CHAPTER FOUR

SYSTEM SIMULATION AND RESULTS

4.1 Simulation Modeling

For the purpose of controller design and evaluation the inverted pendulum
systems were modeled in MATLAB /SIMULINK. The inverted pendulum was
modeled using parameterized SIMULINK model and an ‘m-File’ as a run script
for defining the physical parameters and control gains. From the MATLAB
model it was possible to build and test controllers for the pendulum systems and
to optimize their performance before implementation on the actual pendulum

equipment.
4.2 System ldentification

To implement the controllers as designed using the mathematical models, the
real parameters of the system needed to be determined accurately. The majority
of the parameters describing the system were determined accurately from the
mechanical drawings, material properties and data sheets for the respective
components. These parameters are as shown in Table 4.1.

Table 4.1: Parameters of inverted pendulum system

System Parameters Value
Mass of the cart (M) 0.5 kg
Mass of the pendulum ('m) 0.5 kg
Length to pendulum center of mass(L) 0.3m
Inertia of the pendulum ( 1) 0.006 kg.m?
Friction of the cart( b) 0.1N/m/sec
Gravity ( g) 9.81 m/s?
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Figure 3.2 is repeated in Figure 4.1.

Mass m

M e (£ 1)

Frictionless

— y(n) surface

Figure 4.1: A cart and an inverted pendulum.

4.3 System Analysis

The simulation of the dynamic behavior for the system under step force,
analyzing the stability, and controllability condition of the system were

considered. The design requirements for the inverted pendulum project are:

e Settling time (T ) for x and 0 of less than 5 seconds.
e Risetime (T, ) for x of less than 0.5 seconds.
e Overshoot (% OS) of 4 less than 20 degrees (0.35 radians).

4.3.1 Open-loop step response of the system
SIMULINK is used as an interactive tool for modeling, simulation, and

analyzing the system. Figure 4.1 shows the SIMULINK model of the system.
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Figure 4.2: SIMULINK model of inverted pendulum system

Examining on how the system respond to step force applied to the cart, the

following results are obtained as shown in Figure 4.2.

open loop step response of the system
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Figure 4.3: Open-loop response of an inverted pendulum
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From the Figure 4.2 the response is unsatisfactory. Both outputs never settle , the angle of the
pendulum goes to several hundred radians in a clockwise direction though it should
be less than 0.35 rad; the cart goes to the right infinitely. So, this system is
unstable in an open loop condition when there is step force applied to the cart.
The outputs are found by using SIMULINK, and Isim command of MATLAB
which can be employed to simulate the response to arbitrary inputs.

4.3.2 Stability of the system

To check stability means to analyze whether the open-loop system (without any control) is
stable. That has partly done by the above simulations under the step forces. But as per the
definition, the eigenvalues of the system state matrix (A) can determine the stability. That
Is equivalent to finding the poles of the transfer function of the system. The eigenvalues of the
matrix (A) are the values of s where det (sI-A) =0. A system is stable if all its poles
have lied in the left half of the s- plane. The poles (0, 7.1467, -7.2257, and -0.1)
are found by using eig command in MATLAB. Or it can be shown by pole-zero
mapping of the system as shown in Figure 4.3 using Pzmap in MATLAB

command.
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pole zero mapping of the system
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Figure 4.4: Pole-zero mapping of the system

As can be seen from the output, there is one pole on the right-half plane at
7.1430. This confirms that the intuition that the system is unstable in open loop
system.

4.3.3 Controllability of the system

A system is controllable if there exist a control input u (t) that transfers any state
of the system to zero in finite time. It can be shown that if and only if the
controllability matrix has full rank.i.e. If rank (M.) =n, where n the number of
states. Using rank (ctrb (A, B) in MATLAB command, the controllability matrix

of the system has full rank. So, the system is controllable.
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4.4 Designing Full-state Feedback Controller

The main purpose is to design a state feedback controller to stabilize the system
by improving the system using pole placement. So that when a step reference is
given to the system, the pendulum should be displaced, but eventually return to
zero (i.e. vertical) and the cart should move to its new commanded position.
After checking the pair (A, B) is controllable and constructing equations that will
govern the controller dynamics, then placing the eigenvalues of the controller
matrix in a desired position by finding an arbitrary vector state feedback control
gain vector (K) assuming that all of the state variables are measurable. This can
be accomplished using pole placement method. The state of the system is to be

feedback as an input, the controller dynamics will be:

u=r-K x (4.1)
X = Ax +B(r-K x) = (A-BK) x+ Br (4.2)

4.4.1 Pole placement method

This method depends on the performance criteria, such as rise time, settling time,

and overshoot used in the design. The design procedures are:

1. Using time domain specifications to locate dominant poles-roots
of s?+2{w,s+wZ = 0. This is done by using the following formulas and

finding the dominant poles at —c + jw,.

.« (= -In(%0S/100)
JVInZ+m2+(%05/100)

(4.3)

o Tsettiing =i ,validupto ¢ ~ 0.7 (44)

° g = wm/l ~¢ (4.5)
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e o=Co, (4.6)
e B=cos I 4.7)

2. Then placing rest of pole so they are much faster than the dominant second order
behavior.

e Typically, keeping the same damped frequency w4 and then moving the real part
to make them faster than the real part of the dominant poles so that the transient
response of the real poles of the system will decay exponentially to insignificance
at the settling time generated by the second order pair.

e \While taking care of moving the poles too far to the left because it takes a lot of
control effect (needs large actuating signal). The parameters as shown in
Table 4.2.

Table 4.2: The parameters of transient response

Parameter Value
Over shoot, %0S 20 Degree (0.35 radian)
Settling time , Ty 5 sec
Damping ratio , 0.456

Un damping natural frequency, o, 1.78 rad /sec

Damping frequency, oq 1.584 rad /sec

Then the dominant poles are:

0+ jwg =- Lo, *jo, /1 — (* =-0.811+j 1.584 and -0.811-j 1.584 (which are

complex conjugates). Using MATLAB software, the schematic diagram and
SIMULINK block diagram of inverted pendulum with state feedback control via
pole placement shown in Figure 4.4 and Figure 4.5 respectively. MATLAB

calculates the state space matrices according to the system parameters shown in
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Table 4.1, and using a state feedback controller to place the closed loop poles
which are calculated above with Table 4.2 at: p= [-0.811+ j1584] and using
assumed remaining poles. Then evaluates the gain matrix K to obtain the

response of the pendulum’s angle and cart position (according to step input).

Plant
i x=Ax+Bu x E y
C B
y=Cx+Du

Kk |t—

Control gain

Figure 4.5: Schematic diagram for inverted pendulum in state-space form with

state feedback
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Figure 4.6: SIMULINK diagram for inverted pendulum in state-space form with
state Feedback
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4.4.2 Simulation results
The controller was applied to inverted pendulum; the following are the gain
vectors for different sets of desired poles (P), and using MATLAB command:
place (A, B, P) to find the value of gain vector K.
Test 1:
Table 4.3 shows the desired poles and gain vector which the remaining poles two
and three times faster than the real part of the dominant poles:
Table 4.3: Desired poles and gain vectors for test 1
P, [-2.433 -1.622 -0.811+ j1.584]
K; [-12.4935 -1.2053 -0.2420 -0.4727]

Figure 4.6 shows the step response using pole placement for cart’ position and

pendulum’ angle:
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Figure 4.7: Step response using pole placement-1* test
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Test 2:

Table 4.4 shows the desired poles and gain vector which the remaining poles ten
and twelve times faster than the real part of the dominant poles:

Table 4.4: Desired poles and gain vectors for test 2
P, [-11.354 -9.732 -0.811+ j1.584]
K, [-40.2087 -5.9345 -6.7772 -4.8645]

Figure 4.7 shows the step response using pole placement for cart’ position and
pendulum’ angle.
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Figure 4.7: Step response using pole placement-2* test
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4.4.3 Discussion

As can be seen from the respective plots of the system step response for each calculated gain
vectors as per the desired pole locations, system design requirements are satisfied in
the two tests. The system response tends to be faster when the real poles go
farther to the left from the real part of the dominant pole. The inverted pendulum
has been stabilized and the final angle 0 go to zero. From the position cart x
plots, it obvious that the cart move to the right away from x=0 position, while in
the same time, the pendulum has swung back and forth about & = 0 before it
finally settles down at stable position. This means the using pole placement is

effective control law which stabilized the system.
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