

الآية

(وَقُلْ اعْمَلُوا فَسِيرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ

وَالْمُؤْمِنُونَ وَسْتُرُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ

فَيَنْبَئُكُمْ بِمَا كُنْتُمْ تَعْمَلُونَ)

صدق الله العظيم

النوبة(105)

Dedication

This work is dedicated to my beloved parents, who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve. Also I dedicated to all the people in my life who touch my heart.

ACKNOWLEDGMENT

In the name of Allah, the Beneficent, the Merciful, first praise is to Allah, the Almighty, on whom ultimately we depend for sustenance and guidance. Second my sincere gratitude goes to my supervisor,

Ustaz. Abdalla Salih Ali, whose encouragement, guidance and support were really valuable during every stage of this research.

I also offer my regards to the School of Electrical and Nuclear Engineering, Sudan University of Science and Technology, its leadership and the staff for providing me with an academic base, which has enabled me to take up this study.

Finally, I would like to express the profound gratitude to my beloved family and friends who supported me in any respect during the completion of the research.

ABSTRACT

This research investigates the stabilization of the inverted pendulum system based on a full state- feedback controller via pole placement method where the closed loop poles to be placed at desired locations. The efficiency of the pole placement technique has been verified the MATLAB/SIMULINK software. Simulation results show good match between predicted and actual outputs.

المستخلص

هذا البحث لفحص استقراريه نظام البندول المعكوس اعتمادا على وحدة تحكم الحالة للتغذية الخافية عبر طريقة احلال القطب حيث توضع اقطاب الحلقة المغلقة في مواقعها المرغوبة . تم التحقق من كفاءة تقنية احلال الاقطاب باستخدام برنامج MATLAB/SIMULINK ، حيث اظهرت نتائج المحاكاة تطابق جيد بين المخرجات المتوقعة والفعالية.

TABLE of CONTENTS

	page
الآية	i
Dedication	ii
Acknowledgement	iii
Abstract	iv
المستخلص	v
Table of Contents	vi
List of Figures	ix
List of Tables	x
CHAPTER ONE: INTRODUCTION	
1.1 General Review	1
1.2 Problem Statement	1
1.3 Objectives	2
1.4 Methodology	2
1.5 Thesis Layout	2
CHAPTER TWO: CONTROL SYSTEM	
2.1 Previous Work	3
2.2 Introduction to Control System	6
2.2.1 Open loop and closed loop system	6
2.2.2 Classical and modern control system	8
2.3 Analysis and Design of Control System	9
2.3.1 Root-locus method	9
2.3.2 Frequency-response method	10
2.4 System Compensation	15
2.5 State Space Analysis and Design	20

2.5.1 Controllability and observability	20
2.5.2 Full-state feedback control design	23
CHAPTER THREE: CONTROLLER IMPLEMENTATION OF INVERTED PENDULUM SYSTEM	
3.1 Inverted Pendulum System	26
3.2 Inverted Pendulum Classification	27
3.2.1 Linear inverted pendulum	27
3.2.2 Circular inverted pendulum	27
3.2.3 Planar inverted pendulum	27
3.2.4 Configurable Inverted Pendulum	28
3.3 Inverted Pendulum Properties	28
3.4 Applications of Inverted Pendulum	29
3.5 Inverted Pendulum Control	30
3.6 The Implementation of Pole Placement	33
CHAPTER FOUR: SYSTEM SIMULATION AND RESULTS	
4.1 Simulation Modeling	38
4.2 System Identification	38
4.3 System Analysis	39
4.3.1 Open-loop step response of the system	39
4.3.2 Stability of the system	41
4.3.3 Controllability of the system	42
4.4 Designing Full-state Feedback Controller	43
4.4.1 Pole placement method	43
4.4.2 Simulation results	46
4.4.3 Discussion	48
CHAPTER FIVE: CONCULUSION AND RECOMMENDATIONS	
5.1 Conclusion	49

5.2 Recommendations	49
References	50
Appendix A	A
Appendix B	B
Appendix C	C
Appendix D	D

LIST of FIGURES

Figure	Title	Page
2.1	Open loop control system	7
2.2	Closed-loop feedback system with external disturbances and measurement noise	7
2.3	Lead compensation circuit	16
2.4	Pole-zero diagram of lead compensation	17
2.5	Lag compensation circuit	17
2.6	Pole-zero diagram of lag compensation	18
2.7	Lead-lag compensation circuit	19
2.8	State variable compensator employing full-state feedback in series with a full- state observer	21
2.9	Full-state feedback block diagram (with no reference input)	24
3.1	An inverted pendulum balanced on a person's hand by moving the hand to reduce $\theta(t)$	30
3.2	A cart and an inverted pendulum	31
3.3	Control system design via pole placement	35
4.1	A cart and an inverted pendulum	39
4.2	SIMULINK model of inverted pendulum system	40
4.3	Open-loop response of an inverted pendulum	40
4.4	Pole-zero mapping of the system	42
4.5	Schematic diagram for inverted pendulum in state-space form with state feedback	45
4.6	SIMULINK diagram for inverted pendulum in state-space form with state feedback	45
4.7	Step response using pole placement -1 st test	46
4.8	Step response using pole placement-2 st test	47

LIST of TABLES

Table	Title	Page
4.1	The parameters of inverted pendulum system	38
4.2	The parameters of transient response	44
4.3	Desired poles and gain vectors for test1	46
4.4	Desired poles and gain vectors for test 2	47