CHAPTER THREE
CONTROLLER IMPLEMENTATION OF
INVERTED PENDULUM SYSTEM

3.1 Inverted Pendulum System

An inverted pendulum is a pendulum that has its center of mass above its pivot
point. It is often implemented with the pivot point mounted on a cart that can
move horizontally and may be called a cart and pole. Most applications limit the
pendulum to one degree of freedom by affixing the pole to an axis of rotation.
Whereas a normal pendulum is stable when hanging downwards, an inverted
pendulum is inherently unstable, and must be actively balanced in order to
remain upright; this can be done either by applying a torque at the pivot point, by
moving the pivot point horizontally as part of a feedback system, changing the
rate of rotation of a mass mounted on the pendulum on an axis parallel to the
pivot axis and thereby generating a net torque on the pendulum, or by oscillating
the pivot point vertically. A simple demonstration of moving the pivot point in a
feedback system is achieved by balancing an upturned broomstick on the end of

one's finger.

The inverted pendulum is a classic problem in dynamics and control theory and
is widely used as a benchmark for testing control algorithms (PID controllers,
state space representation, neural networks, fuzzy control, genetic algorithms,
etc.). Variations on this problem include multiple links, allowing the motion of
the cart to be commanded while maintaining the pendulum, and balancing the

cart-pendulum system on a see-saw. The inverted pendulum is related to rocket
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or missile guidance, where the center of gravity is located behind the center of

drag causing aerodynamic instability.
3.2 Inverted Pendulum Classification

There are many series of inverted pendulum systems extended from linear one-
stage inverted pendulum, such as linear inverted pendulum, circular inverted
pendulum, planar inverted pendulum and configurable inverted pendulum.
Inverted pendulum is the system with pendulum plants placed on motion
modules. Diverse pendulum plants and motion modules constitute different
inverted pendulum series. The following inverted pendulum systems are
classified by structure:

3.2.1 Linear inverted pendulum

Linear inverted pendulum has pendulum plant on a linear motion module with
one degree of freedom. The cart moves on the sliding shaft horizontally. There
are different kinds of linear inverted pendulum systems based on different
pendulum plant structure such as the flexible inverted pendulum, which has two
carts on the sliding shaft with a spring connected.

3.2.2 Circular inverted pendulum

Circular inverted pendulum system has a pendulum plant on a circular motion
module with one degree of freedom. The pendulum is on the arm end rotates
around the centre of the circle. Different inverted pendulum system can be setup
by varying the stage number in series or parallel.

3.2.3 Planar inverted pendulum

Planar inverted pendulum system has a pendulum plant on the planar motion
module with two degree of freedom. There are two classes of planar motion
module: XY table and robotic arm. The pendulum can be also divided by stage

like one stage or two stages.
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3.2.4 Configurable inverted pendulum

Configurable inverted pendulum is a new class of inverted pendulum systems
whose pendulum plant is composed of pendulum rod and connection rod. The
connection rod can be configured to three modes: level, vertical upper and
vertical down. Classified by pendulum stages, there are one-stage, two-stage,
three-stage and four-stage inverted pendulum systems. One-stage inverted
pendulum is used for basic experiment of control theory while others are mostly
used for development of advanced control algorithms. Control complexity
increase dramatically as the pendulum stage increase. The feasible maximal

stage for inverted pendulum system is four currently [7].
3.3 Inverted Pendulum Properties

Despite the different size and structure, all inverted pendulum systems have the

following properties in common:

1) Nonlinearity

Inverted pendulum is a typical nonlinear system. In real control, the system
model is usually linearized. Also there is nonlinear control methods applied to
inverted pendulum which is becoming a hot topic recently.

2) Uncertainty

Most uncertainties come from model uncertainty, mechanical transmission error
and other resistances. In real control, uncertainties are reduced by controlling
errors like, tighten the belt or screw to reduce the transmission error, or use ball
bearing to reduce the friction.

3) Coupling

There are coupling between each stage of inverted pendulum and the motion
module. We will decouple the inverted pendulum near the equilibrium point and

ignore some less important coupling variables.
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4) Open loop instability

There are two equilibrium states for inverted pendulum systems: vertical upper
and vertical down, in which vertical upper is the unstable equilibrium point and
vertical down is the stable equilibrium point.

5) Limitations

The inverted pendulum system performance is limited by mechanisms like
motion module travel distance, motor torque, etc. To make it convenient and
reduce the cost, the structure size and the motor power of inverted pendulum are
required to be small. The effect of travel distance to inverted pendulum swing up
is especially evident: short travel distance easily gets the cart exceed the limit

switch.
3.4 Applications of Inverted Pendulum

Among the some considerable applications of inverted pendulum, some of these

applications will be described below:

(1) Simulation of dynamics of robotic arm

The inverted pendulum problem resembles the control systems that exist in
robotic arms. The dynamics of inverted pendulum simulates the dynamics of
robotic arm in the condition when the center of pressure lies below the centre of
gravity for the arm so that the system is also unstable. Robotic arm behaves very
much like inverted pendulum under this condition.

(2) Model of human standing still

The ability to maintain stability while standing straight is of great importance for
the daily activities of people. The Central Nervous System (CNS) registers the
pose and changes in the pose of the human body, and activates muscles in order
to maintain balance. The inverted pendulum is widely accepted as an adequate

model of a human standing still (quiet standing).
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3.5 Inverted Pendulum Control

The inverted pendulum is an ubiquitous example of nonlinear control systems
analysis and design. It is difficult, if not impossible, to design stabilization
control algorithms and identify the corresponding stability regions for the
nonlinear system, since our interest is to control the system in a neighborhood of
an equilibrium state, it is reasonable to consider the linearization of the system at
the equilibrium. A simple demonstration of moving the pivot point in a feedback

system is achieved by balancing an upturned broomstick on the end of one’s

hand.

The problem of balancing a broomstick on a person's hand is illustrated in
Figure 3.1. The only equilibrium condition is at # (t) = 0 and d6 /d t = 0. The
problem of balancing a broomstick on one's hand is not unlike the problem of
controlling the attitude of a missile during the initial stages of launch. This
problem is the classic and intriguing  problem of the inverted pendulum

mounted on a cart, as shown in Figure 3.2.

Figure 3.1: An inverted pendulum balanced on a Person’s hand by moving the

hand to reduce 6(t)
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Figure 3.2: A cart and an inverted pendulum.

The cart must be moved so that mass (m) is always in an upright position. The
state variables must be expressed in terms of the angular rotation 6(t) and the
position of the cart y(t). The differential equations describing the motion of the
system can be obtained by writing the sum of the forces in the horizontal
direction and the sum of the moments about the pivot point. By assuming that
M >> m and the angle of rotation () is small so that the equations are linear. The

sum of the forces in the horizontal direction is:

M § +mlO —u(t) = 0 (3.1)

Where u(t) equals the force on the cart, (1) is the distance from the mass (m) to
the pivot point, (6) the angle of the pendulum and (M) the cart mass. The sum of

the torques about the pivot point is:
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MLD +m > ©—mlgh =0 (3.2)

The state variables for the two second-order equations are chosen as (x, ,x,,

x3, x4) =(v,7,0,0). Then Equations (3.1) and (3.2) are written in terms of the

state variables as:

M x,+ mlx, —u(t) =0 (3.3)
And:
Xy+lx,—gx; =0 (3.4)

Where g is gravity. To obtain the necessary first-order differential equations, we

solve for lx; in Equation (3.4) and substitute into Equation (3.3) to obtain:

M x,+ mgx; = u(t) (3.5)

Since M >> m. Substituting x, from Equation (3.3) into Equation (3.4), we

have:

Ml x,+ Mgxs; + u(t) =0 (3.6)

Therefore, the four first-order differential equations can be written as:

. . _ mg 1
X1= Xz, Xy =-r X3t u(t)
. _ g 1
X3 = X4, Xg= TX3"o0 u(t) (3.7)
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Thus, the system matrices are:

0 1 0 0
sy o o s
0 0 g/l 0
0
B = 1{)M (3.9)
—-1/Ml

Without applying a control force, the angle of pendulum (6) will increase
without limit, i.e. the response is unbounded, and also the root of the
characteristic equation will be positive. This again confirms an unbounded
response and that is to say the system is unstable, that is, the inverted pendulum

will fall over unless a suitable control force via full state feedback is used [7].
3.6 The Implementation of Pole Placement

The main objective is the angle stabilization of the inverted pendulum under
uncertainties. If the output is the angle of the pendulum relative to the vertical
axis (in upright position), Then it will be realize that the system is unstable, the
goal is to design a control system that keeps the pendulum in upright position
(6=0), and the cart can be brought back to the reference position (x = 0). The
system becomes less sensitive to parameter variation and external disturbances
by implementation of a suitable controller, inverted pendulum of its highly
nonlinear characteristic.

On the other side, modern control theory is based on the description of system
equations in terms of n first-order differential equations, and the system can be
described by state space equation form. This means that only one controller can
successfully stabilize the inverted pendulum system. The main design approach
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for systems described in state-space form is the use of state feedback, or pole
placement. The first step in the pole placement design approach is to choose the
locations of the desired closed loop poles. The most frequently used approach is
to choose such poles based on experience in the root locus design, placing a
dominant pair of closed poles and choosing other poles so that they are far to the
left of the dominant closed loop poles. Another approach is based on the
quadratic optimal control approach. This approach will determine the desired
closed-loop poles such that it balances between the acceptable response and the
amount of control energy required. The design of the state feedback controller
based on pole placement approach is given in details. This scheme makes the
inverted pendulum control design very easy based on pole placement approach.

In the pole-placement or pole-assignment techniques, assuming that all state
variables are measurable and are available for feedback. It will be shown that if
the system considered is completely state controllable, then poles of the closed-
loop system may be placed at any desired locations by means of state feedback
through an appropriate state feedback gain matrix. The present design technique
begins with a determination of the desired closed-loop poles based on the
transient-response and/or frequency-response requirements, such as speed,
damping ratio, or bandwidth, as well as steady-state requirements. The control is
achieved by feeding back the state variables through a regulator with constant
gains. Consider the control system presented in the state-variable form as shown
in Equation (2.13). The block diagram of the control system shown in Figure 3.3

with the following state feedback control as shown in Equation (2.15).
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Figure 3.3: Control system design via pole placement

Where

K is a 1 x n vector of constant feedback gains. The control system input r(t) is
assumed to be zero. The purpose of this system is to return all state variables to
values of zero when the states have been perturbed. Substituting Equation (2.15)

into Equation (2.13), the closed-loop system state-variable representation is:

x(t) = (A-BK) x(t) = Af x(t) (3.9)

The closed-loop system characteristic equation is:
|sI — A+ BK| =0 (3.10)

Assume the system is represented in the phase variable canonical form as

follows:
X1 0 1 0 0 X1 0
[ X, l 0 0 1 0 [ X ] 0
: = +1: u(t) (311)
. .l o o o 1 [xn_l 0
l Xn J —ay —a; —a, —a,_11L X, l1J
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Substituting for A and B into Equation (3.12), the closed-loop characteristic

equation for the control system is found as:

|sl — A+ BK| = s"+ (a,_; +k, ) s? 1 +... (a; +k;) s + (ap+k;) =0 (3.12)

For the specified closed-loop pole locations —A,,...... ,—A, the desired

characteristic equation is:

a.(s) =(s+ A1) .. (s+ 1) =s"+a,_; s"1..... a,5+ay=0 (3.13)

The design objective is to find the gain matrix K such that the characteristic
equation for the controlled system is identical to the desired characteristic
equation. Thus, the gain vector K is obtained by equating coefficients of
Equations (3.13) and (3.12).

ki =di_1-04aj_1q (314)

If the state model is not in the phase-variable canonical form, we can use the
transformation technique to transform the given state model to the phase-variable
canonical form. The gain factor is obtained for this model and then transformed
back to confirm with the original model. This procedure results in the following

formula, known as Ackermann’s formula.

K=[0 0 -+ 0 1]M. 7 a.(4) (3.15)

Where a.(A) is given by:
a.(A) =A"+a,_; AV 1+ A tag | (3.16)
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The function [K,A] = placepol (A, B, C, p) is developed for the pole-placement
design. A, B, and C are system matrices and p is a row vector containing the
desired closed-loop poles. This function returns the gain vector K and the closed-
loop system matrix A¢. Also, the MATLAB control system toolbox contains two
functions for pole-placement design. Function K =acker (A, B, p) is for single
input systems, and function K = place (A, B, p), which uses a more reliable
algorithm, is for multi-input systems.

The condition that must exist to place the closed-loop poles at the desired
location is to be able to transform the given state model into phase-variable

canonical form [7].
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