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CHAPTER TWO 

CONTROL SYSTEM 

2.1 Previous Work 

Several research works recently have discussed the inverted pendulum control 

throughout these research works, some mathematical theories have been 

developed and utilized for addressing this issues. 

This paper [2] is about the Inverted pendulum which is a classic control problem, 

involves the mechanism of balance the inverted pendulum system. For display 

purposes, it is like trying to balance broomstick on the finger. To study this 

problem, we have to take into account the experimental system which consists of 

a pendulum, which is free to rotate 360 degrees. This study involves the complete 

system including all mechanical hardware, software and design at minimal cost. 

Three major subsystems that make this design:  a mechanical system, feedback 

network which includes sensors and methods for reading and a driver and its 

interface with mechanical system. 

The objective is to design a mechanical system for the problem of the inverted 

pendulum, and then implement a feasible controller. The controller should 

minimize both the displacement of the carriage and the angle of the pendulum. 

The system should be standalone. This study provides a chance of designing a 

controller for a system that has a good dynamic behavior and hence the 

consideration for the transient response is emphasized. The model for a pendulum 

system which used feedback control to keep the pendulum in the upright position 

and design a controller for this system and show that if the delay time of sampling 

is not too large, then still the local controller stabilizes the system. When the time 

delay is large enough, stability is lost. 
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This paper [3] is about control of an inverted pendulum which is one of the most 

classical problems for control engineering. The objective of this study is to design 

a controller which is capable of driving the pendulum from its (hanging-down) 

position to (upright) position and then holding it there. In order to get some sense 

about how well the linear model represents the original nonlinear system by 

simulate the dynamics of the system using both the linear and non-linear models 

and then compare their simulation outputs. The simulation will not only verify the 

linear model, but also establish a threshold for us to know the threshold of the 

linear model.  

The controller of the whole system consists of three parts: destabilizing 

controller, stabilizing controller, and mode controller. The destabilizing 

controller, as the name implies, oscillates the arm until it has built up enough 

energy to break the initial stable (hanging-down) state and get the pendulum into 

an almost upright but unstable state. Then the stabilizing controller is turned on to 

stabilize the pendulum in its upright sate. The mode controller determines when 

to switch between the destabilizing controller and stabilizing controller. 

Destabilizing controller will essentially drive the position of the arm in order to 

get away from the stable “hanging-down” position of the pendulum. It simply 

makes sense that, by moving the arm back and forth strongly enough, it can 

eventually swing up the pendulum. Hence, the first thing we need to do is to 

design a position controller which can swing the arm to achieve the destabilizing 

goal and design a positive feedback controller to destabilize the pendulum and 

eventually swing up it. 

The purpose of the mode controller is to track the pendulum angle (θ) and 

facilitate switching between the destabilizing controllers and stabilizing 

controller. This controller is to be enabled when (θ) is in the neighborhood of 

zero, within the threshold of (θ) (currently set to 10 degrees). The rotary inverted 

pendulum system has two degrees of freedom. In general, to maintain the 
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pendulum in the upright position by feedback (θ) only not enough. Using the 

SISO design tool in the control system toolbox, and design a stabilizing PID 

controller for the system described by the transfer function, by simulate the 

stabilizing controller by feeding back (θ) only. From the simulation results, the 

pendulum can reject a pulse disturbance, but the rotating arm will rotate crazily 

by feedback (θ) only. 

This paper [4] is about the design a controller that stabilizes an inverted 

pendulum. The first step in designing the controller was to identify the system. 

Lead and lag compensators were created to help stabilize the system. A transfer 

function in the continuous time domain was derived first for the hanging 

pendulum system which inverted for uses in the inverted pendulum system.  The 

inverted pendulum transfer function is use in the microcontroller. Calculations for 

the lead controller are done using the MATLAB function pole location and the 

lag compensator was designed to be a balance between rise time effects and 

stability issues. The controller is found that by increasing the gain and moving the 

lead pole farther left, increased a smaller overshoot could be attained. The 

theoretical model of the pendulum did a very good job of predicting rise time and 

settling time. However the SIMULINK model way under predicted the amount of 

overshoot experienced by the system. This difference in overshoot can be 

explained in the way that the microcontroller inputs torque as well as assumptions 

made in the creation of the transfer function. To improve the accuracy of the 

controller, a few things could be done. A different microcontroller could be used 

that accepts decimal inputs.  Additionally, the efficiency of the evaluation of the 

system could be increased by purchasing a microcontroller that uploads 

significantly faster.  A majority of the analysis time for the pendulum was spent 

waiting for the program to upload. 
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2.2 Introduction to Control System             

Control system is an important mechanism which alters the state of the system 

based on the input to the system. An efficient control system enhances the 

productivity of components by providing fine control over the desired range. In 

the nature everything is controlled or otherwise leads to catastrophic manner 

which creates a huge damage. In the same way in and around you everything is 

controlled by some component to ensure the stability. For example a light in a 

room is controlled by an electric switch. When a switch is on electricity flows and 

the light will be on, same for the reverse operation. The basic of control system 

consists of three components: 

1. Input. 

2. Logic operation. 

3. Output or decision device. 

Input is the cause parameter on which the control system acts, the logic operation 

is the intended or desired operation to perform on the input for generating a new 

output state, and the output is drive parameter which actuates the end component 

to perform the desired task. These can be open loop or closed loop control system 

depends on output feedback. Block diagram reduction helps in analysis and 

simplification of control system. 

2.2.1 Open loop and closed loop system 

There are two common classes of control systems, open loop control systems and 

closed loop control systems. In open loop control systems output is generated 

based on inputs, and utilizes an actuating device to control the process directly 

without using feedback as shown in Figure2.1. 
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Figure 2.1: Open loop control system 

In closed loop control systems current output is taken into consideration and 

corrections are made based on feedback. A closed loop system is also called a 

feedback control system. The human body is a classic example of feedback 

systems. A closed-loop control system uses a measurement of the output as 

feedback of this signal to compare it with the reference or command signal as 

illustrated in Figure 2.2. 

 

 

Figure 2.2: Closed-loop feedback system with external disturbances  

and measurement noise 

 

In case of feedback systems, a control loop, including sensors, control algorithms 

and actuators, is arranged in such a fashion as to try to regulate a variable at a set 

point or reference value.  An example of this may increase the fuel supply to a 

furnace when a measured temperature drops. Control systems that include some 

sensing of the results they are trying to achieve are making use of feedback and so 

can, to some extent, adapt to varying circumstances. Open-loop control systems 

do not make use of feedback, and run only in pre-arranged ways. 

http://en.wikipedia.org/wiki/Feedback
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Setpoint_%28control_system%29
http://en.wikipedia.org/wiki/Setpoint_%28control_system%29
http://en.wikipedia.org/wiki/Reference_value
http://en.wikipedia.org/wiki/Open-loop_controller
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2.2.2 Classical and modern control system 

There are essentially two methods to approach the problem of designing a new 

control system: the classical and modern approaches. 

Classical and modern control methodologies are named in a misleading way, 

because the groups of techniques called “classical” were actually developed later 

than the techniques labeled "modern". However, in terms of developing control 

systems, modern methods have been used to great effect more recently, while the 

classical methods have been gradually falling out of favor. Most recently, it has 

been shown that classical and modern methods can be combined to highlight their 

respective strengths and weaknesses. 

Classical methods are methods involving the Laplace transform domain. Physical 

systems are modeled in the so-called "time domain", where the response of a 

given system is a function of the various inputs, the previous system values, and 

time. As time progresses, the state of the system and its response change. 

However, time-domain models for systems are frequently modeled using high-

order differential equations which can become impossibly difficult for humans to 

solve and some of which can even become impossible for modern computer 

systems to solve efficiently. To counteract this problem, integral transforms, such 

as the Laplace transform and the Fourier transform, can be employed to change 

an Ordinary Differential Equation (ODE) in the time domain into a regular 

algebraic polynomial in the transform domain. Once a given system has been 

converted into the transform domain it can be manipulated with greater ease and 

analyzed quickly by humans and computers alike. Modern control methods, 

instead of changing domains to avoid the complexities of time-domain ODE 

mathematics, converts the differential equations into a system of lower-order time 

domain equations called state equations, which can then be manipulated using 

techniques from linear algebra. 
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2.3 Analysis and Design of Control System 

Control systems are designed to perform specific tasks. The requirements 

imposed on the control system are usually spelled out as performance 

specifications. The specifications may be given in terms of transient response 

requirements (such as the maximum overshoot and settling time in step response) 

and of steady-state requirements (such as steady-state error in following ramp 

input) or may be given in frequency-response terms. The specifications of a 

control system must be given before the design process begins. 

 In the process of designing a control system, mathematical model of the control 

system and adjust the parameters of a compensator were set up. The most time-

consuming part of the work is the checking of the system performance by 

analysis with each adjustment of the parameters. The designer should use 

MATLAB or other available computer package to avoid much of the numerical 

drudgery necessary for this checking. The basic aspects of design compensation 

systems are the modification of the system dynamics to satisfy the given 

specifications. The approaches to control system design and analysis are: 

2.3.1 Root-locus method 

The basic characteristic of the transient response of a closed-loop system is 

closely related to the location of the closed-loop poles. The root-locus method 

proves to be quite useful, since it indicates the manner in which the open-loop 

poles and zeros should be modified so that the response meets the system 

performance specifications. This method is particularly suited to obtaining 

approximate results very quickly. By using rlocus (num, den) MATLAB 

command for plotting root locus response, both vectors num and den must be 

written in descending powers of s. 
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The design by the root-locus method is based on reshaping the root locus of the 

system by adding poles and zeros to the system’s open-loop transfer function and 

forcing the root loci to pass through desired closed-loop poles in the s plane. The 

characteristic of the root-locus design is its being based on the assumption that 

the closed-loop system has a pair of dominant closed-loop poles. This means that 

the effects of zeros and additional poles do not affect the response characteristics 

very much. In designing a control system, if other than a gain adjustment (or 

other parameter adjustment) is required, the original root loci should be modify 

by inserting a suitable compensator. 

Once the effects on the root locus of the addition of poles and/or zeros are fully 

understood, we can readily determine the locations of the pole(s) and zero(s) of 

the compensator that will reshape the root locus as desired. In essence, in the 

design by the root locus method, the root loci of the system are reshaped through 

the use of a compensator so that a pair of dominant closed-loop poles can be 

placed at the desired location. It should be clear that it is possible to sketch a 

reasonably accurate root-locus diagram for a given system by simple rules.  At 

preliminary design stages, not need the precise locations of the closed-loop poles. 

Often their approximate locations are all that is needed to make an estimate of 

system performance. Thus, it is important that the designer have the capability of 

quickly sketching the root loci for a given system [5]. 

2.3.2 Frequency-response method 

 In frequency-response methods, the frequency of the input is varied signal over a 

certain range and study the resulting response. In fact, the frequency response and 

root-locus approaches complement each other. One advantage of the frequency-

response approach is that we can use the data obtained from measurements on the 

physical system without deriving its mathematical model. In many practical 

designs of control systems both approaches are employed. Control engineers must 

be familiar with both. Frequency-response methods were developed by Nyquist, 
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Bode, and many others. The frequency-response methods are most powerful in 

conventional control theory. The types of the frequency-response methods are: 

(1) Nyquist plot: The Nyquist stability criterion determines the stability of a 

closed-loop system from its open-loop frequency response and open-loop poles. 

The Nyquist stability criterion provides a convenient method for finding the 

number of zeros of 1 + GH(s) in the right-half s-plane directly from the Nyquist 

plot of GH(s). The Nyquist stability criterion is defined in terms of point (-1, 0) 

on the Nyquist plot or the zero-dB,      point on the Bode plot. The Nyquist 

criterion is based upon a theorem of complex variable mathematics due to 

Cauchy. The Nyquist diagram is obtained by mapping the Nyquist path into the 

complex plane via the mapping function GH(s). The Nyquist path is chosen so 

that it encircles the entire right-half s-plane. When the s-plane locus is the 

Nyquist path, the Nyquist stability criterion is given by: 

 

 Z = N + P                                                                                                        (2.1) 

 

Where 

P = Number of pair of poles of GH(s) in the right-half s-plane. 

N = Number of clockwise encirclements of (-1, 0) point by the Nyquist diagram. 

Z = Number of zeros of 1 +  H ( ) in the right-half s-plane. 

For the closed-loop system to be stable, Z must be zero, that is: 

 

N =- P                                                                                                          (2.2) 

 

If the open-loop transfer function  H( ) does not have poles in the right-half s-

plane (P = 0), it is not necessary to plot the complete Nyquist diagram; the polar 

plot for ω increasing from 0+ to   is sufficient. Such an open-loop transfer 
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function is called minimum- phase transfer function. For minimum-phase open-

loop transfer functions the closed-loop system is stable if and only if the polar 

plot lies to the right of (-1, 0) point. For a minimum-phase open-loop transfer 

function the criterion is defined in terms of the polar plot crossing with respect to 

(-1, 0) point as follows: 

 If Nyquist locus not enclosed the point (-1, 0) the system is stable, if it is passed 

through the point (-1, 0) the system is critically stable and finally if it enclosed the 

point (-1, 0) the system is unstable. 

If P is not zero, the closed-loop system is stable if and only if the number of 

counterclockwise encirclements of the Nyquist diagram about (-1, 0) point is 

equal to P. The MATLAB control system toolbox function nyquist(num, den, ) 

can obtain the Nyquist diagram by mapping the Nyquist path. However, the 

argument   is specified as a real number. We must specify  =     , in order to 

map a complex number   = a+  b, since the above function automatically 

multiplies   by the operator  . To avoid this, the developed function 

cnyquist(num, den,    can be used, where the argument s must be specified as a 

complex number. In defining the Nyquist path care must be taken for the path not 

to pass through any poles or zeros of  H( ) [6].  

(2) Bode plot: Bode diagram consists of two graphs:  One is a plot of the 

logarithm of the magnitude of a sinusoidal transfer function; the other is a plot of 

the phase angle; both are plotted against the frequency on a logarithmic scale. The 

standard representation of the logarithmic magnitude of  (j ) is 20 log 

|     | where the base of the logarithm is 10.The unit used in this representation 

of the magnitude is the decibel, usually abbreviated dB. In the logarithmic 

representation, the curves are drawn on semi log paper, using the log scale for 

frequency and the linear scale for either magnitude (but in decibels) or phase 

angle (in degrees). The frequency range of interest determines the number of 
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logarithmic cycles required on the abscissa. The main advantage of using the 

Bode diagram is that: 

1) It is based on the asymptotic approximation, which provides a simple method 

for sketching an approximate log-magnitude curve is available. 

2) The multiplication of various magnitude appears in the transfer function can 

be treated as an addition, while division can be treated as subtraction as we are 

using a logarithmic scale. 

3) With the help of this plot only, the comment on the stability of the system can 

be done without any calculations. 

4) Bode plots provides relative stability in terms of gain margin and phase 

margin. 

5) It also covers from low frequency to high frequency range. 

 

The main advantage in using the logarithmic plot is the relative ease of           

plotting frequency-response curves.  The basic factors that very frequently occur 

in an arbitrary transfer function     (jω) H(jω) are : 

1. Gain K: This factor has a slope of zero dB per decade. There is no corner 

frequency  at which the two asymptotes cuts or meet each other is known as break 

frequency or corner frequency corresponding to this constant term. The phase 

angle associated with this constant term is also zero. 

2. Integral and derivative factor 1/ (j ω)
 n

: This factor has a slope of -20 × n 

(where n is any integer) dB per decade. There is no corner frequency 

corresponding to this integral factor. The phase angle associated with this integral 

factor is -90 × n here n is also an integer. 

3. First order factor 1/ (1+jωT): This factor has a slope of -20 dB per decade. The 

corner frequency corresponding to this factor is 1/T radian per second. The phase 

angle associated with this first factor is -tan
- 1

(ω T). 
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4. Second order or quadratic factor [{1/ (1+ (2ζ/ω)} × (j ω) + {(1/ω
2
)} × (j ω)

 2
)]: 

This factor has a slope of -40 dB per decade. The corner frequency corresponding 

to this factor is ω 
n
 radian per second. The phase angle associated with this first 

factor is - tan
-1

{(2ζω / ω n) / (1-(ω / ω n) 
2
)}. 

Once the logarithmic plots of these basic factors had became familiar, it is 

possible to utilize them in constructing a composite logarithmic plot for any 

general form of  (jω)H(  ) by sketching the curves for each factor and adding 

individual curves graphically, because adding the logarithms of the gains 

corresponds to multiplying them together. 

 Gain margin and phase margin 

Gain margin     is the change in open-loop gain, required at      of phase shift 

to make the closed-loop system unstable. It is usually expressed in dB.  

Phase margin      is the change in open-loop phase shift required at unity gain 

to make the closed loop system unstable.  It is usually expressed in phase. Phase 

crossover point in the Bode plot is the point where phase plot intersect with the 

     horizontal line. The frequency at which the point of intersection occurs is 

called phase crossover frequency. Gain crossover point in the Bode plot is the 

point where the magnitude plot intersects with 0 dB line. The frequency at which 

the intersection occurs is called gain crossover frequency. In the Bode plot, gain 

margin (dB) is the total difference between the magnitude plots at 0dB line till the 

phase crossover frequency. The phase margin is the total difference between the 

phase plots at 180 degree line till the gain cross over frequency. 

 Stability conditions of Bode plots 

Stability conditions are given below: 

1. Stable system: Phase crossover frequency should be greater than gain 

crossover frequency. 
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2. Marginal stable system: Both phase crossover frequency and gain crossover 

frequency should be zero. 

 3. Unstable system: If any of them is negative, gain crossover frequency should 

be greater than phase crossover frequency. 

An advantage of the frequency-response approach is that: frequency-response 

tests are, in general, simple and can be made accurately by use of readily 

available sinusoidal signal generators and precise measurement equipment. Often 

the transfer functions of complicated components can be determined 

experimentally by frequency-response tests. In addition, the frequency-response 

approach has the advantages that a system may be designed so that the effects of 

undesirable noise are negligible and that such analysis and design can be 

extended to certain nonlinear control systems. 

2.4 System Compensation 

Setting the gain is the first step in adjusting the system for satisfactory 

performance. In many practical cases, however, the adjustment of the gain alone 

may not provide sufficient alteration of the system behavior to meet the given 

specifications. As is frequently the case, increasing the gain value will improve 

the steady-state behavior but will result in poor stability or even instability. It is 

then necessary to redesign the system (by modifying the structure or by 

incorporating additional devices or components) to alter the overall behavior so 

that the system will behave as desired. Such a redesign or addition of a suitable 

device is called compensation which inserted into the system for the purpose of 

satisfying the specifications is called a compensator. The compensator 

compensates for deficient performance of the original system [7]. The types of 

compensation are: 
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 Lead Compensation  

Essentially yields an appreciable improvement in transient response and a small 

change in steady-state accuracy. It may accentuate high-frequency noise effects. 

The lead compensation transfer function can be obtained with the electrical RC 

network as shown in Figure 2.3.  

 

 

                                      Figure 2.3: Lead compensation circuit 

 

The transfer function: 
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Let                                         
    

     
  , α=  

     

  
   

      
     

       
                                                                                     (2.4)                                       

Which is equal to Equation (2.5) when an additional cascade gain K is inserted, 

 p = 1/τ and z = 1/ (ατ).  
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                                                                                          (2.5)   

Figure 2.4 show that the pole-zero diagram of lead compensation.                                                                            

 

                                 Figure 2.4: Pole-zero diagram of lead compensation 

 Lag compensation 

On the other hand, yields an appreciable improvement in steady-state accuracy at 

the expense of increasing the transient-response time. Lag compensation will 

suppress the effects of high-frequency noise signals. The lag compensation 

transfer function can be obtained with the network shown in Figure 2.5. 

 

 

 

 Figure 2.5: Lag compensation circuit 
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The transfer function:  

  ( ) = 
    

 

  

      
 

  

 = 
        

               
                                          (2.6) 

                                                       

When τ =   C and   = (   +  )/  , we have the lag compensation transfer 

function: 

 

  (s)=
    

     
=

 

 

   

   
                                                                 (2.7)                                                                        

 

Where z = 1/τ and   p = 1/ (ατ). Figure 2.6 shows the pole-zero diagram of lag 

compensation. 

 

 

 

Figure 2.6: Pole-zero diagram of lag compensation 

 Lead–lag compensation 

Lead–lag compensation combines the characteristics of both lead and lag 

compensations. The use of a lead or lag compensator raises the order of the 

system by 1 (unless cancellation occurs between the zero of the compensator and 

a pole of the uncompensated open-loop transfer function). The use of a lag–lead 
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compensator raises the order of the system by 2 [unless cancellation occurs 

between zero(s) of the lag–lead compensator and pole(s) of the uncompensated 

open-loop transfer function], which means that the system becomes more 

complex and it is more difficult to control the transient-response behavior. The 

particular situation determines the type of compensation to be used [7]. The 

circuit network of lead-lag compensator as shown in Figure 2.7. 

 

 

                                 Figure 2.7: Lead–lag compensation circuit 

 

The transfer function of lead-lag compensator is: 

 

 

      
     

     
=

                  

                              
                       (2.8)                                                                  

 

 Let τ  =    ,    τ         ,τ  τ =              , 

and   τ τ =        .Then α   = 1, and Equation (2.8) becomes: 

 

     

     
 = 

                

              
                                                         (2.9)                                  
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2.5 State Space Analysis and Design  

 The state-space method is the modern approach for control system design and 

analysis. The controllability and observability are important structural properties 

of a control system. The controllability and observability analysis can be used to 

check whether the system is controllable or observable. The controllability and 

observability staircase are useful when the system has uncontrollable or 

unobservable states. The function grammian computes the controllability and 

observability grammian of a state-space model.  

 Pole placement design is one of the attractive features of the state-space design 

method. It allows us to place closed-loop poles to locations that will correspond 

to desired dynamic response. Given the state equation and a desired closed-loop 

pole vector, pole placement computes a gain matrix K according to (A, B) and p 

such that the full-state feedback places the closed-loop poles at the desired 

locations. 

2.5.1 Controllability and observability 

 If the system is controllable and observable, then we can accomplish the design 

objective of placing the poles precisely at the desired locations to meet the 

performance specifications .Full-state feedback design commonly relies on pole-

placement techniques.  It is important to note that a system must be completely 

controllable and completely observable to allow the flexibility to place all the 

closed-loop system poles arbitrarily. The concepts of controllability and 

observability were introduced by Kalman in the 1960s. Rudolph Kalman was a 

central figure in the development of mathematical systems theory upon which 

much of the subject of state variable methods rests. Kalman is well known for his 

role in the development of the so-called Kalman filter. The state variable 

compensator employing full-state feedback in series with full- state observer is 

shown in Figure 2.8. 
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Figure 2.8: State variable compensator employing full-state feedback in series 

with a full- state observer 

 

A system is completely controllable if there exists an unconstrained control u(t) 

that can transfer any initial state      to any other desired location      in a finite 

time,   ≤ t ≤ T. 

 For the system 

 

  ̇=                                                                                                          (2.10)                             

 

The system is controllable by examining the algebraic condition 

 Rank[B AB      ...     ]= n.                                                                     (2.11) 

  

The matrix A is an   n× n constant matrix and B is an n×1 matrix. 

 For multi-input systems, B can be n × m, where m is the number of input for a 

single-input, single-output system, the controllability matrix (  )   is described in 

terms of A and B as: 
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  = [B AB      ...     ]                                                                            (2.12) 

 

Which is an n × n matrix Therefore, if the determinant of (  ) is nonzero, the 

system is controllable. Advanced state variable design techniques can handle 

situations where in the system is not completely controllable, but where the states 

(or linear combinations thereof) that cannot be controlled are inherently stable. 

These systems are classified as stabilizable. If a system is completely 

controllable, it is also stabilizable. The Kalman state-space decomposition 

provides a mechanism for partitioning the state-space so that it becomes apparent 

which states (or state combinations) is controllable .The controllable subspace is 

thus exposed, and if the system is stablizable, the control system design can be 

completed. A system is completely observable if and only if there exists a finite 

time T such that the initial state     can be determined from the observation 

history y(t) given the control u(t) ( 0 ≤ t ≤ T). 

Consider the single-input, single-output system: 

 

   ̇ =          and     y =  ,                                                                        (2.13) 

 

Where C is a 1 × n row vector and   is an n ×1 column vector. This system is 

completely observable when the determinant of the observability matrix    is 

nonzero. 

 

   [

 
  
 

     

]                                                                                                (2.14) 

                                           

This is an   n × n matrix. 
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 The approach to state-variable design involves first verifying that the system 

under consideration is completely controllable and completely observable. If so, 

the pole placement design technique considered here can provide acceptable 

closed-loop system performance [7]. 

2.5.2 Full-state feedback control design 

The first step in full-state variable feedback design process requires assuming that 

all the states are available for feedback, means the complete state x(t) for all t. 

The control feedback given by is given by: 

 

u = -K x                                                                                                   (2.15) 

 

Determining the gain matrix K is the objective of the full-state feedback design 

procedure. The beauty of the state variable design process is that the problem 

naturally separates into a full-state feedback component and an observer design 

component.  

These two design procedures can occur independently, and in fact, the separation 

Principle provides the proof that this approach is optimal. The stability of the 

closed-loop system is guaranteed if the full-state feedback control law stabilizes 

the system (under the assumption of access to the complete state) and the 

observer is stable (the tracking error is asymptotically stable). The full-state 

feedback block diagram is illustrated in Figure 2.9. 
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Figure 2.9: Full-state feedback block diagram (with no reference input) 
 
 

 

The closed-loop system: 

 

 ̇=      =Ax-BK  = (A-BK)                                                                     (2.16) 

  

The characteristic equation associated with Equation (2.16) is:  

  

det( 𝜆I - (A - BK)) =0                                                                                 (2.17) 

 

 If all the roots of the characteristic equation lie in the left half-plane, then the 

closed-loop system is stable. In other words, for any initial condition       , it 

follows that: 

 

  (t)=                as t                                                                      (2.18)  

 

Given the pair (A, B),to determine  K to place all the system closed loop poles in 

the left half-plane after checking  the system is completely controllable. 
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 If and only if the controllability matrix (  ) is full rank (for a single-input, 

single-output system, full rank implies that      is invertible). The addition of a 

reference input can be written as: 

 

u(t) = -K x(t)+Nr(t)                                                                                    (2.19) 

 

Where r(t) is the reference input. When r(t) = 0 for all t >   , the control design 

problem is known as the regulator problem. That is, we want to compute K so that 

all initial conditions are driven to zero in a specified fashion (as determined by 

the design specifications). 

When using this state variable feedback, the roots of the characteristic equation 

are placed where the transient performance meets the desired response. 

 

 

 

 

             

 

 

 

 

 

 

 

 


