الأستهــلال

: قال تعالى هُنَالِكَ الْوَلَايَةُ لِلَّهِ الْحَقِّ هُوَ خَيْرٌ } {تَوَابًا وَخَيْرٌ عُقْبًا {44

صدق الله العظيم (سورة الكهف الآية (44)

Dedication

To my mother Un known soldier in our home

To my father It's the greatest love that he holds

To my brothers
To my sisters
To my teachers
To science and knowledge
To all my friends

Acknowledgement

Before of all the praise and thanks be to Allah whom to be a scribed all perfection and majesty.

The thanks after Allah must be to my virtuous teacher

Dr. Rawia Abdelgani Elobaid Mohammed who

supervised this research and guide me in patience until
the result of this research are obtained.

I wish to express my thanks to the Sudan University of Science and Technology, department of physics.

My thanks also must be sent to all my friends and classmates for any support that make me complete this research.

Abstract

In this study that have two type of charge carriers in semiconductors, the electron and the hole, can contribute to a current, since the current in a semiconductor was determined largely by the number of electrons in the conduction band and the number of holes in the valence band. The mobility of charge carriers which relates the average drift velocity to the electric field. We can make a carrier go as fast as we like just by increasing the electric field. Also was studied the variation of mobility with temperature. At high temperature the mobility decreases, by the lattice atoms, at low temperature the mobility decreases also by ionized impurity. The carrier have a similar doping dependence: for low doping concentration, the mobility is almost constant. At higher doping concentration, the mobility decreases due to ionized impurity.

الخلاصة

توجد في اشباه الموصلات نوعين من حاملات الشحنة, الالكترون والفجوة التي تساهم في وجود تيار, حيث ان التيار في اشباه الموصلات يحدد بشكل كبير بواسطة عدد الالكترونات في نطاق التوصيل وعدد الفجوات في نطاق التكافؤ. والحركية بالنسبة لهذه الحاملات تتعلق بمتوسط سرعة الانجراف الي المجال الكهربي, وجعلت هذه الحاملات تتحرك بسرعة اكبر فقط بزيادة المجال الكهربي. وايضا درست تغاير الحركية مع درجة الحرارة, فعند زيادة درجة الحرارة تقل الحركية بواسطة زرات الشبيكة. وعند انخفاض درجة الحرارة تقل الحركية ايضا بواسطة الشوائب المتاينة. ووجدت درجة الحاملات تعتمد على المطعمات ايضا, فعندما يكون تركيز التطعيم اقل فالحركية تقريبا تكون ثابتة. وعند زيادة تركيز التطعيم الشوائب المتاينة ا

Contents

	الاستهلال	I	
	Dedications	ll l	
	Acknowledgement	Ш	
	Abstract	IV	
	Abstract Arabic	V	
	Chapter one		
1.1	introduction	1	
1.2	Importance of the study	1	
1.3	The aim of the study	2	
1.4	Thesis out line	2	
	Chapter two		
	Semiconductors		
2.1	introduction	3	
2.2	Free electron in semiconductor	3	
2.3	n-type semiconductors	4	
2.4	p-type semiconductors	5	
2.5	Energy band in semiconductors	6	
2.6	Doping of semiconductors	7	
2.7	Intrinsic semiconductors	8	

2.8	Extrinsic semiconductors	10
2.9	The pn-junction	10
2.9.1	Pn-junction at equilibrium	11
2.10	Conduction of pn-junction	12
2.11	Forward bias pn-junction	13
2.12	Reverse bias pn-junction	14
	Chapter three	
	Electrons and holes in	
	semiconductors	
3.1	introduction	15
3.2	Electrons and holes	15
3.2.1	Effective mass	16
3.3	Conductivity of charge carriers	17
3.4	The intrinsic carrier concentration	18
3.4.1	Electron concentration in the	19
	conduction band	
3.4.2	Hole concentration in the valence	21
	band	
3.4.3	Fermi level	22
3.5	Carrier drift	23
3.5.1	Drift current	23
3.5.2	Diffusion current	24
	Chapter four	
	Mobility of charge carriers in	
	semiconductors and results	
4.1	introduction	27
4.2	Electron and hole mobilities	27
4.3	Saturated drift velocity	29
4.4	Mobility variation with	30
	temperature	
4.5	Carrier concentration extremely	32
	high and low temperature	
4.6	Mechanism of carrier scattering	33
	Conclusion	38
	Recommendation	38
	References	39

List of figures

2.1	The energy gap between insulator metal and semiconductors	r, 3
2.2	The silicon atom	4
2.3	Donor and accepter ionization	5
	energy	
	level	
2.4	Donor impurities	7

2.5	Accepter impurities	8
2.6	2-D representation of a silicon crystal	9
2.7	Electron, hole pair	9
2.8	Majority carrier diffusion in pn-junction	12
2.9	Pn-junction showing depletion region, Space charge layer and electric field	12
2.10	The carrier current at equilibrium cross a pn-junction	13
2.11	The energy band diagram of a pn-junction showing the location of carriers under zero voltage bias	13
2.12	The energy band diagram of a pn-junction showing the location of carriers under forward bias voltage	14
2.13	The energy band diagram of a pn-junction showing the location of carriers under reverse bias voltage	14
3.1	Requires energy to move electron hole upward and downward	, 16
3.2	Position of Fermi level intrinsic, n and p type	23
3.3	The thermal motion of an electron or hole	25
3.4	A positive slope of carrier	26

	concentration Produces a positive electron diffusion Current(a), but a negative hole	
	diffusion Current(b)	
4.1	An electric field creates a drift velocity That is superimposed on the thermal velocity	29
4.2	Saturation drift velocity	30
4.3	Mobility as a function of temperature	31
4.4	Variation of carrier concentration an n-type semiconductor over wick range of temperature	
4.5	An electron can be scattered by a accepter ion (a) and donor ion (b)	
4.6	The electron and hole mobilities of silicon at 300k	f 36
4.7	Temperature dependence of the electron mobility in silicon	37

List of tables

3.1	Electron and hole effective mass, normalized to the free electron mass	17
4.1	Electron and hole mobilities at room temperature of selected lightly doped semiconductors	28