ 𝑆𝑏(𝑎) .  

Proof:  

First suppose that 𝑎(𝑕) ≠ 0 and let 𝑕′ = 𝑎(𝑕)−1𝑕. Then 2 𝑏(𝑕)−1 − 𝑟 = −(𝑞 + 𝑟) ,  so that 

2𝑏(𝑕)−1 = 𝑟 − 𝑞 and 2𝑏 𝑕 =  𝑟 − 𝑞 𝑎(𝑕). Suppose next that 𝑎 𝑕 = 0. Then  𝑒, 𝑓 = 𝑕, 

 𝑕, 𝑒 = 0,  𝑕𝑓 = 0 and 𝑊 =   𝑉𝑐𝑐∈𝑆𝑏 (𝑎)  is a module for 𝑁 = 𝑘𝑒 + 𝑘𝑕 + 𝑘𝑓 such that 

𝑒𝑝−1𝑊 = 0. It follows from theorem 7.7 that 𝑕𝑛𝑊 = 0 for some 𝑛, so that 𝑏 𝑕 = 0,for 

𝑎 𝑕 = 0.  
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Let 𝑐 = 𝑏 + 𝑖𝑎 and observe that: 𝑐 − 2 𝑐(𝑕) 𝑎(𝑕)   𝑎 =  𝑏 + 𝑖𝑎 − 2  𝑏(𝑕) 𝑎(𝑕)  + 𝑖 𝑎. 

Since  2 𝑏(𝑕) 𝑎(𝑕)  = 𝑟 − 𝑞 , it follows that 𝑐 − 2 𝑐(𝑕) 𝑎(𝑕)   𝑎 = 𝑏 +  𝑞 − 𝑟 − 𝑖 𝑎 =

𝑟𝑎(𝑏 + 𝑖𝑎).  

We let 𝑅∗ be the set of those 𝑎 ∈ 𝑅 such that 𝑅𝑏(𝑎) is bounded for all 𝑏 ∈ 𝑅. We also define 

𝔤𝑎
1 = { 𝑥 ∈ 𝔤𝑎   𝑕, 𝑥 = 𝑎 𝑕 𝑥 for all 𝑕 ∈ 𝐻}.  

Theorem  4.13.2.   

Let 𝑎 ∈ 𝑅∗ and suppose that  𝑕 = [𝑒, 𝑓] with  𝑒 ∈ 𝔤𝑎
′  , ∈ 𝔤−𝑎

1  . Then  

1. If 𝑎 𝑕 = 0, ad 𝑕 is nilpotent  

2. If 𝑎 𝑕 ≠ 0, then 𝑟𝑎 𝑐 = 𝑐 − 2 𝑏(𝑕) 𝑎(𝑕)   𝑎 is symmetry of 𝑅 at 𝑎;  

 3. If 𝑎 𝑕 ≠ 0, then 2𝑎 ∉ 𝑅.  

Proof:  

For (1), suppose that 𝑎 𝑕 = 0. Since the 𝑅𝑏(𝑎) are bounded  𝑏 ∈ 𝑅 , 𝑘 has  characteristic 

𝑝 ≠ 2. Since 2𝑏 𝑕 =  𝑟 − 𝑞      𝑎 𝑕 = 0, by (Theorem 4.13.1), 𝑏 𝑕 = 0 for all 𝑏 ∈ 𝑅. 

Thus, ad 𝑕 is nilpotent. Note that (2) follows directly from (Theorem 4.13.1). For (3), 

consider = 𝑘𝑓 + 𝐻 + 𝔤𝑎 + ⋯𝔤𝑞𝑎  , where 𝑎, … . , 𝑞𝑎 ∈ 𝑅 and (𝑞 + 1)𝑎 ∉ 𝑅. Let 𝑆 = 𝑆(𝑉, 𝐻), 

so that 𝑆0 𝑎 =  −𝑎, 0, 𝑎, … . , 𝑞𝑎 . Then 𝑞𝑎 = 𝑟𝑎 −𝑎 = 𝑎, by (2). Thus, 𝑆0 𝑎 =  −𝑎, 0, 𝑎  

and  2𝑎 ∉ 𝑅.  

We recall the definition of classical Lie algebra.  

Definition  4.13.1.   

A Lie algebra 𝔤 with split Cartan subalgebra 𝐻 is classical if 𝔤 has center 0, 𝔤 1 = 𝔤, ad 𝐻 is 

diagonalizable on 𝔤,  𝔤𝑎  𝔤−𝑎   is one dimensional and 𝑅𝑏 𝑎  𝑏 ∈ 𝑅  is bounded for all 

𝑎 ∈ 𝑅 −  0 .  

We now introduce the reflective Lie algebra as diagonalizations of classical Lie algebras. In 

our definition,  𝔤𝑎
1  , 𝔤𝑎

1    denotes the span of   𝑒, 𝑓 𝑒 ∈ 𝔤𝑎
1 , 𝑓 ∈ 𝔤−𝑎

1   .  

Definition 4.13.2.   

A Lie algebra 𝔤 with split Cartan subalgebra 𝐻 is reflective if ad  𝔤𝑎
1  , 𝔤−𝑎

1   has some 

nonnilpotent element and   𝑅𝑏 𝑎 (𝑏 ∈ 𝑅) is bounded for all  𝑎 ∈ 𝑅 − {0}.  
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Note that there are no reflective Lie algebra in characteristics 2 and 3, by the boundedness 

condition.  

We let 𝔤∞ =  𝔤𝑖∞
𝑖=1  and Core 𝔤 = 𝔤∞ Nil 𝔤∞ . If 𝔤 = 𝔤 1 = 𝔤∞ , Recall that 𝔤 is idempotent. 

For any Cartan subalgebra 𝐻 of 𝔤, we let 𝐻∞ = 𝐻 ∩ 𝔤∞ . Then 𝔤 = 𝐻 + 𝔤∞  and    

𝐻∞ =   𝔤𝑎  , 𝔤−𝑎   𝑎∈𝑅−{0} , where 𝔤 =  𝔤𝑎𝑎∈𝑅−{0}  is the Cartan decomposition of 𝔤 with 

𝔤0 = 𝐻.  

The following theorem shows that reflective Lie algebras  𝔤, 𝐻  are roughly classified by 

corresponding classical root systems 𝑅 𝔤, 𝐻 , defined and described before. For classical Lie 

algebras  𝔤, 𝐻  this classification   𝔤, 𝐻 → 𝑅(𝔤, 𝐻) is "up to isomorphism" e.g., by version 

Theorem 3.7.4.9 of Winter :   𝔤1 , 𝐻1 ≅  𝔤2 , 𝐻2  if and only if 𝑅 𝔤1 , 𝐻1 ≅ 𝑅 𝔤2 , 𝐻2  for 

 𝔤1 , 𝐻1 ,  𝔤2 , 𝐻2  classical.  

Theorem 4.13.3.  

Let 𝔤 be a reflective Lie algebra with split  Cartan sub-algebra 𝔤0 = 𝐻 and Cartan 

decomposition 𝔤 =  𝔤𝑎𝑎∈𝑅 . Then  

𝑅 is a classical root system and 𝑑𝑖𝑚𝔤𝑎 = dim 𝔤𝑎  , 𝔤−𝑎   = 1 for all 𝑎 ∈ 𝑅 − {0} and 

 𝔤𝑎  , 𝔤𝑏   = 𝔤𝑎+𝑏  for all 𝑎, 𝑏, 𝑎 + 𝑏 ∈ 𝑅 − {0};  

Proof:  

Consider the set    𝑒, 𝑓  𝑒 ∈ 𝔤𝑎
1  , 𝑒 ∈ 𝔤−𝑎

1    and note that 𝑊 is commutative :  

  𝑥, 𝑦 ,  𝑒, 𝑓  =    𝑥, 𝑦 , 𝑒 , 𝑓 +  𝑒,   𝑥, 𝑦 , 𝑓  = 𝑎  𝑥, 𝑦   𝑒, 𝑓 − 𝑎  𝑥, 𝑦   𝑒, 𝑓 = 0.  

Since the span ad  𝔤𝑎
1  , 𝔤−𝑎

1    of ad 𝑊 has dome non-nilpotent element, ad 𝑊 must therefore 

contain a non-nilpotent element ad 𝑕𝑎 . Let 𝑕𝑎 =  𝑒𝑎  , 𝑓𝑎   with 𝑒𝑎 ∈ 𝔤𝑎
1 , 𝑓𝑎 ∈ 𝔤−0

1  . When the 

context is clear, we abbreviate  𝑕 = 𝑕𝑎  , = 𝑒𝑎  , 𝑓 = 𝑓𝑎 . Note that 𝑎(𝑕) ≠ 0, (byTheorem 

4.13.2), so that 𝑟𝑎 𝑐 = 𝑐 − 2 𝑐 𝑕 𝑎 𝑕    𝑎 is a symmetry of 𝑅 at 𝑎 by the same (Theorem 

4.13.2). Note that  𝐻, 𝑓 = 𝑘𝑓, since  𝑓 ∈ 𝔤−𝑎
1  and   𝑕, 𝑓 = 𝑎(𝑕)𝑓 ≠ 0. It follows that 

2𝑎 ∉ 𝑅. thus, 𝑅 is reduced symmetry set . Since 𝑅 is reduced with bounded orbits, the 

characteristic of 𝑘 is not 2 or 3. Thus, 𝑅 is reduced root system by (Theorem 4.12.1).   

Consider 𝔤∞ = 𝐻∞ +  𝔤𝑎𝑎∈𝑅−{0}  and 𝐻∞ = 𝐻 ∩ 𝔤∞ =   𝔤𝑎 , 𝔤−𝑎  𝑎∈𝑅−{0} . Note that 

 𝔤𝑎 , 𝔤𝑎  = {0}, since 2𝑎 ∉ 𝑅. Take 𝑕𝑎 = 𝑕 = [𝑒, 𝑓] ∈  𝔤𝑎
1 , 𝔤−𝑎

1   as above , with 𝑎(𝑕) ≠ 0. For 
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∈ 𝐿𝑎
1  , note that – 𝑎 𝑕 𝑢 =  𝑢, 𝑕 =  𝑢,  𝑒, 𝑓  =  𝑒,  𝑢, 𝑓  + 0 = −𝑎  𝑢, 𝑓  𝑒 and 𝑢 =

 𝑎([𝑢, 𝑓]) 𝑎(𝑕)   𝑒 ∈ 𝑘𝑒.  

Thus, 𝔤𝑎
1 = 𝑘𝑒,We claim that 𝔤𝑎 = 𝑘𝑒. Suppose that 𝔤𝑎 ⊋ 𝑘𝑒. 

Since (ad 𝑕 − 𝑎(𝑕))dim 𝐿𝔤𝑎 = 0 

There exists 𝑢 ∈ 𝔤𝑎 − 𝑘𝑒 such that  ad 𝑕 − 𝑎 𝑕  𝑢 = 𝑐𝑒  and  𝑕, 𝑢 − 𝑎 𝑕 𝑢 = 𝑐𝑒 for some 

𝑐 ∈ 𝑘. But then −𝑎 𝑕 𝑢 − 𝑐𝑒 =  𝑢, 𝑕 =  𝑢,  𝑒, 𝑓  =  𝑒,  𝑢, 𝑓  + 0 = −𝑎([𝑢, 𝑓])𝑒  and 

𝑢 =  𝑎  𝑢, 𝑓  − 𝑐 𝑎(𝑕)    𝑒 ∈ 𝑘𝑒,  a contradiction.  

Thus, 𝔤𝑎 = 𝑘𝑒. This establishes that 𝔤𝑎  and  𝔤𝑎 , 𝔤−𝑎   are one dimensional for all 𝑎 ∈ 𝑅 − {0}.  

Now let 𝑎, 𝑏, 𝑎 + 𝑏 ∈ 𝑅 − {0}, 𝑆𝑏 𝑎 = {𝑏 − 𝑟𝑎, … , 𝑏 + 𝑞𝑎}, 𝑇 =  𝑏 − 𝑟𝑎, … , 𝑏 , 𝑉 =

 𝔤𝑐𝑐∈𝑇 . If  𝔤𝑎 , 𝔤𝑏  = 0, then 𝑉 is a module for 𝑘𝑒 + 𝑘𝑕 + 𝑘𝑓 = 𝔤𝑎 +  𝔤𝑎 , 𝔤−𝑎  + 𝔤−𝑎  , so 

that 𝑟𝑎 𝑏 − 𝑟𝑎 = 𝑏 + 𝑞𝑎 with 𝑞 ≥ 1. Thus  𝔤𝑎 , 𝔤𝑏  ≠ 0, so that   𝔤𝑎 , 𝔤−𝑎  = 𝔤𝑎+𝑏  .  

Next, we introduce toral Lie algebras as generalizations of reflective Lie algebras.  

Definition  4.13.3.  

A Lie algebra 𝔤 with split Cartan sub algebra 𝐻 is toral if dim𝔤𝑎 = 1 and 𝑎  𝔤𝑎 , 𝔤−𝑎   ≠ 0 

for all 𝑎 ∈ 𝑅 − {0}.  

The algebras of Block are those toral Lie algebras  𝔤, 𝐻  which are idempotent, have center 0 

and have ad 𝐻 diagonalizable. The algebras of Block are classified in Block
8
 for 𝑝 > 5.  

Proposition  4.13.1.  

Let 𝔤 be toral. Then 𝔤∞ ∩ Center 𝔤 = Center 𝔤∞ ∩ Center 𝐻, and 𝐻∞  is a Cartan sub algebra 

of 𝔤∞ . Moreover, ad 𝔤𝐻∞  is diagonalizable.  

Proof:  

Each  ad 𝑕 ∈ ad 𝐻 is diagonalizable on the 𝔤𝑎 𝑎 ∈ 𝑅 − {0} , therefore on the algebra 𝔤∞   

generated by them. Thus,  𝐻, 𝐻∞ = 0. But then ad 𝐻∞  is diagonalizable on 𝔤∞  and 0 on 𝐻.  

We now determine Nil 𝔤. For this , observe that Kern 𝑅 = { 𝑕 ∈ 𝐻 𝑎 𝑕 = 0 ∀𝑎 ∈ 𝑅} is 

contained in the centralizer 𝐶𝔤 𝔤
∞ = { 𝑥 ∈ 𝔤  𝑥, 𝔤∞ = 0}. For Kern 𝑅 centeralizes the 

                                                           
8
 R.Block, On the Mills-Seligman axioms for Lie algebras of classical type, Trans.Amer.Math. Soc. 

121 (1966), 378-392.  
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generators 𝔤𝑎  (𝑎 ∈ 𝑅 − {0}) for 𝔤∞  , so that Kern 𝑅 ⊂ 𝐶𝔤 𝔤
∞ . Conversely, any 𝑥 ∈ 𝐶𝔤 𝔤

∞  

centralizes the 𝔤𝑎  (𝑎 ∈ 𝑅 − {0}) .Writing 𝑥 =   𝑥𝑏𝑏∈𝑅  with 𝑥𝑏 ∈ 𝔤𝑏  ,  

0 =  𝑥, 𝑒𝑎  =    𝑥𝑏  , 𝑒𝑎  𝑏∈𝑅 , which implies that 0 =  𝑥𝑏 , 𝔤𝑎   for 𝔤𝑎 = 𝑘𝑒𝑎  (𝑎 ∈ 𝑅 −  0 , 𝑏 ∈

𝑅). Thus,  𝑥𝑏  , 𝔤−𝑎  = 0, which implies that  𝑥𝑏 = 0 (𝑏 ∈ 𝑅 −  0 ) and , therefore, that 

𝑥 = 𝑥0 ∈ 𝐻. Thus,  𝐶𝔤 𝔤
∞ ⊂ 𝐻 and, therefore, 𝐶𝔤 𝔤

∞  ⊂ Kern 𝑅. Thus, Kern 𝑅 = 𝐶𝔤 𝔤
∞    

is an ideal of 𝔤 contained in 𝐻 centralizing  𝔤∞ . As such, Kern 𝑅 ⊂ Nil 𝔤. Conversely, Nil 𝔤 is 

ad 𝐻- stable and is , therefore, a sum of  Nil 𝔤 ∩ 𝐻 and certain of the one dimensional spaces 

𝔤𝑎 . But  𝔤𝑎  , 𝔤−𝑎  ⊄ Nil 𝔤, since a   𝔤𝑎  , 𝔤−𝑎   ≠ 0, whereas   Nil 𝔤 , 𝔤−𝑎  ⊆ Nil 𝔤 for 

𝑎 ∈ 𝑅 −  0 .it follows that Nil 𝔤 ⊂ 𝐻 and therefore, that  Nil 𝔤 ⊂ Kern 𝑅. This establishes the 

following theorem.  

Theorem  4.13.4.  

Let 𝔤 be toral. Then Nil 𝔤 = Kren 𝑅 = 𝐶𝔤 𝔤
∞ , where Kern 𝑅 = { 𝐻 ∈ 𝐻 𝑎 𝑕 = 0 ∀𝑎 ∈ 𝑅} 

and 𝐶𝔤 𝔤
∞  is centralizer in 𝔤 of 𝔤∞  .  

Corollary   4.13.1.  

Let 𝔤 be toral and idempotent. Then 𝔤 is reductive .  

Corollary   4.13.2. 

Let 𝔤 be toral and 𝐻 abelian . Then 𝔤 is reductive .  

Proposition  4.13.2.  

Let 𝔤 be toral with center 0. Then 𝐻 is abelian, 𝔤 is reductive and Core 𝔤 = 𝔤(1), that is 

𝔤(1) = 𝔤∞  and  𝔤(1) has center 0.  

Proof:  

Suppose that 𝐻 is not abelian, and choose a nonzero element 𝑕 ∈ 𝐻(1) ∩ Center 𝐻. Then 

 𝑕, 𝔤𝑎  = 0 for all 𝑎 ∈ 𝑅 and 𝑕 ∈ Center 𝔤, so Center 𝔤 ≠ {0} in contradiction to the 

hypothesis. Thus, 𝐻 is abelian. It follows that 𝔤 is reductive, by (Corollary 4.13.2). Finally 𝔤∞  

has center 0, since 𝔤 = 𝐻 + 𝔤∞  has center 0 and 𝐻 is abelian. Thus,  𝔤(1) = 𝐻(1) + 𝔤∞ = 𝔤∞ .  

Proposition  4.13.3.  

Let 𝔤 be toral and reductive. Then Core ad =  ad 𝔤 (1) .  
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Proof:  

Since 𝐻(1) ⊂ Kern 𝑅 = Nil 𝔤 and Nil 𝔤 is central, 0 = ad 𝐻(1) = [ad 𝐻, ad 𝐻]. Thus, ad 𝐻 is 

abelian and  ad 𝔤 (1) = ad 𝐻(1) +  ad 𝔤∞ = ad 𝔤∞ . Since ad 𝔤∞  is idempotent, it suffices to 

show that it had center 0.  

Let ad 𝑕 be central in ad 𝔤∞ , so that 𝑕 ⊂ Kern 𝑅 ⊂ Nil 𝔤 ⊂ Center 𝔤. Then  ad 𝑕 = 0. 

The following theorem shows that the rough classification of reflective Lie algebras  𝔤, 𝐻  by 

their root systems, discussed in the paragraph preceding is equivalent to a rough classification 

of reflective Lie algebras 𝔤 by their ( classical) cores. The latter classification is independent 

of a split Cartan sub algebra 𝐻 of 𝔤.  

Theorem  4.13.5.  

Let 𝔤 be reflective. Then Core 𝔤 = 𝔤∞ Nil  𝔤∞  is classical and isomorphic to  𝔤 Nil 𝔤  (1), 

and the root systems of 𝔤 and Core 𝔤 are canonically isomorphic.  

Proof:  

Let 𝔤 = 𝔤 Nil 𝔤 ,𝐻 = (𝐻 + Nil 𝔤) Nil 𝔤 .Then 𝐻  is a split Cartan sub algebra of 𝔤 ,dim𝔤 𝑎 = 1 

and 𝑎([𝔤 𝑎 , 𝔤 −𝑎 ]) ≠ 0 for all nonzero roots 𝑎 of 𝔤  and 𝔤  is toral, by (Theorem 4.13.3) and (Def 

4.13.3). By (Theorem 4.13.4)  𝔤  has center 0, since any central element 𝑥 would lie in 

 𝑥 ∈  𝐻  𝑎 𝑥 = 0 , ∀ roots 𝑎 ⊂ Nil 𝔤 Nil 𝔤 = {0 }. Thus, Core   𝔤 =  𝔤 (1), by (Prop 4.13.2).  

Since 𝔤∞  is idempotent, the homomorphism 𝔤∞ ⟶ 𝔤  has image  𝔤 (1) = Core 𝔤  and therefore, 

Kernel Nil 𝔤∞ . Thus, Core 𝔤 is isomorphic to 𝑅𝔤∞ ⟶ 𝑅Core  𝔤 (reduction mod Nil  ), where 𝑅𝔤 

, 𝑅𝔤∞  , 𝑅Core  𝔤 are sets of roots for  𝔤, 𝐻 ,   𝔤∞ , 𝐻∞ ,  Core 𝔤 , 𝐻∞ Nil  𝔤∞   , respectively. We 

know, that   𝑎⨁ 𝑎 ∈ 𝑅 −  0   separates 𝑅. Since  𝑎⨁  𝑏 = 2 𝑏 𝑕𝑎 𝑎  𝑕𝑎   with 𝑕𝑎 ∈ 𝔤∞ , 

it follows that   𝑎⨁ 𝑎 ∈ 𝑅 −  0   separates 𝑅∞  and , moreover, 𝔤∞  is reflective and Core 

𝔤classical, since 𝑎(𝑕𝑎) ≠ 0  𝑎 ∈ 𝑅 −  0  . Thus, the mappings 𝑅𝔤 → 𝑅𝔤∞ → 𝑅Core  𝔤 are 

bijections. It therefore follows from Winter
9
, (Theorem 4.5.2) , that they are isomorphisms of 

groupoids.  

We say that 𝔤 =   𝔤𝑎𝑎∈𝑅  is weakly reflective if 𝑅𝑏(𝑎) is bounded and  𝔤−𝑎
′  , 𝔤𝑎

′   has a non 

nilpotent element for all 𝑎, 𝑏 ∈ 𝑅 such that 𝔤𝑎 ⊄ Nil 𝔤∞  and 𝔤𝑏 ⊄ Nil 𝔤∞ . The above results 

lead easily to the following version of part of them which, by the conjugacy of Cartan sub 

                                                           
9
 D.JWinter, Symmetry sets, J.Algebra 73, No.1(1981), 238-247.  
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algebras of classical Lie algebras is an " invariant characterization". The proof is based on 

passage from 𝔤 to 𝔤∞ .  

Theorem   4.13.6.  

A Lie algebra 𝔤 is weakly reflective with respect to some split Cartan sub algebra 𝐻 if and 

only if Core 𝔤 is classical.  

4.14    The Nilpotent Roots of 𝔤  

For a Lie algebra 𝔤 =   𝔤𝑎𝑎∈𝑅  with orbits 𝑅𝑏 𝑎   𝑎 ∈ 𝑅 −  0 , 𝑏 ∈ 𝑅  bounded, 𝔤 is 

reflective if and only if the set Nil1𝑅 =def    𝑐 ∈ 𝑅 − {0}  𝔤−𝑐
′  , 𝔤𝑐

′   consists of ad −

nilpotent elements∪{0}  of nilpotent roots of 𝔤,𝐻 is {0}. Note, in this connection, that  

0 ∈ Nil1𝑅 is not an anomaly, since  𝔤0
1  , 𝔤0

1 = 0 . For ad𝐿0 diagonalizable Nil1𝑅 = Nil 𝑅, 

where  Nil1𝑅 =def    𝑐 ∈ 𝑅 − {0}  𝔤−𝑐  , 𝔤𝑐  consists of ad − nilpotent elements ∪ {0} .  

Without assuming a condition that ad 𝐿0 be diagonalizable, we now show that the sub algebra 

𝔤Nil  𝑅 generated by   𝔤𝑐  𝑐 ∈ Nil 𝑅 −  0  is ad − nilpotent on 𝔤  provided that the orbits 

𝑅𝑏 𝑎   𝑎 ∈ 𝑅 −  0 , 𝑏 ∈ 𝑅  are bounded. Note in this connection, that  0 ∈ Nil 𝑅 is an 

anomaly for certain Lie algebras 𝔤, even when 𝔤 = 𝔤0⨁𝔤∞ = 𝔤0⨁𝔤𝑎  , where 𝔤∞  is abelian 

and ad 𝔤0 is irreducible on 𝔤∞ = 𝔤𝑎 : [𝔤0 , 𝔤0] need not be ad-nilpotent .  

Theorem  4.14.1.   

Suppose that the orbits 𝑅𝑏 𝑎   𝑎 ∈ 𝑅 −  0 , 𝑏 ∈ 𝑅  are bounded. Then 𝔤Nil  𝑅 is ad-nilpotent 

on 𝔤.  

Proof:  

Let 𝑆 =  Nil 𝑅 − {0}, Observe that the sub algebra 𝐻Nil  𝑅 generated by the "weakly closed" st 

   𝔤−𝑐  , 𝔤𝑐 𝑐∈𝑆  is ad-nilpotent on 𝔤, by the Jacobson-Engel theorem (Jacobson)
10

.  

We claim that the "weakly closed" set 𝑊 =  𝑊𝑛
∞
𝑛=1  of commutators  𝑥1 , … . . , 𝑥𝑛  ∈ 𝑊𝑛  

(with any legal arrangements of brackets)  𝑛 = 1,2, … , 𝑐𝑖 ∈ 𝑆, 𝑥 ∈ 𝔤𝑐𝑖  consists of ad-

nilpotent elements. Consider 𝑥 = [𝑥1 , … . . , 𝑥𝑛 ] ∈ 𝑊𝑛  of weight  𝑐𝑖
𝑛
1 = 0, 𝑥𝑖 ∈ 𝔤𝑐𝑖  , 𝑐𝑖 ∈ 𝑆. 

After successive factorizations 𝑥 =   𝑥1 , … . . , 𝑥𝑚   , [𝑥𝑚+1 , … . . , 𝑥𝑛 ]   of 𝑥 and generated 

terms thereof , and successive use of the Jacobi identity in conjunction there with 𝑥 can be 

written as a linear combination of terms of 𝑊𝑛  of the form 𝑥′ =  𝑥′1 , [𝑥′2 , … , 𝑥′𝑛 ]   of weight 

                                                           
10

 N.Jacobson,"Lie algebras" Wiley-Interscience, New York,1962.  
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0 =  𝑐′𝑖
𝑛
1  , 𝑥𝑖 ∈ 𝔤𝑐𝑖  , 𝑐′𝑖 ∈ 𝑆. But then 𝑥′ ∈ [𝔤𝑐 ′

𝑖
 , … , 𝔤−𝑐𝑖

′ ]  ⊂ 𝐻𝑆, so that 𝑥 ∈ 𝐻𝑆 as a linear 

combination of the generated terms 𝑥′ , and ad 𝑥 is nilpotent on 𝔤, as an element of ad 𝐻𝑆.  

Finally, consider an element  𝑥 = [𝑥1 , … , 𝑥𝑚 ] ∈ 𝑊𝑛  of weight 𝑐 =  𝑐𝑖
𝑛
1 ≠ 0. Then ad 𝑥 is 

nilpotent on 𝔤, by the boundedness of orbits 𝑅𝑏 𝑐 (𝑏 ∈ 𝑅). Since ad 𝑊 is a weakly closed set 

of nilpotent linear transformations of 𝔤, it follows that ad 𝔤𝑆 is nilpotent on 𝔤, by the 

Jacobson-Engle Theorem .  

We now identify Nil 𝑅 precisely in the case of Lie algebras 𝔤 of characteristic 0 .  

Theorem 4.14.2.   

Let 𝔤 =   𝔤𝑎𝑎∈𝑅  be a Lie algebra of characteristic 0. Then: 

Nil 𝑅 =   𝑐 ∈ 𝑅 −  0  𝔤𝑐 ⊂ Nil 𝔤 ∪ {0}.  

Proof :  

Since 𝔤 Nil 𝔤  is reductive, the theory of reductive Lie algebras of characteristic 0 implies that 

𝔤𝑐 ⊂ Nil 𝔤 of 𝑐 ∈ Nil 𝑅. For the other direction, let 𝑕 ∈  𝔤−𝑐  , 𝔤𝑐  , where ad 𝑕 is not nilpotent 

on 𝔤. By (Theorem 3.5.1) of Winter
11

 we have 𝑐(𝑕) ≠ 0, Tr  ad 𝑕 2 ≠ 0 and 𝑕 ∉ 𝔤⊥ when 𝔤⊥ 

is the radical of the killing form on 𝔤. It follows that 𝑕 = 𝑕 + Rad 𝔤 is non zero in 𝔤 =

𝔤 Rad 𝔤  , where  Rad 𝔤 is the solvable radical of 𝔤. Since 𝑕 ∈  𝔤 −𝑐  , 𝔤 𝑐  and 𝑐(𝑕) ≠ 0, we 

have shown that 𝑐 ∉ Nil 𝑅 implies that 𝔤𝑐 ⊄ Nil 𝔤 .  

The following corollary to (Theorem 4.14.2) is straightforward. In it,  𝔤Nil  𝑅  denotes the ideal 

of 𝔤 generated by  𝔤Nil  𝑅 and Core 𝑅 = 𝑅 − Nil 𝑅 ∪ {0} . 

Corollary   4.14.1.  

Let 𝔤 =  𝔤𝑎𝑎∈𝑅  be a split Lie algebra of characteristic 0. Then 𝔤  𝔤Nil  𝑅   is reductive with 

root system canonically isomorphic to Core 𝑅.  

Definition 4.14.1.   

Given a Lie algebra =  𝔤𝑎𝑎∈𝑅  , we let 𝔤𝑎
1 = { 𝑥 ∈ 𝔤𝑎   𝑕, 𝑥 = 𝑎 𝑕 𝑥 for all 𝑕 ∈ 𝔤0}  𝑎 ≠ 0  

and 𝔤0
1 = 𝔤0 , and we let 𝔤1 be the sub algebra 𝔤1 =  𝔤𝑎

1
𝑎∈𝑅  . we say that 𝔤 is symmetric if 

𝑎  𝔤−𝑎
1  , 𝔤𝑎

1   ≠ 0 for all 𝑎 ∈ 𝑅 − {0}.  
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 D.J.Winter, "Abstract Lie Algebras" MIT Press, Cambridge, Mass, 1972.  
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Proposition 4.14.1.  

Let 𝔤 =  𝔤𝑎𝑎∈𝑅  be symmetric and let 𝑎 ∈ 𝑅 − {0}, 𝑏 ∈ 𝑅 with 𝑅𝑏(𝑎) bounded. Then 

+𝑏 ∈ 𝑅 ⟹  𝔤𝑎
1  , 𝔤𝑏

1  ≠ 0 .  

Proof:  

Let 𝑅𝑏 𝑎 = {𝑏 − 𝑟𝑎 , … . . , 𝑏 + 𝑞𝑎} and suppose that  𝔤𝑎
1  , 𝔤𝑏

1  = 0. Let  𝑇 = {𝑏 − 𝑟𝑎 , … , 𝑏} 

and consider =   𝔤𝑐
1

𝑐∈𝑇  . Then 𝑉 is a module for 𝔤(1) = 𝑘𝑓𝑎 + 𝑘𝑕𝑎 + 𝑘𝑒𝑎  with  0 ≠ 𝑕𝑎 =

 𝑒𝑎 , 𝑓𝑎  ∈  𝔤𝑎
1  , 𝔤−𝑎

1   , so that 𝑟𝑏 𝑐 = 𝑐 −  𝑐 𝑕𝑎 𝑎 𝑕𝑎    a maps 𝑏 − 𝑟𝑎 to 𝑏 + 𝑞𝑎 and to 𝑏. 

Thus, 𝑞 = 0 and 𝑎 + 𝑏 ∉ 𝑅.  

Theorem 4.14.3.  

Let 𝔤 =  𝔤𝑎𝑎∈𝑅  be symmetric. Then ℤ𝑝𝑎 ∩ 𝑅 is either  – 𝑎, 0, 𝑎  or  – 𝑎, 0, 𝑎, … ,  𝑝 − 2 𝑎  

for any 𝑎 ∈ 𝑅 − {0}, that is , 𝑅 = 𝑅∘ ∪ 𝑅∙ .  

Proof:  

Suppose that 𝑆 = ℤ𝑝𝑎 ∩ 𝑅 is not  – 𝑎, 0, 𝑎, … ,  𝑝 − 2 𝑎 . Then 𝑆𝑏 𝑐 = 𝑅𝑎(𝑐) is bounded for 

all 𝑏 ∈ 𝑆 − {0}, 𝑐 ∈ 𝑆.  

Let 𝑏 ∈ 𝑆 − {0}. Then the orbits 𝑅𝑏(𝑐) are stable under the reversal 

 𝑅𝑐 𝑏 = 𝑏 − 2  𝑏 𝑕𝑐 𝑐 𝑕𝑐   𝑐 = 𝑖𝑐 − 2 𝑖𝑐 𝑕𝑐 𝑐 𝑕𝑐   𝑐 = −𝑖𝑐 = −𝑏.  

Thus, 𝑆 is symmetry set in  ℤ𝑝  , all of whose orbits  𝑆𝑏 𝑎  are bounded. Let 𝑎 ∈ 𝑆 − {0} and 

consider the module 𝔤 𝑟𝑎 + ⋯ + 𝔤0 + 𝑘𝑒𝑎  for 𝑓𝑎 + 𝑘𝑕𝑎 + 𝑘𝑒𝑎  , where 𝑆0 𝑎 =  – 𝑟𝑎, … , 𝑟𝑎 . 

Then 𝑇 =  – 𝑟𝑎, … ,0, 𝑎  is stable under 𝑟𝑎  , so that 𝑎 = 𝑟𝑎 −𝑟𝑎 = 𝑟𝑎 and 𝑟 = 1. It follows 

that 𝑆 is reduced. But then 𝑆 =  – 𝑎, 0, 𝑎 .  

Theorem 4.14.4. 

Let 𝔤 =  𝔤𝑎𝑎∈𝑅  be symmetric and let = 𝔤0 . Then :  

1. 𝑅 ⊂ Hom𝑘(𝐻, 𝑘)  

2. ad 𝐻 is triangulable on 𝔤  

3.  𝔤∞  is symmetric with Cartan aub algebra 𝐻∞   

4. Core 𝔤 is symmetric  
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5. 𝔤 (Nil) 𝔤  has center 0  

6. 𝔤1 =  𝔤𝑎
1

𝑎∈𝑅  is symmetric and the Cartan sub algebra 𝐻 1 of  𝔤 1 = 𝔤1 Nil 𝔤1  is ad-

diagonalizable.  

Proof :  

For (1) and (2), observe that  𝔤𝑎
1

𝑎∈𝑅−{0}  is a module for ad 𝐻 which is annihilated by 

 ad 𝐻 (1) . Thus,  ad 𝐻 (1) is upper triangulable with only zeros on the diagonal, by Engle's 

Theorem. It follows that  ad 𝐻 is triangulable on 𝔤. For (3), note that  𝐻∞ , 𝔤𝑎  = 𝔤𝑎  , so that 

𝐻∞  is a Cartan sub algebra of 𝔤∞ . For (4) , note that if 𝑕 ∈  𝔤−𝑎
1  , 𝔤𝑎

1   with 𝑎(𝑕) ≠ 0, then 

𝑕 ∈ 𝔤∞ − Nil 𝔤 ; for otherwise Nil 𝔤 contains 𝔤−𝑎
1 + 𝑘𝑕 + 𝔤𝑎

1  , since Nil 𝔤 is an ideal which 

would contain 𝑕, contradicting the nilpotence of Nil 𝔤. Similarly, 𝑕 ∈ 𝔤∞ − Nil 𝔤∞ .  

Thus, Core 𝔤 = 𝔤∞ Nil 𝔤∞  is symmetric. If 𝔤 is toral, 𝔤∞ → 𝔤 Nil 𝔤  has image  𝔤 Nil 𝔤  (1) 

and kernel Nil 𝔤∞ , by a straightforward verification. For (5), let 𝑕 + Nil 𝔤 ∈ Center 𝔤 Nil 𝔤  . 

Then  𝑕, 𝔤𝑎  ⊂ Nil 𝔤  𝑎 ∈ 𝑅 − {0} . Since 𝔤 is symmetric, 𝔤𝑎 ⊄ Nil 𝔤  𝑎 ∈ 𝑅 − {0} . Thus, 

𝑎 𝑕 = 0, for otherwise, 𝔤𝑎 =  𝑕, 𝔤𝑎  ⊂ Nil 𝔤   𝑎 ∈ 𝑅 − {0} .  

It follows that the ideal 𝑘𝑕 + Nil 𝔤 is ad-nilpotent on 𝔤, so that  𝑕 ∈ Nil 𝔤, by the maximality 

of Nil 𝔤. Thus, 𝔤 Nil 𝔤  has center 0.  

For (6), note that if  𝔤 has center 0 and ad 𝐻 is diagonalizable on the 𝔤𝑎    𝑎 ∈ 𝑅 − {0} , then 

ad 𝐻 is diagonalizable since 𝐻 is then abelian :  

𝑕 ∈ 𝐻(1) ∩ Center 𝐻 ⇒ 𝑕 central in 𝔤 ⇒ 𝑕 = 0.  

Theorem  4.14.5.   

Let 𝔤 =  𝔤𝑎𝑎∈𝑅  be symmetric with 0 ≠ ℤ𝑝  𝑎 ⊂ 𝑅. Then 𝔤1(𝑎) Solv 𝔤1(𝑎)  is the Witt algebra 

𝑊1 for 𝔤1(𝑎) = 𝐻 +  𝔤𝑎𝑖
1𝑝−1

𝑖=1  .  

Proof :  

Since 𝔤1(𝑎) is symmetric 𝔤 = 𝔤1(𝑎) Nil 𝔤1(𝑎)  is symmetric with center 0, by (Theorem 

4.14.4). Let  𝐻  be the image of 𝐻 in 𝔤 . It follows that 𝐻  is abelian,                                               

for otherwise any 𝑕 ∈ 𝐻 (1) ∩ Center 𝐻   is central in 𝔤 . But then 𝐻  is ad-diagonalizable on  𝔤 . 

Since Center 𝔤 = 0, it follows that 𝐻  has dimension 1.  

Let 𝑆 be a maximal proper ideal of 𝔤1(𝑎) containing Nil 𝔤1(𝑎). If 𝐻 ∩ 𝑆 , then 𝔤 = 𝔤 0 ad 𝐻   +

𝑆 = 𝐻 + 𝑆 = 𝑆  and 𝔤 = 𝑆. Thus, 𝐻 ⊄ 𝑆 . Since dim𝐻 = 1, it follows that 𝐻 ∩ 𝑆 = 0  and 
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𝑆 =  𝑆 𝑖𝑎
𝑝−1
𝑖=1  , where 𝑆 𝑖𝑎 = 𝑆 𝑖𝑎  ad 𝐻   . it then follows that ad𝑆  𝑆 𝑖𝑎  is nil  1 ≤ 𝑖 ≤ 𝑝 − 1  

and 𝑆  is nilpotent. Thus, 𝑆 = Solv𝔤 1(𝑎). It follows that 𝔤1(𝑎) Solv𝔤  𝔤1(𝑎) is simple of rank 1 

and toral rank1, so that it is 𝑊1,by Kaplansky
12

.  

Theorem 4.14.6.  

Let 𝔤 =  𝔤𝑎𝑎∈𝑅  be symmetric Lie algebra. Then  𝔤0
∗  , 𝑅  is a Lie root system.  

Proof:  

Let 𝑎 ∈ 𝑅 − {0} and choose 𝑕𝑎 ∈  𝔤−𝑎
1  , 𝔤𝑎

1   with 𝑎 𝑕𝑎 ≠ 0. Define 𝑎0 ∈ Hom𝑘 𝔤0
∗  , 𝑘  by 

𝑎0 𝑣 = 2 𝑣 𝑕𝑎 𝑎 𝑕𝑎   , let 𝑟𝑎 𝑣 = 𝑣 − 𝑎0 𝑣  𝑎  𝑣 ∈ 𝔤0
∗ , and note that 𝑎0 𝑎 = 2 and 

𝑟𝑎  𝑅𝑏 𝑎 = 𝑅𝑏 𝑎  for every bounded 𝑎-orbit 𝑅𝑏 𝑎  𝑏 ∈ 𝑅 , by (Theorem 4.8.1). thus, 

 𝔤0
∗  , 𝑅  is a root system in the sense of (section 4.7), and it remains to verify the supplemental 

"Lie conditions that 𝑅 = 𝑅0 ∪ 𝑅. and each "Witt orbit"   𝑅𝑏 𝑎   𝑎 ∈ 𝑅0 −  0 , b ∈ R  has 1 

or 𝑝 − 1 or 𝑝 elements. The condition 𝑅 = 𝑅0 ∪ 𝑅. was proved in (Theorem 4.10.1).    

 Next, consider a "Witt orbit"  𝑅𝑏 𝑎   𝑎 ∈ 𝑅0 −  0 , b ∈ R . we must show that 𝑅𝑏 𝑎  has 1 

or 𝑝 − 1 or 𝑝 elements. Accordingly, we may, without loss of generality, assume that 

1 <  𝑅𝑏 𝑎  ≤ 𝑝 − 1. To show that  𝑅𝑏 𝑎  = 𝑝 − 1, we may replace  𝔤 =  𝔤𝑐𝑐∈𝑅  by 

another symmetric Lie algebra having corresponding 𝑎 ∈ 𝑅𝑤 , 𝑏 ∈ 𝑅 and 𝑅𝑏 𝑎  of the same 

length. It follows that we can, successively, replace 𝔤 by  𝔤𝑖𝑎+𝑗𝑏
1𝑝−1

𝑖,𝑗=0  with 

𝔤0
1 =def     𝔤𝑖𝑎+𝑗𝑏

1  , 𝔤−𝑖𝑎−𝑗𝑏
1    

𝑝−1
𝑖,𝑗=0  , 𝔤 Center 𝔤 . Consequently, we may assume, with no loss 

of generality, that  𝔤 =  𝔤𝑖𝑎+𝑗𝑏
1𝑝−1

𝑖,𝑗=0   and Center 𝔤 = {0}.  

For each 1 ≤ 𝑖 ≤ 𝑝 − 1, choose 𝑒𝑖 ∈ 𝔤𝑖𝑎
1  , 𝑓𝑖 ∈ 𝔤−𝑖𝑎

1  , 𝑕𝑖 =  𝑒𝑖 , 𝑓𝑖  such that 𝑎 𝑕𝑖 = 1 and 

define 𝑟𝑖𝑎  𝑣 = 𝑣 − 2 𝑣 𝑕𝑖 𝑖𝑎 𝑕𝑖    𝑖𝑎 = 𝑣 − 2𝑣 𝑕𝑖  𝑎 𝑣 ∈ 𝐿0
∗  .  

Note that 𝑟𝑖 𝑎 = −𝑎 1 ≤ 𝑖 ≤ 𝑝 − 1 . By (Theorem 4.13.1) and the assumption  𝑅𝑏 𝑎  ≤

𝑝 − 1, the 𝑖𝑎-orbits 𝑇𝑏 ′  𝑖𝑎 (𝑏′ ∈ 𝑇) of 𝑇 = 𝑅 ∩  𝑏 + ℤ𝑝  𝑎  are 𝑟𝑖   stable for any 1 ≤ 𝑖 ≤ 𝑝 −

1. It follows, in particular, that 𝑇 contains 𝑟𝑖 𝑏 = 𝑏 − 2𝑏 𝑕𝑖 𝑎, so that  ℤ𝑝  contains  𝑏 𝑕𝑖 . 

Define 𝑟𝑖 = 𝑏 − 𝑏 𝑕𝑖   𝑎 ∈ 𝑏 + ℤ𝑝  𝑎 and note that 𝑟𝑖𝑎  𝑐𝑖 = 𝑐𝑖  since 𝑐𝑖 𝑕𝑖 = 0, for 1 ≤ 𝑖 ≤

𝑝 − 1. Since, for 1 ≤ 𝑖 ≤ 𝑝 − 1, we have 𝑟𝑖 𝑐𝑖 = 𝑐𝑖  and 𝑟𝑖𝑇𝑏 ′  𝑖𝑎 = 𝑇𝑏 ′  𝑖𝑎  (𝑏′ ∈ 𝑇), one 

can easily verify that :  

1. 𝑇 has either 1 or 2 𝑖𝑎-orbits ,  

                                                           
12

 I.Kaplansky. Lie algebras of characteristic 𝑝, Trans. Amer.Math. Soc.89 (1958), 149-183.  
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2. If 𝑇 has 2 𝑖𝑎-orbits 𝑇 ′ , 𝑇 ′′ , then an odd number of elements and 𝑇 ′′ = 𝑇−𝑇 ′ ,  and then one 

of 𝑇 ′ , 𝑇 ′′  has an odd number of elements and contains 𝑐𝑖 , and the other has an even number of 

elements.  

 

Fig(2.4) 

We claim, for each  1 ≤ 𝑖 ≤ 𝑝 − 1 and each 𝑏′ ∈ 𝑇, that the 𝑖𝑎-orbit 𝑇𝑏 ′  𝑖𝑎  is stable under 

each 𝑟𝑖 1 ≤ 𝑗 ≤ 𝑝 − 1 . By (1) and (2) above, 𝑇 = 𝑇𝑏 ′  𝑖𝑎  (case of one 𝑖𝑎-orbit) or 𝑇 ′ =

𝑇𝑏 ′  𝑖𝑎  and the 𝑖𝑎-orbits of 𝑇 are 𝑇′ and 𝑇 ′′ = 𝑇 − 𝑇′, where one of 𝑇′, 𝑇′′ has odd number of 

elements and the other has an even number of elements. Since 𝑇 = 𝑟𝑗  𝑇 = 𝑟𝑗  𝑇′ ∪ 𝑟𝑗  𝑇′′  

and since 𝑟𝑖 𝑖𝑎 = −𝑖𝑎, one can easily verify that 𝑟𝑗  𝑇′ , 𝑟𝑗  𝑇′′  are 𝑖𝑎-orbits of 𝑇, thus that  

They are 𝑇 ′ , 𝑇′′ in one of the orders 𝑇 ′ , 𝑇′′ or  𝑇 ′′ , 𝑇′. But  𝑟𝑗  preserves "odd" and "even" 

numbers of elements. It follows that 𝑟𝑗  𝑇′ = 𝑇′ and 𝑟𝑗  𝑇′′ = 𝑇′′ for 1 ≤ 𝑗 ≤ 𝑝 − 1.  

Take one fixed 𝑖𝑎-orbit 𝑇𝑏 ′  𝑎  of 𝑇. Since it is stable under 𝑟1 , … . , 𝑟𝑝−1 and 𝑟𝑗  𝑎 =

−𝑎  1 ≤ 𝑗 ≤ 𝑝 − 1  , each of the 𝑟1 , … . , 𝑟𝑝−1 reverse the 𝑎-orbit 𝑇𝑏 ′  𝑎 .  

It follows that 𝑟1 𝑏′ = ⋯ = 𝑟𝑝−1 𝑏′  and 𝑏′ 𝑕1 = ⋯ = 𝑏′ 𝑕𝑝−1  forsuppose that  all 

𝑏′ ∈ 𝑇. Consequently, we have 𝑏 𝑕𝑖 − 𝑕𝑗  = 𝑏 𝑕𝑖 − 𝑕𝑗  = 0 for all 1 ≤ 𝑗 ≤ 𝑝 − 1.  

Since 𝔤 =  𝔤𝑖𝑎+𝑗𝑏
1𝑝−1

𝑖,𝑗=0  with 𝔤0
1 =def   𝔤𝑖𝑎+𝑗𝑏

1  , 𝔤−𝑖𝑎−𝑗𝑏
1  

𝑝−1
𝑖,𝑗=0 , it follows that :  

𝑕𝑖 − 𝑕𝑗 ∈ Center 𝔤 = {0} and 𝑕𝑖 = 𝑕𝑗  for all 1 ≤ 𝑖 , 𝑗 ≤ 𝑝 − 1.  

Finally, we let 𝑕 denote  𝑕1 , so that 𝑕 = 𝑕𝑖  for  1 ≤ 𝑖 ≤ 𝑝 − 1 and 𝑎 𝑕 = 1. By the 

flexibility in the choice of 𝑕𝑖  above , it follows that 𝑒 ∈ 𝔤𝑖𝑎  , 𝑓 ∈ 𝔤−𝑖𝑎  with 𝑎 𝑒, 𝑓 = 1 

implies that 𝑕 =  𝑒 , 𝑓 , for 1 ≤ 𝑖 ≤ 𝑝 − 1. We claim that :  

 𝑒 ′ ∈ 𝔤𝑖𝑎  , 𝑓 ′ ∈ 𝔤−𝑖𝑎  , 𝑎  𝑒 ′ , 𝑓 ′   = 0 implies that  𝑒 ′ , 𝑓 ′  = 0 for  1 ≤ 𝑖 ≤ 𝑝 − 1 .  

To see this, let 1 ≤ 𝑖 ≤ 𝑝 − 1, choose 𝑒 ∈ 𝔤𝑖𝑎  , 𝑓 ∈ 𝔤−𝑖𝑎  such that 𝑕 =  𝑒 , 𝑓  and 𝑒 ′ ∈

𝔤𝑖𝑎  , 𝑓 ′ ∈ 𝔤−𝑖𝑎  , 𝑕′ =  𝑒′ , 𝑓 , 𝑎 𝑕′ = 0. We claim that 𝑕′ = 0.  

To see this ,let 𝑕′′ =  𝑒 ′ , 𝑓 , 𝑕′′′ =  𝑒 , 𝑓′ . Consider first the case where 𝑎 𝑕′′  = 𝑎 𝑕′′′  = 0 

then 1 = 𝑎 𝑕 + 𝑕′′ = 𝑎  𝑒 + 𝑒 ′ , 𝑓  , so that 𝑕 =  𝑒 + 𝑒 ′ , 𝑓  as observed above. But then 
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𝑕 = 𝑕 + 𝑕′′ and 𝑕′′ = 0. Similarly, 𝑕′′′ = 0. It follows that  𝑒 + 𝑒 ′ , 𝑓 + 𝑓′ = 𝑕 + 𝑕′ + 𝑕′′ +

𝑕′′′ = 𝑕 + 𝑕′ and 𝑕′′ = 0. Since 1 = 𝑎 𝑕 =  𝑎 𝑕 + 𝑕′  = 𝑎  𝑒 + 𝑒 ′ , 𝑓 + 𝑓′  , it follows 

from the discussion above that 𝑕 = 𝑕 + 𝑕′ and 𝑕′ = 0. Thus,  𝑒 ′ , 𝑓 ′  = 0 in the present case. 

Next, consider the case where one of 𝑎 𝑕′′  , 𝑎 𝑕′′′   is not zero. We may then assume with no 

less of generality that 𝑎 𝑕′′  ≠ 0, for otherwise we can interchange 𝑕′′ , 𝑕′′′ . By replacing 𝑒 ′  

by  1 𝑎 𝑕′′     𝑒 ′ , we may also assume that 1 = 𝑎 𝑕′′  = 𝑎 𝑒′ , 𝑓 . But then 𝑕′′ = 𝑕, by our 

earlier discussion. But then 𝑕 + 𝑕′ =  𝑒′ , 𝑓 +  𝑒′ , 𝑓′ +  𝑒 ′ , 𝑓 + 𝑓′  and 1 = 𝑎  𝑒 ′ , 𝑓 + 𝑓′   

implies that  𝑒 ′ , 𝑓 + 𝑓′ = 𝑕, by our earlier discussion, so that 𝑕 + 𝑕′ = 𝑕 and 𝑕 = 0.  

By the preceding paragraph, we have 𝔤0
1 =def  𝔤𝑖𝑎+𝑗𝑏

1𝑝−1
𝑖,𝑗=0 = 𝑘𝑕, that is, the Cartan sub 

algebra 𝐻 = 𝔤0
1  of 𝔤 is one dimensional. Let 𝔤 =  𝔤𝑖𝑎

𝑝−1
𝑖=0 =  𝔤𝑖𝑎

1𝑝−1
𝑖=0  and let 𝑆 = Solv 𝔤𝑎 . 

We observed in (Theorem 4.14.5) that 𝔤 𝑆  is the Witt algebra 𝑊1. Since 𝑆 is a proper ideal of 

𝔤, we have 𝐻 ⊄ 𝑆. Since dim𝐻 = 1, it follows that 𝐻 ∩ 𝑆 = {0}. Consequently, =  𝑆𝑖𝑎
𝑝−1
𝑖=0  .  

Regard 𝑉 =  𝔤𝑐𝑐∈𝑇  as 𝔤-module via adjoints, where 𝑇 = 𝑅 ∩  𝑏 + ℤ𝑝  𝑎 ⊈ 𝑏 + ℤ𝑝  𝑎. Let 

𝑓: 𝔤 ⟶ Hom 𝑉 be the associated representation. Since ⊈ 𝑏 + ℤ𝑝  𝑎 , 𝑓 𝑆𝑖𝑎   consists of 

nilpotent transformations of  𝑉 for 1 ≤ 𝑖 ≤ 𝑝 − 1. By the theorem of Jacobson
13

 on weakly 

closed sets of linear transformations, it follows that 𝑓(𝑆) consists of nilpotent linear 

transformations of 𝑉. Letting 𝑉  be any irreducible sub quotient 𝑉 = 𝑉𝑖 𝑉𝑖+1 , where 𝑉1, … . , 𝑉𝑟  

is a composition series for 𝑉, and letting 𝑓 : 𝔤 ⟶ Hom 𝑉  be the associated representation of 𝔤, 

we claim that 𝑓  𝑆 𝑉 = {0}. We use the notation 𝑣 = 𝑣 + 𝑉𝑖+1 ∈ 𝑉  for 𝑣 ∈ 𝑉𝑖.  

Note that since 𝑓  𝑆  is a Lie algebrs of nilpotent linear transformations of 𝑉 , 

 𝑉 =   𝑣 ∈ 𝑉  𝑓  𝑆 𝑣 = 0  is nonzero. One sees easily that 𝑉 0 is an 𝔤- sub module of 𝑉 , since 𝑆 

is an ideal of 𝔤 :  

𝑓  𝑆 𝑣 = 0 ⟹ 𝑓  𝑆  𝑓  𝔤 𝑣  = 0.  

Since 𝑉  is irreducible ,  𝑉 = 𝑉 0 and 𝑓  𝑆 𝑉 = {0}.  

Since 𝑓  𝑆 𝑉 = {0 }, we may regard 𝑉  as a module for 𝑊1 = 𝔤 𝑆  where the module action 

given by  

 𝑥 + 𝑠 𝑣 =  𝑥, 𝑣          

For 𝑥 + 𝑆 ∈ 𝔤 𝑆 , 𝑣 = 𝑣 + 𝑉𝑖+1 ∈ 𝑉 ,  𝑥, 𝑣        =  𝑥, 𝑣 + 𝑉𝑖+1 ∈ 𝑉 . We let 𝑉 =  𝑉 𝑐𝑐∈𝑇′  be the 

root decomposition of  𝑉  with respect to 𝐻 ⊂ 𝔤 and 𝐻 + 𝑆 𝑆 = 𝐻  in  𝔤 𝑆 = 𝑊1 , and regard 

                                                           
13

 N.Jacobson,"Lie algebra" Wiley-Interscience, New York,1962.  
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𝑇 ′  as a sub set of 𝑅. The restricted irreducible 𝑊1-modules have dimensions 1 , 𝑝 − 1 or 𝑝 

and one-dimensional weight spaces. It follows that  𝑇 ′  = 1 , 𝑝 − 1 or 𝑝. Since 1 <  𝑅𝑏(𝑎) , 

one of 𝑏 − 𝑎, 𝑏 + 𝑎 is in 𝑅. Consequently, we can choose 𝑉  such that 𝑉 𝑐 ≠  0   or 𝑉𝑏+𝑎 ≠  0  , 

by (Prop 4.14.1). for this, 𝑉 ,  𝑇 ′  ≠ 1, so that   𝑇 ′  = 𝑝 − 1 or  𝑇 ′  = 𝑝. But then  𝑝 − 1 ≤

 𝑇 ′  ≤  𝑅𝑏(𝑎) ≤ 𝑝 − 1 , so that   𝑅𝑏(𝑎) = 𝑝 − 1 as was to be proved.  

Corollary 4.14.2.   

Let 𝔤 be a symmetric Lie algebra. Then 𝔤 is reflective if and only if ℤ𝑝𝑎 ⊄ 𝑅 for all 

 𝑎 ∈ 𝑅 −  0  if and only if 𝑅 is classical : 𝑅 = 𝑅. ∪  0 .  

Proof:  

The latter condition is equivalent, by theorem 11.6, to the condition that the Lie root system 𝑅 

is classical, that is 𝑅 = 𝑅. ∪  0 , which in turn is equivalent, by the results stated Section 

4.12, to the condition that the orbits 𝑅𝑏 𝑎    𝑎 ∈ 𝑅 −  0  , 𝑏 ∈ 𝑅  of the Lie root system 𝑅 are 

all bounded.  

Corollary  4.14.3.   

Let 𝔤 =  𝔤𝑎𝑎∈𝑅  be symmetric. Then dim𝔤𝑎 = 1 for all 𝑎 ∈ 𝑅..  

4.15   Exclusion of sub types of 𝑹 and 𝔤  

Let 𝑅 be a Lie root system and / or  𝔤 =  𝔤𝑎𝑎∈𝑅  a symmetric Lie algebra. We have observed 

that 𝔤 is reflective and Core 𝔤 is classical if and only if 𝑅 is classical : 𝑅 has no 𝑅𝑎 = 𝑅 ∩ ℤ𝑎 

of type 𝑊1. The latter condition can be restricted "𝑅 excludes 𝑊1" in the following language.  

Definition  4.15.1.   

Let 𝑆 be a root system of rank 𝑟. Then 𝑅 excludes 𝑆 if 𝑅𝑎1 , … . . , 𝑎𝑟 = 𝑅 ∩  ℤ𝑎1  , … . . , ℤ𝑎𝑟  is 

not isomorphic to 𝑆 for any 𝑎1 , … . . , 𝑎𝑟 ∈ 𝑅.  𝔤 =  𝔤𝑎𝑎∈𝑅  excludes 𝑆 if 𝑅 excludes 𝑆.  

Theorem  4.15.2.  

Let 𝑅 be an irreducible Lie root system. Then :  

1. 𝑅 is classical or 𝑅 = 𝑅0 if and only if 𝑅 excludes 𝑊 ⊕ 𝐴 and 𝑇2;  

2. 𝑅 is classical or rank 1 if and only if 𝑅 excludes 𝑊 ⊕𝐴, 𝑊 ⊕𝑊 and 𝑆2 .  
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Proof:  

One direction for both (1) and (2) is clear. For the other, suppose that 𝑅 excludes 𝑊 ⊕ 𝐴 and 

𝑇2. Suppose that 𝑎 ∈ 𝑅0 , 𝑏 ∈ 𝑅. and consider 𝑅𝑎𝑏. If a≠ 0, then 𝑅𝑎𝑏 = 𝑊 ∪ 𝐴 and 𝑎 + 𝑏 ∉

𝑅, since the possibilities 𝑊 ⊕ 𝐴, 𝑇2 are exclude. It follows that 𝑎, 𝑎′ ∈ 𝑅0 and 𝑎 + 𝑎′ ∈ 𝑅 

implies 𝑎 + 𝑎′ ∈ 𝑅0: 𝑎 + 𝑎′ =def  − 𝑏 ∈ 𝑅. ⟹ 𝑎 + 𝑏 ∈ 𝑅 ⟹ 𝑎 = 0 ⟹ 𝑎 + 𝑎′ = 𝑎′ ∈ 𝑅0.  

Similarly, 𝑏, 𝑏′ ∈ 𝑅. and 𝑏 + 𝑏′ ∈ 𝑅 implies 𝑏 + 𝑏′ ∈ 𝑅⨃ 0 : 𝑏 + 𝑏′ = −𝑎 ∈ 𝑅0 ⟹ 𝑎 + 𝑏 ∈

𝑅 ⟹ 𝑎 = 0 ⟹ 𝑏 + 𝑏′ = 0 ∈ 𝑅. ∪  0 . since 𝑅 is irreducible, it follows that 𝑅 = 𝑅0 or  

𝑅 = 𝑅. ∪  0 . this proves (1).  

For (2), suppose that 𝑅 excludes 𝑊 ⊕ 𝐴, 𝑊 ⊕𝑊 and 𝑆2. Then 𝑅 also excludes 𝑇2, so that 𝑅 

is classical or 𝑅 = 𝑅0. Let 𝑎 ∈ 𝑅 −  0  and defines 𝑆 = 𝑅 ∩ 𝑘𝑎, 𝑇 =  𝑅 − 𝑆 ∪  0 . Take 

𝑏 ∈ 𝑇 and note that 𝑏 ≠ 0 implies 𝑅𝑎𝑏 = 𝑊 ∪ 𝑊 and 𝑎 + 𝑏 ∉ 𝑅, by exclusion of 𝑊 ⊕ 𝑊. It 

follows that , 𝑎′ ∈ 𝑆 , 𝑎 + 𝑎′ ∈ 𝑅 implies 𝑎 + 𝑎′ ∈ 𝑆 and 𝑏, 𝑏′ ∈ 𝑇, 𝑏 + 𝑏′ ∈ 𝑅 implies 

𝑏 + 𝑏′ ∈ 𝑇, as in earlier arguments.  

By irreducibility of  𝑅, therefore, 𝑅 = 𝑆 and 𝑅 has rank 1.  

 


