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                             CHAPTER THREE 

CONTROLLER IMPLEMENTATION OF        

INVERTED PENDULUM SYSTEM 

 

3.1 Inverted Pendulum System 

An inverted pendulum is a pendulum that has its center of mass above its pivot 

point. It is often implemented with the pivot point mounted on a cart that can 

move horizontally and may be called a cart and pole. Most applications limit the 

pendulum to one degree of freedom by affixing the pole to an axis of rotation. 

Whereas a normal pendulum is stable when hanging downwards, an inverted 

pendulum is inherently unstable, and must be actively balanced in order to 

remain upright; this can be done either by applying a torque at the pivot point, by 

moving the pivot point horizontally as part of a feedback system, changing the 

rate of rotation of a mass mounted on the pendulum on an axis parallel to the 

pivot  axis and thereby generating a net torque on the pendulum, or by oscillating 

the pivot point vertically. A simple demonstration of moving the pivot point in a 

feedback system is achieved by balancing an upturned broomstick on the end of 

one's finger.  

The inverted pendulum is a classic problem in dynamics and control theory and 

is widely used as a benchmark for testing control algorithms (PID controllers, 

state space representation, neural networks, fuzzy control, genetic algorithms, 

etc.). Variations on this problem include multiple links, allowing the motion of 

the cart to be commanded while maintaining the pendulum, and balancing the 

cart-pendulum system on a see-saw. The inverted pendulum is related to rocket 
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or missile guidance, where the center of gravity is located behind the center of 

drag causing aerodynamic instability. 

3.2 Inverted Pendulum Classification 

There are many series of inverted pendulum systems extended from linear one-

stage inverted pendulum, such as linear inverted pendulum, circular inverted 

pendulum, planar inverted pendulum and configurable inverted pendulum. 

Inverted pendulum is the system with pendulum plants placed on motion 

modules. Diverse pendulum plants and motion modules constitute different 

inverted pendulum series. The following inverted pendulum systems are 

classified by structure: 

3.2.1 Linear inverted pendulum 

Linear inverted pendulum has pendulum plant on a linear motion module with 

one degree of freedom. The cart moves on the sliding shaft horizontally. There 

are different kinds of linear inverted pendulum systems based on different 

pendulum plant structure such as the flexible inverted pendulum, which has two 

carts on the sliding shaft with a spring connected. 

3.2.2 Circular inverted pendulum 

Circular inverted pendulum system has a pendulum plant on a circular motion 

module with one degree of freedom. The pendulum is on the arm end rotates 

around the centre of the circle. Different inverted pendulum system can be setup 

by varying the stage number in series or parallel. 

3.2.3 Planar inverted pendulum 

Planar inverted pendulum system has a pendulum plant on the planar motion 

module with two degree of freedom. There are two classes of planar motion 

module: XY table and robotic arm. The pendulum can be also divided by stage 

like one stage or two stages. 
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3.2.4 Configurable inverted pendulum 

Configurable inverted pendulum is a new class of inverted pendulum systems 

whose pendulum plant is composed of pendulum rod and connection rod. The 

connection rod can be configured to three modes: level, vertical upper and 

vertical down. Classified by pendulum stages, there are one-stage, two-stage, 

three-stage and four-stage inverted pendulum systems. One-stage inverted 

pendulum is used for basic experiment of control theory while others are mostly 

used for development of advanced control algorithms. Control complexity 

increase dramatically as the pendulum stage increase. The feasible maximal 

stage for inverted pendulum system is four currently [7]. 

3.3 Inverted Pendulum Properties 

Despite the different size and structure, all inverted pendulum systems have the 

following properties in common: 

1) Nonlinearity 

Inverted pendulum is a typical nonlinear system. In real control, the system 

model is usually linearized. Also there is nonlinear control methods applied to 

inverted pendulum which is becoming a hot topic recently. 

2) Uncertainty 

Most uncertainties come from model uncertainty, mechanical transmission error 

and other resistances. In real control, uncertainties are reduced by controlling 

errors like, tighten the belt or screw to reduce the transmission error, or use ball 

bearing to reduce the friction. 

3) Coupling 

There are coupling between each stage of inverted pendulum and the motion 

module. We will decouple the inverted pendulum near the equilibrium point and 

ignore some less important coupling variables. 
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4) Open loop instability 

There are two equilibrium states for inverted pendulum systems: vertical upper 

and vertical down, in which vertical upper is the unstable equilibrium point and 

vertical down is the stable equilibrium point. 

5) Limitations 

The inverted pendulum system performance is limited by mechanisms like 

motion module travel distance, motor torque, etc. To make it convenient and 

reduce the cost, the structure size and the motor power of inverted pendulum are 

required to be small. The effect of travel distance to inverted pendulum swing up 

is especially evident: short travel distance easily gets the cart exceed the limit 

switch. 

3.4 Applications of Inverted Pendulum 

Among the some considerable applications of inverted pendulum, some of these 

applications will be described below: 

 (1) Simulation of dynamics of robotic arm 

The inverted pendulum problem resembles the control systems that exist in 

robotic arms. The dynamics of inverted pendulum simulates the dynamics of 

robotic arm in the condition when the center of pressure lies below the centre of 

gravity for the arm so that the system is also unstable. Robotic arm behaves very 

much like inverted pendulum under this condition. 

(2) Model of human standing still 

The ability to maintain stability while standing straight is of great importance for 

the daily activities of people. The Central Nervous System (CNS) registers the 

pose and changes in the pose of the human body, and activates muscles in order 

to maintain balance. The inverted pendulum is widely accepted as an adequate 

model of a human standing still (quiet standing). 
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3.5 Inverted Pendulum Control 

The inverted pendulum is an ubiquitous example of nonlinear control systems 

analysis and design. It is difficult, if not impossible, to design stabilization 

control algorithms and identify the corresponding stability regions for the 

nonlinear system, since our interest is to control the system in a neighborhood of 

an equilibrium state, it is reasonable to consider the linearization of the system at 

the equilibrium. A simple demonstration of moving the pivot point in a feedback 

system is achieved by balancing an upturned broomstick on the end of one’s 

hand. 

The problem of   balancing a broomstick on a person's hand is illustrated in 

Figure 3.1. The only equilibrium condition is at θ (t) = 0 and    /d t = 0. The 

problem of balancing a broomstick on one's hand is not unlike the problem of 

controlling the attitude of a missile during the initial stages of launch. This 

problem is the classic and   intriguing   problem of the inverted pendulum 

mounted on a cart, as shown in Figure 3.2.  

 

 

Figure 3.1: An inverted pendulum balanced on a Person’s hand by moving the 

hand to reduce      
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Figure 3.2: A cart and an inverted pendulum.  

 

The cart must be moved so that mass (m) is always in an upright position. The 

state variables must be expressed in terms of the angular rotation      and the 

position of the cart y(t). The differential equations describing the motion of the 

system can be obtained by writing the sum of the forces in the horizontal 

direction   and   the sum of the moments about the pivot point. By assuming that   

M >> m and the angle of rotation (θ) is small so that the equations are linear. The 

sum of the forces in the horizontal direction is: 

 

M ӱ +     –                                                                                            (3.1)  

 

Where       equals the force on the cart, (Ɩ) is the distance from the mass (m) to 

the pivot point, (θ)  the angle of the pendulum and (M)  the cart mass. The sum of 

the torques about the pivot point is: 
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MƖ  ̈ +        –                                                                                     (3.2)    

  

The state variables for the two second-order equations are chosen as (   ,  , 

  ,   ) =(   ̇,   ̇   Then Equations (3.1) and (3.2) are written in terms of the 

state variables as: 

 

M   
 +     

  –                                                                                          (3.3) 

  

And: 

 

  
 +   

 –                                                                                                    (3.4)                                                                                                                                                                     

 

Where   is gravity.  To obtain the necessary first-order differential equations, we 

solve for    
  in Equation (3.4) and substitute into Equation (3.3) to obtain: 

 

M   
 +      =                                                                                              (3.5) 

 

Since  M >>   . Substituting     from Equation (3.3) into Equation (3.4), we 

have: 

 

MƖ   
 +             =0                                                                                  (3.6)  

 

Therefore, the four first-order differential equations can be written as: 

 

  
 =    ,        

   = - 
  

 
  + 

 

   
      

  
  =    ,       

  =  
 

 
    - 

 

  
                                                                              (3.7) 
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Thus, the system matrices are: 

A =  [

    
        
    
      

]                                                                              (3.8) 

B = [

 
   
 

     

]                                                                                                    (3.9) 

Without applying a control force, the angle of pendulum (θ) will increase 

without limit, i.e. the response is unbounded, and also the root of the 

characteristic equation will be positive. This again confirms an unbounded 

response and that is to say the system is unstable, that is, the inverted pendulum 

will fall over unless a suitable control force via full state feedback is used [7]. 

3.6 The Implementation of Pole Placement 

The main objective is the angle stabilization of the inverted pendulum under 

uncertainties. If the output is the angle of the pendulum relative to the vertical 

axis (in upright position), Then it will be realize that the system is unstable, the 

goal is to design a control system that keeps the pendulum in upright position 

(θ=0), and the cart can be brought back to the reference position (    . The 

system becomes less sensitive to parameter variation and external disturbances 

by implementation of a suitable controller, inverted pendulum of its highly 

nonlinear characteristic. 

On the other side, modern control theory is based on the description of system 

equations in terms of n first-order differential equations, and the system can be 

described by state space equation form. This means that only one controller can 

successfully stabilize the inverted pendulum system. The main design approach 
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for systems described in state-space form is the use of state feedback, or pole 

placement. The first step in the pole placement design approach is to choose the 

locations of the desired closed loop poles. The most frequently used approach is 

to choose such poles based on experience in the root locus design, placing a 

dominant pair of closed poles and choosing other poles so that they are far to the 

left of the dominant closed loop poles.  Another approach is based on the 

quadratic optimal control approach. This approach will determine the desired 

closed-loop poles such that it balances between the acceptable response and the 

amount of control energy required. The design of the state feedback controller 

based on pole placement approach is given in details. This scheme makes the 

inverted pendulum control design very easy based on pole placement approach. 

 In the pole-placement or pole-assignment techniques, assuming that all state 

variables are measurable and are available for feedback. It will be shown that if 

the system considered is completely state controllable, then poles of the closed-

loop system may be placed at any desired locations by means of state feedback 

through an appropriate state feedback gain matrix. The present design technique 

begins with a determination of the desired closed-loop poles based on the 

transient-response and/or frequency-response requirements, such as speed, 

damping ratio, or bandwidth, as well as steady-state requirements. The control is 

achieved by feeding back the state variables through a regulator with constant 

gains. Consider the control system presented in the state-variable form as shown 

in Equation (2.13). The block diagram of the control system shown in Figure 3.3 

with the following state feedback control as shown in Equation (2.15). 
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Figure 3.3: Control system design via pole placement 

 

Where 

 K is a 1 x n vector of constant feedback gains. The control system input      is 

assumed to be zero. The purpose of this system is to return all state variables to 

values of zero when the states have been perturbed. Substituting Equation (2.15) 

into Equation (2.13), the closed-loop system state-variable representation is: 

 

 ̇     = (A-BK)                                                                                      (3.9)        

  

The closed-loop system characteristic equation is: 

|       | =0                                                                                           (3.10) 

 

Assume the system is represented in the phase variable canonical form as 

follows: 
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Substituting for A and B into Equation (3.12), the closed-loop characteristic 

equation for the control system is found as: 

 

|       |      + (     +   )      +… (   +  )   + (  +  ) =0         (3.12) 

 

For the specified closed-loop pole locations        ……     the desired 

characteristic equation is: 

        ( +             =   +         ……    +  =0                   (3.13) 

 

The design objective is to find the gain matrix K such that the characteristic 

equation for the controlled system is identical to the desired characteristic 

equation. Thus, the gain vector K is obtained by equating coefficients of 

Equations (3.13) and (3.12). 

 

        -                                                                                                   (3.14) 

 

If the state model is not in the phase-variable canonical form, we can use the 

transformation technique to transform the given state model to the phase-variable 

canonical form. The gain factor is obtained for this model and then transformed 

back to confirm with the original model. This procedure results in the following 

formula, known as Ackermann’s formula. 

 

K=[     ]   
                                                                      (3.15) 

 

Where   (A) is given by: 

       =    +           +     A +   I                                                 (3.16)  
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 The function [K,  ] = placepol (A, B, C, p) is developed for the pole-placement 

design. A, B, and C are system matrices and p is a row vector containing the 

desired closed-loop poles. This function returns the gain vector K and the closed- 

loop system matrix   . Also, the MATLAB control system toolbox contains two 

functions for pole-placement design. Function K =acker (A, B, p) is for single 

input systems, and function K = place (A, B, p), which uses a more reliable 

algorithm, is for multi-input systems.  

The condition that must exist to place the closed-loop poles at the desired 

location is to be able to transform the given state model into phase-variable 

canonical form [7]. 

 

 

   

 

 

    

 

     


