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CHAPTER FOUR 

SYSTEM SIMULATION AND RESULTS 

4.1 Simulation Modeling 

For the purpose of controller design and evaluation the inverted pendulum 

systems were modeled in MATLAB /SIMULINK. The inverted pendulum was 

modeled using parameterized SIMULINK model and an ‘m-File’ as a run script 

for defining the physical parameters and control gains. From the MATLAB 

model it was possible to build and test controllers for the pendulum systems and 

to optimize their performance before implementation on the actual pendulum 

equipment. 

4.2 System Identification 

To implement the controllers as designed using the mathematical models, the 

real parameters of the system needed to be determined accurately. The majority 

of the parameters describing the system were determined accurately from the 

mechanical drawings, material properties and data sheets for the respective 

components. These parameters are as shown in Table 4.1. 

Table 4.1: Parameters of inverted pendulum system 

           System Parameters       Value 

 Mass of  the cart (M)        0.5 kg 

 Mass of the pendulum ( m)         0.5 kg 

 Length to pendulum center of mass(L)         0.3 m 

 Inertia of the pendulum ( I)         0.006 kg.   

 Friction of the cart( b)         0.1N/m/sec 

 Gravity ( g)         9.81 m/   
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Figure 3.2 is repeated in Figure 4.1. 

 

 

Figure 4.1: A cart and an inverted pendulum.  

 

4.3 System Analysis 

The simulation of the dynamic behavior for the system under step force, 

analyzing the stability, and controllability condition of the system were 

considered. The design requirements for the inverted pendulum project are: 

 Settling time     ) for x and θ of less than 5 seconds. 

 Rise time (    ) for x of less than 0.5 seconds. 

 Overshoot (% OS) of θ less than 20 degrees (0.35 radians). 

4.3.1 Open-loop step response of the system 

SIMULINK is used as an interactive tool for modeling, simulation, and 

analyzing the system. Figure 4.1 shows the SIMULINK model of the system. 
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Figure 4.2: SIMULINK model of inverted pendulum system 

 

Examining on how the system respond to step force applied to the cart, the 

following results are obtained as shown in Figure 4.2. 

 

 

Figure 4.3: Open-loop response of an inverted pendulum 

 



 

41 
 

From the Figure 4.2 the response is unsatisfactory. Both outputs never settle , the angle of the 

pendulum goes to several hundred radians in a clockwise direction though it should 

be less than 0.35 rad; the cart goes to the right infinitely. So, this system is 

unstable in an open loop condition when there is step force applied to the cart. 

The outputs are found by using SIMULINK, and lsim command of MATLAB 

which can be employed to simulate the response to arbitrary inputs. 

4.3.2 Stability of the system 

To check stability means to analyze whether the open-loop system (without any control) is 

stable. That has partly done by the above simulations under the step forces. But as per the 

definition, the eigenvalues of the system state matrix (A) can determine the stability. That 

is equivalent to finding the poles of the transfer function of the system. The eigenvalues of the 

matrix (A) are the values of s where det (sI-A) =0.  A system is stable if all its poles 

have lied in the left half of the s- plane. The poles (0, 7.1467, -7.2257, and -0.1) 

are found by using eig command in MATLAB. Or it can be shown by pole-zero 

mapping of the system as shown in Figure 4.3 using Pzmap in MATLAB 

command. 
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                               Figure 4.4: Pole-zero mapping of the system 

 

As can be seen from the output, there is one pole on the right-half plane at 

7.1430. This confirms that the intuition that the system is unstable in open loop 

system. 

4.3.3 Controllability of the system 

A system is controllable if there exist a control input u (t) that transfers any state 

of the system to zero in finite time. It can be shown that if and only if the 

controllability matrix  has full rank.i.e. If rank (  ) =n, where n the number of 

states. Using rank (ctrb (A, B) in MATLAB command, the controllability matrix 

of the system has full rank. So, the system is controllable. 
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4.4 Designing Full-state Feedback Controller 

The main purpose is to design a state feedback controller to stabilize the system 

by improving the system using pole placement. So that when a step reference is 

given to the system, the pendulum should be displaced, but eventually return to 

zero (i.e. vertical) and the cart should move to its new commanded position. 

After checking the pair (A, B) is controllable and constructing equations that will 

govern the controller dynamics, then placing the eigenvalues of the controller 

matrix in a desired position by finding an arbitrary vector state feedback control 

gain vector (K) assuming that all of the state variables are measurable. This can 

be accomplished using pole placement method. The state of the system is to be 

feedback as an input, the controller dynamics will be: 

 

u=r-K x                                                                                                             (4.1) 

x = Ax +B(r-K x) = (A-BK) x+ Br                                                                    (4.2) 

 

4.4.1 Pole placement method 

This method depends on the performance criteria, such as rise time, settling time, 

and overshoot used in the design. The design procedures are: 

1. Using time domain specifications to locate dominant poles-roots 

of   +2ζ   +  
  = 0. This is done by using the following formulas and 

finding the dominant poles at –σ ± j  . 

 

 ζ = 
            ⁄

√              ⁄  
                                                                             (4.3) 

            =
 

ζ  
 , valid up to ζ   0.7                                                                               (4.4) 

    =   √  ζ
 
                                                                                     (4.5) 
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 σ = ζ                                                                                                     (4.6) 

   =      ζ                                                                                            (4.7) 

 

 2. Then placing rest of pole so they are much faster than the dominant second order      

behavior. 

 Typically, keeping the same damped frequency    and then moving the real part 

to make them faster than the real part of the dominant poles so that the transient 

response of the real poles of the system will decay exponentially to insignificance 

at the settling time generated by the second order pair. 

 While taking care of moving the poles too far to the left because it takes a lot of 

control effect (needs large actuating signal). The parameters as shown in 

Table 4.2. 

 

          Table 4.2: The parameters of transient response                   

      Parameter            Value 

 Over shoot, %OS  20 Degree (0.35 radian) 

 Settling time ,      5 sec 

 Damping ratio , ζ  0.456 

 Un damping natural frequency,     1.78  rad /sec 

  Damping frequency,     1.584 rad /sec 

 

Then the dominant poles are: 

–σ ± j   = - ζ    ± j  √  ζ
 
 = -0.811+j 1.584 and -0.811-j 1.584 (which are 

complex conjugates). Using MATLAB software, the schematic diagram and 

SIMULINK block diagram of inverted pendulum with state feedback control via 

pole placement shown in Figure 4.4 and Figure 4.5 respectively. MATLAB 

calculates the state space matrices according to the system parameters shown in 
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Table 4.1, and using a state feedback controller to place the closed loop poles 

which are calculated above  with Table 4.2  at: p= [-0.811± j1584] and using 

assumed remaining poles. Then evaluates the gain matrix K to obtain the 

response of the pendulum’s angle and cart position (according to step input). 

 

 

 

Figure 4.5: Schematic diagram for inverted pendulum in state-space form with 

state feedback 

 
 

 

Figure 4.6: SIMULINK diagram for inverted pendulum in state-space form with 

state Feedback 
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4.4.2 Simulation results 

The controller was applied to inverted pendulum; the following are the gain 

vectors for different sets of desired poles (P), and using MATLAB command: 

place (A, B, P) to find the value of gain vector K. 

Test 1: 

Table 4.3 shows the desired poles and gain vector which the remaining poles two 

and three times faster than the real part of the dominant poles: 

           Table 4.3: Desired poles and gain vectors for test 1 

   [-2.433 -1.622 -0.811± j1.584] 

   [-12.4935   -1.2053   -0.2420   -0.4727] 

 

Figure 4.6 shows the step response using pole placement for cart’ position and 

pendulum’ angle: 

 

                    Figure 4.7: Step response using pole placement-1
st
 test 
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Test 2:   

Table 4.4 shows the desired poles and gain vector which the remaining poles ten 

and twelve times faster than the real part of the dominant poles: 

 

Table 4.4: Desired poles and gain vectors for test 2 

          [-11.354 -9.732 -0.811± j1.584] 

          [-40.2087   -5.9345   -6.7772   -4.8645] 

 

Figure 4.7 shows the step response using pole placement for cart’ position and 

pendulum’ angle. 

 

 

Figure 4.7: Step response using pole placement-2
st
 test 
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4.4.3 Discussion 

As can be seen from the respective plots of the system step response for each calculated gain 

vectors as per the desired pole locations, system design requirements are satisfied in 

the two tests. The system response tends to be faster when the real poles go 

farther to the left from the real part of the dominant pole. The inverted pendulum 

has been stabilized and the final angle θ go to zero. From the position cart x 

plots, it obvious that the cart move to the right away from x=0 position, while in 

the same time, the pendulum has swung back and forth about θ = 0 before it 

finally settles down at stable position. This means the using pole placement is 

effective control law which stabilized the system. 


