

الآية القرآنية

“لقد أرسلنا رسلنا بالبينات و أنزلنا معهم
الكتاب و الميزان ليقوم الناس بالقسط و أنزلنا
الحديد فيه بأس شديد و منافع للناس و ليعلم
الله من ينصره و رسله بالغيب إن الله قوي عزيز”

صدق الله العظيم

الحديد (25)

Dedication

To my parents, sisters and brothers who have continuously encouraged and patiently.

Acknowledgements

I would like to thank my supervisor Dr. Abusamra Awad Attaelmanan for his guidance and patience during all stages of this research.

ABSTRACT

In this research, the elastic and plastic analyses of unbraced 2D steel frames were carried out in order to study their structural behavior. The first and second order elastic and plastic analysis 2D frames were considered in this research. The first and second order analysis of plane frames were carried out using Mastan2 and SAP 2000 and the comparison of analysis results was done. The critical load factors were determined using mechanism method, which was programmed in MATLAB code. The results of these factors for each 2D frame using MATLAB code were compared with that obtained by Mastan2 and SAP 2000. The plastic analysis of unbraced frames were carried out using elastic-plastic hinge method. The elastic and plastic design of plane frames were done using Excel spread sheet. The comparison of analysis results between the Mastan2 and SAP 2000 was about (-22.79 – 16.25) % for bending moments, (-11.06 – 4.56)% for shear forces, (-18.89 – 24.61)% for deflections and (-6.35 – 2.56)% for axial forces. The plastic design of plane frames gives sections smaller than elastic one.

التجريـد

فى هذا البحث تم اجراء التحليل للهياكل الفولاذية ثنائية الابعاد غير المقيدة لدراسة السلوك المرن واللدن لها. كما اخذ فى الاعتبار هذا البحث التحليل المرن واللدن من الدرجة الاولى والثانية لهذه الهياكل. تم تحليل الهياكل الفولاذية بواسطة التحليل المرن واللدن من الدرجة الاولى والثانية باستخدام برنامج SAP 2000 و MASTAN2 كما تم مقارنة النتائج المتحصل عليها. تم حساب معامل الانهيار للهياكل باستخدام طريقة الية الحركة وذلك نمذجتها بواسطة برنامج MATLAB. تمت مقارنة النتائج المتحصل عليها من برنامج MATLAB مع تلك المتحصل عليها بواسطه برنامج 2000 SAP و برنامج MASTAN2. تم اجراء التحليل اللدن للهياكل الغير مقيدة باستخدام طريقة المفاصل المرنـة - اللدنـة. كما تم اجراء التصميم المرن واللدن باستخدام برنامج الاكسل. كما وجد ان الفرق فى نتائج التحليل باستخدام برنامج MASTAN2 وبرنامج SAP 2000 يتراوح من (16.25 – 22.79) % للعزوم، (4.56 – 11.06) % لقوى المحورية (2.56 – 6.35) % لقوى القص، و (24.61 – 18.89) % للانحراف. كما وجد ان التصميم اللدن يعطى مقاطع صغيرة للعناصر الانشائية مقارنة مع التصميم المرن.

LIST OF CONTENTS

Contents		Pages
	الآد	I
	Dedication	II
	Acknowledgements	III
	Abstract: English	IV
	Abstract: Arabic	V
	List of Contents	VI
	List of Tables	IX
	List of Figures	X
	List of Abbreviations	XI
Chapter One	INTRODUCTION	
1.1	Introduction	1
1.2	Research Problem	1
1.3	Research Objectives	1
1.4	Research layout	2
1.5	Research methodology	2
Chapter Two	LITERATURE REVIEW	
2.1	Introduction	3
2.2	Previous Studies	3
2.3	Elastic and Plastic Behavior of Steel	4
2.4	Moment-Curvature Relationship in an Elastic–Plastic Range	5
2.5	Type of steel frames	9
2.5.1	Rigid Frames	9
2.5.2	Simple Frames (Pin-Connected Frames)	11
2.5.3	Bracing Systems	13
2.5.4	Sway Frames and Non-Sway Frames	13
2.6	Steel Frames Analysis Methods	15
2.6.1	Elastic Analysis	15
2.6.1.1	First-order elastic analysis	16
2.6.1.2	Second-order Elastic Analysis	16
2.6.2	Plastic analysis	17

2.6.2.1	Manual Plastic Analysis Methods	17
2.6.2.2	First Order plastic Analysis	20
2.6.2.3	Second Order Plastic Analysis	21
2.6.2.3.1	Elastic –Plastic hinge method	21
2.6.2.3.2	Plastic zone method	21
2.6.2.3.3	Refined Plastic hinge method	22
2.7	Structural Loads	22
2.7.1	Analytical Procedure for Calculating Wind Force	23
Chapter three	ANALYSIS AND DESIGN METHODS OF 2D FRAMES	
3.1	Introduction	27
3.2	Analysis of 2D unbraced Frames Using MATLAB	27
3.3	Elastic and Plastic Analysis of Frames Using MASTAN2	32
3.4	Analysis of Frames Using SAP 2000	33
3.4.1	First Order Elastic analysis of 2D frame	33
3.4.2	Second Order Elastic Analysis	34
3.5	Elastic- Plastic Analysis of Frames	34
3.5.1	Distributed Load in Elastic- Plastic Analysis Method	36
3.6	Design of Steel Frames	38
3.6.1	Elastic Design of Structural Elements	38
3.6.2	Plastic Design of Structural Elements	44
Chapter Four	ANALYSIS AND DESIGN of UNBRACED 2D FRAMES	
4.1	Introduction	49
4.2	Loads Calculation	50
4.3	Load combinations for elastic analysis	53
4.4	Results of unbraced 2D frames Analysis	55
4.5	Excel Spread Sheet for MATLAB Code	65
4.6	Results Dissection	71
4.7	Elastic and Plastic Design of Frames Elements	80
Chapter Five	CONCLUSIONS AND RECOMMENDATIONS	
5.1	Conclusions	83
5.2	Recommendations and Suggestions for Future Work	83

	References	84
Appendices		
A	Chart of Calculate M/M _p	86
B	Elastic and Plastic Design of 2D Steel Frames	87
C	Distribution of Columns and Base Plates	137
D	Validation of The MATLAB Code	139

LIST OF TABLES

Table	Title	Page
2.1	Classification of Buildings and Other Structures for Wind	24
2.2	Importance Factor, I	24
4.1	Materials Properties and loading	51
4.2a	Dead Loads Calculate on Slab	52
4.2b	Dead and Live Loads Applied on Plane Frames	52
4.3a	Wind Load Data	52
4.3b	Calculate of Wind Load on Frames	53
4.4	Elastic analysis load combination	54
4.9-4.12	Elastic Analysis Results	56
4.13-4.16	Plastic Analysis Results	61
4.17-4.23	Excel Spread Sheet of Frame A-A-1	66
4.24	Critical Load Factors Using First Order Plastic Analysis	71
4.25	Critical Load Factors Using Second Order Plastic Analysis	71
4.26 – 4.31	Elastic and Plastic Design of 2D frames Tables	80

LIST OF FIGURES

Figure	Title	Page
2.1	Stress-strain behavior of a cross section	6
2.2	Elastic perfectly plastic behavior for steel	6
2.3	Plastic of a cross section	7
2.4	Moment-curvature relationship of a cross section	7
2.5	The $P-\Delta$ and $P-\delta$ effects	10
2.6	Types of Steel Frames	12
2.7	Braced and Unbraced Frame	13
2.8	Type of Mechanism for Single-Story Frames	19
3.1	Flow Chart of MATLAB for Analysis of 2D Frame	28
3.2	Member with a Linearly Varying Distributed Load	37
3.3	Flow chart of Elastic Design of Beam	39
3.4	Flow Chart of Elastic Design of Column	40
3.5	Flow Chart of Elastic Design of Base Plate	41
3.6	Flow chart of Elastic Design of Column Splice Connections	42
3.7	Flow Chart of Elastic Design of Beam Splice Connection	42
3.8	Flow Chart of Elastic Design of Beam Column Connections	43
3.9	Flow chart of plastic design of beam	45
3.10	Flow Chart of Plastic Design of Column	47
4.1	Typical plan Building Plan	49
4.2a	Longitudinal 2D Frame A-A	50
4.2b	Transverse 2D Frame B-B	50
4.3	Distribution of Loads on Beams	51
4.4	Load cases applied on the 2D frames for elastic analysis	55

List of Abbreviations

YF	Vertical Forces on Element
EWi	External Work for Beam Mechanism
IWi	Internal Work for Beam Mechanism
LFb	Critical Load Factor of Beams Mechanism
MPb	Plastic Moment of Beams
MPc	Plastic Moment of Columns
NS	Number of Storeys
NB	Number of Bays
XFF	Storey Horizontal Force
SH	Storey High
EWS	External Work for Sway Mechanism
IWS	Internal Work for Sway Mechanism
LFS	Sway Mechanism Load Factor
EWST	External Work for Sway Combination Mechanism
IWST	Internal Work for Sway Combination Mechanism
LFST	Sway Combination Mechanism Load Factor
EWC	External Work for Combination Mechanism
IWC	Internal Work for Combination Mechanism
LFC	Combination Mechanism Load Factor
EWCT	External Work for Total Combination Mechanism
IWCT	External Work for Total Combination Mechanism
LFCT	Total Combination Mechanism Load Factor
CLF	The Minimum Critical Load Factor
BS	Base Plate Element