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Abstract

We show the inequalities of Bernstein-type for derivatives of rational
functions, inverse theorems of rational approximation, Kernels of Toeplitz operators,
smooth functions and effective essential Hardy space interpolation constrained by
weighted Hardy and Bergman norms. The Presburger Sets, P-minimal fields, analytic
P-adic cell decomposition, integrals, and the classification of semi-algebraic P-adic
sets up to semi algebraic bijection are considered. We characterize the basic
sequences and curves with zero derivative in F-spaces and an F-space with trivial
dual where the Krein-Milman theorem holds. We discuss the asymptotic sharpness
and application of a Bernstein-type inequality for rational functions and interpolation
in Hardy, Dirichlet and weighted Bergman spaces. Methods of integration of positive
constructible functions against Euler characteristic, dimension, loci of integrability,
zero loci, stability under integration for constructible functions on Euclidean space
with Lebesgue measure, Lebesgue classes and preparation of real constructible
functions are studied. The existence and Lipschitz maps of primitives for continuous
functions and the fundamental theorem of calculus with integration in quasi Banach
spaces are established.
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Introduction

Let H, be the Hardy space of functions f that are analytic in the disk [z|<1 and let

J“f be the derivative of f of order « in the sense of Weyl. It is shown, for example,
that if r is a rational function of degree n>1 with all its poles in the domain |z|>1,

then (J°r

., <cn®|r|, , where pe(«], >0, o=(a+p™)" and c >0 depends only
a p

on « and p. Given a finite subset & of the unit disc D and a holomorphic function f
in D belonging to a class X , we are looking for a function g in another class Y which
satisfies g, =f,_ and is of minimal norm in v. We consider the interpolation constant

C(0,X Y ) =sup; o oy ainfy ¢ lgl, - When'y =H~, our interpolation problem includes

those of Nevanlinna—Pick and Carath’eodory—Schur. We show a cell decomposition
theorem for Presburger sets and introduce a dimension theory for Z-groups with the
Presburger structure. Using the cell decomposition theorem we obtain a full
classification of Presburger sets up to definable bijection. We show a conjecture of
Denef on parameterized p-adic analytic integrals using an analytic cell decomposition
theorem, which we also show. We show that two infinite p-adic semi-algebraic sets
are isomorphic (i.e. there exists a semi-algebraic bijection between them) if and only
if they have the same dimension. We establish a conjecture of Shapiro that an F-
space (complete metric linear space) with the Hahn-Banach Extension Property is
locally convex. We show that in certain non-locally convex Orlicz function spaces L,

with trivial dual every compact convex set is locally convex and hence the Krein-
Milman theorem holds. We show a Bernstein-type inequality involving the Bergman
and the Hardy norms, for rational functions in the unit disc D having at most n poles
all outside of 1D, 0<r <1. The asymptotic sharpness of this inequality is shown as

n—o and r —»1. Given n>1 and r <[0,1), we consider the set R, of rational

functions having at most n poles all outside of D, were D is the unit disc of the

complex plane. We give an asymptotically sharp Bernstein-type inequality for
functions in R,, in weighted Bergman spaces with “polynomially” decreasing

weights. Following recent work of R . Cluckers and F. Loeser on motivic integration,
we develop a direct image formalism for positive constructible functions in the
globally subanalytic context. We show a correspondence between zero loci and loci
of integrability for constructible functions on Euclidean space, where a function is
called constructible if it is a sum of products of globally subanalytic functions and of
logarithms of globally subanalytic functions. We call a function constructible if it has
a globally subanalytic domain and can be expressed as a sum of products of globally
subanalytic functions and logarithms of positively-valued globally subanalytic
functions. We show that for a wide class of non-locally convex quasi-Banach spaces
X that includes the spaces for 0 <p <1, there exists a continuous function

\"



f:[0,1] — X failing to have a primitive, thus solving a problem raised by M.M.
Popov in 1994. We make a general approach to integrability and its interplay with
differentiability in quasi-Banach spaces. This endeavor demands studying first the
defects of Bochner and Riemann integration in the setting of p-Banach spaces when
p < 1. The conclusion will be that the local convexity is a necessary (and sufficient)
condition of the space for the integral operator to work in the expected way.

Vi
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Chapter 1
Bernstein Type Inequalities and Kernels of Toeplitz Operators
with Effective H* Interpolation Constrained
Let ¢ be a unimodular function on the unit circle T and let K () denote the kernel

of the Toeplitz operator T in the Hardy space H”, p=>1; K,(p) % {f € HP:T,f = 0}.
Suppose K, (¢)=0. The problem is to find out how the smoothness of the symbol ¢
influences the boundary smoothness of functions in K (¢). If X is a Hilbert space

belonging to the families of weighted Hardy and Bergman spaces, we obtain a sharp
upper bound for the constant c(c,X ,H ) in terms of n=carde and r =max,__ | \|<1. If X

Is a general Hardy—Sobolev space or a general weighted Bergman space (not necessarily
of Hilbert type), we also establish upper and lower bounds for c(o,X ,H *) but with some
gaps between these bounds. This problem of constrained interpolation is partially
motivated by applications in matrix analysis and in operator theory.
Section (1.1): Derivatives of Rational Functions and Inverse Theorems of Rational
Approximation

Let X be a quasinormed space of functions that are analytic in the disk |z|<1, and let

R.(f,X)f eX gn=12..) be the best approximation to f in X Dby rational fractions of
degree at most n-1. Dolzhenko [18] showed that if f eH, and =R (f ,H_)<w then f
belongs to the Hardy-Sobolev space H;. Under the same conditions on f , Peller [14]
showed that f belongs to the Hardy-Besov space B,. Since Bngj, Peller's result is
stronger than Dolzhenko's. Nevertheless (see [18]) both of these inverse theorems on

rational approximation are best possible in the following sense. For every nonincreasing
sequence of numbers a, (n=12,..) that satisfies the condition Xa, =+w, there exists an

f.eH, such that R (f.,H_)=0(,) and f,¢H;, and consequently f,¢B,. These results are

generalized in the present section. In particular, we obtain the best possible sufficient
conditions on the rate of decrease of R (f ,H,) (1< p <) that guarantee that f belongs to

the Hardy-Sobolev space H? or the Hardy-Besov space B’ (¢>0,o0=(a+p)™). In

addition, in contrast to [14], [28] and [29], we show the implication
*(R,(f .BMOA)) <o=f B, (first obtained by Peller [14] for 0<a<1 and then

generalized to the case «>1 in [28], [29] and [32]) without making use of the connection
of R, (f,BMOA) with Hankel operators. The method for solving these problems uses

inequalities of Bernstein type, obtained here, for derivatives of rational functions.
The main results of this section were presented without proof in [30],[33].
Let s be a rectifiable curve in the complex plane. We denote by L (S), pe(0,«], the

set of functions f , measurable on s, for which |[f |~ <o, where we set

Ip
Il =([F @) lz]) ", p e,
[F ., =ess suplf )], p=c.
We denote by T, D,, and D_, respectively, the circle |z|=1, the disk |z|<1 and the domain

z|>1; by A(D.) we denote the set of functions that are analytic in D,. We denote by H,
0< p <, the Hardy space [1] of functions in A(D,) for which the quasinorm

[f 1, = Yim [if ¢,

p—1-0

( , )
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is finite, where we write for short |g| =|gf , for geL,(T). The indicated limit exists
because of the monotonicity of |f ()| with respect to p [2]. If feH and zeT we
denote by f (z) the nontangential limit of £ () as ¢ —z [2]. Itis known that [f | =[f | .
Let f eA(D,) and let (k) (k =0,1,..) be the Taylor coefficients of f. If «>0, the
following functions in A(D,),
» 'k —-[a]+1+« Kl
o )(Z)_k%] (r(k[ [] o ) (k )z
Jof (z):Z(k +1)*f (k)z
0

where T is Euler's gamma function and [«] is the integral part of «, are called the
derivatives of f in the Riemann-Liouville and the Weyl senses, respectively. Evidently,
if a=1 is a positive integer, f "(z) is the ordinary derivative, and J'f (z) =[(d/dz)z]'f (z).
The function J“ will also be considered for «<0. In this case it is called the integral of f
of order -« in the sense of Weyl. It is easy to establish (see also [3]) that when >0

F(1+ a]J'

(@) _Zz - ~1-[a]
f @)= . (4)(1 gj CUE, e <p <t (1)

where the branch of (1—17) - is chosen so that (1-7,)™"*>0 for e (-x,1). We denote by
H. (ae(—»o,x), pe(0,2]) the Hardy-Sobolev space, i.e. the set of f eA(D,) with finite

It - We denote by H! (ae(—o,0), pe(0,x], qe(0x]), the

quasinorm |f |, =
p

Hardy-Besov space, i.e. the set of f eA(D,) with finite quasinorm
Yq
119 =(La-p ot o), dp) o aze,
1% 16, a=e

5o = Sup(l—p)¥

P 0<p<l
Here g is arbitrary, p>a. The space B;, is independent of g [3] and the quasinorms for
different values of g are equivalent. In this connection, we call the quasinorm with
p=a+1 fundamental, and denote it by [f [, .\We abbreviate B}, to B;.

Unlike J* , the derivative f  does not have the semigroup property. In fact, the
equality f (= =(f @)= js satisfied for every f only in the case when «, and «, are

integers. Lemma (1.1.1), showed below, lets one avoid this inconvenience.
Definition. Let w be a quasinormed space of elements of A(D,). A sequence {4} is

called a multiplier inw if, for each f ew , we have |g|, <c|ff |, where g(z)=>4f (k)z*

, with ¢ >0 and independent of f .
Lemma (1.1.1)[1]: Let «,>0. Then the sequences A4, =T'(k +a+ B)[I'(k +a)(k +1)"1™" and

=2 (k =0,1,2,...) are multipliers in the spaces H/ and B/, .
Proof. It follows from the definitions of H and B/, that we may restrict our attention to
H,=H_. Let m be the smallest integer such that m>p*+1. From the asymptotic series for

the gamma function [4] we obtain

A =b,+ (K +) b, +(k +1) b, +---+(k +1)"b, +(k +1) " d,,
where byb,,...,.b, are numbers depending only on « and g, and {d,}; is a bounded
sequence. Consequently, if f eH_ and g(z)=> Af (k)z*, then

( . 1
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92)= 30,371 @)+ 200K+ ™, 2" = Yo, @) +p(a). 2)
Moreover, we have (see [5]) |f | <c,(j)[f [, and (see [3])

‘fA(k)‘SCZ(p)(k TV (k=0,12,..).

Consequently  [y(k)|<c,(p)[f ||, (k+D)* and |y|, <c,(p)|f|, . Thus we obtain

gl <cs(p)[f [, from (2). We can show in a similar way that the sequence {x}; is a

multiplier in H . This completes the proof of Lemma (1.1.1).

Let x and v be quasinormed spaces. By an embedding X <y we shall always
understand a continuous embedding, i.e. if f eX then f ey and |f | <c]f | , where ¢ >0

Is independent of f .
Lemma (1.1.1) lets us extend various embedding theorems that were proved for the
Riemann-Liouville derivative to the Weyl derivative. For example, we have [5]

HS?CH;;? (O<p0§p1<oo,po’l—pl’lzao—al)_ (3)
There are the following embeddings between the spaces B, [3]:

Bia © B, (>, Pr2Pyo), (4)
Bgv(h = lev% (ql <q0) ! (5)
By ©By (-0 =p;" =Py >0, po#0). (6)

The following two embeddings [3] reflect the connection between H; and B,
HlcBS (2<p<x), (7)
BfcHY (0<p<2). (8)

We denote by BMOA the space of analytic functions of bounded mean oscillation [6],
I.e. f eBMOA if there exists g eL_(T) such that

fz)=- [ 9eMe 5 cp .

27l 7T -2
The norm in BMOA is defined as follows:
[f oo =inflgl..

where the lower bound is taken over all g eL_(T) for which (9) holds. Evidently

H,cBMOAcH, (0<p<wx). (10)

Surveys of inequalities for the derivatives of rational functions are given by Gonchar

[7] and Rusak [8]. Here we present only the inequalities that are directly related to the
subject of the present section. The first result in this direction was obtained by
Dolzhenko [9], who showed that a rational function r of degree n >1 with poles only in
D_ satisfies

©)

(11)

: (12)
Hoo
For any seN and p (0,«] the following generalization of (11) follows from the results

of Sevast'yanov [10]:
Ir

Ir

<c,n|r

Hi H,’

s <cnr|

BZ —

Ir

W Sca(s,pe)n’ ||r||Hp (a: (s+p™H)?ee(o, 0)). (13)
As was observed in [10], one cannot take ¢ =0 in the preceding inequality if £eN. To
see this, it is enough to consider the function r(z)=(1+5-z)™" as 6 - +0. We showed in

( ]
L 3 J



[11] that for p=w and any seN we can take ¢=0 in (13). Inequality (12) was
generalized by Danchenko [13], who showed that
”r”B;’q £C3(0{,t,q,n)||l’||Hp (a €01, pe@ o]t <(a+p )t q> O) . (14)

Another generalization follows from a result of Peller [14] on best rational
approximations for the class Bj,, a (0,1], in the space BMOA. This is

[Fla, <Ca@n“[lpyon ©@<a@<D).

Our Theorem (1.1.7) generalizes and strengthens the results quoted above.
Lemma (1.1.2)[1]: If z eT and | eN then

(le;—l)! [[lo@ o ¢|=2' JZI}CZ'.-" (-1)"7B7[B!(z)2 ",

Proof. For z and ¢ T we have [d¢|=d¢/i¢ and
gz

o¢.2)f =0(¢.2)0(¢.2) = g Sg 2 62)-
Consequently
EoD o) el =2'8" @)1, @), (15)
where
@) =E20 0 )8 () e

Since 1,(z) is continuous in D, UT |t Is enough to calculate it for z eD, . Thus we have
I(Z)—ZC '(-B@)''1,;z) (zeD)), (16)

Where

Il,j (Z)= (2| _1)|J' Bj(é/)é/lil

27 T (& -z)” dé

By Cauchy's formula we obtain
I, @)=[B'(2)2""1®?  (j=1...1). (17)
If -1 <j<o0,thepoint =0 is a zero of order at least 2 of the function
B'()¢' (¢ -2)*.
Therefore 1,,(z)=0(j =-1,...,0). By using (15)-(17), we obtain the conclusion of Lemma

(1.1.2).
Lemma (1.1.3)[1]: Forall z eT and seN
‘B(S)(z )‘SZSSMS(Z,l/s).

Proof. We set b, (z)=(z —a,)(1-az)". Then
2 br@)biz)- b @), (18)

BO@) = ——
‘ ‘ Z:Jo!Jl!"'Jn'
where the summation is over all collections j,, j,,...,j, 0f nonnegative numbers satisfying
the condition j,+j,+...+j,=s. It is evident that for every z eT, 0<k <n and 1<j<s we

have

b <21 U o1 [ ] (19)

z -a ‘ z -a|

Lemma (1.1.3) follows from (18) and (19).
Lemma (1.1.4)[1]: If z eT and « >0, then




loC.2)|.., <c(@)A”“(z,1/(a+2)).
Proof. It follows immediately from Lemmas (1.1.2) and (1.1.3) that
[ lotc.2)P §|£c(l)}tz'l[z,ﬁj (zeT . 1eN). (20)
Let m be the smallest odd number such that m>ea. We introduce p=(m+2)(a+1)",
g=Mm+)(m-a)* and S(z)={¢eT :farg¢ —argz|<A'(z,m™)}. From (20) and Holder's
inequality, we obtain

lt+a Ira o 1
Joo,lo €2 <l 5,y o Clﬂhﬁnscﬁm»%[zﬁﬁj. (21)
On the other hand,
+a l+a —l-a a 1
folocot elsz ] Jo-al elz@(x. 1) @

Since A(z,p) does not increase in g for fixed z T , Lemma (1.1.4) follows from (21) and
(22).
Lemma (1.1.5)[1]:if f eL,(T), pe(L =], a>0and
9(2) =] le(¢.2)"“If ()],
Then g <c(a p)n“|f | , where o=(a+p™)".
Proof. For p =« the necessary inequality follows from Lemma (1.1.4) and the relation
[ @ pldz|<ci(Bn  (B>0). (23)
Now let pe(l«] and a=1-p™*. Then o=1 and consequently, by Lemma (1.1.4),
Holder's inequality, and (23),
l+a a 1
fol.= [ Jo* ol f g e 265 <)

<c (@ [f [, <cat@n”[f |-

Therefore Lemma (1.1.5) is established in the case under consideration. Now let « be
arbitrary. Choose positive numbers y,z,1, and s satisfying the conditions 1e(l,p),

| *+s™* =1, y+r=a and Iz=1-1/p. Then, by Holder's inequality,

s def
9@ <o )| o)t O = e(2)wiz) (24)
for every z eT . From Lemma (1.1.4) and (23) we have
lel,, <ci(s.7)n” (25)

Using the fact that the lemma has already been established for a«=1-p™ (in this case
lz=1—(p/1)*), we obtain

1.1

], <cs(tp)n® P, (26)
Thus we obtain the conclusion of Lemma (1.1.5) in the case pe(l,«) and «>0 from
(24)-(26) and Holder's inequality.
Lemma (1.1.6)[1]: Let r be a rational function of degree n>1 with all its poles in D_,
B>0and p e(1,].

1) There are continuous functions A(¢) and h(e) of period 2~ that satisfy the conditions
A, 0y <8P, aNd A()>0

||h||l,[0,2;z] <n, and h(p)>1

( = )
1 ° )



‘J ﬂr((l—x)e“”)‘éﬂ,(go)(min(x _1,h(¢)))ﬁ, x €(0,1), p €[0,27] .
2)There is a continuous function g(¢) of period 2~ that satisfies the conditions
19), 105, <C(AN and  g(p)>1,

978 (@=%)6")[ < Flopon (Min(x 29 (@))", x (02), p <[0,27].
Proof. It is evident that for x (0,1) and ¢ <[0,27]

‘J ﬁr((l—x)e“/’)‘s,r)g[%p Pr (pe“/’)‘desz(go). (27)

From Lemma (1.1.1) we find that there is a function f , analytic in D, UT , such that
Jr=f Pand |f |, <c,(p)|r|,, - Consequently we find from (1) that

I'd+a) _z - 4] c
27Z'| '[S(Z)f (é/)[l é’} C dé/ (Z D+/{O})l

where S(z) is the convex curve formed by the circle |¢|=4 and the tangents to it from
the point z /|z|. Hence we obtain

377 (@=x)e™)|<c,(BF (p)x 7, F(p)= max|f ()], (28)

¢es(z)

Jr(z) =

where z =(1-x)e'?. Let us show that the functions
(@) =c,(8 | [l 6 (@) | +1 (r=(8+p™7),

Ap) =F (@) +¢,(B8,pIn " r [l 67 (p)
satisfy the requirements of the lemma for suitable choices of the constants c,(3,p) and
c,(B,p). In fact, from (29) together with (Theorem (7.36) of [2]), we obtain
IG], o2,y <C5(B.PIN"[1],
[Pl 02, <CePIN” I, -

Using (27) and (28), we obtain assertion 1) of Lemma (1.1.6).
For the proof of assertion 2) we observe that

B '+ p) _z - ~18]
J r(Z)——zﬁi L [f (§)+S(1/§)](1 gj ¢ dg (zeDb,),
where s e H, and s(0) =0. Consequently, instead of (28) we must use the inequality
97 (@=x0e')| <Cr (A yon X -

To obtain the analog of (27) we have to use (31). Everything else is obtained as in the
proof of assertion 1) for p =w.

Theorem (1.1.7)[1]: Let r be a rational function of degree n>1 with all its poles in D_;
let >0, pe(,o],and o=(a+p™*)™ . Then

Il <cs(epIn]rl,, (29)
[l <c2(a pIn*|rll, . (30)
Illz, <ca(@nIFlouon (31)
[, <ea(en®|Flgyon (32)

In the proof of Theorem (1.1.7) we shall consistently use the following notation. Let
a,...a,, belongto D,. We set




B(z)= H % (=0,

2150
A, B) = Zﬁt _|Zkk|j ; —1ak| (5>0).

Proof. Let the poles of the rational function r be located, counting multiplicities, at the
points 1/a,...,1/a,, where a,...,a, belong to D,. Then the function r()B ™ (£)@-2) "1
(k eNand z eD,) is an analytic function of ¢ in D_ and has a zero of order at least 2 at
«. Consequently

[rs™ (g)[l—zzj £ =0,

Therefore if we expand the function (1-B(z)/B(¢))* (z €D, and ¢ T ) in a Taylor

series in £, we obtain from (1)

r@) -y (4)[ ng [1—%] TS (33)

From (33) and Lemmas (1.1.1) and (1.1.5) we obtain (29). To show (31) it is enough to
observe that (33) remains valid if we replace r() by r(£)+h(1/¢) on the right, where heH,

and h(0)=0.
Let h and A be the functions from Lemma (1.1.6) corresponding to B=a+1. Then
we obtain (30) from Lemma (1.1.6):

o Yn(e) o(a+l),, o-1 1 —ao-.
Il <_[ A% (g )(J. he@ Dy o dx +L/h((p)x 1dx)d(p

<c,(@p)f, A7(@h“ (@) g <c,( p)n“ [},
Here in obtaining the last inequality we have also applied Holder's inequality. Similarly
we obtain (32) from Lemma (1.1.6).
Corollary (1.1.8)[1]: Let >0, pe(l,o], o=(a+p ™)™, se@,«], q e (] and
Av(.p.s.a) =sup [, Il )
where the upper bound is taken over all rational functlons r.#0 of degree at most n
(n>1). Then

A (a,p,0,q)=n"  (q=0), (34)
A(a.p.og)=n® P (<o), (35)
A (a,p,s,q)=+0  (s>0,q<€(0,0]), (36)
A (a,p,s,q)=n* (s <o,q (0,]). (37)

Proof. The upper inequality in (34) follows from (30) and (5). To obtain the lower
inequality in (34) it is enough to consider the function r (z)=z". The upper inequality in
(35) follows from (30) and (6). To obtain the lower inequality we consider the function
rz)= nZ[(1+ g _z1*
k=0

for sufficiently small £>0. We immed}ately verify (36) by the example of the function
(z)=(1+e-z)" as ¢—+0. To obtain the lower inequality in (37) we consider the




function r (z)=z". To obtain the upper inequality in (37) we use Lemma (1.1.6). Let h
and 4 be the functions of Lemma (1.1.6) corresponding to g=s™"-p~">a. Then (with

corresponding changes for g =«) we have
1
q

1,1 x 1
Irls, <27 ( ialls" o 7y do) x‘“ﬂ“”dxj

Q|

+2&+§( L7 o ope (p)gxqwa”de

0

Scz(a,p,q,s)n“||rn||Hp.
Corollary (1.1.8) is showed.

Let the rational function r of degree n+m have no poleson T , but n poles in D, and
min D_. Then r(z)=r(z)+r (Iz), where r, and r_are rational functions of respective
degrees n and m with all their poles in D_. It is easy to obtain the following corollary of
Theorem (1.1.13).

Corollary (1.1.9)[1]: if >0, pe(@«] and c=(a+p ™)™ then
Ir ], <ctapIn®[r],, |rly, <clap)m|r],.

In conclusion, we remark that it would be interesting to extend Theorem (1.1.7) to
the Smirnov spaces E,. Some special results in this direction were obtained in [12], [15]
and [16].

Let f eH, and n>0. Let R (f ,H,) denote the best approximation to f in H by

rational fractions of degree at most n-1. Following [17], we introduce the approxima-
tion space Ry, (a>0, pe(0,], qe(0,]) of functions f eH  with finite quasinorm

o 1q
e, I, (SR g,
q

We denote by R, (f ,BMOA) the best approximation to f in BMOA by rational fractions
of degree at most n -1, and the corresponding approximation space by R/ .

Lemma (1.1.10)[1]: [2]. Let f (x) be a nonnegative function defined for x >0, and let
r>1land s<r-1.If f "(x)x*® is integrable on (0,), then

J.:(Xl.[oxf (Y)dyjrxsdx S[r _2 _ljr J-:f (X)X *dx .

Lemma (1.1.11)[1]: Let {4}, and {nh ¥ be sequences of nonnegative numbers

satisfying the conditions

%Zq (k=0+1,%2,..), > (hy™4) <o,
k =—0

k

Where I >m>0, r>1and q>1. If
p(x)= A (min(h x 1) (x €[0,)),

il b 5 2R H).

Then
j:’y/(x )x ™ dx <c(l,m,q,r) Z (he™A)"

( ]
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proof. We define a function ¢(y) on (0,) in the following way. If j is a positive
integer and y (g’ *,q'] then o(y) equals 4q7 if h e(q’'™.q’] and equals O when no h,
belongs to (q'*,q’]. Since h_,/h, >q for every k, the interval (q'*,q’] contains at most
one h, and consequently ¢(y) is well defined. It is easy to verify the inequality

v e @] ow)y'ay + 2L [Mp(3)2 (x>0,

Making an appropriate change of variable in the improper integral, we find from Lemma
(1.1.10) that

I 6oxm s <esr ) ([ oty | xrt ey
eraf) (] o(3)% Jxox

<cg(r,m,g, 1) " x x|
By the definition of ¢(x) we obtain

j:gof(x)x r-mYtgy <c (r,m,q,1) i (h2)

Thus the conclusion of Lemma (1.1.11) follows from the preceding two inequalities.
Theorem (1.1.12)[1]: Let >0, p e(0,0] and o =(a+p™)™". Then

Ry <BZ, (38)
R amin(z o) & H, (39)
R By, (40)
Rfmm(z 1 a) cH 17:1 ' (41)

proof. is divided into five cases:
1. Embedding (1.1.12) for o <1. Following Bernstein's classical method, we represent
a function f eR?_ in the form
f(z)=a,+>u(z) (zeD)), (42)
k=0

where u, is a rational function of degree at most 2“**, with all its poles in D_, that

satisfies
u, ||Hp <33R, (f,H,), (43)

and a, is a constant such that |a,| <2|f |,
Taking account of the restriction o <1, we find from (30) and (43) that

o = leoli; + 2l =ctaplf [,

2. Embedding (38) for o>1. We again use (42) and (43), and also suppose that all
u, 0. Let 4 and h, be the continuous functions of period 2z from Lemma (1.1.6) for

u, and B=a+1. We set

h; (9) =2y (@) + 2% V2N, (9) +---+h, () -
Then, for every ¢, we have

k+1(§9) >\/_ (p €[0,27]),

hy
he (@)
12l 020 <Ci(@ PIR,(F L H,) (45)

<2k (44)

1,[0,27]

( o 1
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Iy, ((1—x)e“ﬂ)\s/1(40)(min(x-1,h:(go)))"’+l (x €(0,1)).
Therefore we find from Lemma (1.1.11) that for every ¢ <[0,27]

[loet (@-xe ) %tk <c (e pYfaol” +csle Y[ A D) (@) | - (46)
From Holder's inequality and (44) and (45) we obtain
[ [A@®@) [ doc@p) (2R, (1 H,))

Thus the required embedding follows from (46). If some u, =0 in (42), we have to make

evident modifications in the proof.
3. Embedding (39) for & <(0,2]. This follows from (38) and (8).

4. Embedding (39) for o>2. This is proved just like (38) for o>1. Here, along with
Lemmas (1.1.6) and (1.1.11), we also have to use the Littlewood-Paley theorem [5]
according to which

2, <c(a, H 3
" ”Ha (0{ p) .[0 c/2,0,27]

5. Embeddings (40) and (41). These are proved just like the embeddings (38) and (39)
respectively. Theorem (1.1.12) is showed.
Lemma (1.1.13)[1]: If >0, 0<qg<w, and if the sequence {b, ¥}, is nonincreasing and

tends to zero, and the series

il ((1— X )e “")r xdx

(0>2).

00

> (2"b, )’ (47)

k=0

diverges, then the series
(25“(b, ~by..))’ (48)

s

7\—
1l
o

also diverges.
Proof. Suppose that (48) converges. We show that in this case

o} <0(@p)2 ™ 3275 (1=%.5, b, b, 49)
for all k =0,1,... In fact, since b, J,JO_ , then b, =B + 4, ., +--- and since (48) converges we
have, for q <1,

by < Zﬂq <27 Z(Z‘yﬂ ).

If g>1,letq'=q(q-2)" and from Holders mequallty we obtain

Yo' Y
< [Zz—jq%] [Z(ijﬂj )qj SCZ(a,q)Z‘yk [Z(zjyﬂj )q]
Thus we obtain (49) from the preceding two relations. From (49) we obtain
(2D )" <cy(@,q) D 2 Y (27 B))"
k=0 k=0 j=k

—c (@)D Y29 ) e, (@)Y (20, -by)"

j=0k=0
The last inequality contradicts the divergence of (47). This completes the proof of
Lemma (1.1.13).
For use below, we introduce the notation
Boi=n/j (neN2"-1<j<2"-2),

Y
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"2
G,;={z:1-2"<Jz|<targz = 3,;}, G,= |J G, -

j=2"a
Lemma (1.1.14)[1]: Let >0, pe(@, ] and o =(a+p*)". Then for every neN there is

a rational function ¢, of degree 2" that satisfies the conditions
a. lply, <c(@p),
b. [p«
C.

s

Proof. We set

. >2"c,(a,p),

. <1(n=m).

2n+1_2

(pn (Z ) = Zin/p 517]“) Z ¢n,j (Z )

j=2"-1

0, (2)=@,;-2)", 2, =+8e™ (5>0).
It is easily shown that
lim 5*Y° @il = (\/;F(p__lj/r(ﬂjjw , (50)
5—>+0 JlH, 2 2
Yo
}Lrpoéu/p ‘(or(]?!j) . =T(1+ a)(a—%j : (51)

In (50) the right-hand side is to be taken to be 1 for p =«; to obtain (51) we need to use
the equality

nj
which follows from (1). The functions ¢, and ¢! tend uniformly to zero as & —+0,
outside an arbitrarily small neighborhood of G, . Hence it follows from (50) and (51) that
o, satisfies conditions (a-c) for sufficiently small 5>0. This completes the proof of

Lemma (1.1.14).
Theorem (1.1.15)[1]: Let >0, pe(Lw],and oc=(a+p ™).
I. Corresponding to every sequence {a }; that is nonincreasing and tends to zero, and
satisfies

P\ (@2)=T1+a) (1— 7z." )_H z el

0

> (22, )" = oo, (52)

k=0

thereisan f eH suchthat R (f ,H )=0(a,) and f ¢H~.
1i. Corresponding to every sequence {a }; that is nonincreasing and tends to zero, and
satisfies

o0

> (248, )" =40, (53)

k=0

thereisan f eH suchthat R (f ,H,)=0(a,) and f ¢BZ.

Thus, embeddings (38) and (39) cannot be improved. It follows from (10) that, in the
same sense, embeddings (40) and (41) also cannot be improved. Moreover, by a result of
Peller [14], [28], there is actually equality in (40). In addition, since (38) admits an
inverse for 1< p <o, see, assertion (i) of Theorem (1.1.15) is of interest only when p =«

. Since the proof is the same for all p, we take p (1] for the sake of completeness of
presentation. Assertion (i) for =1 and p =«, and (ii) for a=1 and p =« in Theorem
(1.1.15), were obtained previously by Dolzhenko [18].

( )
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proof. is divided into four cases.
a. Assertion i) for o <1. As the required function we take

f2)=3 (@),

where p, =a,.—a,. and the ¢ are the rational fractions from Lemma (1.1.14). From

2

condition 1) of Lemma (1.1.14) we obtain

Zpk(pk

k=]

R, (F,H,)<

S Cl(a’ p)a21+1
HP

for every neN, and consequently R, (f ,H )=O(a,) as n—«. On the other hand, for
arbitrary n e N we have from conditions 2) and 3) of Lemma (1.1.14).

‘ i P Pk
k=1

k=n
Setting G =( J/G, , we obtain |

o

f ()

227 P, - >c,(a, P)[(2" p,)” —a727"].

oG

oG,

f (a)

L =1® from Lemma (1.1.13) and (52), and conse-

ep)

quently, by Carleson's embedding theorem [19], f “” ¢ H_. The proof of this part of the

theorem is completed by applying Lemma (1.1.1).
b. Assertion i) for o >0. As the required function we take

f (Z):ZkaZk (Px :a2k+1_azk+2)- (54)
k=1

Evidently R, (f ,H,)=0O(a,). On the other hand, for every p <(0,1) we have, by Holder's
inequality and Parseval's equality,

1 (p)], = (2x)' [i(pk 2 p* )j

Consequently, we obtain f ¢H “ by letting p —1-0 and using Lemma (1.1.13) and (52).

c. Assertion ii) for o <2. This follows from assertion i) and (8).
d. Assertion ii) for o>2. We show that the function (54) is the required function. In
fact, let p,=1-2", neN, and pe[p,,p,..]- Then, by Holder's inequality and Parseval's

theorem,
J-ZIIJ a+1f ( iqo)‘ad >(2 )172/0 ('[27[\] a+]_f ( i(p)‘zd )0/2 >c (a )(zn(aJrl) )U
. @e ¢ =2 . re @] =2Cila,p P.) -
By (53) we find from Lemma (1.1.13) that
o Z n+1 2z a+ i < o=
P15 2220, dpf, Pt (e W= p) Mg = oo,

This completes the proof of Theorem (1.1.15).
We denote by w (5.f), (keN, §>0 f eL,(T)) the kth order modulus of

smoothness of f | i.e.

Kk

@ (8,1), =sup[ > (-1 CyF (€'
lhl<

hi<d'||v=0

p.[0,27]
Corollary (1.1.16)[1]: if I is the smallest positive integer such that | > «, then for every
6€(0,7]

1o
wl(ﬁ,f)JSC(a,p)éa[ > (Zm“Rzm(f,Hp))a} . (55)

0<m<log, (1/5)

( ]
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To obtain (55) we observe that for o« ¢ N we have | =k and it suffices to suppress the
terms with m =0,1,...,n—1 on the left-hand side of (61). However, if aeN, then I =k -1
and by Marchaud's inequality (see, [20]) the left-hand side of (61) majorizes
Cy(a, p)(2" w (27,1),)7.

In view of Corollary (1.1.9), inequalities (61) and (55) remain valid if we suppose
that f eL (T) and R, (f ,H ) isreplaced by R, (f ,L,(T)), the best approximation to f in

L, (T ) by rational fractions of degree 2" -1.

An inequality of the type of (55) was obtained by Dolzhenko [21] for =1 and p =«
; by Sevast'yanov [22] for « <(0,1) and p =«; and finally by Brudnyi [23] for a>1-p™*,
p €[L,], and with k instead of |.

For the proof of Theorem (1.1.20) we require the following two lemmas.
Lemma (1.1.17)[1]: Let pe(0,c], s=min(,p), keN and f eB;,. Then for every

5e(0,1]
1 s B Ys
a6, e[} 051 I, @-p)=dp) .
Proof. For every z eD, we have f (z)=f,(z)+f,(z), Where
fl(z):i;ckv(—l)vf [(1—%5}2), f(z)=f(z)-f(z).

From Lemma (1.1.1) an(;I a result of Storozhenko [24] we obtain, since [g(p)| is
nondecreasing with respectto p (geH ),

w, (8,F,), <c,(k,p)s*[J kuHHp <c,(k,p)s* |9 ¥ (-(1—5/k))HHp . (56)
From the properties of finite differences [25] we have, for every z eD,,

@) <z [ty [T (1t 44, ))2 el

< HI ‘f (k)((l—(tl+t2+---+tk))z)‘dtldtz-‘-dtk

ttp, by >0
t1+t2+ +y <6

& 1)|_|. ‘f ©(@a-t)z )‘ dt . (57)
If p e[L,] we find from (57) that
If., < « _1)!j0 Hf (k)(-(l—t))HHptk’ldt . (58)

Therefore we obtain the necessary inequality for p e[1,«] from (56), (58), and Lemma
(1.1.1). For p €(0,1) we introduce

F(z)= I;ETaXf(k)(TZ)‘.
We find from (57) that
@ <[00 S F(a-e)e ]
<c,(k.p)f, F*(p2)-p)*d p, (59)

Using the fact that |F(.p)], <c,(p)f ‘k’(-p)Hp for every pe(01) [2], we obtain the

conclusion of Lemma (1.1.17) for pe(0,1) from (56), (58) and Lemma (1.1.1). This
completes the proof of Lemma (1.1.17).
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Remarks (1.1.18)[1]: 1) With a corresponding definition of |f ||'Ba the conclusion of the

lemma remains valid for q = .

2) The lemma is well known for p e[1,] and q e[1,+] (See, for example, [26]).

3) For the proof of Theorem (1.1.20) we need only the necessity for p =q.
Lemma (1.1.19)[1]: Let >0, p e(0,] and q €(0,), and let k be the smallest positive
integer such that k >« . Then a function f eH_ belongs to class B if and only if

. - q Y
oI (a2, )] e (60

=1

I

Here the quasinorm (60) is equivalent to the quasinorm |f |, .
Proof. For j eN we introduce x; =|J*f ((1—2"')~)HH . From Lemma (1.1.17) we obtain

0 Ys
wk(z-m,f)pscl(k,p)[z<2-“ﬂ,->5j . s=min(L,p).

j=m

As in the proof of Lemma (1.1.13), we obtain

ma -m m - —(k=7)i o
(2" w (27",1),) <cy(e, p,q)27™ D (27 gy )1, r=5
j=m

Consequently [f [, <ci(e p,q)|f since B, =cH_, for «>0. The reverse inequality

B, ’
follows from a result of Storozhenko [27]:
[f ), <clp)t-p) wl-pf), G<p<)
and Lemma (1.1.1). This completes the proof of Lemma (1.1.19).
Theorem (1.1.20)[1]: Let «>0, pe( o] and o=(a+p )", and let k be the smallest

positive integer such that k > «.
i. if f eH  thenforevery neN

> @™ w2 F),)7 <c(ap) Y ™R, (F H,)) (61)
Ii. If f eBMOA then for every neN

i(zm“wk 2" f ) Sc(a)zn:(Zm“Rzm (f ,BMOA))¥~ . (62)

m=0 m=0

Proof. Let f eH_, 1<p<w, and let r, be a rational function of degree 2" -1 for which
If —r|, <2R,.(f,H,).From (38) and Lemma (1.1.19) we obtain

I, ||'B <c (e, p)|r, ||nga (a>0,0=(a+p™H)™). (63)
Evidently, R, (r,.,f )=0 for j>n, and
R, (1 H) =R, (f =(f —r,),H,)<R, (f H,)+[f —r,]
For j =0,1,...,n—1. On the other hand, for every j >N,
w @), =w (27 F = -1)) 22w 7 F), —w (270.f -1,
22w (27,F), 2R (f \H,).
Consequently, from (63) we obtain

C<3R,(FH,)

H

n

Z(Zmawk @ f )U)U <c,(a, p)|f ||p +¢4(a, p)zn_:(gmaRzm (f \H p))g :

m=1

Now if in the preceding inequality we replace f (z) by f (z)-f (0) and use the inequality

( )
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[f @)~f ), <c.(PIRy(f H,),

we obtain (61). Inequality (62) is showed similarly. This completes the proof of Theorem
(1.1.20).
Section (1.2): Smooth Functions and Bernstein Type Inequalities

In this section we study the relationship between the smoothness of the symbol of a
Toeplitz operator and the smoothness of functions belonging to its kernel.

Notation. D« {ze C:|z| < 1}; T« ap; m Is normalized Lebesgue measure on T;
LP & [P(T,m), 0 < p < oo; HP IS the Hardy space [38, 39, 43] of holomorphic functions on b,
also treated as a subspace in LP; HY « {f € HP: £(0) = 0}; P, (P.) is the orthogonal projection
from 12 onto H?(H?), extended, if necessary, to Lt in a natural way.

Let ¢ €L*, and let 7, be the Toeplitz operator with symbol ¢, so that T,f « P, (¢f),
f € H. BY K, (), 1 < p < », We denote the kernel of 7, in the Hardy space H?:

K, (@) & {f € HP:T,f = 0}

Assume in addition that the function ¢ is unimodular (i.e., |¢|=1 a.e. on T) and
possesses certain smoothness properties (say, belongs to the Sobolev space w;s or the
Besov space B: for some rs>0); moreover, assume K,(¢)={0}. What kind of
conclusions can one derive concerning the differential properties of functions belonging
to K,(¢)? In various settings we provide an answer (which often turns out to be
unimprovable, in a certain sense) to the above question.

Meanwhile, we note that restricting ourselves to unimodular symbols ¢ leads in fact
to no loss of generality. Indeed, in [50, 51] it was shown that, given ¢ € L* with K,(¢) #
{0}, one can find an h, h € H?, such that K,(¢) = K,(zh/h). We also remark that if 6 is an
inner function (i.e., a unimodular function lying in H*) then the subspace K,(6) is
invariant under the backward shift operator $* and coincides with the class K} & HP n
eH_f)’. Further, if 6 e w;* or 6 € B with s, > 1, then 9 must be a finite Blaschke product,
whereas the functions in k5 are rational fractions.

This section contains a number of statements of the following form:

lel=1  @eX=K,(p) Y,
where X and Y are certain spaces of smooth functions on the circle. The results obtained
here can also be restated as "Bernstein-type inequalities,"

Iflly < constll@lElflly f € Ky(p), (64)
where a > 0, |||ly and |||, are the norms (or quasinorms) in x and Y, respectively, while
Ill, stands for the L? norm. As special cases of these inequalities we obtain, first, the
estimate

Ire, < constl|6'I"f 1 f € K,
due to the author [41] which generalizes the well-known S. N. Bernstein inequality for
polynomials (or entire functions), and second, the estimates due to A. A. Pekarskii [1] for
derivatives of rational fractions.

We recall that the classical S. N. Bernstein inequality

lol, <nliol,
(where @ is a polynomial of degree <n, i.e., @ € k%..) arises in the proofs of various
inverse theorems of the polynomial approximation theory [36, 44], whereas the above-
mentioned A. A. Pekarskii inequalities are used as a tool in the proofs of similar
theorems of the rational approximation theory. Similarly, the inequalities of the form
(64) provided below can be used to derive certain inverse approximation theorems
yielding in turn both the classical (i.e., polynomial) Bernstein-type theorems and the

( )
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inverse theorems from [1] pertaining to the rational approximation theory.

Yet another application of (64) enables us to find out how the boundary smoothness
of the argument args of an analytic function 5 affects the smoothness of r itself.

Finally, as by-products, this section contains some results concerning the
convergence of Fourier series for inner functions ¢ (and also for functions lying in k}) at
a fixed point of the circle.

Let w;! = w(T), r > 1, denote the Sobolev space, consisting of those absolutely
continuous functions g on T for which g'eL". (Here g'({) & dg/d{ =—ie*dg/dt,
{=e"€eT)

Theorem (1.2.1)[34]: (Caldero'n [47]). Let p,q and r satisfy the hypotheses of Theorem
(1.2.3), and let » be an absolutely continuous function on the real line R such that
b’ € I"(R). Then the singular integral operator ¢, ("Calderon's commutator") defined by

(Co9) () 2 v.p. £ e

Is a bounded mapping from LP(R) to L7(R). In addition, we have
1Co | Lp (my—La(R) < () T)”b’”r- (65)
A slightly modified version of Theorem (1.2.1) will be needed. In fact, Calderon's
proof shows that (65) remains valid if ¢, is replaced by ¢, ¢ > 0, where
e wor b(x)—»b

(@)= [G255
(Moreover, the constant on the right side of (65) is independent of ¢.) The corresponding
result for the circle reads as follows.
Theorem (1.2.2)[34]: Under the same assumptions on p,q,» and under the assumption
b € W;* the operator ¢, ,(0 < p < 1) given by

(Copg)(©) & fT MO o yar  (FeT) (66)

g(y)ady,

g(y)dy

€-pé)?
Is a bounded mapping from L? = LP(T,m) t0 L9 = LI(T,m); furthermore,
subocpes [Copll oy < @B,
Theorem (1.2.3)[34]: Let 1<p, q<+o, 1<r<+4ow, and g 1= p~ 1+ r 1. If p e W2,
lo| =1, then
Kp(9) © Wy
moreover, for f € k,(p) one has
171, < cnllellIfl |
where c(p,r) IS a positive constant depending only on p and r.
The proof is based on.
Proof. Since f € k,(¢), one has fe e H, and SO [ f(Qe()( —2)~2d¢ =0 for any z e D.

Therefore, given p € (0,1) and ¢ € T, we have
: 1 fQdd 1 P —o) 1
8 =5 [ r@e@ a2t = (C, ) ©
(this last notation was introduced in (66) above). Applying Theorem (1.2.1) we get

2ni) (= p§)? ~ 2mi
' q /a ' ’
oSub, (flf (0)] dm(f)) <c@ne|l fel, = c@ el I,
Thus, f'e H9 and the desired inequality holds true.

Corollary (1.2.4)[34]: Let 1<p<+w. If peLipt(=wl) and |p| =1, then k,(p) c W3},

moreover, for f € K, (¢) one has

171, < eolle Nl N1 (67)
Proof. In the case 1 < p < + it suffices to apply Theorem (1.2.3) with r = +». FOr p =1
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inequality (67) (and hence also the inclusion k; (¢) c wi) can be derived from the proof of
Theorem (1.2.3) Indeed, the operator c;, is a Calderdn-Zygmund operator. Therefore
(see, e.9.[40]), being a continuous mapping from 12 to 12, it also acts from HE & H! + HI tO
L'; moreover,

02‘;21”6(»0 P ||H1—>L1 -

Since f € K, (), it follows that fgo e Hl and

1, = 2Wmllc@p(fcp)ll < constllo|_If .-

Now let A%, 0<a <+, denote the Holder class (Zygmund class, if « € N) on the
circle:

< const - sub ||C‘PP”L2—>L2 < Const”go ||

INESPE C(T): sub k™ AT g .. < oo,

where m is any fixed integer with m >« and A}’ stands for the m-th order difference
operator with step r. (We recall that the operators A§ are defined by induction: (A}g)(Q) =
(Ar@)(Q) & g(etg) — g(O) and Afg « A,AF1g.) Further, we set A® & =,

A well-known theorem of Duren, Romberg, and Shields [49] says that the space
AS « p+ A% is the dual of H/0+®) with respect to the standard antilinear pairing. From this
one can easily deduce the following assertion (which is also known to experts).
Lemma (1.2.5)[34]: Let s>0, max(1,s) <p<+wo and a=s"1-p~1. Given y e A%, the
Hankel operator #,, defined by

Hyf = P-(Yf), f € H?,
IS a bounded mapping (or possesses an extension which is a bounded mapping) from Hs
to H?; furthermore,
Hy sz < constlipllse,

where ||-|| .« IS @ natural norm in A* and const is a constant depending only on a.

Now we point out another consequence of Theorem (1.2.3).
Corollary (1.2.6)[34]: Assume that ¢ is an absolutely continuous function on T, |¢| =1,
and 1 € K, (o).

@Mf1<g<r<+w,a=20,s>0,and g =s"1+r"1-q, then

||f'||q < c(s,m,@)||@]|_Nelaalifls. (68)
(b) If 1 < g <r < +w then
||f'||q <clgn|le|| el rlifllg (69)
(c) If 1 < g <2,then
IF 1, < calleI511F 1l (70)

Proof. (a) Define the exponent p by p=* =¢=* —r~1. Then we have a =s~* —p~*. On the
one hand Theorem (1.2.3) yields ||f < const|¢'] lfll, On the other hand, the above

Lemma gives
Iflly = llfell, = ||H<pf|| < constl|@llx«llfls.
Combining the two inequalities, we arrive at (68)
(b) Apply (68) with a = L5=q.
(c) Apply (69) with = 2 and note that w; c A%/2,
Remarks (1.2.7)[34]: i. All the above inequalities are sharp in a sense. We consider, for
example, inequality (68), which is the most general one. (Theorem (1.2.3) is contained in
(68) as a special case where a«=0.) Setting f£,(O)=@0-a)™ and ¢,(Q)=C(-a)(1 -
a¢-n Where zeb, »eN, ns>1 We have fzexipa, and a straightforward computation shows
that
Ifall, = loall Nleallxellfalls = (1 - |la])t/a-n-1

( )
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As |a| - 1 - 0. (Here the sign = means that the ratio of the two quantities is bounded from
below and above by positive constants independent of a.)

ii. It is interesting to compare (67) and (70).

lii. In [41], the author proved a version of inequality (67) (including, in particular, the
case p = +w) In the setting where ¢ = 4, 6 being an inner function on the upper half-plane
C,, and feK? & HP n9HP, HP = HP(C,). If we set 6(z) = exp (ioz), ¢ >0, the classical
Bernstein inequality for entire functions follows (though not with a sharp constant).
Furthermore, it was proved in [41] that, under the assumption ¢’ e H*(c,), the higher
order derivatives f™ satisfy

||f(”)||p < const||fll,, f€Kp, (71)
in which case one can take const = c(n,p)||6'||".. The converse was also shown to be true: if
(71) holds with a constant independent of £, then ' € H*(c,).

Given relr, we set f(k) « [ fz*¥dm(kez). We denote by », the space of
trigonometric polynomials of degree<n, i.e. P, & {0 € L*: (k) = 0 and |k| > n}. Finally, let
E,(f,n) < inf{lIf — Qll,:Q € B}, SO that E,(f,n) is the minimal approximation error for f € L
with respect to polynomials of degree<n. The following simple theorem makes it
possible to estimate the Fourier (Taylor) coefficients of a function £, f € k,(¢), in terms
of the quantities £, (¢,n), where %+pl =1.

Theorem (1.2.8)[34]: Let ¢ be a unimodular function on T, and let f € k,(¢), 1 <p < +=.
Then
f@)| < lIfl,E,(9n),  neL,. (72)
Proof. Let ¢ € ,. Since fo € H? and z'Q € HZ, it follows that [ fpz" gdm = 0, and so
fa = [ fznam = | forn( - Qyam,
whence
[f)| < 1Ifllplle = 2ll,,-
Taking the infimum over ¢ € 7, we obtain (72).

Now we recall the definition of the Besov spaces Bs,(1<p,q < +ow;s>0). Given

felLr,

lla tfllpd
5 sey | ) e t <4, q <o

1
UlA fllp =0 (= ) g = +oo.

where m is some fixed integer with m >s. We will also make use of the so-called

constructive characterization of Besov classes (see e.g. [44]): given £ € L?,

J Z nS1E, (f,n)? < 4o, q < +oo,
f €EByg & {n=1
1

L Ep(f,n)=0(F), q = +oo.
Moreover, the two norms in Bj, arising in a natural way in connection with the two
definitions above turn out to be equivalent.
As usual, we let B; « Bs,. We also note that the spaces A“ introduced in the previous
section coincide with B¢.
Theorem (1.2.9)[34]: Let 1 <p, q < +x, s >0, and let ¢ be a unimodular function lying in
Bs,; assume further that 1 € k(o). The following statement's hold true:

(@) If g < +o, then
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(Zzensr 1|7 a0]?) " < constlipllag, I 1 (73)

where const depends only on p,q and s.

(D) If g = +oo then |[f(m)| < const llgllgs, lIfIl,n*.
Proof. (a) In view of (72),

|f)| < If1l,Ep (e, ).

Raising the two sides to the power ¢, then multiplying by ns9-* and summing over n, we
arrive at (73). (It is here that the constructive characterization of B3, is needed.)

The proof of part (b) is similar to the above (in fact, it is even simpler).
Corollary (1.2.10)[34]: Let ¢ be a unimodular function on T, and let f e k,(¢). If
1<p<2and1<gq< 4w, then

Iflhg = constllellz/allfllz,

1/p
Iflp 2 (Zlf(n)lp)

nz0

Proof. It suffices to apply (73) with s = ¢~* and to use the Hausdorff-Young inequality

£l < lIfle -
Corollary (1.2.11)[34]: Let ¢ and f have the same meaning as above, and let 1 <p <
40,2 < q <+, 1> 0. Then

where

||f(1)||q < const||§0||Bzf1’/q’||f”v'

where p'=p/(p-1), ¢ =q/(g-1), and f® standspf'?or the fractional derivative of order I,
defined by

o

fO@) & Y nlfn)z"
Proof. We rewrite (73), replacing p with p" and ¢ with ¢

oo

1/q'
I_41 2 q'
(Znsq 1| ) < constllpllys, Il

n

=1
Set s =1+ 2. Then the left-hand side in the last inequality reduces to ||f®| ., and so, by

the Hausdorff- Young theorem, it can be estimated from below by ||| .

Remarks (1.2.12)[34]: i. It might be interesting to compare Corollary (1.2.10) (which
becomes interesting for 1 < g < p < 2) with the inequality
If1lp < constll@llp/a-1/011fllq

valid for f € Kk, () in the case g > 0, max(1,q) < p < +o (see the proof of Corollary (1.2.6)).

ii. Corollary (1.2.11), with 1 =1 and 2 < q < p < + Yields a result which is close to
Theorem (1.2.3) but cannot be reduced to it.
Now let ¢ = 4, where ¢ is an inner function on ». We recall the notation «? « H» noH?,
1<p<+o, and set K, o k2 n BMOA. (See [38, Chapter VI] for the definition of the space
BMOA and a discussion of its properties.) The BMOA norm ||-||. will be introduced as
follows:

171l & sup | [ rgam|:g € H2, gl <1},
So that |||, is equivalent to the standard BMO norm defined in terms of mean
oscillations.

The next theorem is a refined version of Theorem (1.2.8) in the case where ¢ =6 and
p = +oo.
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Theorem (1.2.13)[34]: For f € k.4 and n € Z, one has
|f )| < lIfIl.EL(6,n). (74)
Proof. Given g e #,, the proof of Theorem (1.2.8) yields
f = [ £67m(0 — 0yam

Since 6z"(6 — @) € H®, we have |f(m)| < lIfIl.(6 — @). Taking the infimum over ¢ e #,, we
arrive at (74).

Theorem (1.2.9) admits a similar refinement: If p =1 then, given f e k.4, One can
replace the inequality (73) by

o 1/q
TPV
(z ns-1 | ()| ) < const|llzs, If.,

n=1

with the usual interpretation for g = +oo:
[f@)| < constl6llgs, lIfll.n~*. (75)
We cite [45] as a source of some explicit criteria for the membership of an inner function
in BS with sp < 1; in connection with Blaschke products belonging to B;.,, see also [37].
Theorem (1.2.14)[34]: Assume that B is a Blaschke product in D whose zero sequence
{a, )2, satisfies the "weak Newman condition"
sup;(1 = |a;]) " Biesj(1 = lagl) < +o0 (76)
The foflowing statements hold true:
(@) Forevery f, f € K, 5, One has f(n) = 0(1/n).
(b) If, moreover, the Frostman condition
AQ) # Biry o < oo (77)
holds at some point ¢ € T, then the series ¥*_, f(n) {* converges for every function £ € K, ;.
Proof. It is known [37] that (76) implies B € B},,. Applying (75) with 6 = B and s = 1, we
arrive at (a). To show (b), we use a result from [48] saying that (77) is equivalent to the
existence of the radial limits lim,_,_, f(r¢{) for all f € k, ;. Combining this latter fact, part
(a) above, and the Tauberian theorem of Littlewood, we conclude that the Fourier series
of any such function f converges at ¢.
Theorem (1.2.15)[34]: Let¢ e T, and let 6 = Bs, be an inner function. If
Y, ll-lakl _l_fdu(t) < +oo, (78)

a2 T =i
then the series ¥,..,6(n) {" converges.
Proof. Let z be a fixed point of the disk, and let k,(¢t) & (1—@9(0) (1-zt)"! be the

corresponding reproducing kernel in the space k2. By Theorem (1.2.8),

~ ~ /

[, ()] < Nl B8 m) = sl (Einsa8GOL) (79)
A straightforward verification yields

- il FTSwm Bris ok 1-16(2)2\ /2

k) =2"(1- 0@ Lo 00 27 el = (FE5) - (80)

As is well known (see e.g., [46]), condition (78) ensures that ¢ has an angular
derivative at ¢ This means that the two limits lim,_;_, 8(r{) & () and lim,_;_, 8’ (r{) &
0'(¢) exist, and the former one satisfies |6(¢) = 1|. Moreover,

0'(O) = lim 1—-16GDI _ lim 116G _ —Iakl2 du(t)
r-1-0 1-—7r r>i-0  1—712 |(—ak|2 [t —{|?

Substituting (80) in (79), Ietting z =r¢ and then maklng r tend to 7 — 0, we get from (79)

1/2
<6’ (Z)|1/2< Z |6(K)| > ,

k=n+1

0@) - Z 65
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whence the desired conclusion follows immediately.

The results contained on this section are based on the following elementary

observation: if f € H*, then f € k,(zf/f). Indeed,
Tafspf = Pe(2) = 0

Due to this fact, we can use the "Bernstein-type inequality™

Iflly < constliolixllfll,,  f € Kp(e) (81)
(where x and v are certain spaces of smooth functions) to derive the following corollary:
if fenr and f/f e x, then f ey. To do this, one only needs to apply (81) with ¢ = zf/f
(note that multiplication by z preserves membership in a reasonable class x).
Thus, in many cases the smoothness of the function 7/f (or arg f) on the circle implies
the smoothness of r itself, once f € H?. The next theorem comprises a few assertions to
that effect. All of them are readily derived from inequalities of the form (81) that were
established above.
Theorem (1.2.16)[34]: Let f € HP.

@If1<p<+4o, 1<r<+4o,and gt=pt+r <1 (for r = +, the values p=q =1

are also admissible), then the implication
f/few! = f"eH
holds true.
(b) If1<p<randr =2, then
f/f EW!l= f'€HP,
(c)ifi<p<g<+wanda=pt-q1 then
f/f EN* = f e H
(d)If1<p<+w,2<qg<+m,and >0, then
f/f € B;f;/q' =few), ie, fWeHnd.
(We recall that fi(2) @ ¥ n!f(n)z", p' & p/(p—1),and q' & q/(q —1).)
Finally, we supplement this theorem with the following proposition, which can be
derived from Corollary (1.2.10).
Proposition (1.2.17)[34]: Let 1 <g<p<z2and f e (i.e., f € H* and T.o|f )| < +). If,
in addition. f/f e B, then f e 1{.

Here we announce, without providing any proof, one more Bernstein type inequality
for the space k? = H? n 6H?, where @ is an inner function on b.

The proof (which is rather laborious) will be published elsewhere. We remark,
however, that the ideas involved are different from those used above.

First we recall the definition of the Sobolev space w;}! (p > 1, 1 >0). Namely, w;} «
{feLP:fW erP}, where fOQ) =¥, Inl'f()¢ (¢ eT). It is well known that B, cw} if
1<p<2andw}cB)ifp>2.

The norm R will be defined by 1f g = IHOIE: ||f(l)||p.

Theorem (1.2.18)[34]: Let 1 <p, r <+, s >0, and r’ & r/(r — 1). Assume that 6’ € H™?,
Then k}'P < BS nw;s; moreover, for every function £, f € k7 ?, one has
max (IIf lls, 1 lws ) < e, 7, 0" Isp 1 fl (82)

Remark (1.2.19)[34]: In the case rsp > 1, the condition ¢’ € £™? means that ¢ is a finite
Blaschke product. In this case k7 ? is finite dimensional and consists of rational functions
with the same poles as those of 6. Thus, the inclusion k}? c BS nw;s becomes obvious;
however, inequality (82) is still nontrivial. On the other hand, if rsp < 1, then the class of
inner functions 6 with 6’ € H™ is much larger; see [46].

Consider two special cases of inequality (82).

I. Let r = +o. Then we have ' =1, and so (82) implies

( ]
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IF N, < constllo" IS fllp, f € K. (83)
In the case where s e N, this latter inequality was proved by the author [41] via the
multiple Calderdn commutators.
ii. Let sp <1 and r = (sp)~*. Now we have [|6’||,s, = 116ll, = n, Where n is the number of
zeros (counted with multiplicities) of the Blaschke product ¢ in the disk ». Thus, (82)
reduces to

max (£ 1153, 1f llwg ) < ¢p, Sn*Iflg, (84)
where ¢ =p/(1—sp) and f is an arbitrary rational function of degree<n having all its
poles in c\closD. Inequality (84) was obtained by A. A. Pekarskii in [1], where it was
used to characterize the classes BsnH? and wy nHP in terms of best rational L?
approximants.

Similarly, following the classical pattern going back to S. N. Bernstein, one can use
(82) to derive a number of approximation theorems. We restrict ourselves to stating one
of them, arising in the case r = +oo.

Set

Rt | Jegs 110711 < ),

6

Thus, the elements of =, are rational functions "of degree not exceeding »," provided
that the "degree" of a rational fraction r is understood as ||Bi|l.., Where By is the Blaschke
product formed from the poles of r in a natural way.
Theorem (1.2.20)[34]: Suppose that f € HP, 1 <p, q <+ and s > 0. The following are
equivalent:

I. f € B3,

i (2/distyo (f, R,))} ., € 19
Sketch of the proof. Since the set k&, consisting of polynomials of degree<n, is
contained in ®»,,, the "Jackson-type theorem™ i=-ii is a consequence of the corresponding
implication in the classical theorem on polynomial approximation [44].

The proof of the "Bernstein type theorem™ ii=-i runs exactly as in the classical

situation; the only difference is that Bernstein's inequality for polynomials must be
replaced by its generalized version (83).

In conclusion, we remark that there is also a "nonanalytic" analog of Theorem
(1.2.20), in which case one merely assumes a priori that fer?, whereas the
approximating rational functions may have poles both in D and in c\closD (cf. [42]).
Section (1.3): Weighted Hardy and Bergman Norms

Statement and historical context of the problem. Let D={z «C:|z|<1}be the unit disc

of the complex plane and let Hol(D) be the space of holomorphic functions on D. We
consider here the following problem: given two Banach spaces x and Y of holomorphic
functions on the unit disc D, XY < Hol(D), and a finite subset o of D, what is the best
possible interpolation by functions of the space v for the traces f_ of functions of the
space X, in the worst case? The case X <Y is of no interest, and so one can suppose that
either Y <X or x and Y are incomparable. Here and later on, H” stands for the space
(algebra) of bounded holomorphic functions in the unit disc D endowed with the norm
If | =sup, . [f ).

More precisely, our problem is to compute or estimate the following interpolation
constant
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c(o,X Y )= sup |nf{]|g||Y g, =f.}.

Fex Ity <t
For r €[0,1) and n >1, we also define
C,, (XY )=supfc(o,X Y ):cardo <n,|A|<r,Viec}.

It is explained in [65] why the classical interpolation problems, those of Nevanlinna—
Pick and Carath”eodory—Schur (see [62, p.231]), on the one hand and Carleson’s free
interpolation (1958) (see [62]) on the other hand, are of this nature.

From now on, if o ={4,,---,4 }cDis a finite subset of the unit disc, then

BO‘ = ﬁblj
j=1
is the corresponding finite Blaschke product where b, =42, 1eD. With this notation
and supposing that x satisfies the division property
e
eX |,
-2

[f eX,AeDandf (2)=0]:{Z
c(o,XY)= sup |nf{]|g||Y geY ,g-f eB_X}.
I Iy <
A direct relation between the study of the constants c(o,H *W )and some numerical
analysis problems is mentioned in [65, (b)- p.5]. Here, w is the Wiener algebra of

absolutely convergent Fourier series. In the same spirit, for general Banach spaces X
containing H*, our constants c(o,X ,H ) are directly linked with the well known Von-

Neumann’s inequality for contractions on Hilbert spaces, which asserts that if A is a
contraction on a Hilbert space and f eH ~, then the operator f (A) satisfies

[F A=<l L.
Using this inequality we get the following interpretation of our interpolation constant
c(o,X ,H~): it is the best possible constant ¢ such that |f (A)|<c|f |, , vf eX . Thatis to

say:

we have

c(o, X ,H ”)_‘sup sup{[f (A)[|:A:(C",}{,) > (C".}[|,). |A| <1 o(A) = o3,

£l <t

where the interior sup is taken over all contractions A on » —dimensional Hilbert spaces
(C"[4,

An interesting case occurs for f such that f_=(1/z), (estimates on condition
numbers and the norm of inverses of nxn matrices) or f_ =[1/(1-z)], (estimates on the

norm of the resolvent of an n xnmatrix), see for instance [67].

Let H® (1< p <) be the standard Hardy spaces and let L> be the Bergman space on
D . We obtained in [65] (in which a more general approach to this effective interpolation
problem is also given) some estimates on c(o, X ,H *) for the cases X e{H *,L’}.

Theorem (1.3.1)[53]: Let n>1, r €[0,1), p [L+o] and |2|<r. Then
1

1 n \|° b Ly b Ly n %

32p(1 WJ <c(o,,,H?P,H")<C, ,(H?H )SAP(—l_ ] : (85)
1l n . - 2

321 |l|—c(o-n/l' a’ ) C )<\/_10 (86)

where
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o, ={A 1}, (n times),
is the one-point set of multiplicity n corresponding to 4, A is a constant depending only
on p and the left-hand side inequality in (85) is valid only for pe2z,. For p=2, we
have A, =/2.
Note that this theorem was partially motivated by a question posed in an applied
situation in [58, 59].
Trying to generalize inequalities (85) and (86) for general Banach spaces x (of

analytic functions of moderate growth in D), we formulate the following conjecture:
C,,(X,H”)<agx (1-%r), where a is a constant depending on X only and where ox (t)

n

stands for the norm of the evaluation functional f —f (t) on the space x . The aim of

this section is to establish this conjecture for some families of weighted Hardy and
Bergman spaces.
Here, we extend Theorem (1.3.1) to the case where X is a weighted space

1P () = {f =S Pk i) =>

k=0 k>0

fA(k)‘p(k +1)P <oo}, a<0.

First, we study the special case p=2, «<0. Then 1°(«)are the spaces of the
functions f =" (k)z* satisfying

Z\f(k)\z(k +1)% <.

k>0

Notice that H?=12(1). Let g=-2a-1>-1. The scale of weighted Bergman spaces of
holomorphic functions
X =L2(B) = Lg((1—|z |2)ﬂdA) - {f e Hol(D): [ f (2)]" (a—[z [)’dA < oo},
gives the same spaces, with equivalence of the norms:
1, (@) = L3(B).
In the case g =0 we have L?(0)=L:.

Theorems (1.3.10), (1.3.11) and (1.3.12) were already announced in the note [66].
Let o be a finite set of D, and let f X . The technical tools used in the proofs of the
upper bounds for the interpolation constants c(o, X ,H *)are: a linear interpolation

f I—)i<f € 08
k=1

Where (...) means the Cauchy sesquilinear form (h,g)=>" _h(k)g(k), and (e,),_,_, is the

1<k <n
explicitly known Malmquist basis (see [43]) or Definition 1 below) of the space
K, =H?0BH?where B =B_, a Bernstein-type inequality of Dyakonov (used by

induction): [ | <c,[B||f |, for a (rational) function f in the star-invariant subspace

ol

o0

H*NBzH ° generated by a (finite) Blaschke product B, (Dyakonov [60, 41]); it is used in
order to find an upper bound for HZ:N e.e (in terms of |f[ ), and finally the

complex interpolation between Banach spaces, (see[57] or [63,).
The lower bound problem (for C, (X,H”)) is treated by using the “worst”

interpolation n-tuple o=0,,={4,---,4}, a one-point set of multiplicity n (the
Carath”eodory—Schur type interpolation). The “worst” interpolation data comes from the
Dirichlet kernels Z:)zk transplanted from the origin to i. We note that the spaces

( ]
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X =1(a) satisfy the condition X ob, =X when p =2, whereas this is not the case for
p =2. That is why our problem of estimating the interpolation constants is more difficult
for p =2.

we develop the technical tools mentioned above, which are used later on to establish
an upper bound for c(c,X ,H*).

In Definitions 1, 2, 3 and in Remark (1.3.2) below, o={4,---,4,} IS a sequence in the
unit disc D and B, is the corresponding Blaschke product.
Definition 1. Malmquist family. For k [1,n], we set f, =

=, and define the family

()., (which is known as Malmquist basis, see [43, p.117]), by

and e, _( b, ]
R [T, Jie

for k <[2,n]; we have [f, |, = (1-|4[ ) .

Definition 2. The model space K, . We define K, to be the n —dimensional space:

Ky =(B,H?*)"=H?0B_H?.
Definition 3. The orthogonal projection P, on K, . We define P, to be the orthogonal
projection of H*on its n —dimensional subspace K ,_
Remark (1.3.2)[53]: The Malmquist family (e,)_,_ corresponding to o is an
orthonormal basis of K . In particular,

n

P =2 (+€4 )28

]

where (.,.),. means the scalar product on H?.

We now recall the following lemma already (partially) established in [65, p. 15]
which is useful in the proof of the upper bound in Theorem (1.3.12).
Lemma (1.3.3)[53]: Let o={4,---,.4,} be a sequence in the unit disc D and let (e, ), ..

be the Malmquist family corresponding to o. Let also (-.-) be the Cauchy sesquilinear
form (h,g)=3, h(k)g(k), (if heHol(®) and k eN, h(k) stands for the k" Taylor
coefficient of h). The map @ : Hol(D) — Hol(D) given by
O :f |—>i<f €8 s
k=1
is well defined and has the following properties:
(a) cD|H2 = PB(T '
(b) @is continuous on Hol(D) with the topology of the uniform convergence on
compact sets of D,
(c) if X =12(a)with p e[1,+00],  e(—0,0] and ¥ =Id, —®, , then Im(¥)<=B_ X ,
(d) if f eHol(D), then
(1)) = P ke,
forall £ <D, where P, is defined in 3and k, =(1-¢z )fl.

Proof. Points (a), (b) and (c) were already proved in [65]. In order to show (d), we
simply need to write that
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o(1)(6) =3 e, )e, (O)=(1 5 Th )

k=1
vf eHol(D), v¢ D and to notice that 3 e, (C, =D, (K. 8, ), .8 =Ps k..

Bernstein-type inequalities for rational functlons are the subject of a number of
references and monographs (see, for instance, [55, 56, 60, 41, 61]). We use here a result
going back to Dyakonov [60, 41].

Lemma (1.3.4)[53]. Let B:H?:lbw be a finite Blaschke product (of order n),
r=max; |4, and let f eK. Then

. n
It e <371 I

Lemma (1.3.4) is a partial case (p =2) of the following K. Dyakonov’s result [41]

(which is, in turn, a generalization of Levin’s inequality [61] corresponding to the case
p=o0): the norm |D| of the differentiation operator Df =f' on the star-invariant

KESHP
subspace of the Hardy space H?, K2:=H?NBzH", (where the bar denotes complex
conjugation) satisfies the following estimate:

[Pl
for every p, 1< p <o, Where c,is a positive constant depending only on p, B is a finite
Blaschke product and |||, means the norm in L*(T). In the case p =2, Dyakonov’s result
gives ¢, =%28 which entails an estimate similar to that of Lemma (1.3.4), but with a
larger constant (£ instead of 3). Our lemma is proved in [65].

The sharpness of the inequality stated in Lemma (1.3.4) is discussed in [64]. Here we
use it by induction in order to get the following corollary.

Corollary (1.3.5)[53]: Let an?ﬂb&j, be a finite Blaschke product (of order n),
r=max; |4, and f eK,. Then,

k
e, <k (2T e
for every k =0,1,---

Proof. Indeed, since z**f “* eK_,, we obtain applying Lemma (1.3.4) with B* instead
of B,

» <C m,

o g s g gy

In particular,
R e A
which gives
T e R e ¥
By induction,

k
st 72 i e

Lemma (1.3.6)[53]: Let X,and X,be two Banach spaces of holomorphic functions in
the unit disc D. Let also ¢<[01] and (X,,X,), be the corresponding intermediate

( ]
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Banach space resulting from the classical complex interpolation method applied between
X, and X,, (we use the notation of [57, Chapter 4]). Then,
- ©\1-¢ ©\¢
Cor (X1X2) H?)<Co (X H) T C (X HE)
forall n>1, r €[0,1).

Proof. For the proof of this lemma, we refer to [65, p.19].
The case X =1%(a), a<0. We start with the following result.

Corollary (1.3.7)[53]: Let N >0be an integer. Then,

2N +1
2

20_ w _n
C, (12(-N).H )SA(l_rj ,
for all r<[0,1), n>1, where A depends only on N (of order N !(4N)", see the proof

below).
Proof. Indeed, let X =12(-N), o a finite subset of D and B=B_. If f eX , then using

part (c) of Lemma (1.3.3), we get that @(f ), =f_. Now, denoting X "the dual of X with
respect to the Cauchy pairing (.-) (defined in Lemma (1.3.3)).
Applying point (d) of the same lemma, we obtain X "=1?(N) and

<Jf ], K, [ukagqu i)

@(f)(¢)|<

BT ¢

1
REE
we )
for all £ <D, where

N NV, if N >3
Ky :max{N ,Sup (k +1) } max{N N,(N +1) }: \ .
keN K(K =2)---(k =N +1) N ! M, if N =12

(Indeed, the sequence (m)
k>N

is decreasing and [N N (Ut }@N >3. Since

Pk, €Ky, Corollary (1.3.5) implies

1

o=l o200 (2 j;<A<N ()

-r

where A (N )=+2K, (1+(N 1)’ 42N) since

- i“(k:,ek )Hzek H = fé‘ek ({)‘2 S\/g' (87)

An upper bound for c(o,1”(«),H*), 1<p<2. The purpose of this section is to show the

right-hand side inequality of Theorem (1.3.11). We start with a partial case.
Lemma (1.3.8)[53]: Let N >0 be an integer. Then

. . n N +
Cn,r(la(_N )’H )SAl(H] y

for all r €[0,1), n>1, where A depends only on N (it is of order N (4N )", see the proof

below).
Proof. In fact, the proof is exactly the same as in Corollary (1.3.7): if o is a sequence In
D with card o<n, and f el;(-N)=X, then X" =1"(N) (the dual of X with respect to

the Cauchy pairing). Using Lemma (1.3.3) we still have o(f)_ =f _, and forevery {eD,

[Pok.].

N

o
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@)= 1 [Pek

Pk, (k)|.sup

sl )

Ao )

where K, is defined in the the proof of Corollary (1.3.7) Since Pk, K, Corollary
(1.3.5) implies that

@ (F ))<= I Ky HPBkgHHZ[HN 14" [&”

for all ¢ D, which completes the proof using (87) and setting A, (N )=22N 14" K, . An
upper bound for c(c,I’(a),H”), 2<p<+w. Here, we show the upper bound stated in

<l Ky max{ sup

0<k<N -1

<IF [, Ky max{Hka

Theorem (1.3.12). As before, the upper bound (ﬁ)g’“’% IS not as sharp as above, we can

a—

suppose the constant ()" » should be again a sharp upper (and lower) bound for the
quantity C, . (I7(a),H"), 2<p<+w.

First we show the following partial case of Theorem (1.3.12).
Corollary (1.3.9)[53]: Let N >0 be an integer. Then,

B B n N +
C.,(I7(-N),H")<A, (ﬁj ,

for all re[0,1), n>1, where A, depends only on N (it is of order N !(4N )", see the

proof below).
Proof. We use literally the same method as in Corollary (1.3.7) and Lemma (1.3.8).
Indeed, if o={4,---,4,}iS a sequence in the unit disc D and f el*(-N)=X, then

X" =I;(N)and applying again Lemma (1.3.3) we get @(f ), =f_ . For every {eD, we

have
=l l  (lPl, <[ )

Nojw

@ (f)(&)|<If |,

where

:{f=ZfA( 2 =X (k)< }

k>0 k>0
stands for the Wiener algebra, and K, is defined in the proof of Corollary (1.3.7). Now,
applying Hardy’s inequality (see [43, p.370], ), we obtain

o (F)(<)|<If [, Ky [ﬂ (Pk.) Hl+\(p8k4)(o)\+ﬂH(kag)<N+1>

. +\<Pskg>” <o>\j
SR G N P S

for all £ eD. Using Lemma (1.3.4) and Corollary (1.3. 5) we get
o))< I, KNnHPBk;HH{f” +Le(N +1>'( ) - J

for all £ eD, which completes the proof using (87).
The case X =1’(a), a<0. We start with verifying the sharpness of the upper
estimate for the quantity

(Pk
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o)

(where N >1 is an integer), in Theorem (1.3.10). This lower bound problem is treated by
estimating our interpolation constant c(o,X,H”) for the one-point interpolation set

= {4, 2,2}, 1eD

| —
n

c(o, ., X ,H”) =sup{||f

£ e [, <1},

H”/bIH ™

where |If

- =inf{[f +b]
kernel Hilbert space on the disc D (RKHS) and we use the fact that this space has some
special properties for particular values of « (a=%%,N =1,2,---). Before giving this proof
(see below) we show that I’(«) is @a RKHS and we focus on the special case o=}t

N =12,--.

The spaces 17(«) are RKHS. The reproducing kernel of 17(«), by definition, isa 17 (a)-
valued function 2k;, A2eD, such that (f k;)=f (1)for every f el’(«), Where (.,.)
means  the  scalar  product  (f,g)=> 0h(k )g(k)(k +1)%*.Since  one  has
f)=> _fk)i* (K +1)** (1 eD), it follows that

Akzk
ki) = kz;(k +1)2“

In particular, for the Hardy space H? el2(1), we get the Szeg“o kernel
k,@)=(1-72),

and for the Bergman space L* el2(-1), the Bergman kernel k;%(z ) =(1—Zz )72.

_1geX } In the proof, we notice that 1 («) is a reproducing

Now let us explain that more generally if o=, N eN\{0}, the space 1’(«)
coincides (topologically) with the RKHS whose reproducing kernel is

(k,(@))" =(1- 42 )_N . Following the Aronszajn theory of RKHS (see, for example [54,
62]), given a positive definite function (1,z)—k(4,z) on DxD (i.e. such that
Ziyjaiajk(ﬂ,,,xjpo for all finite subsets (4)<D and all non-zero families of complex
numbers (a;)) one can define the corresponding Hilbert spaces H (k) as the completion of
finite linear combinations " &k (4 ,) endowed with the norm

‘, 3 = YEak(4,4).

When & is holomorphic with respect to the second variable and antiholomorphic with
respect to the first one, we obtain a RKHS of holomorphic functions H (k) embedded

into  Hol(@). Now, choosing for «k the reproducing kernel of H?,
k:(ﬁ,z)wkﬁz):(l—ﬁz)fl, and ¢=z", N =12,--, the function ¢k is also positive
definite and the corresponding Hilbert space is

H (qook)=l:[%j. (88)
(Another notation for the space H (p-k) Is @(H?) since k is the reproducing kernel of

H ?). The equality (88) is a topological identity: the spaces coincide as sets of functions,

( ]
1 2 )



and the norms are equivalent. Moreover, the space H(p-k) satisfies the following
property: forevery f eH?, pof ep(H?), and

”(pof ||2H (pok) < (p(”f ||2|-|2)’ (89)
(the Aronszajn-deBranges inequality, see [62, p.320]). The link between spaces of type
17(:L) and of type H (z" -k) being established, we give the proof of the left-hand side
inequality in Theorem (1.3.10).
Theorem (1.3.10)[53]: Let n>1, r €[0,1), @ e(—x,0] and || <r. Then

1-2a 1-2a

B[ i ]2 SC(O'M,I:(a),Hw)SCn’r(Ij(a),Hm)SA(Lj2.

1_|/1| 1-r
Equivalently, if e (-1 +w) then
g p+2
' n 2 , ) 2 ) | ) ez
B [1——|/1|J <c (o, L2(BH7)<C,, (L2(ALH =) <A (ﬁ} |

where A and B depend only on «, A’ and B’ depend only on g , and both of the two left-
hand side inequalities are valid only for « and g satisfying 1-2a¢ <N and £2eN.

Proof. There exists an integer N such that N —-1<-a<N . In particular, there exists
0<@<1such thate=(1-6)(1-N )+6.(-N ). Since
(KA-N)IZEN)) =1,
(see [57, 63]), this gives, using Lemma (1.3.6) with X, =1?(1-N)and X,=1?(-N), and
Corollary (1.3.7), that
(2N -1)(1-6) (2N +1)6
C,, (12(a),H*) AN D °A(N )"(%) i i
|

It remains to use that 6=1-a—N and set A(a)=A(N —-1)*°A(N)’.
This show the proof of the right-hand side inequality in Theorem (1.3.10). Now the left-
hand side inequality

O)Weset N =1-2a, N =1,2,--- and p(z)=z" .

1) Let b >0, b*n"™ =1. We set

N

L H,=¢oQ, ¥=bH,.
1-27 =90 "

Then |Q,|; =n, and hence by (89),
[#l7, <b%e(jQul;) =be(n) =1.
Let b >0 such that b?p(n) =1.

2) Since the spaces H, and H“are rotation invariant, we have
c(o,,,H, H")=c(o, . H,H”) forevery 1, u with |1|=|g4=r. Let 2=-r. To get a lower
estimate for |¥[, .., ~consider GeH” such that ‘¥-G eb]Hol(D), i.e. such that
bH ob, -G oh, ez "Hol(DD).

3) First, we show that

0 =nibzk (1-14F) |

Y="Web,=bH b,
Is a polynomial (of degree nN ) with positive coefficients. Note that

30

—
| —



Q,b, =5 2" 1(;|b|(1) (1-1af) ? (1+(1—I)22"—Zz”j

k=0
1 n-1 1
=(1-r?) 2(1+(1—r)22 “+rz ”jz: (1-r%) 2 4.
k=1
Then, = ¥ob, =bH  ob, =bgoo((1— rz)_% %j- Furthermore,
(0°1P1=1/)1N (Z)

Now, it is clear that + is a polynomial of degree Nn such that

1+r

Y1) = Zn:z@(j ) =b(p((1— rz)_%(1+ r)n) =b( 1—n} >0.

4) Next, we show that there exists ¢ =c(N)>0 (for example, ¢ =K/[22" (N -1)!], K
being a numerical constant) such that
O Zﬁ(j)Zszﬁ(j):Cw(l),
j=0 j=0

where m >1 is such that 2m =nif n iseven and 2m -1=n if n is odd.
Indeed, setting

S, :Zn:zj ,
j=0

we have
i(#ﬁN )= i[(ﬂ(ﬂ r)niz “trz ”j ]2 i(SnN-l) .

Next, we obtain

Z(Sn )= Z[[l . jNJ_i[(llz ) ]:(N 1—1)!i(ijN_-111_1zj

m (J +1)N -1 mN
Z; = Z (N —1)! = (N -’
where K >0 is a numerical constant Finally,

SN m' . (/)" K (@+nn)’
2()=K (N 1)' (N DU V(N )1 @+n)"

K
= oN (1+r)N (N —1)! (¢1(1)) '

which gives our estimate.
5 Let F=d_+z"®_, where o, stands for the k-th Fejer kernel. We have

lgll. |F.]l: =g *F,|, for every g el (T), and taking the infimum over all g eH ~satisfying
a(k)=4(k), vk [0,n-1], we obtain
1
”¢ H*/z"H ™~ 2 E”w * Fn”oo '
where = stands for the usual convolution product. Now using part 4),
1 1
[l = [l pome 2 510 Rl 2 510> FO)

> Z¢(J)> YO =D ( i—:n] zs(ﬁjz.

( ]
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6) In order to conclude, it remains to use (88).
Thecase X =1°(a), 1<p<w.

Theorem (1.3.11)[53]: Let r €[0,1), n>1, p<[L12], and let «<0. We have

1-2a

l—az—l n 2
Bn P SCnr(Ia"(a),H”)SA(TJ :
’ —r

Where A =A(a,p) and B =B(a, p) are constants depending only on « and p.
It is very likely that the bounds stated in Theorem (1.3.11) are not sharp. The sharp one

should be probably (ﬁ)l’“’%. In the same way, for 2<p <o, we give the following

—a

theorem, in which we feel again that the upper bound (ﬁ)g b is not sharp. As before,

1-g-L1

the sharp one is probably (&) .
Proof. Step 1. We start by showing the result for p =1 and for all « <0. We use the same
reasoning as in Theorem (1.3.10) except that we replace 17(a) by 1} ().
Step 2. We now show the result for p [1,2] and for all « <0: the scheme of this step is
completely the same as in Step 1, but we use this time the complex interpolation between
I;(a)and 1’(a) (the classical Riesz-Thorin Theorem [57, 63]). Applying Lemma (1.3.6)
with X, =1;(a) and X, =17(«), it suffices to use Theorem (1.3.10) and Theorem (1.3.11)
for the special case p =1 (already showed in Step 1), to complete the proof of the right-
hand side inequality.

Now we give the proof of the left-hand side inequality (the lower bound). We first
notice that

r—-C, (X,H”)
increases. As a consequence, if X =1°(a), 1< p <o, then
C..(1I0(a),H")2C, (1) (a),H") =¢(0, 5,17 (a),H"),

where o, ,={0,0,---,0}. Now let f =-1->""" (k +1)z"* . Then |ff |, =1, and

| —
n

o 1
(@0 @ H V21 yopunge 2 2]+,

S TECEINIO!

where = and F, are defined in part 5) of the proof of Theorem (1.3.10) (lower bound)

and where m >1 is such that 2m =nif nis even and 2m —-1=n if n is odd as in part 4) of
the proof of the same Theorem. Now, since

S () =55 2k 4D,

we get the result.
Theorem (1.3.12)[53]: Let r €[0,1), n>1, p €[2,+x], and let «<0. We have

3 2

ot n \2“p
B P SC:n,r(lap(OK)!HOO)S'A\,(:L_] ’

where A’ and B’ depend only on « and p.

Proof. The proof repeates the scheme from Theorem (1.3.11). (the two steps) excepted
that this time, we replace (in both steps) the space X =1}(a) by X =17(a).
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Chapter 2
Presburger Sets with Analytic P-Adic and Classification
of Semi-Algebraic P-Adic Sets

We exhibit a tight connection between the definable sets in an arbitrary p-minimal
field and Presburger sets in its value group. We give a negative result about expansions
of Presburger structures and show uniform elimination of imaginaries for Presburger
structures within the Presburger language. The cell decomposition theorem describes
piecewise the valuation of analytic functions (and more generally of subanalytic
functions), the pieces being geometrically simple sets, called cells. We also classify
subanalytic sets up to subanalytic bijection.

Section (2.1): P-Minimal Fields

In this section we classify the Presburger sets up to definable bijection (2.1.11), using
as only classifying invariant the (logical) algebraic dimension. In order to show this
classification, we first formulate a cell decomposition theorem for Presburger groups
(2.1.4) and a rectilinearisation theorem for the definable sets (2.1.9). Also a
rectilinearisation theorem depending on parameters is shown (2.1.10).

Expansions of Presburger groups have recently been studied intensively. One could
say that on the one hand one looks for (concrete) expansions which remain decidable and
have bounded complexity, and on the other hand different kinds of minimality conditions
(like coset-minimality, etc.) are used to characterize general classes of expansions (see
e.g., [69], [80]). We examine expansions of Presburger groups satisfying natural kinds of
minimality conditions.

In [75], D. Haskell and D. Macpherson defined the notion of p-minimal fields, as a
p-adic counterpart of o-minimal fields. A p-minimal field always is a p-adically closed
field, and its value group is a Z-group. Interactions between definable sets in a given p-
adically closed field and Presburger sets in its value group have been studied in the
context of p-adic integration for several p-minimal structures (see [73], [74]). In
Theorem (2.1.17), we exhibit a close connection between definable sets in arbitrary p-
minimal fields and Presburger sets in the corresponding value groups.

In the last, we use the cell decomposition theorem in an elementary way to obtain
uniform elimination of imaginaries for Z-groups without introducing extra sorts.

In this section G always denotes a Z-group, i.e., a group which is elementary
equivalent to the integers Z in the Presburger language =<+,s, {z(modn)}n>o,o,1>

Pres

where =(modn) is the equivalence relation in two variables modulo the integer n>0. We
call G, ~.,) a Presburger structure and we write H for the nonnegative elements in G.
By a Presburger set, function, etc., we mean a -, - definable set, function, etc., and by

definable we always mean definable with parameters (otherwise we say 0- definable, S-
definable, etc.). We call a set X <G™ bounded if there is a tuple z eH™ such that
~z,<x, <z, for each x eX and i =1...,m . For k <m we write 7, :G™ -»G* for the
projection on the first k coordinates and for X <G*™" and x ez, (X) we write X, for
the fiber {y eG"|(x,y)eX}. We recall that the theory Th(z, ~,..) has definable Skolem
functions, quantifier elimination in -, and is decidable [81].

~ Pres

We show a cell decomposition theorem for Presburger structures, by first showing it
in dimension 1 and subsequently using a compactness argument. An elementary
arithmetical proof can also be given, using techniques like in the proof in [71], but our
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proof has the advantage that it goes through in other contexts as well. As always, G
denotes a Z-group.
Definition (2.1.1)[68]: We call a function f : X <G™ —G linear if there is a constant
y €G and integers a;, 0<c, <n, for i =1,...,m such that x, —c, =0(modn,) and
fo0=2a (),
for all x =(x,,....x,,)eX . We call f piecewise linear if there is a finite partition ¢ of X
such that all restrictions f |,,Ae9 are linear. We speak analogously of linear and
piecewise linear maps g : X —G".
The following definition fixes the notion of (Presburger) cells.
Definition (2.1.2)[68]: A cell of type (0) (also called a (0)-cell) is a point {a}cG . A (1)-
cell is a set with infinite cardinality of the form
{x €G |agxg,B,x =c (modn)}, (1)

with o, g in {a}cG, integers 0<c <nand g either < or no condition. Let i, {0,1} for
j=1...mand x =(x;,....,x,,). A (iy,...,i,1)-cell is aset A of the form

A={(x,t)eG""|x €D, a(x)gto, B(x),t =c (modn)}, (2)
with D =7x_(A) a (i,,...,i,)-Cell, «,4:D —G linear functions, o either < or no condition
and integers 0<c <nsuch that the cardinality of the fibers A, ={t G |(x,t) €A} can not be
bounded uniformly in x D by an integer. A (i,,...,i_,0)-cell is a set of the form

{(x,t)eG™ |x eD, a(x) =t},

with «:D —G a linear function and D <G" a (i,...,i,)-cell.
Remarks (2.1.3)[68]: (i) Although we consider in Definition (2.1.2) a condition on the
cardinality of fibers, the type of a cell does not alter if one takes elementary extensions.
(i) To an infinite (i,,...,i,)-cell AcG™ we can associate (as in [82]) a projection
r, :G™ —G"* such that the restriction of =, to A gives a bijection from A onto a (1,...,1)-
cell A'cG*. Also, a (i,,...,i,,)-cell is finite if and only if i,=---=i_=0, and then itis a
singleton.
(iii) Let A be a (i,,...,i,,1)-cell as in Eq. (2), then it is clear that a linear function

f : A —>G can be written as
fcD)=aC—)+r(x), (x)eA, 3)

with a an integer, y:D —G a linear functionand c, n, D asin Eq. (2).
Theorem (2.1.4)[68]: Let X cG™ and f : X —G be <, -definable. Then there exists a

~ Pres
finite partition ¢ of X into cells, such that the restriction f |:A -G is linear for each cell
Aec9. Moreover, if X and f are S-definable, then also the parts A can be taken S-
definable.
Proof. by induction on m. If X <G, f : X —»G are -, -definable, then Theorem (2.1.4)

~ Pres

follows easily by using quantifier elimination and elementary properties of linear
congruences. Alternatively, the more general [80] can be used to show this one
dimensional version (see also Proposition (2.1.13) below). Let X <G™" and f : X —»G
be .. -definable, m >0. We write (g,5,) e{<,0} to say that o, resp. o,, represents either
the symbol < or no condition. Let s be the set Zx{(n,c) e Z*|0<c <n}x{<,0¥ . For any
d=(a,n,cgn)es and £=(&,5,&) G we define a Presburger function

( ]
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t—-c
Fop {t €G 4ot t =c (modn)}—G ZHa(T)+§3_

The domain Dom(F, ) of such a function F,,, is either empty, a (1)-cell or a finite
union of (0)-cells. For fixed k >0 and d es*, let ¢, ,(x,&) be a Presburger formula in
the free variables x =(x,,...,x,) and &=(&,....&) , with & =(&,,&,,&,) , such that
G = @4, (x,€) if and only if the following are true:
(i) x ez, (X)),
(ii) the collection of the domains Dom(F, .,) for i =1,....k forms a partition of the fiber
X, cG,
(iii) F, . @) =f (x,t) foreacht eDom(F, .)) and i =1,....k.
Now we define for each k and d es* the set

B ={x eG"|3¢ ¢(d,k)(xa§)}-
Each set B, is ., -definable and the (countable) collection {B, },, covers z, (X ) since
each x ez, (X )is in some B, by the induction basis. We can do this construction in any
elementary extension of G, so by logical compactness we must have that finitely many
sets of the form B, already cover z,(X). Consequently, we can take Preshurger sets
D,....,D,such that {D;} forms a partition of =, (X ) and each D, is contained in a set B,
for some k and k -tuple d . For eachi =1,...,s, fix a k and k -tuple d with D, eB,,, then
we can define the Presburger set

I ={(x,$) e b, xG * |¢(d,k)(x1§)}
satisfying ~_(I',) =D, by construction. Since the theory Th(G, ~,..) has definable Skolem
functions, we can choose definably for each x D, tuples £eG* such that (x,&)eT, .

Combining it all, it follows that there exists a finite partition s of X consisting of
Presburger sets of the form

A={(x,t)eG""|x eC,a(x)atg,B(x),t =c (modn)},
such that f |, maps (x,t)eA to a(:2)+y(x); with «,8,7:C -G and C cG" . -definable

~ Pres

, o either < or no condition, integers a, 0<c <n and =, (A)=C . The theorem now follows
after applying the induction hypothesis to C and «,,7:C -G and partitioning further.

Any Presburger structure satisfies the exchange property for algebraic closure. This
is a corollary of a more general result in [69] but can also be shown using the cell
decomposition theorem elementarily. In particular this yields an algebraic dimension
function on the Presburger sets in the following (standard) way.
Definition (2.1.5)[68]: Let X <G™ be A -definable for some finite set A by a formula
o(x,a) where a=(a,...,a,) enumerates A, then the (algebraic) dimension of X, written
dim(X ), is the greatest integer k such that in some elementary extension G of G there
exists x =(x,,...,x,,)eG™ with G F¢(x,a) and rk(x,,...,x.,a,,....a ) —rk(a,....a ) =k , where
rk(B) of a set B =G is the cardinality of a maximal algebraically independent subset of
B (in the sense of model theory, see [77]).

This dimension function is independent of the choice of a set of defining parameters
A and the following properties of algebraic dimension are standard.
Proposition (2.1.6)[68]:

(i) For Presburger sets XY cG" we have dim(X UY ) =max(dimX ,dimY ).
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(i) Let f :X —>G™ be <., -definable, then dim(X ) >dim(f (x)).

The dimension of a cell C is directly related to the type of C (see (2.1.7)). Also, if we
have a Presburger set X and a finite partition ¢ of x into cells, the dimension of X is
directly related to the types of the cells in ¢ (see (2.1.8)).

Lemma (2.1.7)[68]: Let C cG" be a (i,,...,i,)-cell, then dimC) =i, +...+i,,.
Proof. For a (0)- and a (1)-cell this is clear. Possibly after projecting, we may suppose
that C cG™ isa (1 ..., 1)-cell. The Lemma follows now from the definition of the type of a
cell using induction on m and a compactness argument.
Corollary (2.1.8)[68]: For any Presburger set X <G™ and any finite partition ¢ of X into
cells we have

dim(X ) =max{i, +...+i_|C e®Cisa(i,+...+i_)-cell} 4)

=max{i, +...+1i, | X contains a (i, +...+1,,) -cell}.

Proof. The first equality is a consequence of Lemma (2.1.7) and Proposition (2.1.6). To
show (4) we take a (i,,...,i,,)-cell C =X such that i, +...+i_ is maximal. By the cell

decomposition we can obtain a partition ¢ of x into cells such that C e9. Now use the
previous equality to finish the proof.

The cell decomposition theorem provides us with the technical tools to classify the
0-definable Presburger sets up to <, . -definable bijection. The key step to this

~ Pres

classification is a rectilinearisation theorem, which also has a parametric formulation.
We recall that G denotes a z-group and H ={x G |x >0}, we also write H°={0}. Also
notice that a set A is 0-definable if and only if A is Z-definable, to be precise, definable
over Z-1cG.
Theorem (2.1.9)[68]: Let X be a 0-definable Presburger set, then there exists a finite
partition ¢ of X into 0-definable Presburger sets, such that for each A 9 there is an
integer 1 >0 and a 0-definable linear bijection f :A —>H".
Proof. We give a proof by induction on dimX . If dimX =0 then X is finite and the
theorem follows, so we choose a Presburger set X with dimX =0, m=>0. Any
“ows - definable object occurring in this proof will be 0-definable: we will alternately
apply 0-definable linear bijections and partition further. By the cell decomposition
theorem and possibly after projecting (see remark (2.1.3) Definition (2.1.2)), we may
suppose that x isa (1,...,1)-cell contained in G™**, so we can write
X ={(x,t)eG""|x eD, a(x)gto,B(x),t =c (modn)},
with x =(x,,....x,,) , 7,(X)=DcG" a (i,.., 1)-cell, integers 0<c<n , a,4:D -G
0-definable linear functions and o either < or no condition. By induction we may
suppose that D =H". If both g and o, are no condition, the theorem follows easily, so we
may suppose that one of the o, say o, is <. Moreover, after a linear transformation
(x,t) = (x,t2) we may assume that c =0 and n=1, then we can apply the following
linear bijection
f: X s>A X)X, Xt —a(X)),
onto
A={(x,t)eH " |tg, B(x) - a(X)}.
Because A(x)-a(x) is a linear function from H™ to G there are integers k, such that

A:{(th)EHm+l|t':‘zko_ikixi}- (5)

i=1
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Moreover, since = (A)=H", all integers k, must be nonnegative. We proceed by
induction on k,>0. If k, =0 then A=H x{(x,,...,x,,t)eH" ItSko+Zim:2kiXi} and the
theorem follows by induction on the dimension. Now suppose k, >0, then we partition A

into two parts
A ={(x,t)eH™ |t <x,-1},

A, ={(x,t)eH ™ |x, <t <k, +> kx;},

i=1

where z_(A,))=H™ and ~_(A)={x eH ™ |1<x,}. We apply the linear bijection
A, > B (X, t)—=>(Xy,..., Xt =X,)
with
B={(x,t)eH™ |t < k0+(k1—1)xl+ikixi}
i=2
and the theorem for B follows by induction on k,. We conclude the proof by the
following linear bijection:
A —>H™ (X, ) (X, -1-t,X,,...,X,,t).
Theorem (2.1.10)[68]: Let X cG™" be a 0-definable Presburger set, then there exists a
finite partition ¢ of X into 0-definable Presburger sets, such that for each A €9 there is
a set B<G™" with z,(A)=x,(B) and a 0-definable family {f },.. ., of linear bijections
f,:A,cG"—>B,cG" with B, a set of the form H'xA, where A, is a bounded
A-definable set and the integer 1 only dependson A e¢.
Proof. We give a proof by induction on n, following the lines of the proof of Theorem
(2.1.9). So we assume that x is a cell
X ={(A,x,t) eG™"V|(1,x)eD, a(4,x)gto,B(4,Xx),t =¢c (modn)},
with 21=(4,...4,) , X =(X;,...X,), DcG™" a cell, integers 0<c<n , a,B:D —>G
0-definable linear functions and o either < or no condition. By subsequently applying
the induction hypothesis to D, partitioning further and applying linear bijections (similar
as to obtain Eq. (5) in the proof of Theorem (2.1.9), keeping the parameters /1 fixed
now), we may assume that x has the form
X ={(A4,x,1)eG™""|(1,x)eD’, 0<t <y(4,x)},

with 7 (X)=D'cG™" a Presburger set such that for each iez (D) D,=H'xT,
where T, is a A-definable bounded set, | a fixed positive integer and y:D’'—>G a
0-definable linear function. If 1 =0, X, is a bounded set for each 1 and the theorem
follows immediately. Let thus 1 >0, i.e., the projection of X on the x, -coordinate is H,
then the function y can be written as (4,x)—kx,+7'(4,X,,...x,) With k, an integer,
necessarily nonnegative because the projection of X on the x, -coordinate is H and y' is a
linear function. The reader can finish the proof by induction on k, >0, similar as in the
proof of Theorem (2.1.9).
Theorem (2.1.11)[68]: Let X be a 0-definable Presburger set with dimx =m >0, then
there exists a 0-definable Presburger bijection f : X —G™. In other words, there exists a
0-definable Presburger bijection between two infinite 0-definable Presburger sets x , v if
and only if dimX =dimy .
Proof. Let x be 0-definable and infinite. We use induction on dimX =m. We say for
short that two Presburger sets x , Y are isomorphic if there exists a 0-definable
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Presburger bijection between them and write X =y . If m =1, then Theorem (2.1.9) yields
a partition ¢ of x such that each part is either a point or isomorphic to H . Consider the
bijections

2X B> X,
2X +1 > X,

f,rHULFD > H x> X +1,
_ 1(0,x) = 2x,
fo:({OpxH)U{@}xH)—>H '{(1,X) 2% 41

the bijections f,, f,, applied repeatedly to (isomorphic copies of) parts in ¢ yield a
definable bijection from X onto H and thus G =X by applying f, (in the obvious way).
Now let dimX =m >1. Using Theorem (2.1.9) we find a partition ¢ of X such that each
part is isomorphic to H' and thus to G' since H =G by f,. Since dimX =m, at least one
part is isomorphic to G". Take A,B €9 with A=G™ and B =G', then it suffices to show
that AUB=G™. If I =0 this is clear and if I >0 then AUB =G x(A’UB") for some disjoint
and 0-definable sets A’, B" with A’=G™" and B'=G'". The induction hypothesis applied to
A'UB’ finishes the proof.

We define the notion of Presburger minimality ( 4., - minimality ) for expansions of
Presburger structures (G, “;.,). This notion of ;. -minimality is a concrete instance of
the general notion of - minimality as in [78] and has already been studied in [80].
Definition (2.1.12)[68]: Let G be a Z-group and - an expansion of the language -

Pres 1

then we say that G, ) is . -minimal if every  -definable subset of G is already

~ Pres

Vs -definable  (allowing parameters as always). We say that Th G, ) is
s -~ Minimal if every model of this theory is ., -minimal.

Comparing this notion with the terminology of [80], a structure G, ) Iis
o -minimal if and only if it is a discrete coset-minimal group without definable

~ Pres

proper convex subgroups (see [80]). [80] says that a definable function in one variable
between such groups is piecewise linear. We reformulate this result with our
terminology.

Proposition (2.1.13)[68]: [80] Let G, ) be

function f :G —G is piecewise linear.

Proposition (2.1.13) allows us to repeat without any change the compactness argument
of the proof of the cell decomposition theorem for any model of a 4, - minimal theory.
This leads to the following description of 4, - minimal theories.

Theorem (2.1.14)[68]: Let (G, ) be an expansion of a Presburger structure (G, ~;..),
then the following are equivalent:

(i) Th@G, ) is “4, -minimal;

(if) G, ) is a definitional expansion of (G, *4,..); precisely, any  -definable set
X cG" is already 4, -definable.

Thus, the theory Th(G, +,.,) does not admit any proper . -minimal expansion.

Proof. Any Presburger minimal theory has definable Skolem functions. For if X cG™ is
a definable set in some model G, we can choose definably for any x e, (X ) the smallest

nonnegative element in X , if there is any, and the largest negative element otherwise.
This implies the definability of Skolem functions by induction. Now replace in the

( ]
| % )

f, H —>G:{

Pres

-minimal , then any definable

— Pres

Pres




statement of the cell decomposition Theorem (theorem (2.1.4)) the word /. -definable

by < -definable. Then repeat the case m =1 of the proof of Theorem (2.1.4), using now
the . -minimality and Proposition (2.1.13). Using the same compactness argument as

~—~ Pres

in the proof of Theorem (2.1.4) we find that any <~ -definable set X <G" is a finite
union of Presburger cells, thus a fortiori, X is <. -definable.

~ Pres

We let K be a p-adically closed field with value group G. Recall that a p-adically
closed field is a field K which is elementary equivalent to a finite field extension of the
field @, of p-adic numbers; in particular, the value group G is a Z-group and K has

quantifier elimination in the Macintyre language <, =(+—-.,01{P},..) Where P, ,

denotes the set of n-th powers in K*. We write v : K —G U{cc} for the valuation map and
for any m >0 we write v for the map v:(K*)" >G™:x > (v(x,),...v(x,,)) . We give a
definition of p-minimality, extending the original definition of [75] slightly.

Definition (2.1.15)[68]: Let K be a p-adically closed field and let (K, ) be an
expansion of (K, <,.) . We say that the structure (K,~) is p -minimal if any
< -definable subset of K is already 4, -definable (allowing parameters). The theory
Th(K, ~)is called p-minimal if every model of this theory is p-minimal.

Lemma (2.1.16)[68]: Let K be a p-adically closed field with value group G, then for any
“ons ~definable set  ScG"™  the set  v(S)={(X,...X,)e(K)"|V(x)eS} IS

. -definable.

—~ Mac

Proof. LetsScG" be /. -definable. By Theorem (2.1.4) we may suppose that s is a

~ Pres

Presburger cell. The Lemma follows now inductively from the fact that conditions
m-1

imposed on (x,,....x,_,t) e(K*)" of the form =v(t) <2(3 " ‘av(x;))+d or v(t)=c (modn)
are ,,.. -definable for any integers a,, e #0, 0<c<n and d G (see e.g., [72]).
Theorem (2.1.17)[68]: Let (K, ) be a p-minimal field with p-minimal theory and let G
be the value group of K. Then for any - -definable set X < (K™)" the set

7(X) =X, V(X)) €(G)" [ (Xpree X,y ) €X)IG™
IS “4. -definable.
Proof. Put S, ={r(X)cG" | X <(K*)", X is / -definable}, then it is easy to see
that the collection (S,), >0 determines a structure on G (i.e., the collection U_S,, is
precisely the collection of '-definable sets for some language ~'). We first argument
that this structure is in fact - minimal. Choose a  -definable set X <K*, then, by

~ Pres

p-minimality, X is -, -definable. We can thus apply the p-adic semi-algebraic cell

decomposition ([72], in the formulation of [70, Lemma 4]) to the set X to obtain that X
is a finite union of p-adic cells, i.e., sets of the form

X eK |v(a)gv(x —c)gv(a,),x —c € AP,}c K™,
with a,a,,c,2eK and g either <, < or no condition. The image under v of such a cell is
either a finite union of (0)-cells or a (1)-cell and thus a ., -definable subset of G . By
consequence, the structure (S,,),, =0 is “,,, - minimal. By the Presburger minimality of
S,),, =0, the p-minimality of Th(K, ), and Lemma (2.1.16) to interprete G into K,

we can repeat the compactness argument of the proof of the cell decomposition theorem
(2.1.4) for the structure (S,), on G to find that each A<U,_S,, is a finite union of

Presburger cells. This shows the theorem.
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As a last application of the cell decomposition theorem we show uniform elimination
of imaginaries for Presburger structures. We say that a structure (M, ) has uniform

elimination of imaginaries if for any @-definable equivalence relation on M* there
exists a @-definable function F:M* —-M" for some r such that two tuples x,y eMm* are

equivalent if and only if F(x)=F(y).
Theorem (2.1.18)[68]: The theory Th(Z, ~,..) has uniform elimination of imaginaries,
precisely, any Presburger structure (G, ~,.,) eliminates imaginaries uniformly.
Proof. Since Th(z, 4,..) has definable Skolem functions, we only have to show the
following statement for an arbitrary Z-group G (see e.g., [77]). For any 0-definable
Presburger set X <G"* there exists a 0-definable Presburger function F:G"™ —»G" for
some n, such that F(x)=F(x") ifand only if X =X, (if x ¢z (X) then we put X, =0
). So let X <G™* be a 0-definable Presburger set. Apply the cell decomposition
theorem to obtain a partition ¢ of X into cells. For each cell A 9 of the form
A={(x,t)eG™ |x €D, a(x)g,to,, B(X),t =c (modn)}, (as in Eq. 2) and each &=(&,&,) eG?
we define a set
Ca(@)={t G lgn,to, &, t=c (modn)}.

Notice that for each x ez (X) we have at least one partition of X , into sets of the form
C,(&) with Ae9 and £eG?. For x,y eG we write x <y if and only if one of the
following conditions is satisfied

(i) o<x<y,

(i) Oo<x<-y,

(i) o0<—x<y,

(iv) 0<—x<-y.
This gives a new ordering 0<1<-1<2<-2<...0n G with zero as its smallest element.

For each k >0 we also write <« for the lexicographical order on G* built up with <. The
order < is . -definable and each Presburger set has a unique <-smallest element. For
each x eG" and each I 9 with cardinality |I|=s>0 we let y, (x)=(& ), » & €G?, be
the <-smallest tuple in G* such that U,_C,(&)=X, if there exists at least one such
tuple and we put y, (x) =(0,...,0) eG* otherwise. One can reconstruct the set X, given all
tuples y,,1 <. Let F be the function mapping x ez, (X) to y =(y, (x)),_,. Since the
lexicographical order <« is . -definable it is clear that F is . -definable and that
F(x)=F(x") ifand only if X, =X . foreach x,x'eG".
Section (2.2): Cell Decomposition and Integrals

Let p denote a fixed prime number, Z, the ring of p-adic integers, Q, the field of p-
adic numbers, |-| the p-adic norm, and o(-) the p-adic valuation.

Let f =(f,,...,f,) be an r-tuple of restricted power series over Z, in the variables
(4, X)=(4,-. A, X, X,,), 1.e., the f, are power series converging on zy™ . To f we
associate a parametrized p-adic integral

1(2)= [ [f (A.x)x], (6)

2

where [dx | is the Haar measure on Z; normalized so that Z} has measure 1.
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A subanalytic constructible function on a subanalytic set x is by definition a
Q-linear combination of products of functions of the form o(h) and ||, where

h:X - @; and h':X —Q, are subanalytic functions.

We show the following conjecture of Denef [73]:
Theorem (2.2.1)[83]: The function 1 is a subanalytic constructible function on Z;, .

In the case that the functions f, are polynomials, the map 1 has been studied by Igusa

for r =1, by Lichtin for r =2, and by Denef for arbitrary r (see [91, 92, 93], [94], and
[73]). In the more general case that the |f (1,x)| in (6) is replaced by an arbitrary

subanalytic constructible function, the conclusion of Theorem (2.2.1) still holds (see
Theorem (2.2.14) below), where now 1 is identically zero if the integrated function is not
integrable for some A.

The rationality of the analytic p-adic Serre—Poincar’e series was conjectured in [101]
and [102] and proven by Denef and van den Dries in [74]; the rationality can
immediately be obtained as a corollary of integration Theorem (2.2.1). This is because it
is well known how to express the Poincar”e series as a p-adic integral (see [73]).

A second key result of the present section is a cell decomposition theorem for
subanalytic sets and subanalytic functions (Theorem (2.2.10)), in perfect analogy to the
semialgebraic cell decomposition theorem of [86] and [72]. Roughly speaking, p-adic
cell decomposition theorems describe the norm of given functions after partitioning the
domain of the functions in finitely many basic sets, called cells. Cell decompositions are
very useful to study parameterized p-adic integrals (see below and [73]) and to show the
rationality of Igusa’s local zeta functions and of several Poincar’e series (see [86]). Many
of the applications of cell decomposition (in for example [73] and [71]) cannot, up to
now, be proven with other techniques.

The proof of the analytic cell decomposition is based on several results by van den
Dries, Haskell, and Macpherson [76] on the geometry of subanalytic p-adic sets and
subanalytic functions; we state some of these results in this section.

We also extensively use the theory of p-adic subanalytic sets, developed by Denef
and van den Dries in [74] in analogy to the theory of real subanalytic sets; in particular,
we use the dimension theory of [74]. We apply cell decomposition to obtain the
following classification:

Theorem (2.2.2)[83]: Let X <Q} andY <@} be infinite subanalytic sets. Then there

exists a subanalytic bijection X —Y if and only if dim(X )=dim( ).
This classification of subanalytic sets is similar to the classification of semialgebraic sets
in [70]. Note that in particular there exists a semialgebraic bijection between Q,

and Q; ; this is the main result of [85].

The theory of p-adic integration has also served as an inspiring example for the
theory of motivic integration and there are many connections to it (see e.g. [89] and

[88]).
Many of the results of [74] and [76] are formulated for @, and not for finite field

extensions of Q_ ; nevertheless, all results referred to in this section also hold for finite
field extensions of @, (see [74]). All results of this section also hold in finite field
extensions of Q, .
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Let p denote a fixed prime number, @, the field of p-adic numbers and K a fixed
finite field extension of @  with valuation ring R. For x eK* let v(x) e Z denote the p-
adic valuation of x and |x|=q™*’ the p-adic norm, with q the cardinality of the residue
class field. We write P, ={y" |y eK"}, and xP, denotes {ux |x P } for ueK.

For x =(x,....,x,) let K{x} be the ring of restricted power series over K in the
variables x ; it is the ring of power series > ax' in K[[x]] such that |a| tends to Oas
i| > . (Here, we use the multi-index notation where i =(i,,...,i,,), [i|=i,+...+i, and
x'=(xp...xp).) For x,eR™ and f =) ax' in K{x} the series ) ax, converges to a
limitin K, thus, one can associate to f a restricted analytic function given by

f K" >K:x H{Ziaixl if xeR",
0 else.

We extend the notion of D-functions of [74] to our setting:
Definition (2.2.3)[83]: A D-function is a function K™ — K for some m >0, obtained by
repeated application of the following rules:
(i) foreach f ekK{x,....x,}, the associated restricted analytic function x —»f (x)is a
D-function;
(i)  for each polynomial f eK{x,,....x,}, the polynomial map x —f (x) is a D -
function;
(iii)  the function x —x ™, where 0" =0 by convention, is a D-function;
(iv) for each D-function f in n variables and each D-functions g,,...,g, in mvariables,
the function f (g,,...,g,) is a D-function.
A (globally) subanalytic subset of K™ is a subset of the form
X =Urnx;
i=1j=1

where each X is of the form {x eK™|f;(x)=0} or {x eK"|f;(x)eP, }, Where the
functions f, are D-functions and n, >0. We call a function g:A cK™ — K" subanalytic
if its graph is a subanalytic set. We refer to [74], [73] and [76] for the theory of
subanalytic p-adic geometry and to [96] for the theory of rigid subanalytic sets.

We will use the framework of model theory. We let £, be the first order language
consisting of the symbols

+u_"a_1v{Pn}n>01

together with an extra function symbol f for each restricted analytic function associated
to restricted power series in | J K{x,,...,x,}.\We consider K as an £, -structure using the

natural interpretations of the symbols of 2, .

We mention the following fundamental result in the theory of subanalytic sets.
Theorem (2.2.4)[83]: ([74]). The collection of subanalytic sets is closed under taking
complements, finite unions, finite intersections, and images under subanalytic maps.

A semialgebraic subset of K™ is a subset of the same form as x above but with the
f;, polynomials over K, and a function is semialgebraic if its graph is a semialgebraic

set. It is well known that also the collection of semialgebraic sets is closed under taking
complements, finite unions and intersections, and images under semialgebraic maps (see
[98], [72]).
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To state cell decomposition one needs basic sets called (subanalytic) cells, which we
define inductively. For m,1 >0 write z_:K™" — K™ for the linear projection on the first

m variables and, for Ac K™ and x ez (A), write A for the fiber {t eK' |(x,t) eA}.
Definition (2.2.5)[83]: A cell A =K is a (nonempty) set of the form

{t eK llefglt -75|Bt -y € 1P}, (7)
with constants n>0, u,yeK, a,feK”, and g either < or no condition. If =0 we call

A a 0-cell and we call A a 1-cell otherwise.
A (subanalytic) cell AcK™*, m >1, is a set of the form

{(x,1) e K™ [x €D\ [a®)[gft - 7| B[ t —7(x) € P}, (8)
with (x,t)=(x,...x,,t) , n>0, ueK , D=x_(A) a cell, subanalytic functions
a,f:K" >K*, y:K" >K , and g either < or no condition. We call y the center and
uP. the coset of the cell A. If D is a cell of type (i,,...,i.) with i, e{0,1}, we call A an
(ij,...,i,,0)-cell If z=0 and we call A an (,...,i_,1)-cell otherwise. If at each stage of this
inductive definition all occurring functions «, s, and y are analytic on the respective
projections z,(A), i =1,....,m -1, we call A an analytic cell.

Let K, be an £, -elementary extension of K and let R, be its valuation ring. In view
of Theorem (2.2.4), we can call a set X < K" subanalytic if it is £, -definable (with
parameters from K,) and analogously for subanalytic functions, cells, and so on.
Expressions of the form |x|<|y| for x,y eK, are abbreviations for the corresponding £, -
formula’s expressing |x|<|y| for x,y eK, as in Lemma 2.1 of [72]. Cells in K" are
defined just as in K" by replacing K by K, everywhere in the definition. By a D-
function K" — K, we mean a function given by an £ -term (with parameters from K,)
in m variables. Similarly, one can speak of semialgebraic subsets of K" (with parameters
from K,).

Theorem (2.2.6)[83]: ([76]). Each subanalytic subset of K, is semialgebraic.

The following two lemmas treat the one-dimensional part of Theorem (2.2.10).
Lemma (2.2.7)[83]: Let f :R, — K, be a subanalytic function. Then there exists a finite

partition of R, into semialgebraic sets A such that for each A there exist polynomials p
and q such that

If 0)|=|p(x)/a(x)[*, foreachx eA,
where g has no zeros in A and e >0 is an integer.
Proof. By [87], there exists a finite partition of R, into subanalytic sets B such that

I (x)|=|gs (x)/hs (x)[*, foreachx eB,
Where g, and h, are D-functions, h,(x)=0 on B and e >0. (In [87] this is proven for
subanalytic functions Z7 — Z, using quantifier elimination in an elementary way; its
proof can be repeated for our situation R, — K, or otherwise one can instantiate

parameters in the result of [87] to deduce this as a corollary.) By Theorem B of [76], the
sets B are semialgebraic.

In [76] it is proven that the norm of any D-function in one variable is piecewise equal to
the norm of a rational function, the pieces being semialgebraic sets. More precisely, by
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Proposition (4.1), Corollary (3.4) and Lemma (2.10) of [76], there exists for each
function g, a finite partition of R, into semialgebraic sets C such that on each C

|95 (X)| =|9ac (X)/Nge (X)], for each x eC
where g,. and h,. are polynomials over K, and h,.(x)=0 on C .The same holds for each
function h, . Taking an appropriate partition using intersections of these sets C and B the

lemma follows.
Lemma (2.2.8)[83]: Let X R, be a subanalytic set and f :X — K, a subanalytic

function. Then there exists a finite partition 7 of x into cells, such that for each cell
A P with center y eK, and coset P,

It @©)] =0l - )|
with § K, and a an integer. We use the convention that a=0 and 0°=1 when x=0.
Proof. We extend f to a function R, — K, by putting f (x)=0 if x ¢X . By [76], the set

X is semialgebraic. Apply Lemma (2.2.7) to f to obtain a partition P . Intersecting each
set in P with X , we obtain a partition P’ of X . Now apply the semialgebraic cell
decomposition (in the formulation of [70]) to the sets in P and the respective
polynomials occurring in the application of Lemma (2.2.7). If we refine the obtained
partition such that for each cell A=C with coset P, the number n is a multiple of e

(for the occurring fractional powers 1/e ), then the lemma follows.

We will use the previous lemma and a model-theoretical compactness argument to
show the following variant of Theorem (2.2.10).
Theorem (2.2.9)[83]: Let K, be an arbitrary £ -elementary extension of K with

valuation ring R,. Let X <K be subanalytic and f, : X — K, subanalytic functions for

j =1...,r. Then there exists a finite partition of X into subanalytic cells A with center
7 K" — K, and coset xP, such that for each (x,t)eA

5 0,0 =]8; 00)]|t= 7000 |
with (x,t)=(x,,....x,.t), integers a;, and &, : K" — K, subanalytic functions, j =1...,r.
Here we use the convention that a, =0 and 0° =1 when x=0.

Proof. The proof goes by induction on m >0. It is enough to show the theorem for r =0
(the theorem then follows after a straightforward further partitioning; see for example

[72]).

When m =0, the usual change of variables t'=1/t reduces the description of what
happens outside R, to what happens on R,, and an application of Lemma (2.2.8) gives

the desired result.
Let X K™ and f :X — K, be subanalytic, m >0. We write (x,t)=(x,,...,x,,,t) and

know by the previous discussion that for each fixed x e K" we can decompose the fiber
X, and the function t —f (x,t) on this fiber. We will measure the complexity of given
decompositions on which |f (x,)| has a nice description and see that this must be

uniformly bounded when x varies.
To do this, we define a countable set S={uP, |ueK,n>0}xZx{<,0} and

S'=(K;)xKZ. To each d =(uP,,a,0,5) In S and &£=(&,&,,5,£,) S we associate a set

Dom,, ., as follows:

foreacht €A,
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Domy ., ={t eK, ||§1|Dl|t _§3|EE|§2|’t —&euP}.
The set Dom, , is either empty or a cell and is independent of &, and a. For fixedk >0
and tuple d =(d,,...,.d,)eS", let ¢4, (x.£) be an £, -formula in the free variables
X =(Xy,...X,) and E=(&,....&), With & =(&,,&,,8,,&,), such that (x,&) e K™ satisfies
9a ., 1T and only if the following are true:
(i) x ex (X) and &e(S)*,
(if) the collection of the sets Dom
X, =fteK,|(x,t)eX},

@) for i =1,...,k forms a partition of the fiber

(i) e[|t - &) ™ \* =|f (x,t)| for each t e Dom,, ., and each i =1,....k .
Now we define for each k >0 and d e s* the set
By ={x eK" 3¢ ¢, (x,5)}.

Each set B, is subanalytic and the (countable) collection {B,}, , covers =, (X ), because
each x ez, (X) is in some B, by the induction. Since K, is an arbitrary elementary
extension of K, finitely many sets of the form B, must already cover r_ (X ) by model-
theoretical compactness. Consequently, we can take subanalytic sets D,,...,D, such that
{D,} forms a partition of (X ) and each D, is contained in a set B, for some k >0 and
k-tuple d. Foreach i =1,...;s, fixsuch ad with D, =B, , and let T, be the subanalytic set

T, ={(x,£) €D, x(8)" | g, (x, )}
Then ~_(I',) =D, by construction (=, is the projection on the x -coordinates). By [74] on
definable Skolem functions, there is a subanalytic function D, — K,* associating to x a
tuple £(x)e(S)* such that (x,£(x))eT, for each x eD,. The theorem now follows by
partitioning further with respect to the x -variables and using the induction hypothesis.
Theorem (2.2.10)[83]: Let X <cK™" be a subanalytic set, m>0, and f,:X —»K
subanalytic functions for j =1,...,r. Then there exists a finite partition of x into cells A
with center y: K™ — K and coset xP, such that for each (x,t) A

£, 0.1 =9, (X)H(t— YO [, foreach j=1...r, (9)
with (x,t) =(x,,...,x,,t), integers a,, and 5, : K™ — K subanalytic functions. If =0, we
use the conventions a; =0 and 0° =1. Moreover, the cells A can be taken to be analytic

cells such that the 5, are analyticon 7, (A).

For the proof of Theorem (2.2.10) we use techniques from model theory, namely a

compactness argument. (For general notions of model theory we refer to [77].)

Proof. We only have to show that we can partition X using analytic cells A in such a
way that the functions ¢, are analytic on 7, (A). In [74] one proves that any subanalytic
function is piecewise analytic. Theorem (2.2.10) then follows from Theorem (2.2.10) by
partitioning further using this fact.

For X < K™ subanalytic and nonempty, the dimension dim(X ) of X is defined as the
largest integer n such that there is a K-linear map ~:K™ —-K" and a nonempty
U cx(X),openin K" (for alternative definitions, see [74]).

Theorem (2.2.11)[83]: For any subanalytic set X cK™ and subanalytic functions
f.:X ->K,i=1..,r,thereis asemialgebraic setY , a subanalytic bijection F:X —Y and

(di &)
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there are semialgebraic maps ¢, :Y — K such that

g, (F(x))|=|f;(x)] foreachx eX .
Proof. We will give a proof by induction on m. Suppose that X <K™* is subanalytic and
that f, : X — K are subanalytic functions, m >0. Apply cell decomposition to x and the
functions f. to obtain a finite partition P of X . For AP and (x,t)eA, suppose that

;00| =[5, 00|t 700y 2|
{(x,t) e K™ [x €D e[t =y (K[|t —r(x) € 4P},
as in (8). After the translation (x,t)— (x,t —y(x)) we may suppose that y is zero on D.
Apply the induction hypotheses to the sets D and the subanalytic functions «, g, and &, .
Repeating this process for every A e P, and noting that there is a semialgebraic function
h:P, —K such that |h(t)|:|t|’/”, the proposition follows after taking appropriate disjoint
unions inside K™ of the occurring semialgebraic sets.
We show the following generalization of Theorem (2.2.2).

Theorem (2.2.12)[83]: Let X cK™ andY <K" be infinite subanalytic sets. Then there
exists a subanalytic bijection X —Y if and only if dim(X )=dim( ).

Proof. By Theorem (2.2.11) there are subanalytic bijections X —X’"andY —Y ' with
X" andy ' semialgebraic, but then there exists a semialgebraic bijection X '—Y " if and
only if dim(X ")=dim(r ") by [70]. Since the dimension of a subanalytic set is invariant
under subanalytic bijections (see [74]), the theorem follows.

We show that certain algebras of functions from Q7 to the rational numbers Q are
closed under p-adic integration. These functions are called subanalytic constructible
functions, and they come up naturally when one calculates parametrized p-adic integrals
such as (6).

For x =(x,,....x,,) an m-tuple of variables, we will write [dx| to denote the Haar
measure on K™, so normalized that R™ has measure 1.

Definition (2.2.13)[83]: For each subanalytic set x , we let ¢(X) be the @ -algebra
generated by the functions X —Q of the form x > o(h(x)) and x - |h’(x)|, where
h:X ->K* and h':X — K are subanalytic functions. We call f ec(X) a subanalytic

constructible function on X .
To any function f in C(K™"), m,n>0, we associate a function I _(f):K™ - Q by

putting

, i =1,...,r, and suppose that A is a cell of the form

| (F)(A) = jf (A,x)[dx |, (10)

if the function x —f (1,x) is absolutely integrable for all 21eK™, and we put
I (f )(A) =0 otherwise.

Theorem (2.2.14)[83]: (Basic Theorem on p-Adic Analytic Integrals). For any function
f eC(K™"), the function I _(f) isin C(K™).

Proof. By induction it is enough to show that for a function f in C(K™") in the variables
(A4,-- 4, ,t) the function 1_(f) is in C(K™). Suppose that f is a Q-linear combination of
products of functions [f;| and v(g;), i =1...,r, j=1...,s, where f, and g, are subanalytic
functions K™ —»K and g;(4,t)=0 . Applying cell decomposition to K™ and the
functions f, and g,, we obtain a partition 7 of K™ into cells such that I_(f )(1) is a

( ]
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sum of integrals over A, ={t | (4,t) e A} for each cell A P, where the integrands on these
pieces A, have a very simple form. More precisely, on each piece A, the integrand is a
Q-linear combination of functions of the form

S|t =) 1| vt -7(2)', (11)
where A is a cell with center y:K™ —K and coset »P,, and with integers a and o<1,
and a function 5 in ¢(K™). We may suppose that §(1) =0 for some 1< _(A). Regroup

all such terms where the same exponents a and | appear, possibly by replacing the
functions 5(1) by other functions in ¢(K™). The integrability of such an integrand then
only depends on the integers a, |, and n occurring in each of the terms as in (11) and on
the symbols o and x occurring in the description of the cell A. By consequence, we may
suppose that the integrand is a single term of the form as in (11) and that this term is
absolutely integrable over A. It suffices to show that the integral

() [ |t~y [ vt ~y(a)' et (12)

teA,

Isin C(K™). Write u =t —»(1); since A is a cell with center y and coset «P,, the set A is
of the form

A ={(2,u) eK™"|2eD,|a(A)ls|B(A)| u e uP,},
with g either < or no condition, D a cell, and «,5:K™ —K* subanalytic functions.

Taking into account that the integral (12) is, by supposition, integrable, only a few
possibilities can occur (with respect to the integers a, I, and n, the conditions o, and

being zero or nonzero). If =0, the set A, is a point for each 1 <D, thus the statement is
clear. Suppose «=0. In case that both o and o, represent no condition, the integrand has
to be zero by the supposition of integrability, and the above integral trivially is in ¢(K™).
We suppose from now on that g is <; the other cases can be treated similarly. The
integral (12) can be rewritten as

5)- [ " () |du|:§(l);(qak u?

ueA,

e )’k - Measurefu e A, |u(u) =k}

_ eé(l)Z:(qak ‘,u*a )%k g
for e=q°. Measure{u e A, |o(u) =s}(where s is any number such that 0={u €A, |v(u) =s}),
and where the summation is over those integers k =v(z)modn satisfying

()| <a*5|B(A)].
We may suppose that on A, the residue classes
v(a(A)) (modn) and o(B(A)) (modn)

are fixed (possibly after refining the partition 7). Then this sum is equal to a Q- linear
combination of products of the functions s, ||, |8], v(a) and v(B). For example, if
a/n=-1, g and o, are necessarily < and one obtains a polynomial in v(a) and v(B) of

degree<| +1, multiplied with 5. For more examples of calculations of sums of this kind,
see [71]. Thus, the integral (12) isin ¢(K™) as was to be shown.

As a corollary we will formulate another version of the basic integration theorem,
conjectured in [8].
Definition (2.2.15)[83]: Aset AcZ"xK™ is called simple if
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{(4,x) e K™™ | (L(A),.. U(z)x)eA&H =0}

i=l,...,n

is a subanalytic set. A function h:A cZ" xQ} —Z is called simple if its graph is simple.
For a simple set X we let ¢, . (X ) be the Q-algebra generated by all simple functions on

X and all functions of the form ", where h is a simple function on X .
For a function f in C,_ (Z"'xK™), k, |, m, n integers >0 , we define

simple
e n(f):Z xK™ > Q as
L ()2, A) = jf(z 2", 2, %) Jdx |

z'e7' K

if the function (z',x)—f (z,z',4,x) is absolutely integrable for all (z,1)eZ* xK™ with
respect to the Haar measure on K" and the discrete measure on Z', and we define
I . (f )(z,4)=0 otherwise.
Theorem (2.2.16)[83]: For each f in C
smple(Zk xK! )
Proof. It is enough to show that for a function f in C,.(Z“xK™) in the variables
(2y--2,,%X,.-»X,) the function obtained by eliminating x_, by integration, resp.
eliminating z, by summation, is in the respective algebra C,,,. .

We first focus on integration with respectto x . To f :Z* xK™ — Q we can associate
a function g:K*™ - @Q by replacing the variables : running over z* by variables 1
running over K in such a way that g(1,x)=f (v(4),...,0(4,),x) for each 1e(K*)* and
g(4,x) =0 if one of the 4 is zero. By the definitions it is immediate that g is in C(K**™)
and the integral of f with respect to x, corresponds to the integral of the function g
with respect to x . If we eliminate x by integration from g, then we get the function
l....(9) which is in ¢(K*™™") by Theorem (2.2.14). This function only depends on
(L(A),-.-, (4 ), X,,-...X,,,) and thus corresponds to a function in ¢,_.(K**™™), as one can

Simple
check.
If we want to eliminate z, by summation, we associate to f the subanalytic

constructible function g': K**™ — Q determined by
g(A,x) = |4, |‘1Lf (O(A)s- s 0(A4 ), X)

if T[],  4#0and g(2,x)=0 if ], 4 =0. Integrating with respect to 4 then

corresponds to summing over z, , and the same argument as above can be applied to

complete the proof.
Section (2.3): Semi-Algebraic Bijection

In real semi-algebraic geometry (as opposed to p-adic semi-algebraic geometry) the
following classification is well-known [82]:

There exists a real semi-algebraic bijection between two real semi-algebraic sets if
and only if they have the same dimension and Euler characteristic.

More generally L. van den Dries [82] gave such a classification for o-minimal
expansions of the real field, using the dimension and Euler characteristic as defined for
o-minimal structures. Since the semi-algebraic Euler characteristic y is in fact the
canonical map from the real semi-algebraic sets onto the Grothendieck ring (see [85]) of

(z*' xk™™) , the function 1, . (f) is in

5|mple
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R (which is z), we see that the isomorphism class of a real semi-Algebraic set only
depends on its image in the Grothendieck ring and its dimension.

we treat the p-Adic analogue of this classification. The Grothendieck ring of @, is
recently proved to be trivial by D. Haskell and the author [85], so the analogue of the real
case is a classification of the p-adic semi-algebraic sets up to semi-algebraic bijection
using only the dimension. We give such a classification for the p-adic semi-algebraic sets
and for finite field extensions of @, using explicit isomorphisms of [85] and the p-adic
Cell Decomposition Theorem of J. Denef [72]. The most difficult part in giving this
classification is to show that for any semi-algebraic set X there is a finite partition into
semi-algebraic sets, such that each part is isomorphic to a Cartesian product of one
dimensional sets, in other words semi-algebraic sets have a rectilinearization. Since all
arguments hold also for finite field extensions of @, , we work in this more general
setting.

Let p denote a fixed prime number, @, the field of p-adic numbers and K a fixed

finite field extension of Q. For x eK let v(x) e ZU{+} denote the valuation of x. Let
R={x eK|v(x)=0} be the valuation ring, K*=K \{0} and for neN, let P, be the set

{xeK*|3y eK y"=x}. We call a subset of K" semi-algebraic if it is a Boolean
combination (i.e. obtained by taking finite unions, complements and intersections) of sets
of the form {x eK™|f (x)eP}, with f (x)eK[X,,...,X_ 1. The collection of semi-
algebraic sets is closed under taking projections K™ —K™", even more: it consists
precisely of Boolean combinations of projections of affine p-Adic varieties. Further we
have that sets of the form {x e K™ |u(f (x)) <v(g(x))} with f (x),g(X) e K[X,,...,X ] are
semi-Algebraic (see [72] and [98]). A function f : A — B is semi-Algebraic if its graph is
a semi-Algebraic set; if further f is a bijection, we call f an isomorphism and we write
A=B.

Let = be a fixed element of R with v (z) =1, thus = is a uniformizing parameter for R .
For a semi-algebraic set X <K and K >0 we write

XO=fx eX |x z0and (7 “x —1) >k, x =0},

which is semi-algebraic (see [72]); X © consists of those points x € X which have a p-
adic expansion x =>" az' with a, =1 and a =0 for i =s+1....s+k -1. By a finite
partition of a semi-algebraic set we mean a partition into finitely many semi-algebraic
sets. Let X cK", X cK™ be semi-algebraic. Choose disjoint semi-algebraic sets X',
Y 'cK* for some k, such that X =X " andy =Y ', then we define the disjoint union of X
and Y up to isomorphism as X'Uy '. In the introduction of [85] it is shown that we can
take k =max(m,n), i.e. we can realize the disjoint union without going into higher

dimensional affine spaces.

We recall some well-known facts.
Lemma (2.3.1)[70]: Let f (t) be a polynomial over R in one variable t, and let «eR,
e eN. Suppose that f («)=0mod z** and v (f '(«)) <e, where f ' denotes the derivative of
f . Then there exists a unique & <R such that f (z)=0 and f (&) =0mod z**™.
Corollary (2.3.2)[70]: Let n>1 be a natural number. For each k >uv(n), and k’=k +ov(n)
the function

KO 5P x 5x"

IS an isomorphism.
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The next theorem gives some concrete isomorphisms between one dimensional sets.
Proposition (2.3.3)[70]:[85].
(1) The union of two disjoint copies of R \{0} is isomorphic to R \{0}.
(ii) For each k >0 the union of two disjoint copies of R® is isomorphicto R®,
(iif) R =R \{0}.

We deduce an easy corollary, also consisting of concrete isomorphisms.
Corollary (2.3.4)[70]: For each k we have isomorphisms

(i) R® =R \{0},
(i) R\{0}=K .
Proof. (i) There is a finite partition R\{0}=U_aR" with v(a)=0, say with s parts. Then
R\{0} is a fortiori isomorphic to the union of s disjoint copies of R®, which is by
Proposition (2.3.3)(ii) isomorphic to R™®,
(if) The map
1(O,x) = X,
({0}xR)U({1} xR \{0}) > K .{(LX) L 1m0,

is a well-defined isomorphism. It follows that K is isomorphic to the disjoint union of R
and R \{0}. Now use (i) and (iii) of Proposition (2.3.3).

Give K" the topology induced by the norm |x|=max(x;|)) with |x;| =p™" for
X =(X,....x, )eK™. P. Scowcroft and L. van den Dries [104] proved there exists no
isomorphism from an open set A cK™ onto an open set B cK" with n=m, so we can
define the dimension of semi-algebraic sets as follows.
Definition (2.3.5)[70]: [104]. The dimension of a semi-algebraic set X =¢ is the greatest
natural number n such that we have a nonempty semi-algebraic subset A =X and an
isomorphism from A to a nonempty semi-algebraic open subset of K" . We put
dim(g) = —1.

P. Scowcroft and L. van den Dries [104] proved many good properties of this
dimension, for example that it is invariant under isomorphisms.
Proposition (2.3.6)[70]: [104]. Let A and B be semi-algebraic sets, then the following
Is true:
(i) If A=B then dim(A)=dim(B),
(i) dim(A UB) = max(dim(A),dim(B)).
(iii) dim(A) =0 if and only if A is finite and nonempty.

We will show the converse of (i) for infinite semi-algebraic sets.
Lemma (2.3.7)[70]: For any semi-algebraic set x of dimension m eN, there exists a
semi-algebraic injection X —»K™.
Proof. By [104] there is a finite partition of X such that each part A is isomorphic to a
semi-algebraic open A’ K* for some k <m. Now realize the disjoint union of the sets
A’ without going into higher embedding dimension (see the introduction).

We formulate the p-adic Cell Decomposition Theorem by J. Denef [72, 86], which is
the analogue of the real semi-algebraic Cell Decomposition Theorem.
Theorem (2.3.8)[70]: [72,86]. Let x =(x,,...,x,) and X =(x,,....x,,,) , m>0 . Let
f.(X,x,), i=1....,r, be polynomials in x_ with coefficients which are semi-algebraic
functions from K™ to K . Let n eN, be fixed. Then there exists a finite partition of K"
into sets A of the form
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A={x eK"|x eD and v(a,(X))go(x, —c(X))z,v(a, (X))},
such that

f.(x)=u,(x)"h (X)(x, —c(X)", foreach x eA, i =1...r,
with u,(x) a unit in R for each x, D cK™* semi-algebraic, v, eN,, h , a, a,, ¢ Semi-
algebraic functions from K™ to K and g, o, either <, <, or no condition.

The next Lemma is also due to J. Denef [86].

Lemma (2.3.9)[70]: [86]. Let b: K™ — K be a semi-algebraic function. Then there exists
a finite partition of K™ such that for each part A we have e >0 and polynomials
f,,f, eR[X,,...,X ] such that

o(b(x)) = o
with f,(x) =0 for each x e A.

We give an application of the Cell Decomposition Theorem and Lemma (2.3.9),
inspired by similar applications in [86]. For details of the proof we refer to the proof of
[86], By AP, with 2 =0 we mean {0}.

Lemma (2.3.10)[70]: Let X <K™ be semi-algebraic and b,:K" —K semialgebraic
functions for j =1,...,r. Then there exists a finite partition of X s.t. each part A has the
form

f,(x)
f,(x)

), foreach x €A,

A={x eK" X eD,v(a(X))go(x, —c(X))g,v(@,(X)), X, —c(X) € AP},
and such that for each x € A we have

o, () = (-6 (X)) d, (5)),

with X =(x,,....x,,,) , D<K"" semi-algebraic, e, >0, y, €Z, 2eK , ¢, a, d, semi-
Algebraic functions from K™ to K and o either <, < or no condition.
Proof. By Lemma (2.3.9) we have a finite partition of x such that for each part A, we
have e; >0 and polynomials g;,g; eR[X,,...,X ] With

o, () = o)

ej gj (X)

Let f. be the polynomials which appear in a description of A, as a Boolean combination
of sets of the form {x eK™ |f (x) eP,}.. Apply now the Cell Decomposition Theorem as
in the proof of [86], to the polynomials f,, g, and g; to obtain the lemma.

The proof of the next proposition is an application of both the Cell Decomposition
Theorem and some hidden Presburger arithmetic in the value group of K ; it is the

technical heart of this section. If 1 =0 then [T __R® denotes the set {0}.

Definition (2.3.11)[70]: We say that a semi-algebraic function f :B — K satisfies
condition (13) (with constants e, x, B) if we have constants eeN,, x €Z, peK

such that each x =(x,) B satisfies
ot () =0T T (13)

Proposition (2.3.12)[70]: Let X be a semi-algebraic set and b, : X — K semi-algebraic
functions for j =1,...,r. Then there exists a finite partition of X such that for each part A
we have constants | eN, k eN,, g €Z, p; K, and an isomorphism

), foreach xeA, j=1,...,r.
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f:ll_[R(")—>A,

i=1

|
such that for each x =(x,,....x,) e[ [R" we have
i=1

v(b, of (x)):u(ﬂiji"‘j).

Proof. We work by induction on m=dim(X). Let dim(X)=1 and b,:X —K semi-
algebraic functions, j =1...,r. By Lemma (2.3.7) we may suppose that X cK . We
reduce first to the case that X and b, have the special form (14) (see below). By Lemma
(2.3.10) there is a partition such that each part A is either a point or of the form

A ={x eK |v(a)gov(x —Cc)zv(a,), x —Cc € AP},
and such that for each x e A we have (b, (x))=Fv(B;(x —¢)"), with a,, ¢, 1, B, €K,
e;>0and x4 eZ. We may assume that =0, a, #0+a,, g is either < or no condition

and since the translation
{x eK |v(a)go(X)gv(@,),x e AP} >A X > X +C

IS an isomorphism, we may also assume that ¢ =0. If both g and o, are no condition we
can partition A into parts {x eA|0<v(x)} and {x €A |v(x)<-1}. It follows that if o is no
condition we may suppose that o, is <, then we can apply the isomorphism

{x eK |u(i)£u(x),x ean}—>A:x r—>l,
a, A X

and replace x; by —u; . This shows we can reduce to the case that X has the form
X ={x eK |v(a) <v(x)gv(a,),x € AP.}, (14)
with a, #0+a,, 10, o, either < or no condition and o(b;(x) =Fo(Bx ™) for each
XeX.
Case 1: g, is < (in equation (14)).
By Hensel’s Lemma we can partition X into finitely many parts of the form y +z°*R for
some fixed s >ov(a,) and with o(a,) <v(y)<wv(a,) for each y. For each such part there is a
finite partition y +~°R :UMAyU{y}, with A =y +7°yR® and ov(y) =0 for each ». The
functions  f :RY 5A :x—y+7yx  are  isomorphisms  which  satisfy
o(b; of (x)) :éu(ﬂjy”") for all x eR®™. This last expression is independent of x, so there
exists B eK such that v(b; of (x))=v(8;) forall x eR®. This shows Case 1.
Case 2: g, is no condition (in equation (14)).
The map
f,:RNAP, > X X —>ax,
with 2'=4/a, is an isomorphism. Let n’ be a common multiple of e,,....e, and n. Choose
k>ov(n) and put k’=k+o(n’) . Let RNAP, =UyBy be a finite partition, with
B, =7(RNP?) and 0<ov(y) <n’. Now we have that the map f :R¥ - B :x > yx" isan
isomorphism by corollary (2.3.2). Let g, be the semi-algebraic function f,-f , which is
an isomorphism from R™ onto a semi-algebraic set A, =X . The sets A, form a finite
partition of X . Put »; = 4;n’/e, , then we have for each x eR" that

( ]
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o(b; 09, (X)) =ei_u<ﬂ,- (ax “’)*‘1){0(@- (a)") +o(x )

] J
=v(B)+o(x") =v(Bx"),
with g/ in K such that v(B]) =&v(B;@r)"). This shows case 2.
Now let dim(X )=m>1 and let b, : X — K be semi-algebraic functions, j =1...,r. By

Lemma (2.3.7) we may suppose that X < K™,
Claim. We can partition x such that for each part A we have an isomorphism of the
form f :D,xD,,—>A , with D,cK and D, ,cK™* semi-algebraic, such that the

functions b, of satisfy condition (13), i.e. there are constants e, eN,, u; €Z, f; €K
such that each x =(x,)e D, xD__, satisfies

v(b; of (x)) :ei_u(ﬂj]_‘[xf”).

If the claim is true, we can apply the induction hypotheses once to D, and the
functions x —>x/* and once to D,, and the functions (xz,...,xm)HﬂjHTZZXi“ij for
j=1...,r. It follows easily that we can partition X such that for each part A there is an
isomorphism f : . R“> — A such that all f b, satisfy condition (13) with constants e;,
w; and ;. Now we can proceed as in Case 2 for m =1 to make all e] eN, occurring in

condition (13) equal to 1. The proposition follows now immediately.

Proof of the claim. First we show we can reduce to the case described in equation
(15) below. Using Lemma (2.3.10) and its notation, we find a finite partition of X such
that each part A has the form

A={x eK"|X eD,v(@(X))go(x, —c(X)zv(@,(X)), X, —c(X) € AP},
and such that for each x € A we have v(b; (x )) =+o((x, —c(X))*d; (X)), with x4, €Z.
Similar as for m =1, we may suppose that c(x) =0 for all x . Apply now the induction
hypotheses to the set D < K™* and the functions a,, a,, d,. We find a finite partition of

A such that for each part A’ we have an isomorphism f : B — A’, where B is a set of the
form

| |
B={xeK™"|XeD’, u(ozll_[Xi”i )D_I_U(Xm)DZU(QZHXiEi)' X, €AP.},

i=1 i=1
with D':H::lR"‘) , I <m-1, such that each b, -f satisfies condition (13). We will
alternately partition further and apply isomorphisms to the parts which compositions
with b, will always satisfy condition (13). By the induction hypotheses we may suppose
that 10 and dim(D')=m -1, i.e. D'=H:1R(k). Analogously as for m =1 we may
suppose that o, 20+ «,, o, IS either < or no condition and g is the symbol < (possibly
after partitioning or applying x — (x,,...,X,, ;,1/%,,))-

Choose k >u(n) and put k’'=k +o(n). We may suppose that k’'>k, so we have a
finite partition 8= B, With y=(,....7,) €K™, 0<0(;)<n and B, ={x B |x; e ,P["}.
Now we have isomorphisms

f :C, =B, X=X ¥nXn),
with
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m-1 _ _ m-1 m-1
C, ={x e([[R“)xK“ Ju(] Tx") <vlx, )zl ] [x")},

i=1 i=1 i=1
for appropriate choice of o/ eK . Put v,=¢ -1 , B=a,/a , then we have the
isomorphism

x [T R o )moB] T ¥ 3—C, ix 5 (Koo X o [ T2 XD
If o, is no condition, the claim is trivial. It follows that we can reduce to the case that

we have an isomorphism

f:E={x eﬁR(k) |u(xm)£u(,8ﬁxiv')}—>x (15)

with =0, k >0, and v, €Z, such that each b, -f satisfies condition (13).
Suppose we are in the case described in (15). If v, <0 for i =1,...,m -1 then we have
a finite partition E = J E™, with se{0,1...,0(8)} and E~ ={x €E |v(x,,)=s}. Also,
E= ={(X,. X, ) |3X, (X X,) €eE=Ix{x, eR® |u(x, ) =s}and the claim follows.
Suppose now that v, >0 in (15). First we show the proposition when v, =1, using
some implicit Presburger arithmetic on the value group. We can partition E into parts E,
and E,, with

E, ={x <E [u(x,) <o(8] [x,
£ = <€ [u(s] [/ <ot )}

= T TR 00] [ <o) <otax X0 0
since o(B] " x!") <o(x, B[ ", x!") for x eE,, it follows that

and the restrictions b, -f |E, satisfy condition (13).
As for E,, let D, , be the set

We may suppose that ge K ©, then the map
Xlxm
AT %
can be checked by elementary Presburger arithmetic to be an isomorphism. This shows

the claim when v, =1.

Suppose now that x is of the form described in (15) and v, >1. We show we can
reduce to the case v, =1 by partitioning and applying appropriate power maps. Choose
k >o(v,) and put k' =k +o(v,). We may suppose that k >k , so we have a finite partition
E=UaEa,With a=(a,...a,)eK™, v(ay) =0, 0<v(e;) <v, for i =2,....m and

E,={x cE|x,eaR® x, eR® fori=2..m}.
By corollary (2.3.2) we have isomorphisms
f,:C,>E, X (X, X5 X 1)

M m

ROXD_, —>E,:x > (
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with C, ={x e[, R® |o(x,) <o(B%, ]|, *x")} . where p'cK* depends on « . This
reduces the problem to the case described in (15) with v, =1 and thus the proposition is
showed.

Theorem (2.3.13)[70]: Let X be a semi-algebraic set, then either x is finite or there
exists a semi-algebraic bijection X — K* with k eN, the dimension of X .

Proof. We give a proof by induction on dim(X)=m. Let dim(X)=1. Use Proposition
(2.3.12) to partition x such that each part is isomorphic to either R® or a point. By
combining the isomorphisms of Proposition (2.3.3) and Corollary (2.3.4), it follows that
X =K.

Now suppose dim(X ) =m >1. Proposition (2.3.3) together with the case m =1 implies
that we can finitely partition X such that each part is isomorphic to K', for some
| €{0,...,m}, with K° ={0}. By proposition (2.3.3) at least one part must be isomorphic to
K™ . Suppose that A and B are disjoint parts, such that A=K' and B=K™, with
| €{0,...,m}. It is enough to show that AUB =K™. First suppose that I =0, SO A is a
singleton {a}. Since m >1 there exists an injective semi-algebraic function i :R -AUB
such that i(R\{0}) =B and i(0)=a . It follows that AUB =B =K™ since R =R \{0}
(Proposition 1). If 1<1 we have AUB =K x(A’UB"), for some disjoint sets A’=K'* and
B’=K ™. By induction we find A’UB’'=K ™" and thus AUB =K ™. This shows Theorem
(2.3.13).

We obtain as a corollary of Theorem (2.3.13) the following classification of the p-
adic semi-algebraic sets.

Corollary (2.3.14)[70]: Two infinite semi-algebraic sets are isomorphic if and only
if they have the same dimension.
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Chapter 3
Basic Sequences and F-Space with Trivial Dual and Curves
This complements the example constructed by Roberts of a compact convex set
without extreme points in L (0<p<1) and answers a question raised by Shapiro. We

substantiate a conjecture of Rolewicz that every F-Space x with trivial dual admits a
non-constant curve g :[0,1] — X with zero derivative.
Section (3.1): F-Spaces and Their Applications

The aim of this section is to establish a conjecture of Shapiro [115] that an F-space
(complete metric linear space) with the Hahn-Banach Extension Property is locally
convex. This result was proved by Shapiro for F-Spaces with Schauder bases; other
similar results have been obtained by Ribe [113]. The method used in this section is to
establish the existence of basic sequences in most F-spaces.

It was originally stated by Banach that every B-Space contains a basic sequence, and
proofs have been given by Bessaga and Pelczynski [106], [107], Gelbaum [109] and Day
[108]. In [106] Bessaga and Pelczynski give a general method of construction in locally
convex F-Spaces, but we shall show in this Section that this construction can be
modified to apply in any F-space (X ,z) on which there is a weaker vector topology p
such that r has a base of p-closed neighbourhoods. The basic result of the section is
Theorem (3.1.6), and this is a natural generalization of a locally convex version due to
Bessaga and Mazur and given (essentially) in Pelczynski [111], [112].

We study the problem of existence of a basic sequence in an arbitrary F-Space, and
show that in fact repeated applications of Theorem (3.1.6) give a basic sequence in any
F-Space with a non-minimal topology. Since the only example we know of a minimal F-
Space is the space » of all sequences (which has a basis) it seems likely that every F-
Space contains a basic sequence.

We show that if (X,7) is an F-Space and p<r is a topology defining the same
closed linear subspaces as r, then p and r define the same bounded sets—a result
familiar in locally convex theory. The Shapiro conjecture follows immediately. The final
theorem is a generalisation of the Eberlein-Smulian theorem employing techniques
developed by Pelczynski [112].

An F-semi-norm » on a vector space X is a non-negative real-valued function
defined on X such that

(1) nx+y)sn(x)+n(y).

(i) ntx)<n(x) [t]=<1,

(iii)!iirgn(tx)zo X e X

If in addition n(x)=0 implies that x =0 then we call » an F-norm. Any vector
topology on X may be defined by a collection of F-semi-norms; any metrisable topology
may be defined by one F-norm. From this point, unless specifically stated, all vector
topologies are assumed to be Hausdorff.

Now suppose (X, p) is a topological vector space and r is a vector topology on X ;
we shall say that ¢ is p-polar if  has a base of neighbourhoods which are p-closed.
Proposition (3.1.1)[105]: If ¢ is p-polar then  may be defined by a collection of F-
semi- norms (7, : « € A) of the form

7,() =sUpfA(x): A € A, }
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where each A, is a collection of p-continuous F-semi-norms. If ¢ is metrisable then ¢
may be defined by one such F-norm.
Proof. Let (y,:a<A) be a collection of F-semi-norms defining r such that every ¢ -
neighbourhood of O contains a set {x :y,(x) <&} for some a<A and £>0; let A be the
collection of all p-continuous F-semi-norms. We define A, to be the collection of F-
semi-norms of the form
As(x)=inflo(y)+y,(z):y +z =X).

(Thus A, ={a¢:5eA}.) As 27 <5 each A¢ is p-continuous and an F-semi-norm
(A2 <5 implies condition (iii) in particular). Now define

17,(X) =sup(4;(x): 5 €A).
Clearly n, <y, and so is an F-semi-norm. Now if U is a r-neighbourhood of 0 we may
find o, and ¢ >0 such that if x,e{x :, (x)<&} (closure in p) then x, <U . Suppose now

Xoe{x 17, (x)<z}; then it is easy to show that x,e{x:y,(x)<e} and s0 (n,:acA)

defines .

If - is metrisable, A may be taken to be a singleton and therefore  may be defined
by a single F-norm of the required type.
Proposition (3.1.2)[105]: Suppose (X ,z) is an F-Space (complete metric linear space)

and suppose p<r is a vector topology on X . Then
(i) If the net x, ->0(p) but x, »0(r) , then there are vector topologies «, g such
that

(@ psa<psr;

(b) g is metrisable and «-polar;

(€) x, = 0(x) but x, = 0(B).
(i) If U is a ¢ -neighbourhood of 0 but not a p-neighbourhood then there are vector
topologies «, g satisfying (a), (b) and (c)' U is a g-neighbourhood of 0 but not an «-
neighbourhood of 0.
(iii) If 7 is locally bounded then there is a topology « such that « <z but ¢ is «-polar.
Proof. (i) Let « be the largest vector topology such that p<a <z and x, —0(«) (it is
easy to see that there is such a topology). Let g be the vector topology with a base of
neighbourhoods consisting of the « -closures of r-neighbourhoods of 0. Since a < it
follows that a<pg<r. If a=p then the identity map i:(X,a)—(X,7) is almost
continuous and so by the Closed Graph Theorem (cf. Kelley [110]) =7 contrary to
hypothesis on the net (x,). Therefore a < g; clearly also since r is metrisable so is g,
and x, - 0(p) .

(if) By an application of Zorn's Lemma it may be shown that there is a maximal
vector topology « such that p<a <z and U is not an «-neighbourhood (we do not assert
that « is the largest such topology). Then proceed as in (i).

(i) Follows from (ii) by considering a single bounded neighbourhood (5 =7).

Two vector topologies on X will be called compatible if they define the same closed
subspaces.

Proposition (3.1.3)[105]: Let  and p be compatible topologies on X ; they define the

same continuous linear functionals.
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Proof. f is 7- or p-continuous according as its null space is 7 - or p-closed.
A sequence (x ) in a topological vector space X is called a basis if every x eX has a
unigue expansion in the form

X :itixi :
i=1
In this case we may define linear functionals f_ such that
f.(x)=t,
and linear operators S, by

Sn(x):itixi :ifi(x)xi :

If X is an F-space then it is well known (cf. [115], [117]) that each f
continuous and the family {S } is equicontinuous.

Suppose now that X is metrisable but not necessarily complete; we shall call a
sequence (x,) in X a basic sequence if it is a basis for its closed linear span in the

completion of x . We shall call (x, ) a semi-basic sequence if we simply have
x, elin{x . x. ...} foreveryn.
We now give a useful and elementary criterion for a sequence (x,) to be basic or

semi-basic. Let (x, ) be linearly independent and let E be the linear span of (x,); then for
X eE

IS necessarily

n?

X =itixi
i=1
uniquely where (t, ) is finitely non-zero. Define
f.(x)=t,
and

S,X :ifi(x)xi '

where S, :E — E is linear.
Lemma (3.1.4)[105]: (i) (x,) is semi-basic if and only if each S, is continuous or
equivalently each f_ is continuous.

(i1) (x, ) is basic if and only if the family {S, } is equicontinuous.
Proof. (i) If {x,} is semi-basic, let N, be the null space of f, ; then N, is a maximal
linear subspace of E. Then N, =lin{x, :i>2} and since x,N,, N, is closed and f, is
continuous; while if k >2,

N, =lin{x; :i=k}=lin{x,; i <k}+lin{x; :i>k}.
Hence
N« =lin{x, ;i <k}+lin{x, :i >k},

since the former space is finite-dimensional. Suppose x, eN, ; then

k-1
Xy :Ztixi ty,
i=1
where y =lin{x, :i>k}. Since x, «lin{x, :i>k} we conclude that there is a first index |

such that t, 0. Then we obtain x, elin{x,,,x,.,...} and a contradiction. Hence x, ¢N
and by the maximality of N, , N, is closed and f, is continuous.
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The converse is trivial.

(i1) (Cf. Shapiro [117], Proposition C.)

It follows from the definition of basic sequence that if (x, ) is basic then the family
{S,} is equicontinuous (consider (x,) as a basis of its closed linear span in the
completion of x ). Conversely, S, (x)—»x for x eE and if the family is equicontinuous
S, (x)—>x for x eE (closure in the completion of X ), and it easily follows that (x, ) is a

basis for E .

Lemma (3.1.5)[105]: Let E be a finite-dimensional space and supposeV is a closed
balanced subset of E. Ifv intersects every one-dimensional subspace of E in a bounded
set then v is bounded.

Proof. We may suppose E is normed; suppose x, vV and |x,|— . Then by selecting a
subsequence we may suppose |x,['x, —z where |lz|=1. Then for any N there is an m

such that for n>m, |x,[|=N and
XX, elxa |V NV

Therefore z eN v forall N and henceVv olin{z}.
Theorem (3.1.6)[105]: Suppose (X ,z) is a metric linear space and p is a vector topology
on X such that ¢ is p-polar. Suppose (x,) is a net such that x, —0(p) but x, - 0(z) ;
suppose z, #0e X . Then there is a sequence (a(k):k >2) such that

a(k +1)>a(k)
for all k >2 and the sequence (z,);, is a basic sequence where z =x,,n>2.
Proof. We may suppose (Proposition (3.1.1)) that (X ,z) is normed by an F-norm |||
such that

[x[|=sup(A(x): 2 A),

where A is a collection of p-continuous F-norms. Let >0 be chosen such that

(1) |z, = 46.

(ii) For all a, 3a’>a such that |x,[>46.

LetV ={x :|x| < 6}; then KnlinV nlin{z,} is compact (since |z,|=46). We shall construct
the sequence (a(n):n >2) by induction so that if

E, =lin(z,,X,0) - Xam)
then E, nV is compact.

Suppose {a(2),...,a(n)} have been chosen (this set can be empty at the first step, the
selection of a(2)) and let E, =lin(z,,X,,.--- X,) . By the inductive hypothesis v nE, is
compact.

For 1<k <2"° let

W, ={x :|x]|=k.2 "V GnE, .
Each w," is compact and so we may choose finite subsets U, so that for w ew," there
exists u eu; with
w29,

2n+3

Let u"=[Ju;,and forueu" choose 4, €A so that
k=1
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2y ) 2 |uf|-27"6 . (1)
Then choose b >a(n) so that if ¢ >b then

A(x)£27"90 (2)
for ueu " (possible since U " is finite and x, — 0(p)).

Choose a subnet x, :d eD of (x,:c>b) such that |x,||=46, and suppose for every
such x, the setVv mlin(E,,x,) is unbounded. By Lemma (3.1.5), for every d there exists
t,x, +u, #0 where u, eE,_ such that the linear span of (t,x,+u, ) IS contained inV .
Clearly u, =0 and so we may normalize in such a way that |u,||=6 (since V nE, is

compact). Then
toXq || = taX g +uq | +[ug | <26

so that ft,|<1. Hence since x, —0(p), t;x, =0 in (p). By selection again of a subnet we
may suppose u, —»u in E, (sinceV nE, is compact) and |u|=6.
Then forany t eR
|r[u||§(!il130inf It tsxq +uy)| <6
so that linfu}cVv ~E,, a contradiction.

Hence we may choose a(n+1) >b such that |x, 246 andV ~E_, is compact. This
completes the construction of a(n); now let z, =x,,,n>2. It remains to establish that by
using (1) and (2) (z,) is a basic sequence.

For convenience we shall replace || by an equivalent F-norm || given by

[x[[" = min(jx . 6).
We next show that if t,,....t,, is a scalar sequence

n+1

a(n)

n+l * n *
Dtz =Dtz | -2 (3)
i=1 i=1
Choose the greatest integer k such that
Dtz 2k.2"0.
i=1

Then 0<k <2 if k =0 there is nothing to show. If k >1 then we may choose a
scalar s with |s| <1 such that

=k.27"3g,

istizi
i=1

Then choose u €U, so that

é 2—(n+3)0 ]

‘u—istizi
i=1

I |st,.,|]<1 then
otz a2 4, W) = 4 (2,,) 2 (k 22700
|21 then
o+ 8ty ] 22l U] 2302 (k =202,

by (1) and (2). If |st

n+l

Hence
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n+l

sy 1z,
i=1

>(k —2)2 "2 "I¢g

=(k =329
> Zn:tizi *—2-<“+1>9.
Hence since [s|<1 N
nitizi > Zn:tizi *—2*("*1).9
= =

and (3) follows.
>6 then

i=1

From (3) it is clear that (z, ) is linearly independent for if

Ztizi Sitizi

compact, zn:tizi =0. Let E be the linear span of {z,} and define s, by
Sk (itizij:itizi

where (t, ) is finitely non-zero. Then by (3)

I5,X] 2s,x[ -270 (k20
and therefore for x eE and n>1

n+l

>10; thus if Y't,z, =0, then for every s, <@ and so since V nE, IS
i=1

X[ z[s.x| -2"0.
Suppose ||x,, | —0 but |S,x,||-~0; then since V nE, is compact we may, by selecting
a subsequence and multiplying by a bounded sequence of scalars, suppose that |S,x .| =@
. Thus |x,[|=£6>0, and we have a contradiction.
Thus each s, is continuous.
To establish equicontinuity of {S, :m >1} we must show that if p(m) is any sequence
and x,, -0 then S, x —0.Suppose not; then we may suppose

s

p(m)XmH* 2y>0
forall m. Then
[xall 27 =276
and as ||x,,| =0 we conclude that p(m) is bounded. But then we may select a constant

subsequence and this contradicts the continuity of each S, . Thus by Lemma

(3.1.4) we have established the theorem.
Corollary (3.1.7)[105]: Under the assumptions of Theorem (3.1.6) suppose x is a

pseudo-metrisable topology on X such that u<p. Then (z,) may be chosen so that
z, —>0(u).

An examination of the proof of Theorem (3.1.6) reveals that we can insist that
n(z,)— 0 for any single p-continuous F-semi-norms.
Corollary (3.1.8)[105]: Suppose that (X,r) is an F-Space and that p is a vector
topology on X with p<z. Suppose x, — 0(p) but x, - 0(z), and that z, e X . Then there
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IS a sequence a(k) so that a(k +1)>a(k) k >2 and such that the sequence (z,) is a semi-
basic sequence where z =x,,,n>2.

Proof. Proposition (3.1.2) combined with Theorem (3.1.6) establishes that we may
choose (z,) to be a basic sequence in a weaker topology than r. This clearly implies that
(z,) is at least a semi-basic sequence in (X ,z).

We consider the question of whether an F-Space need possess a basic sequence. We
shall call a topological vector space (E,zr) minimal if for every Hausdorff vector

topology o <t we have p=r. It is well known that » is minimal if we restrict to locally
convex topologies.

Proposition (3.1.9)[105]: « is a minimal F-Space.

Proof. Suppose p is a weaker vector topology on » and x, —0(p) but |x,| =6 (where ||
is an F-norm determining the topology of ). Then there is a sequence (z,), with ||z,||z &,

which is a basic sequence for some weaker Hausdorff vector topology on « (Proof of
(3.1.8)). Let E be the closed linear span of (z,) in the original topology, then E zw.

However, the dual functional of (z,) induce on E a weaker Hausdorff locally convex
topology. It follows that z, — 0 contrary to assumption.

We do not know any other examples of minimal F-spaces; their existence is crucial
to the problem of basic sequences in view of the following theorem.

We first show a stability theorem for basic sequences similar to a locally convex
version given by Weill [118] (cf. also Shapiro [116]). A sequence in a topological vector
space is regular if it is bounded away from zero.

Lemma (3.1.10)[105]: Suppose x is an F-space and (x ) is a regular basic sequence.

Suppose > Ju,| <=, and let y =x, +u,. If whenever

Sty =0
n=1
then t, =0, then (y,) is also a basic sequence.
Proof. Defineamap S:1, — X by

st)=St,.
n=1
Since > Ju,|l<~, s is well defined and s is continuous by the Banach-Steinhaus
Theorem. Now suppose (t™) is a sequence in I such that

sup [t ™

< 0
0

and
limt =0 for each k.

n—oo

Then it is easy to verify that [s )| 0.
Let E be the closed linear span of {x } and suppose f cE’ is the bi-orthogonal
sequence. For x €E , limf,(x)=0, since (x,) is regular. We define R:E —c, by

R(x)=(f,(x)); R is continuous by the Closed Graph Theorem. Hence the map T : E — X
defined by T =1 +SR s also continuous. Since T takes the form

T ()= 21,00,
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T is injective. Now suppose (z,)cE is a sequence such that [T (z,)|—0; suppose
|lz..| > &>0. We suppose at first
sup|[R(z,), <.

Then by selecting a subsequence we may suppose R(z,) —t co-ordinatewise in |_ and
hence
S(R(z,))—>S(t) in X .
Now
z,=T(Z,)-S(R(z,)—>-S().
Therefore S(t)eE and
R(z,)+RS(@t)—0in 1.

i.e.
t+RS(t)=0
S(t)+SRS(t)=0
TE(@)=0
S(t)=0
and so
limz, =0

n—o0

contrary to assumption. It follows that no subsequence of (|Rz,|_) is bounded.
If, on the contrary, |Rz,|, —, then we may consider (|Rz,| z,) and obtain a
similar contradiction. We establish that for such a sequence ||Rz,| 'z, —0 and hence

|IRz,| 'Rz, —0 in I, which is a contradiction. Hence T is an isomorphism on to its
image, and as Tx, =y, (y,) IS a basic sequence.

Theorem (3.1.11)[105]: Every non-minimal F-space contains a basic sequence.
Proof. Let U be a base of neighbourhoods of 0 in (X ,z); We may assume, without loss

of generality, that U, is not a neighbourhood of 0 in some weaker vector topology. By
Proposition (3.1.2) there are vector topologies «, g in X such that a<pg<z, g is
metrisable and «-polar and U, is a g-neighbourhood. Then by Theorem (3.1.6) there is a
basic sequence W ") in (X,5). Then let E, be the r-closed linear hull of the sequence
w ) and let F, be the linear span; let , = 5. Then by induction we construct sequences
("), E., F,y such that F, =linfw (™ :k =1,2,..}, E, is the r-closure of F, and y, is a
metrisable vector topology on E, such that w:k =12,..) is a basis of (E, ,»,) .

Furthermore
(i) w ) is block basic with respectto w"™) for n>2,i.e.w takes the form

w™ = i cw ™Y
py_1+1
where p,=0<p,<p,... Thus F, cF _,fornz2and F, cF, ,n>2.
(i1) The topology », on E, is finer than y , restricted to E, for n>2, and coarser
than 7.
(i) U, ~E, isa y,-neighbourhood of 0.
We now describe the inductive construction; suppose w "), E,, F, and y, have
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been chosen. If U, ~E_ is a y,-neighbourhood of 0 then let y , =7 and w™® =w® for
all k. Otherwise by Proposition (3.1.2) we may find topologies « and y,,, on E_ such
that y, <a<y,, <7, 7., 1S a-polar and metrisable and U, ~E, is a y,,-neighbourhood of
0 but not an «-neighbourhood.

Since F, is r-dense in E,, F is also y,, -dense and hence a<y,,, on F . Thus by
Corollary (3.1.7) we may determine a y,,-regular basic sequence (z, ) in F, such that

z, —>0(y,). Thus

q(k) )
Z, :zck,iwi ,
i=1

where limc, ; =0 for each i (since the co-ordinate functionals for (™) are y, -continuous
). It follows easily that we may find a subsequence (y, ) and a block basic sequence
(w ") such that >[ly, -w | <o where || , isan F-norm determining y, ., . If

k

n+.

ztkw I5n+l) =0 (7/n+1)

k=1

then
Ztkwﬁnﬂ) =0 (7,)
k=1

and thus since the co-ordinate functionals for w™ are y, -continuous t, —0 for all k.
Thus w ") is a y,,,-basic sequence, and we proceed by letting F , =linfw (M}, E, ,=F, ,
(in ). This completes the inductive construction.
Finally take the ' diagonal sequence "

v, =w ",
Then for each n, (v, :k >n) is block basic with respect to w ). In particular (v, ) is
block basic with respect to w ") and hence there are y,-continuous linear functionals
(f,) defined on linfv, } such that f, (v;) =, . These are then also r-continuous and extend

to the closed linear span H of {v, }. Now suppose x e H ; we show
ifi (X)o, =x.
i=1

For any n, (v, :k >n) is a basic sequence in (E,,y,); let

R,(X)=x —r.]zllfi(x)ui .

n-1
Then R (x) is in the r-closure of linfv, :k > n}, as this space is easily seen to be (f,(0)
i=1

. Thus R, (x) isin E, and in the y, -closure of lin{v, :k >n}.
Therefore

R,() =D, () (7,)
and so forsome N andall m>N ,
R, ()~ 3f, (), €U, ,

and
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X —Zfi(x)ui eU,.
i=1

Thus x :ifi(x )u, for x eH , and (v,) is a basic sequence.
i=1
If E is a minimal F-space, then E may still possess a basic sequence (see Proposition
(3.1.9)).

Theorem (3.1.12)[105]: Let (X ,z) be an F-space; the following are equivalent:

(i) X contains no basic sequence.

(i1) Every closed subspace of x with a separating dual is finite-dimensional.
Proof. Clearly (ii)= (i) so we have to show (i)= (ii). If E is a subspace of X with a
separating dual, then the weak topology o on E is weaker than . If E is infinite-
dimensional, then by Theorem (3.1.11) o =7. But in this case E = w, and so has a basis.
Therefore, E is finite-dimensional.

We now can apply basic sequences or rather semi-basic sequences to derive many
results familiar in locally convex theory.
Theorem (3.1.13)[105]:

(i) Let (X,r) be an F-space and suppose p <t is a vector topology on X compatible

with . Then every p-bounded set is ¢ -bounded.

(if) Suppose x is a vector space and p < are two vector topologies on X such that

p and ¢ are compatible and ¢ is p-polar. Then any p-bounded set is r-bounded.
Proof. (i) It is enough to show that if x, —0(p) and c, is a sequence of scalars such that
¢, — 0 then c x, —0(z) . Suppose x, — 0(p); then choose x,=0. Forc, -0, c, =0,
c,(x,+X,)—>0(p).
Suppose c, (x, +x,) - 0(z) ; then by Corollary (3.1.8), there is a semi-basic sequence (z )
with z, =x, and
Z,=Cp (Xy +Xo) (n22),
where (m, ) is an increasing sequence of integers. Then
CrZn = Xo(P)
and hence x, is in the p-closure of lin{z, :n>2}. Thus x, is also in the ¢ -closure of
lin{z, :n>2}, contradicting the fact that (z,) is a semi-basic sequence. Thus since
c.X,—0,cx,—0(r).

The proof of (ii) is somewhat similar; let » be a p -lower-semi-continuous
r-continuous F-semi-norm and let N ={x :7(x)=0}. Then X /N metrisable under  and
may be given the quotient topology 5 of p (N is p-closed). Every p-closed subspace of
X /N is p-closed and so an argument similar to (i) may be employed.

Corollary (3.1.14)[105]: Suppose (X ,z) is an F-space and p <z is a metrisable vector
topology compatible with . Then p==.
Corollary (3.1.15)[105]: Let (X,7r) be an F-space with the Hahn-Banach Extension

Property. Then X is locally convex.
Proof. Let o be the weak topology on N ;then o<z and o and r are compatible by

the HBEP. For supposeY is a r-closed subspace and x ¢Y ; then by HBEP there is a
continuous linear functional ¢ such that ¢(y )=0 and ¢(x)=1. Let x be the associated
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Mackey topology; then (see Shapiro [115]) o<u<z and u is metrisable. Hence by
Corollary (3.1.14) u=r and r is locally convex.

Corollary (3.1.16)[105]: Suppose (X ,z)is an F-space and p<r is a vector topology
compatible with 7. Then 7 is p-polar.

Proof. Let » be the topology induced by the p-closures of r-neighbourhoods of 0; then
p<y<r and y is metrisable. Hence by (3.1.14), y=r.

Theorem (3.1.17)[105]: Let (X,z) be an F-space and let (x,) be a basis of X in a
compatible topology po<z. Then (x,) is a basis of X .

Proof. By the previous corollary we may assume that ¢ is defined by a p-lower-semi-

continuous F-norm ||.|| (see Proposition (3.1.1)). Each x eX may be expanded in the
form

X :zfi(x)xi (p)
i=1
(the linear functionals f_ are not necessarily p-continuous). Now for each x eX , the

sequence (ifi (x )xij IS p- and therefore r-bounded (Theorem (3.1.13)) and so we may

i=1

define

x| = sup
n

Zn:fi(x)xi

Then lim[ix " =0 since limty =0 uniformly for y in a bounded set; hence ||| is an F-norm

on X . Clearly also |x|[ 2[x| by the p-lower-semicontinuity of ||.
It remains to establish that (X,||) is complete and then by the Closed Graph
Theorem it will follow that ||" and |||| are equivalent. Let (y,) be a ||| -Cauchy sequence;

then since ||y, -y .| <|ly, — V.| for all m, n, (y,) is r-convergent to y say. Furthermore,
it can be seen that the sequences

are ¢-convergent uniformly in m; clearly limf,(y,)=t, exists and

Iimifi(yn)xi :itixi
uniformly in m for the topology . ThLIS working i|:1 the weaker topology p

m

lim > t;x; =lim lim ifi(yn)xi =y.
i=1

m-—o0 i—1 Nn—00 M-—o0 ¢

(The limits are interchangeable by uniform convergence.) Therefore it follows that
rl]i_r)ngi (Y o)X :Zfi (y)x;(z)

uniformly in m and that |ly -y, —0. Hence || and || are equivalent, and by an
application of Lemma (3.1.4), (x,) is a basic sequence in (X ,||[). By the compatibility of
p, (x,) isabasis of X .

Shapiro [117] proves that the Weak Basis Theorem fails in any non-locally convex
locally bounded F-space. With regard to this theorem we show that a weaker version of
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the Weak Basis Theorem holds always.
Proposition (3.1.18)[105]: Let (x,) be a weak basis of (X,z), where (X,z) is an F-
space with a separating dual. Then the associated linear functionals {f } are continuous.
Proof. Let & be the weak topology and x the (metrisable) Mackey topology. Then
(X, ) is barrelled, for if ¢ is a u-barrel then c is r-closed and by the Baire Category
Theorem we may show C has ¢ -interior. It follows easily that C is a z-neighbourhood of 0
and thus a x-neighbourhood [115].

Now let || be a sequence of semi-norms defining x and let

ifi(x )X,
(finite, since x and o have the same bounded sets). Let »* be the topology induced by
the sequence || and let X be the u -completion of x . Consider the identity map

[, =sup
m

n

i (X, ) > (X, ). Suppose z, eX , z,—»>z(u) and z_—z'(x’). Then {ifi(zn)xi} IS

i=1

uniformly x-Cauchy for m =1,2,...; thus in the topology o < u

lim lim >'f, (z,,)x, = lim im Y’f, (z,,)x,
i—1 m~>oon~>ooi:l

N—o00 M—o0 <

and we conclude
limf, (z,) =t, exists for each i

and

limz, =z =) t,x, ino.

n—»o .
i=1

Thus f,(z) =t, and therefore
Iimifi(zn ~z)x, =0 g-uniformly in m.
)

Hence z, -z in (X ,u) and} has Closed Graph. By the Closed Graph Theorem

[114], since (X, ") is complete and metric, x>« and it follows easily that each f_ is x
and hence ¢ -continuous.

The idea of the next theorem is due to Pelczynski [112].
Theorem (3.1.19)[105]: Let (X,z) be an F-space and suppose o<z is a compatible
vector topology. Let K be a subset of X ; then the following are equivalent

(i) K is p-compact,

(i) K is p-sequentially compact,

(iii) K is p-countably compact.
Proof. (i)=(iii) and (ii)=(iii) are well known. Let ||| be an F-norm determining r; by
Corollary (3.1.16) we may suppose ||| is p-lower-semi-continuous.

(@iti) = (i). It is easy to see that K is p-precompact; we show that K is also p -
complete. Let (X, 5) be the p-completion of X and lety <X be the vector space of all
y eX such that there is a p-bounded net x_eX such that x, »y . By Theorem (3.1.13) a
p-bounded net is r-bounded. Let B, ={x X :|x| = 4}; then for y ev we define

ly[ =inf{i:y eB,, closurein /5}.

( )
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Let y eY and suppose x, is a r-bounded net converging to y in 4; then
[y [ < sup|x, ]| <

and
limty || < !irrolsup||txa|| =0

t—0

since the net {x_} is bounded (cf. Theorem (3.1.17)). It follows without difficulty that
is an F-semi-norm on Y , and that || is p-lower-semi-continuous ; also from the

definition, |x|=|)x|" for x eX , since each B, is p-closed. Next if yey and |y| =0 then
for each 2>0 and v a neighbourhood of 0 in (X,5) we may find x,, eX such that
X,y —y eV and |x,,[<4. The {(AV):4>0V a p-neighbourhood of 0} is directed in
the obvious way [(2V )= V") if and only if 2<A" and v <V ']; then the net x,,
converges to 0 in (X ,z) and x,, —0 in (X,p). However x,, —y in (X,5) and so y —o.
ThusY is a metrisable vector space under ||| and || is p-lower-semi-continuous .

Now suppose x, <K is a p-Cauchy net; then x_ —y in (X,p) and y e . Suppose at
first |x,—y| —>0; then by the completeness of (X ,z)y eX , and there is a sequence
(ae(n)) such that x,,, —»y(z). Thus y is the sole p-cluster point of {x .} in X ; since K
Is countably compact, y eK ,and x_, —y in (K,p).

a(n)

Now suppose |x,—y| -0 and that y ¢X ; since y =0 we may suppose x, ¢V for all «
, Where V is a p-neighbourhood of 0. Then by Theorem (3.1.6) there is a basic sequence
(z,) in (v || such that:

(D) z,=y.
(i) z,=w, -y, n>2 wherew, =x
(iii) inf ||z,| > 0.

Let z be the closed linear span of {z }7, and letw be the closed linear span of
fw, ¥-,.Since z, X andW <X , W is a closed subspace of co-dimension one in z . Let
¢ be the continuous linear functional on (z,||[) such that ¢(z,)=1 and ¢ )=0; we
define A:Z -z by Az =z —¢(z)z,. Thenfor n>2

Az, =Aw —-Az, =w,.

for some increasing sequence.

a(n)

Similarly define B:Z -2z by

B(itizij:itizi .
i=1 i=2
Then

Bw, =B(z,+z,)=z,.

It follows that BAz, =z,, n>2 and hence that A is an isomorphism of lin{z, :n >2}
on to its image. In particular (w, :n >2) is a basic sequence in (X ,|||). However w_ eK
for n>2,andso (w,) possesses a p-cluster point. Now suppose w, is a p-cluster
point; then w, is in the r-closed linear span of () by compatibility. It follows that

Wy :il//i o w, .

( )
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where y, is the dual sequence of r-continuous linear functionals on w . Each v, is also p
-continuous by compatibility and hence

yiwg)=0 122,
Therefore w,=0 . This contradicts the original choice of x_ ¢/ , where v is a
p-neighbourhood of 0. Thus we have a contradiction.

Finally suppose |x,—y| -0 and yeX ; determine the basic sequence (z,:nx?2)
satisfying (ii)-(iii). In this case if w, is a p-cluster point of W, :n>2) thenw,-y isa p-
cluster point of (z,:n>2). Sincew,-y eX and z, X we conclude thatw,-y isin the
r-closed linear span of {z , :n>2} by compatibility and it follows as usual that w, -y =0.
Hence y e K . We conclude that any p-Cauchy net converges in K and so K is complete

and therefore compact.

(ii)=(i). Let (x,) be asequence in K and let x, be a p-cluster point. Then there is a
net (z,) in K such that each z_ is some x, and z,_, - x,(p). If z, —x, in ¢ then there is
nothing to show, as it will follow that some subsequence of (x,) converges to x, .
Otherwise we may find a basic sequence (u,) of the formu =z,,, —»>x,. Letw be a p-
cluster point of (z,,,) in K ; then clearly w —x, lin{u,} and since r and p are compatible
it follows as in (iii)= (i) that w —x, =0. Hence x, is the sole cluster point of (z,,,) and
SO z,,, —>X,. However z ., is simply a subsequence of (x,) (a(n)— since the z
are distinct).

[Added In Proof: The problem of determining conditions under which the Hahn-Banach
Extension Property is equivalent to local convexity was originally posed by Duren,
Romberg and Shields [119] ].

Section (3.2): The Krein-Milman Theorem

In [124] Roberts answered a long outstanding question by constructing an example of
a compact convex subset of a non-locally convex F-space without extreme points; thus

the Krein-Milman theorem fails in general without local convexity. Later in [123],
Roberts showed that such examples can be constructed in the spaces L, (0<p <1)(or

more generally Orlicz spaces L, where ¢ is sub-additive and x “¢(x) -0 as x — ).

The basic ingredient of Roberts's construction is the notion of a needle point. If E is
an F-space with associated F-norm | |, then x €E is a needle point if given any >0,

there exist u,,...,u, eE such that u,|<& (i =12,...,n) and

(i) x =@/m), +-++u,),
(i) if a,+---+a, =1 and a >0 (i =1,2,...,n) then there existst, 0<t <1 such that

Roberts [123] showed that if E contains a non-zero needle point then E contains a
compact convex subset which is not locally convex. Also if every element of E is a
needle point then E contains a compact convex set with no extreme points; in this case E
Is called a needle-point space.

Following the work of Roberts, the question was asked (Shapiro [127]) whether
every F-space with trivial dual contains a compact convex set without extreme points.
We shall show that this is not the case and that there exist F-spaces with trivial dual in

<é&.
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which every compact convex set is locally convex. In particular every compact convex
set is affinely embeddable in a locally convex space [125] and obeys the Krein-Milman
theorem. Our example is an Orlicz function space L,.

We start by defining an element x of an F-space E to be approachable if there is a
bounded subset B of E such that whenever >0 there exist u,,...,u, eE With u;|<e

(i=12,...,n) and

() [x =@/n)(u, +---+u,)|<e

(ii) if ja|+---+[a,|<1 then > " au, €B.
Theorem (3.2.1)[120]: Suppose E is an F-space in which 0 is the only approachable
point. Then every compact convex subset of E is affinely embeddable in a locally convex

space.
Proof. Suppose K —E is a compact convex set and let K, =co(K U(-K)). Then K, is

also compact. We show 0e K, has a base of convex neighborhoods in K,. For ¢>0, let
V,={x:|x|<e} . Suppose x eK, and x eco(K,nV,) for every £>0 . Then x is
approachable (take B =K, in the definition) and hence x =0. Now by compactness for
any & >0 there exists £>0 so that

co(K,nV,)cVy.
Now the finest vector topology on the linear span F of K, (i.e. F=J(nK,:neN)),
which agrees with the given topology on K, has a base of neighborhoods of the form

U mK,v,.)

n=lm=1

where ¢ is a sequence of positive numbers [129]. By the above result this is locally

convex, and the theorem is showed.
We remark that the second half of this proof was used in [121] in the introduction; an
alternative approach would be to show that every point of K, has a base of convex

neighborhoods (this follows easily from the same fact for 0) and then use Roberts's
deeper results in [125].
Lemma (3.2.2)[120]: Suppose E and F are F-spaces and T :E —F is a continuous
linear operator. If x eE is approachable, then Tx is approachable in F.

The proof is immediate.

We now recall that an Orlicz function ¢ is an increasing function defined on [0,)

which is continuous at 0, satisfies #(0)=0 and ¢(x) >0 for some x >0. The function ¢ is
said to satisfy the A, -condition if for some constant K , we have ¢(2x)<Kg(x)
(0<x <x). If ¢ satisfies the A,-condition then the Orlicz space L,(0,1) is defined to be
the set of measurable functions f such that

[ ©)et <co.
L, is an F-space (after the usual identification of functions differing on a set of measure
zero) with a base of neighborhoods V () where f €V (¢) if and only if

[Lo(t @t <.
Theorem (3.2.3)[120]: Suppose ¢ is an Orlicz function satisfying the A,-condition and
#p(x)=x, 0=<x<l, (4)
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there exist c, (neN) such thatc, >0 forall n, ¢, < (5)

and if
X

—. N
G(x)=;cn;¢(ﬁ) (x>0)
then G(x) > o as x > o.
Then 0 is the only approachable pointin L,(0,1).
Proof. Given any f eL,, with f =0, there exists a continuous linear operator T :L, — L,

with Tf =1 (where (3.2.1) denotes the constantly one function). Hence it suffices to show
that (3.2.1) is not approachable.

Suppose on the contrary (3.2.1) is approachable. In this case there is a constant M so
that whenever 5 >0 there exist n=n(s) and u,,---,u,,,h eL, with

1
1:£(u1+---+u2n)+h, (6)
[ ou, ot <5, (7)
[Co(n)pat <5, (8)
[#(>au @t <M, ©
whenever [a,|+[a,|+---+[a,,|<1.
Now let
B = sup M,
o<x<2 X
C :icn ,

so that both B and ¢ are finite. Now choose ¢<1/10 so that if x >&™
G(x)=C(8*M +B).
Then we may choose u,,---,u,. ,h as above with s§=¢*. Let u;,---,u; , be the pointwise
decreasing re-arrangement of |u,|,---,ju,,|. Clearly each u; is measurable and belongs to L,
. Next let
N A .
wi(t):mln[ui(t),_—), 1<i<2n.
|

We shall show first that

13 1

o b e M O 25 (10)

Let 2 denote Lebesgue measure on (0,1) and let N (t) for eacht be the largest k so that
ur)=1 (and N (t)=0 if u;(t) <1 forall k). Then
jo N (t)dt :g/l(|ui|gl) < Zl:jo #(u; ©))dt <2ne?.

Hence A(t:N (t) >2ns) <.
Similarly
At :|h(t)|gg)§52.
Now let A ={t:|h(t)|<e&, N (t) <2ne}; then A(A)z1-2%. Fort eA
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S ®]z20(-2)

and hence

2n

ZM’i (t)=2n(1-¢).

i=1
Now

J.‘u‘ = |Ui |dt B J.\Ui l<e |ui |dt + J‘8<‘Ui‘§é‘_1 |ui |dt

se+e A]>e)

< ¢9+,9‘2_|'01¢(|ui Ddt <2¢.
Hence

1 2n

—>'[. u’(t)dt <2¢.

n izl:J.ui<E
IfteA and w, (t)<e™ then u'(t) <e™. For otherwise 2n/i <& so that i >2ne>N (t) and
hence u’(t)<1<2n/i . Hence

1 2n
ngwwi>gl>wi (t)dt <2¢.

However
1 2n
on Wi(t)dt >1-)A(A)21-3¢.
2n ;J.A
Thus
iif W (t)dt>1—55>1
2n -y Anw;>e™?) i = 2 > .

SinceforteA,w,(t)<1<e™ for i >n(>N (t)), we see that (10) holds.

We now fix r with 1<r <n. We define two sets of random variables (X ,---,X,,),
(,---Y,,) on some probability space (Q,P) where Q is a finite set. The random
variables (v,,---Y, ) are mutually independent and independent of (X,---,X,,) with
common distribution given by P{,=+1)=P(,=-1)=1 . The random variables
(X, X,,) are not mutually independent. Their distribution may be described as
follows: select an r-subset y at random from the collection of r-subsets of {1,2,---,2n};
then let X, =1 if i ey and X, =0 otherwise.

Then for every weQ, 3" X, (o), ()|=r and hence
folcé(% ixi(w)vi(w)ui(t)jdt <M. (11)
Let s=[2n/r], and let y be any fixed s -subset of {1,2,---,2n}. For jey, let
E, ={o:X(0) =1 X,(0)=0if i ey\{j}}. Thenif r>1,

2n —s 2n
PEI= r
r 2n-s 2n—s—1m2n—r—s+2

:%'Zn—l' 2n -2 2n—-r+1

r 1 1 1
>—exp| —(s—-1) + to
2n 2n—-s 2n-s-1 2N —r —-s+2
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ELexp[_r_s} r
2n 2ne?

and this also holds for r =1.
Now by symmetry for fixed t (0,1)

P{Ej m(w:‘szlxi(a))\(i (@), ©)] > (t)|)}g

Thus

b O
mew)vi(w)ui(t)DdP( 0z (

1 2n
IEi¢(? - r

As the events (E;, j ey) are disjoint, we conclude

ngzﬁ[% ,Y,u,(t)DjP(w)> [\ ,-r(t)\}

Choosing y to maximize the right-hand side, we have

1 s t
Ly[; .Y.u.(t)DdP(w>> Z;{“”j

Thus by (11) and Fubini's theorem, we have

1r < U;(t) )

L%;;ﬁ[T}ﬂ <2e°M . (12)
Now summing over r =1,2,---,n we have
1 2n/r
iJ‘ Z[Z]crw[ A )}ﬂ <2%TM .

2nom H

Interchanging the order of summation and discarding terms with rj >n we have

! J‘li[r‘fcrm( i )}ﬂ <22CM . (13)

2n Y0 H T

If x <2n/j, we have
/il X r (x
crr¢(—j:x {G x)- C, —¢[—ﬂ
rZ=1: r ,>[Zn/:j] X r

>x[G(x)-BC].
Thus

r=1

[nZ/j:]Crr¢[er(t)jZWj(t)[G(Wj(t))_BC]' -

From (13) since w; <u; we have
(n/i]

zln : 26 W{ : )}ﬂ S2°CM
and hence, recalling the ch0|ce of € and (14),

ij _,8CMw (t)dt <2¢°CM

2n11 J=
or
19 1
— w(t)dt <=
2n§jw>€1 i®) 4

which contradicts (10) and completes the proof.
We are now in a position to construct the example.
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Example. There exists a locally bounded Orlicz space L,(0,1) with trivial dual in which

the only approachable point is {0}.
We shall construct ¢ to satisfy (4), (5), the A,-condition and

IiminfM:O, (15)

X =00 X
for some g >0, x “¢(x) is non-decreasing. (16)
Then (15) will imply that L; ={0} (Rolewicz [126], Turpin [128]) and (16) will imply
that L, is locally bounded (Rolewicz [126], Turpin [128]).
Let (t,:n=0,1,2,---) be an increasing sequence of positive numbers such that

t >t +4n+2 (n>0). Define a function :R —R by

n+l

o(t)=0, t <t,,
ot)=A-p)(n-(t-t,)), t, <t <t ,+2n;
ot)=0Q-4)@t -t,—3n)), t,+2n <t <t +4n+1,
ot)=01-p)(n+1), t,+4n+1st <t ..

Suppose 0<a<1(1- ) and define
okt) = Q?ﬁ(...(a(t —nlog2)—anlog?) .

Thenif t, <t <t +4n+1, there exists m with mlog2<4n+2 and
ot —mlog2)=n(1-p).
Hence
o(t)=nl-B)—a(4n+2).
Ift,+4n+1<t <t ., O(t) > o(t)=1-B)(n+1), so that lim

Now we define

n+l? t—o0 0(t)=00

#(x) =x exp(o(logx)), 0<X <0,
$(0)=0.

Then ¢(x)=x for 0<x<1 , and satisfies the A,-condition . Also
logx “¢(x) =oc(logx )+ (1- B)logx IS non-decreasing, so that (16) holds. For (15) observe
that log(4(x)/x)=c(logx) and o(t, +2n)=-n1-p).

Finally we show that (5) holds:
iZ‘”“ i—n¢(;—n) = 22‘"“ exp(o(logx —nlog2))
n=0 n=0
>expd(logx) —>oo asx —»oo.
Of course by Theorem (3.2.1) the space L, we have constructed has the property that
every compact convex subset is locally convex.
There are a number of obvious questions arising from this example. We do not know if
a condition like (5) is necessary for the conclusion of Theorem (3.2.3). In particular if we
simply have
!minfx‘l¢(x)=0 and !msupx‘l¢(x)=w,
then can L, contain a non-zero needle point? In [127] Shapiro asks whether the Krein-
Milman theorem holds in certain quotients of H  (0<p<1). This example perhaps
suggests that the failure of the Krein-Milman theorem and the existence of needle points
IS a rarer phenomenon than previously suspected.
Section (3.3): Zero Derivative in F-Spaces

( )
L )



Let X be an F-space (complete metric linear space) and suppose g:[0,1]—> X IS a
continuous map. Suppose that g has zero derivative on [0,1], i.e.

9'(t) = Ligg%(g(t +h)—g(t) =0

for o<t <1 (we take the left and right derivatives at the end points). Then, if X is locally
convex or even if it merely possesses a separating family of continuous linear
functionals, we can conclude that g is constant by using the Mean Value Theorem. If

however X *={0} then it may happen that g is not constant; for example, let X =L (0,)
(0<p<1) and g(t)=1,, (0<t<1) (the characteristic function of [0,t]). This example is

due to Rolewicz [133], [134].

The aim of this section is to substantiate a conjecture of Rolewicz [134] that every F-
space X with trivial dual admits a non-constant curve g :[0,1] — X with zero derivative.
In fact we shall show, given any two points x,,x, e X , there exists a map g :[0,1] - X
with g(0)=x,, g(1) =x, and

Fl_imowzo uniformly for 0<s, t <1.

To establish this result we shall need to study x -valued martingales. Let -~ be the -

algebra of Borel subsets of [0,1) and let =~ (n>0) be an increasing family of finite sub-

algebras of ~. Then a sequence of functions u, :[0,1) — X is an X -valued F -martingale
if each u, is F, -measurable and for n>m we have (u, |.~)=u,. Here the definition of

conditional expectation is the standard one with respect to Lebesgue measure 1 and there
are no integration problems since each u, is finitely-valued.

It is easy to show that every F-space x with trivial dual contains a non-constant
martingale {u, |~} which converges to zero uniformly. However we shall need to

consider dyadic martingales. Let D,, =[(k -1)/2",k/2") (1<k <2",0<n<w). Then, for
n>0, let 4 be the sub-algebra of .~ generated by the sets {D,, :1<k <2"}. A dyadic
martingale is simply a ~ -martingale. The main point of the argument will be to show
that we can find non-zero dyadic martingales which converge uniformly to zero.

We note here a connection with the recent work of Roberts [124], [123] on the
existence of compact convex sets without extreme points. Indeed, in a needlepoint space
(see [123]) it would be easy to show that there are non-zero dyadic martingales which
converge uniformly to zero. However there are F-spaces with trivial dual which contain

no needlepoints [120].
As usual an F-norm on a (real) vector space X isamap x —|x| such that

[x||>0 if x =0, (17)
[x +yl<x]+lyl  x.y eX), (18)
fx<[x] <), (19)
limfx|[=0  (x eX). (20)

t—0

The F-norm is said to be strictly concave if, for each x e X with x =0, the map t — |tx |

Is strictly concave on [0,x), i.e.
iIf 0<s<t<wand 0<a, b <1 with a+b =1 then, if x =0,
|(as +bt)x | >asx |+b x| . (21)
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Every F-space can be equipped with an (equivalent) F-norm which is strictly
concave. This follows from the results of Bessaga, Petczynski and Rolewicz [131]. We
may give X an F-norm ||, so that the map t — |tx |, is concave and strictly increasing for
each x =0. Now define |x| = |x|/*.

Suppose N is a positive integer. We consider the space R" with the natural co-
ordinatewise partial ordering (i.e. x >y if and only if x, >y, for 1<i <N ). We shall

denote by (e, :1<k <N the natural basis elements of R" . We shall use the idea of R" -

valued submartingales and supermartingales; these have obvious meaning with respect to
the ordering denned above. In addition, standard scalar convergence theorems can be
applied co-ordinatewise to produce the same theorems for R" .

For 1<i<N , let F be a continuous map F :[0,0)—[0,00) which is strictly

increasing, strictly concave and satisfies F (0)=0, F (1)=1. Then F, is also subadditive
since

F(s)>——F (s +t) (5.t >0).
S+t
Hence we may define an absolute F-norm on R" by
Ix ||=ZFi (e) x eR" . (22)
Now, for x e R" , define
o(x) =inf{max(|y |||z [} : x =4 (y +z)}. (23)

We shall need the following properties of o.
Lemma (3.3.1)[130]: (a) If x eR™ and x >0 then there exist y,z eR" with y >0, z >0

, x=%(y+z) and |ly|<o(x), |z]|<o(x).
(b) For x,y eR",
o0 =) <[x -y, (24)
o(x)<|x|. (25)
(c) If x >0 and o(x) =|x||=1 then, for some k, we have x =e,.
Proof. (a) is an easy consequence of a compactness argument. For (b) (24), observe that
if x=1(z +z") then
y =3[ +y-x)+(@"+y —x)I,
so that o(y) <o(x) +|y —x| and so (24) follows. (25) is an immediate consequence of the

definition of 5.
Suppose x >0, |x|=1, x; >0 and x; >0 where i = j . We show o(x) <1.

Since F, is concave, it has left and right derivatives at x,, , and «,, say, with
0<a, <e. Similiarly F, has left and right derivatives at x;, g and g, with 0< 8, <p
For small t >0,

[x +t(Be; —ag))|<[x],
[x ~t(Be; —ag))| <X |+t (- + Ba,) <|x].
Hence o(x) <1.
We conclude that if o(x)=1 then x =e, forsome k, 1<k <N .
Now let (X)=X,+...+%x, (x eR").
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Theorem (3.3.2)[130]: Suppose acR" , a>0 and (a)=1. Then there are disjoint Borel
subsets E,,....E, of [0,1) with A(E,)=a (1<i<N) and a scalar valued dyadic
supermartingale 6, (0<n <o) such that

0<g ()<l (0<t<l0<n<w), (26)
limg, (t)=0ae. (27)

and if
un:g(il&eiugj (0<n<w) (28)

then
u,t)>6 t)a (0<t<L0<n<ow), (29)
lu.@)—6,(t)a <1 (0<t<1,0<n<w). (30)

Proof. To start observe
N
lall=>_F (&)= z(a) =1.
i=1

Define g,(t)=«, for 0<t <1, where 0< ¢, <1 and |a,a|=1; then let w,(t)=aa, 0<t <1.
We then define inductively sequences w, :n>0), W::n>1), («,:n>0) of functions on
[0,1), where

w,(n>0) andw; (n>1) are R" -valued and .4 -measurable, (31)

a, (n>0) is R-valued and ~ -measurable, (32)
w,(t)=0 (0<t<1n=0),

wi(t)=0 (0<t<1,n=>0), (33)
a, (t)>0 (0<t <1,n>0),

gWw, | 4)=w, (n>0), (34)

w, (t)=w )+, (t)a (0<t <1,n=>0), (35)

w,®)=1 (0<t<Ln=>0), (36)

W, )] <ow, ) (0<t <1,n>0). (37)

Indeed suppose w,, w; and «; have been chosen for j <n. Then
w,(t)=b,, (teD, ).
b,«[=1, and b,, >0. Choose vy, .y, =0 so that max(|y , .||y ) = c,,) and
by =2(Yaua+Ya) (see Lemma (3.3.1) (a)). Now define
wo.t)=y, (e Dn+1,k) .
Then (34) and (37) are clear. Since
W, t))<1 (0<t<),
to be 4, -measurable so that «, , >0 and
W) +a,,(t)a] =1 (0<t<1)

where

we can determine «

n+1 n+l

Now define
W @) =w )+

n+1 n+1

(t)a (0<t<)
and clearly (36) holds.
Observe that
&(Ww 2)=W_ +&(c,

n+l|'

4)a

n+l|‘

77

——
| —



and if m>n
g(wn|4)=wn+[ig(ak | /fn>ja. (38)

k=n+1

Hence w_ is a submartingale and it is clearly bounded. Thus limw_(t)=w_(t) exists

almost everywhere, and | (t)|=1 a.e.
The real-valued submartingale (z-w, :n>0) is uniformly bounded and converges to
row  a.e. Hence

jolﬂ(ww(t ))dt =lim jol;z(wn(t))dt

=[x, Ot + 3 [, @ct
by (38) since z(a)=1. Hence 7

[[3 )t <o0
k=1

and so (a.e.) > e (t)<ow . Thus «/(t)—0 ae. and

w,.(t)-w;,(t)]—>0 ae Hence

w..0)|—1and ow,())—1 ae. By Lemma (3.3.1)(b), ¢ is continuous and so (a.e.)

oW (t) =W, @)|=1.
As w_(t) >0, we conclude that

N
w,(t)=D1 e a.e.,
i=1
where E,,...,E, are disjoint Borel sets with E,U...UE, =[0,1).
Now define u, =& | 4). Then, since {w_} is uniformly bounded and w, —»w _ a.e.,
u,=limegw, | %)

=W, +[ > #(a | //,;)]a =w_ +6,a,

k=n+1

where 9, >0 is 4 -measurable. Since (w,) IS a submartingale, (¢,) is a supermartingale. As
u,-w, —0 a.e., we have 9 -0 a.e. As z(w_)<1a.e., »(u,)<1a.e. and so ¢ <0 a.e. Also
lu, —6,a]=|w,|=1. Finally observe

U, =(a, +6))a = ixl(Ei e, .

Hence 7
7o) =D AE;) =1=0a,+6,
Thus A(E;)=a (1<i <N), and the proof is complete.
In fact we shall not use Theorem (3.3.2); instead we use its "finite" version.
Theorem (3.3.3)[130]: Under the same hypotheses as Theorem (3.3.2), given £>0,
there is a finite dyadic martingale (v,,v,,...,0,,) With

v,(t)=a (0<t <1), (39)
lo, ®)] <1+¢ (0<t <1). (40)

For 1<n<m -1, there is a positive .4 -measurable function ¢ with ¢4 <1 and
lo, @) — ¢, (t)a]|<1+e (0<t<Y). (41)
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Proof. Suppose 0<s,<4 is chosen so that [25,a] <4z and |(1-4,)"|<1+%s whenever

X[ <1.
Let u,, 6, be chosen as in Theorem (3.3.2) and select m so that
jolem(t)dt —5<6,.
Define
Uy =(1-6)"(U, —6,2)
and
v, =&, | %) (0<n<m).
Then |, ()| <1+¢ and
Uy =(1-8)"(u, ~#(6, | 4)a)
=1-90)"'(u,-0a)+1-5)" 0, -8, ] 4)a.
Define
¢ =0, -&06,]%) (0<n<m).
Then 0<¢ <6, <1 and
v, —ga=01-56)"u,-0a)+51-5)"ga
and so
||Un —¢na||£1+%g+%5:1+5.

We now turn to the general infinite-dimensional problem.
Lemma (3.3.4)[130]: Suppose X is an F-space with a strictly concave F-norm. Suppose
X, #0 and that x, eco{x :|x||<5}. Then there is a finite dyadic martingale u, (0<n<m)

with u,(t)=x,, and
b, @)]<25 (0<t<1), (42)

lu. @) <|xo|+25  (0<t<L0<n<m). (43)
Proof. There exist y,,...,y, eX with y, 20 (1<i <N), |y;[|<¢ and x,=ay, +...+a, Yy, ,
where a, >0 and a +a, +...+a, =1.

For 0<t <, define
RO =lty: /Iy

Then F, is strictly concave. Define the absolute norm on R" by

bl = > F (b
Now, by Theorem (3.3.3), there is a finite R" -valued dyadic martingale (v, :0<n <m)
with (taking £=1)

v, =a=(a,...,.a,) (Ot<],
lo,®)<2  (0<t<1)
and
lo,@®) -4, t)a|<2 (0<t<1,0<n<m),

where 0< ¢ (t)<1. Define T :R"Y - X by

Th :ibiyi :

i=1

Then
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N N

Toll< 2yl = 2 ly:|IFi (oi < bl
Now let u, =T v, . Then u,(t) =x, and |u, ()| <25. Also

lu, @) <l @)x, | +28 <|x,|+25.
Theorem (3.3.5)[130]: Suppose X is an F-space with trivial dual, and that x, X . Then
there is a dyadic martingale (u, :n>0) with u,(t)=x, and

rorlta>l<||un(t)||—>0 as n—oo. (44)
Proof. As explained in the introduction we may suppose that the F-norm on X is strictly
concave (passing to an equivalent F-norm does not affect (44)). The hypotheses

guarantee that the convex hull of any neighborhood of zero is X . The construction is
inductive, based on Lemma (3.3.4). To start the construction we may find a finite

martingale (u,:0<n<N,) so that u,(t)=x,, |u,, t)] <[x.| and Ju, @) <2|x,| @<n<N,),
by applying Lemma (3.3.4) with & =1||x,| if x,=0 (the case x, =0 is trivial).
Suppose now we have defined (u,:1<n<N,) so that
oy, <@ ol @si<k), (45)
Ju, @) <23) x| (N;<n<N,,1<j<k). (46)
We shall show how to extend to a finite dyadic martingale (u,:1<n<N, ) So that (45)

and (46) hold for j <k +1 and j <k respectively.
We have

uNk(t)=y| (t EDNk,I)'
For each vy, there is a finite martingale (v :0<n<M) with
o)=Yy, (0<t<1),
Jon O] <@ Iko| <t <D),

o O <y 1+ @< o
<E) x| (0<t<10<n<M).
Here M may be taken independent of | by simply extending the martingale where

necessary by adding further terms equal to the last term of the sequence.
Now let N, , =N, +M and define

Uy, . =v (2"t -1 +1) (teDNk',).

It is now easy to verify that conditions (45) and (46) hold where applicable. Continuing
in this way we clearly have (44) for the (infinite) martingale (u,).

The step from Theorem (3.3.5) is a very simple one if X is a quasi-Banach space or
more generally is exponentially galbed (see Turpin [135]). In such space there is a
natural correspondence between curves with uniform zero derivative and dyadic
martingales converging uniformly to 0. In a general F-space a little more sublety is
required in the proof of the main theorem.

Theorem (3.3.6)[130]: Suppose x is an F-space with trivial dual and that x,,x,eX .

Then there is a curve g :[0,1] - X with g(0)=x,, g(1)=x, and

lim M:O uniformly for 0<s, t <1. (47)

t—s|—0 t-=s

In particular g'(t)=0 for o<t <1.
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Proof. It suffices to suppose x,=0. Then there is a dyadic martingale (u, :n >0) with
u,(t) =x, (0<t <1,
rOrS1§1<>l(||un(t)||=gn —0.
Choose N,=0. Since each u, has finite range it is possible to choose a strictly
increasing sequence of positive integers (N, :k >1) so that
2 O o) <2 (48)

for 0<j <k -1, 0<t <1.Eacht €[0,1) has a unique binary expansion
t =2Tj2_j ,
ji=1

where each , is zero or one and r, =0 infinitely often. Now define
Kk
v (t)=u, [ZTjZ‘jJ.
j=1

k _ k .
(Recall that u, is constant on the interval » r, 27/ <t <> 7, 27" +27.) Then we observe

=1 =1
that v, isa 4, -martingale, with

r(Qi)l(”Uk ®f =2,

#(v, | %)=, v, Oct = [ u, Ot =x, .

In fact we observe that
& (v, |’4}\lk—1):l)k—l' (49)
For k >1 and o<t <1, we define
9, ()= v, (s)ds

(the integrand is simple). Then each g, is continuous and from (49) we have

g (t) =9, ., () if Nt eZ.
Now suppose that 0<t <1 and that 2I <2"«t <2l +1, where | is an integer. Then

0.0 -0,0 =} .. (0.()-0,(6)Nds

=t -212")(, )~ 4 (1)) - (50)
Equally, if 2l +1<2"<t <21 +2,
g, ) =g, t) = (2 +2)27™" —t)) (1 (t) —v, 4 (1)) (51)
Combining these results, we have
o, ) -9, ®)] < max[2™ (0, ©) ~ v, 1)
= max |27 (u, () ~u,, 1) <27 &.
Hence (g,) converges uniformly to a continuous function g on [0,1], and g(0)=0,

g = Xy
Now suppose 0<s <t <1. Then there is a least integer n so that for some integer |
we have 2"'s<I <1 +1<2"t. Clearly 2"t -2"'s<?2 and 2't-2"s>1 . Hence

2" <t-s<42"and n=>log,l/(t -s).
Now suppose N, ,<n<N,, where 1<k <oo. Suppose I, is the least integer not less
than 2"s and I, is the greatest integer not greater than 2"t . Then

2"(9,4®) —9,4,(1,27) = (2"t =1,)v,,(1,27),

( )
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2"(9,4(,27") =94 (s)) = (1, -2"s)y 4, (1,27")
2" (gkfl(i 2_n) _gk—l((i _1)2_n)) = Uk—l((i _1)2_n) .
Hence

2"(94(1,2") -9, 4 (1,27

<(l,-1)e

and

2n(gk—1(t)_gk—1(s))HS(Iz_Il+2)‘9k—l'
However I, -1, <2"(t —s)<4 so that I,-1,+2<5. Hence

2" (9 1)~ 9y +(8))] <55, - (52)

Now
2"(9, (1) -9, () = 2" po () —u ,4()),
where 0< p<1, by (50) and (51). Hence
2"(9, 1) -9, M) <&+ 4 (53)
A similar inequality holds for s.
If r>k

2n (gr (t) _grfl(t)) = 2rPNrp(Ur (t) _Ur—l(t)) y
where 0< p<1, and so
2"(g, () -9, )] =[2" " plo, ©) 0,4 1)|
2V N U (1) —u, L ()| <2 4,

< max
O<t<1

by (48). Hence

(t))us[zzk‘fjsk =&, . (54)

A similar inequality holds for s.
Combining (52), (53) and (54) and the similar results for s we obtain

2"(g(t) - gs))| < 75, , +45,

and hence
Hg(t) g(s)
t—s
Where N, >log,1/(t —s). Hence g has the properties specified in the theorem.

Every F-space X has a unique maximal linear subspace with trivial dual; this
subspace is closed. Let us call this maximal subspace the core of x . If core(X ) ={0}, it
does not necessarily follow that X has a separating dual; for a detailed investigation of
related ideas see Ribe [132]. We conclude with a simple corollary.

Corollary (3.3.7)[130]: Suppose X is an F-space and x X . In order that there exists a
curve g:[0,1]—»X with g(0)=0, g@)=x and g'tt)=0 for o<t <1 if is necessary and
sufficient that x core(X).

Proof. If x ecore(X) the existence of g is given by Theorem (3.3.6). Suppose
conversely such a g exists and lety be the closed linear span of {g(t):0<t <1}. Suppose
¢ 1s a continuous linear functional ony . Then (¢-g)'(t)=0 (0<t <1) and hence by the
Mean Value Theorem ¢(g(t))=0(0<t <1). Thus ¢=0 and soY ccore(X); in particular
x ecore(X).

<Tg ,+4s,,
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Chapter 4
Asymptotic Sharpness and Applications of Bernstein-Type Inequalities
A Bernstein-Type inequality in the standard hardy space H? of the unit disc
D={z eC:z|<1}, for rational functions in D having at most n poles all outside of 1D,

O0<r <1, is considered. The asymptotic sharpness is shown asn — «, for every r €[0,1).

We apply our Bernstein-Type inequality to an effective Nevanlinna-Pick interpolation
problem in the standard Dirichlet space, constrained by the H *-norm. We show that this
result can not be extended to weighted Bergman spaces with “super-polynomially”
decreasing weights.
Section (4.1): A Bernstein-Type Inequality for Rational Functions in H?

First we recall the classical Bernstein inequality for polynomials: we denote by P,

the class of all polynomials with complex coefficients, of degree n: P = Zgzoakz “. Let

1
n 2
PL=—=([ Pl dcf = Sal |
The classical inequality
[P, <nlPl, (1)
1s known as Bernstein’s inequality. A great number of refinements and generalizations of
(1) have been obtained. See [148, Part Il1] for an extensive study of that subject. The

constant n in (1) is obviously sharp (take P =z").
Now let o ={4,....4 } be a sequence in the unit disc D, the finite Blaschke product

B, =[] b,  whereb, =
the n-dimensional space deflned by

Kg, =Lin(k, :i =1,...,n),
where ¢ is a family of distincts elements of D, and where k, =—L- is the Szegd kernel
associated to 2. An obvious modification allows to generallze the defmltlon of K, inthe

case where the sequence ¢ admits multiplicities.
Notice that using the scalar product (,-),. on H?, an equivalent description of this

space is:

K =(B,H?)" =H’&B_H?,
where H? stands for the standard Hardy space of the unit disc D,

- {f =S )z f | = Osgwf (rz)[dm(z) < oo} ,

m being the Lebesgue normalized measure on T . We notice that the case
A=*h=-=4=0gives K, =7 . The issue of this section is to generalize classical
Bernstein inequality (1) to the spaces K, . Notice that every rational functions with poles
outside of D lies in a space K, . It has already been proved in [65] that if r =max; |4],

and f eK, ,then

(2)

(e AR
In fact, Bernstein-type inequalities for rational functions were the subject of a
number of references (see, for instance, [61], [140], [141], [136], [137], [138], [55] and
[139]). Perhaps, the stronger and closer to ours of all known results are due to K.
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Dyakonov [60]. In particular, it is proved in [60] that the norm ||D||KBHH2 of the

differentiation operator Df =f ' on a space K, satisfies the following double inequality
8, <[Pl .2 <A[B’

where a=-1, A=3:< and c =23z (as one can check easily (c is not precised in [60])).

It implies an inequality of type (2) (with a constant about £ instead of $).
Our goal is to find an inequality for sup ||D||KBQH2 =C,, (sup is over all B with given

a|

oo !

<
KgoH2 =

n=degB and r = max

]), which is asymptotically sharp as n —oo. Our result is that

CI"I,I‘

there exists a limit lim %" =2 for every r, 0<r <1. Our method is different from [60]
and is based on an elementary Hilbert space construction for an orthonormal basis in K .
Theorem (4.1.1)[64]: Let n>1, o={4,,...,4,} be a sequence in the unit disc D, and B,
the finite Blaschke product B, =[] b, , where b, =22 is an elementary Blaschke factor
for 2eD. Letalso Ks, be the n-dimensional subspace of H ? defined by
Ke, =(B,H*) =H*SBH”.
Let D be the operator of differentiation on (K, ,|{,):
D:(Kg M) > HA) f e,

Aeoc

where |f |, :%(Mf (©)fd¢) . For refo,1) and n>1, we set

C,, =sup{|D|
(i) If n=1 and o ={1}, we have

oyt 1<cardo<n,|A|<r v/zea}.

1
D , =4 .
0o 1 7

N

If n>2,
a(n,r)—"—<C,, <A(n,n"—,
1-r 7 1-r
where
1
o)z st
and

a(n,r)<l+r +ﬁ.
(if) Moreover, the sequence

Is convergent and

|im1Cnr =1+_r’
noen T 1
forall r €[0,1).

Proof. We first show (i). We suppose that n =1. In this case, K =Ce,, where
1
1-([)?
= e,
1-12)
(e, being of norm 1 in H ?). Calculating,

( )
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_ ) 1
10— [P

!

Yo@-az)?
and
2,1 1
ell, = a- 2Pt —%
1- k +1)[A]" ~1apy? LJZ,
S D e e P
we get

1
2
. "(1 Iﬂlj

Now, we suppose that n >1. First, we show the left-hand side inequality. Let
1
(1_ r2)2 brn—l
-1z
Thene, eK,, and [e,|,=1, (see [43], Malmquist-Walsh Lemma). Moreover,

e =

n

er!] r(g-l_ r))zbn—l (n 1) (11 rrz)zbrbn -2
- _ r rbnl+(n 1)(1 r) !an
(1-r?)? 1-r
since b, = rz_lz.Then,
(1-rz)
e’ =b/| —— T 1br“’l+(n—1)wbr”’2 ,
(1_r2)§ 1-rz
and
e 0, @)+ (-1 rV(b( )" dmw)
(1-r?)2
L el - u
‘zﬂLr|b'(W)||bf(W)| —rZ) dm(w),
which gives, using the variables u =b, W),
(1-r?)?
el = U+ (n-1)——— dm(u).
el = Py =D | )
But 1—rb, ==rln) _ 1 gng b;obr=(ljb—l)2= ‘11‘”’ This implies
e 1 r ( )
nz_zﬁjT — (1 r)2u+(n D= (1-ru)| dm(u)
- 1r) o j|(1 ru)(-ru +(n -2)L-ru))[ dm(u).

Without loss of generality we can replace r by —r, which gives

( )
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!

1
Eall, :?”(Dnnz’

n

where ¢, =(1+rz)(rz +(n-1)(1+rz)). Expanding, we get
o, =@Q+rz)z +(n=-)=nrz +(n =) +nr’z*+(n-rz
=(n=1)+(r+(n-=1)r)z +nr’z?,

and

2
2

!
n

-y 12)2 (N =1)% +(2n —1)’r2 +n’r*)
—r
2 2 4r? 1 r

2
__" | 1+4r? +rf—=— +S+—
a-r?) n n n n

L 2 1 2 1+4r2+r“—£—4r2+:L+r2

1-r 1+r n n n?
2 2 4 4 2 2
:[Lj (Lj 14+4r2 414 —5réypps A0 AT A —£+1+2r

1-r 1+r n n n n n

2 2 2 2 4

(L] [L] [4r2(1—r2)—4r A-ry+ 2 g AT —Ej
1+r n n n n

1+r? 4r* zj

1-r
:[LJZ[LT[MZO—rz)(l—£)+ —+1+5r" - —-=
n n n n

1-r 1+r

>( n jz( 1 JZ 145r -4 2 jfn>0
=) L) 11450t -4t _2if n =0

2 2 4
> 1 l+5r“—4r —min EE )
1-r ) (1+r n 4'n

1

4 2

a(n,r)zi 1+5r“—4r —min(§,gj )
1+r n 4 n

which completes the proof of the left hand side inequality .
We show now the right hand side one. Let ¢ be a sequence in D such that 1<cardo<n,

|A|<r Vaeo. Using [65], Proposition 4.1, we have
1 L (n —1)+%\/n -2

||D||KBGQH2 11

(1+(1+ r)(n—-1)++/n —2)=ﬁ(n(l+ r)—r++/n —2)

=L(1+r—1+ l—ijﬁL[1+r+\/Ij,
1-r n \}n n®> ) 1-r n
which gives the result.

Now, we show (ii). Step 1. We first show the right-hand side inequality:
. 1 1+r
limsup—C,, <——,
L | e |

n 1
”D”KB;HZ SE[H r +\/;]

Step 2. We now show the left-hand side inequality:
A | 1+r
liminf =C, . >—.

oo opn o d—r

and

—-r

which becomes obvious since
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More precisely, we show that
I|m|nf—||D|| Sl

2 =
N—oo K *)H 1_r

Let f K ,. Then,

fr=(f, 1)H2(1_ )e +Z(k AU AP ek+rZ(f k)Hz(l_ )ek
. 1-r?
=rZ(f k)Hz(l rz) e rz)(z—r)kZ;(k -D(f &), .8
_r@- r)2 N T G ) =
- Z( e, 20 Yo T )Z(k -D(f &), by
which gives
fr=—b/ [(1 ' ) Z(f &) b+ %i(k -D(f ,ek)szr“}- 3
r p k=1 - k=2
Now using the change of variables v =b_(u), we get
f'§=jT ! Z(f e, b+ (1u ' )Zi(k ~1)(f ), b | d
—-r )2 k=1
= [ b/ (b, (u) (feo) v Il dv .
'H |1 r)zkz_; V_rk:Z
But
b _r:r—z—r(l—rz):z(rz—l)
' 1-rz 1-rz '
and
b’ ob. — r’r-1  (1-nr)y
N I T
which gives
e A e Y (WA (1”2(1— IS e,), v ¢
1 r )2 k=1 V( )
e r) H(1 ) \rZ(f e, V" —(1—rv)i(k ~1)(f ey, v | dv
and
I = oL rv)z(f o) V=@V (kD e, 0" (@)
In partlcular
PO e,p), V" r(1—rv)H(f ey vl (=il 5
T S0 et 250 ©

“nlf, {

Now, we notice that on one hand

n-1
—r@-rv )Z(f ’ek+1)H2V ‘
k=0

J
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n-1

( ,ek+1)H2\2j2 <ren)t ], (6)

r—rv )nz_%,(f 'ek+1)H2V ‘
k=0

and on the other hand,

A-n S K +D(F ) v =@-2v + 1S (K +D)(F e,) v
k=0 k=0

Sr(1+r)(

k=0

n-2 n-2 n-2
:Z(k +1)(f 7ek+2)H2V ‘ —ZFZ(k +1)(f ’ek+2)H2V k+1+r22(k +1)(f ’ek+2)H2V o
k=0 k=0 k=0
n-2 n-1 n
= Z(k +1)(f ,ek+2)H2v K —ZFZk (f ’ek+1)H2V K4 I’ZZ(k =1)(f ,ek)HZV K
k=0 k=0 k=0

S (F ), + 28 v+ 3 (k+ D ey, 0 ~2k (T ) o T~ ),

_2or [(f £,), v +H(n-1)(f e,) v "*1]+ rz[(n ~2)(F e, ) V(=D e, ]
which gives

A-m S K+ e,) v  =(F e), , +2(F ) ,—r(Fe)) LW + (7)

ST+ ), —20 (1 0,0), 4T =D ), o+
+[;2(n =2)(f ey) . —2r(n=D(f e,) V" +ri(n-1(f e,) V"

Now, let s =(s,), be a sequence of even integers such that
lims, =ccands, =o(n)asn — oo.

n—o0

Then we consider the following function f in K,

S+2

€ st Z( e,

f =e, —e,_ +e ,—€ ,+...+(-D*e,, +...+e,  —
Using (6) on one hand, we get

!m n|| i r(l— rv)Z(f 1), WV
and applying (7) on the other hand, we obtain

2n—2 . 2 2 2
1-r) kzz(;(k FD( o) v | 2|8, o] +4[(F ea) L - (F ey | +

=0, (8)

+ rz(n _2)(f ’en—l)HZ _Zr(n _l)(f ’e”)HZ 2

n-2

2
—2rk (f ey 1) +ri(k —1)(f ,ek)Hz‘ ,

k=2

which gives

k+2) v ‘r (n=2)+2r(n-— 1)‘ +ri(n-1)°+

) n—I+2)H2 —2r(n _I)(f ’en—l+l)H2 +r (n ~1 _1)(f ’en—I)HZ
setting the cﬁange ofindex I =n—-k in the last sum. This finally gives

‘(1 rv)Z(k +1)(f 8y,) v " \r (n=2)+2r(n- 1)\ +ri(n-1>%+
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s+l

+Z\(n—|+1)+2r(n—|)+r(n—| 1)\ +l(n—s-1+2r(n-s-2)[" +|n-s -2
And

‘(1 I’V)Z(k +1)(f 8y5), v " >\r (n=2)+2r(n- 1)\ +ri(n-1>%+

+s‘(n s)+2r(n—-s—-1)+r%(n— 3—2)‘ |(n—s-1)+2r(n— s—2)| |n—s—2|2.
In particular,

-y S k4D e, ) "

Passing after to the Iimit as n — oo in (5), we obtain (using (8))

25‘(n—s)+2r(n—s—l)+r2(n—s—2)‘2. (9)

1 1-r|if]
——liminf ———[|(1-rv)*>> (k +1)(f ,e 22),, WV _I|m|nf— 2 (20)
L TS O S0 " IFlL
This gives
o l-r|f’ 1 .. .
liminf - ||||f ||||§=1+r!m|nf 2) 2V (11)
Now, since
If ;=5 +3,
using (9) we obtain
2
Iiminf >
n—e k=0

> liminf 2(|| I ~3)|(n—s)+2r(n—s—1)+r*(n-s - 2)\

e
Since
+r2(n—s—2)‘2:0,
n—>oan
we get
2
Iiminf k+2) N >
2 liminf ——s; 2l(n—s, )+2r(n-s, - +r’(n-s —2)‘
n—o0 n S

= Iimiz‘(n —s )+2r(n—s, D +r*(n-s, —2)‘2 - Iimiz‘n +2m + rzn‘2 =(1+r)*.
n~)00n n~>oon

We can now conclude that

!

I|m|nf—||D|| o _I|m|nf L

i i ||f -
—1irrl]m|nf k+2) A z%:lw
Step 3. Conclusion. Using both Step 1 and Step 2 we get
Ilmsup—C _I|m|nf—C =141,

n—o0 n n—oo n
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which means that the sequence (:C,,),., is convergent and

nx1
limic -1tr
Ul | N Y
(a) Bernstein-type inequalities for K, appeared as early as in 1991. There, the
boundedness of D :(Kg.,||{,,) = (H"|{,,) was covered for the full range 1<p<oo. In

[60], the chief concern of K. Dyakonov was compactness (plus a new, simpler, proof of
boundedness). Now, using both [140], (or equivalently M. Levin’s inequality [61]) and
complex interpolation, we could recover the result of K. Dyakonov for HP® spaces,
2<p<oo and our method could give a better numerical constant c, in the inequality

”f ’”Hp SCP|B' o |f ”Hp :
The case 1<p<2 can be treated using the partial result of K. Dyakonov (p =1) and still
complex interpolation.
(b) In the same spirit, it is also possible to generalize the above Bernstein-type
inequality to the same class of rational functions f in D, replacing the Hardy space H?
by Besov spaces B;,, s R, of all holomorphic functions f :Zkzofﬂ(k)z “in D satisfying

= (Z(k )= (k )r] <o,

The same spaces are also known as Dirichlet-Bergman spaces. (In particular, the
classical Bergman space corresponds to p=-4 and the classical Dirichlet space

corresponds to p=1). Using the above approach, one can show the sharpness of the

growth order :~ in the corresponding Bernstein-type inequality
n
i, <6 T s, (12)
(at least for integers values of s).
(c) One can also show an inequality

w561 I e (13)

for s >0 and the same class of functions (essentially, this inequality can be found in
[142]), and show the sharpness of the growth order ()" (at least for integers values of s

). An application of this inequality lies in constrained H ~interpolation in weighted
Hardy and Bergman spaces, see [65] and [63] for details.

Notice that already E. M. Dyn’kin (in [144]), and A. A. Pekarskii (in [1], [146] and
[147]), studied Bernstein-type inequalities for rational functions in Besov and Sobolev
spaces. In particular, they applied such inequalities to inverse theorems of rational
approximation. Our approach is different and more constructive. We are able to obtain
uniform bounds depending on the geometry of poles of order n, which allows us to
obtain estimates which are asymptotically sharp.

Also, in [143] of K. Dyakonov, there are Bernstein-type inequalities involving Besov
and Sobolev spaces that contain, as special cases, the earlier version from , Pekarskii’s
inequalities for rational functions, and much more. K. Dyakonov used those Bernstein-
type inequalities to "interpolate™, in a sense, between the polynomial and rational inverse
approximation theorems (in response to a question raised by E. M. Dyn’kin). Finally, he
has recently studied the "reverse Bernstein inequality” in K, ; this is done in [143].

(d) The above comments can lead to wonder what happens if we replace Besov

If

f !

I

( )
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spaces B,, by other Banach spaces, for example by w , the Wiener algebra of absolutely

convergent Taylor series. In this case, we obtain
[t 1L, <ctnolf ], (14)

1 1
where c(n,r)gc(g)2 and ¢ is a numerical constant. We suspect that (%)2 is the right

growth order of c(n,r). An application of this inequality to an estimate of the norm of the

resolvent of an nxn power-bounded matrix T on a Banach space is given in [67].
Inequality (14), above, is deeply linked with the inequality
[ U < o] Il (15)
through Hardy’s inequality :
I 1, <l e +If @),

forall f ew , (see [62]).
Inequality (15) is (shown and) used by R. J. LeVeque and L. N. Trefethen in [145] with
y =2, and later by M. N. Spijker in [149] with » =1 (an improvement) so as to apply it to
the Kreiss Matrix Theorem in which the power boundedness of nxn matrices is related
to a resolvent condition on these matrices.
Section (4.2): A Bernstein Type Inequality to Rational Interpolation in the Dirichlet
Space

Let D={z eC:|z k1} be the unit disc of the complex plane and let Hol (D) be the

space of holomorphic functions on D. Let also x and Y be two Banach spaces of
holomorphic functions on the unit disc D,X Y < Hol(D). Here and later on, H* stands for

the space (algebra) of bounded holomorphic functions in the unit disc D endowed with
the norm |f | =sup,, If (z)|. We suppose that n>1 is an integer, r €[0,1) and we

consider the two following problems.
Problem 1. Let P, be the complex space of analytic polynomials of degree less or equal

than n, and
. . 1

(where d°p means the degree of any p e? ) be the set of all rational functions in D of
degree less or equal than n>1, having at most n poles all outside of 1D . Notice that for
n=1, we get R,,=7P_. Our first problem is to search for the “best possible” constant
C,. (XY ) such that
IF 1, <. X YOI |

forall f e, ,.

Problem 2. Let o={4,...,4,} be a finite subset of D. What is the best possible
interpolation by functions of the space v for the traces f_ of functions of the space X , in

the worst case? The case X cY is of no interest, and so one can suppose that either
Y <X or X andy are incomparable. More precisely, our second problem is to compute
or estimate the following interpolation constant

(e, XY )= sup inf{lg], :g,=f,}

feX Jf Iy <1
We also define
Z,, (XY )=sup{l (c,X Y ):cardo <n,|i|<r,Vieo}.

Bernstein-type inequalities for rational functions are applied

( )
1 %




1.1. in matrix analysis and in operator theory (see “Kreiss Matrix Theorem” [145,
149] or [152, 67] for resolvent estimates of power bounded matrices),

1.2. to “inverse theorems of rational approximation” using the classical Bernstein
decomposition (see [151, 14, 1]),

1.3. to effective H * interpolation problems (see [65] and our Theorem (4.2.6) below
in Subsection d), and more generally to our Problem 1.

We can give three main motivations for Problem 2.

2.1. It is explained in [65] (the case Y =H*) why the classical interpolation
problems, those of Nevanlinna-Pick (1908) and Carathéodory-Schur (1916) (see [62] for
these two problems), on the one hand and Carleson’s free interpolation problem (1958)
(see [63]) on the other hand, are of the nature of our interpolation problem.

2.2. It is also explained in [65] why this constrained interpolation is motivated by
some applications in matrix analysis and in operator theory.

2.3. It has already been proved in [65] that for X =H? andY =H~,

1 n 2 (g Jn
mﬁszmm H )sﬁ\/ﬁ. (16)
The above estimate (16) answers a question of L. Baratchart (private communication),
which is part of a more complicated question arising in an applied situation in [58] and
[59]' given a set oD, how to estimate I(c,H?H™) in terms of n=card(c) and

|Al=r only?
ieo‘

Now let us define some Banach spaces x andy of holomorphic functions in D which
we will consider throughout this section. From now on, if f eHol(D) and k eN, f (k)

stands for the k™ Taylor coefficient of f .
1. The standard Hardy space H?*=H?(D),

H 2 ={f e Hol(D): f |[".> = sup IT|f () dm(z) <oo}
O<r<1

where m stands for the normalized Lebesgue measure on T={z eC:z =1} . An
equivalent description of the space H *is

{f =2 ()", 2—( ‘f (k)‘j }

2. The standard Bergman space L2 =L2(D),
= {f e Hol(D): |f |- =1j If @) dA@z)< oo} ,
a YD

where A is the standard area measure, also defined by
1\
<0,
+1j

{f -0 I =T
k>0
3. The analytic Besov space sz (also known as the standard Dirichlet space) defined

k>0
by
1
1 A 2 2
B§2={f =Zf (k)Zk :||f a3 =( j <oo}
k>0 22 k>0

Then if f €B;,, we have the following equality
T +1f e (17)

( )
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which establishes a link between the spaces BZ, and L2,

Here and later on, the letter ¢ denotes a positive constant that may change from one
step to the next. For two positive functions a and b, we say that a is dominated by b,
denoted by a=0(b), if there is a constant ¢ >0 such that a<cb ; and we say that a and b
are comparable, denoted by a=<b, if both a=0(b) and b =0 (a) hold.

Problem 1. Our first result (Theorem (4.2.5), below) is a partial case (p=q=2,s =1) of
the following K. Dyakonov’s result [142]: if p €[Lx), s €(0,+x), q €[, +x], then there
exists a constant ¢, >0 such that

G, (B2 HY) <c, sup|B,,, (18)
where y is such that £+1=2, and the supremum is taken over all finite Blaschke
products B of order n with n zeros outside of tb. Here B stands for the Hardy-Besov
space which consists of analytic functions f on D satisfying

n-1
I g, =2 JF Q@+ [ (@-w])" " O dA@w) <o
p.p k=0
For the (tiny) partial case considered here, our proof is different and the constant c, ,, is
asymptotically sharp as r tends to 1 and n tends to +oo.
Problem 2. Looking at 2.3, we replace the algebra H ~ by the Dirichlet space sz. We

show that the “gap” between X =H? andy =H~ (see (16)) is asymptotically the same
as the one which exists between X =H? and Y =BZ,. In other words,

T, (H2,B},) =T, (H2,H")= % (19)
We first give some definitions introducing the main tools used in the proofs of Theorem
(4.2.5) and Theorem (4.2.6). After that, we show these theorems.

From now on, if o ={4,,...,4 }< D is a finite subset of the unit disc, then

B, - ll[bl_
is the corresponding finite Blaschke product where b, =42, 2eD. In Definitions (4.2.1),
(4.2.2), (4.2.3) and in Remark (4.2.4) below, o={4,...,4,} IS a sequence in the unit disc

D and B, is the corresponding Blaschke product.
Definition (4.2.1)[150]: For k [L,n], we set f, =

(which is known as Malmquist basis, see [43]), by
f,

and e, { b ] (20)
"l e,

for k <[2,n]; we have [f,[, =4 P) ~.
Definition (4.2.2)[150]: The model space K, . We define K, to be the n-dimensional
space:

-, and define the family (e, )., ,

€,

Kg =(B,H?*)"=H?SB_H?. (21)
Definition (4.2.3)[150]: The orthogonal projection P, on K, . We define P, to be the
orthogonal projection of H? on its n-dimensional subspace K,
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Remark (4.2.4)[150]: The Malmquist family (,)..., corresponding to o is an
orthonormal basis of K, . In particular,

PBJ = Z('lek)H 26y (22)
k=1
Where (+),,. Means the scalar product on H?2.
Theorem (4.2.5)[150]: (i) Let n>1 and r €[0,1). We have

~ n 2 2 = n
a,r) ESCM(La,H )SA(n,r),/—l_r, (23)
where

a,r) 2(1_1_Tr]2 and A(n,r) s(l+r +i)2.

Jn
\/ﬁ n>1

Is convergent and there exists a limit
Cor(LaH?) 141

(if) Moreover, the sequence

li = : 24
lim == - (24)
forall r €[0,1).
Notice that it has already been proved in [64] that there exists a limit
2 2
lim Cn‘r(H yH?) :1+r ’ (25)
n—>o n 1-r

forevery r, 0<r<1.
Proof. (i). 1) We first show the the right-hand side inequality of (23). Using both

Cauchy-Schwarz inequality and the fact that f '(k) = (k +1f (k +1) for all k >0, we get
, f'(k)P k+1)? | (k +1) P 2
”f ”i{zzl ( )l :Z( ) | ( )l :Zkf(k)‘

= k+1 >0 k +1 =
2\ )\2
<[l 0ol T3 60f | =1 el e <Gl e,
and hence,
PN NCERY
which means

G, (LZH?) s./cnyr(H 2HY.

1 n
C H2,H2 < 1 r+—7— -
n,r( ) ( + +\/ﬁj1_r

Then it remains to use [64]:

forall n>1and r €[0,1).
2) The proof of the left-hand side inequality of (23) repeates the one of [64, (i)] (for the
left-hand side inequality) excepted that this time, we replace the Hardy norm |,,. by the

1
Bergman one | .. Indeed, we use the same test function e, = &b (the n" vector of

the Malmquist family associated with the one-point set o, , ={r,r,...,r} see Definition

| ——
n
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(4.2.5)) and show by the same changing of variable <b_(in the integral on the unit disc D
which defines the L2 —norm) that

P, = 1—1—rj,
fills = (2

REN S RN @—Ll)
' 1-r n

Here are the details of the proof. We have e, eK , and [e,|

which gives

(see [43], Malmquist-

H2’

Walsh Lemma). Moreover,

er: r(l r )zbn—l (n 1) (l r )zbrbn 2 _ r rbn—1+(n l)(l r )Zbrbn 2
(1— ) 1-rz (1 I’)2 1-rz
since b/ ==, Then,
e/ =b/| - b (n— 1)(1 oy’ b2 |,
(1-r?)? 1=z
and
2
2
e =), ) (- Dar)(bMW”de)
a _r )2
1 2
- n-2*| _b,w)+(n- 1)( r)’ dm@w)
(1-r?) -
which gives, using the variables u =b ),
1 2
1|2 2|2 r (1_r2)2
= — _1 d .
||en||Lg o _rz)%u+(n )l—rbr(u) m)
But 1-rb, =2t 2 and b’ oh, _(1ffbl) = ‘11‘”’ This implies
1 2
a2 1 o2 ( )
||en||L§_§J‘Du 2 )2u+(n 1) (1—ru)| dm(u)
1 1 e 2
“ )25 2 |(—ru +(n-D@-ru)[ dm(),
which gives
, 1
En L2 :ﬁ”(pnnz’

(1-r")?
where ¢, =z"?(-rz +(n-1)(1-rz)). Expanding, we get
@, =2"(-1Z +n-1+rz -nrz)=2"?(-nrz +n-1)=(n-1)z"*—nrz"*,
and

T R ¢ (n-1)° n_2
kil = (S |- st -

=;((1+r)—lj n [1—14),
L-r)@+r) n 1-r) n
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which gives

Cn r(Ls’H2)> (1_1_r)
’ Vl—r n

Proof of (ii). This is again the same proof as [64, (ii)] (the three steps). More precisely in
Step 2, we use the same test function

f=> (D,

(where s =(s,) is defined in [64]), and the same changing of variable <b_ in the integral

on . Here are the details of the proof.
Step 1. We first show the right—hand—side inequality:

2 1+r
!EESUDVF=C (L5, H )<‘;1—r’
which becomes obvious since
1 2 2 1 2 2
WCM(La,H )gﬁ,/cm(H JH ).
and
1 PR f1+ r
ﬁ Cn’r(H ,H )—) E;
as n tends to infinity, see [152].
Step 2. We now show the left-hand-side inequality:

1 1+r
liminf —=C,, (L2, H?) > .
lim = ( ) 1’1_

More precisely, we show that

o 1+r
it 7 1Pl sz oz = \/; |

fro(f, 1)H2(1 _— +Z(k -D(f e, e +rZ(f &), 2(1 _—

1 1-r?
=r2(f k)Hz(l A" )Z(k -D)(F ),

_r@-r )2 . o1, (@-r g 1
(l— Z( k) 2 r (l rz) (Z _r)Z(k 1)(f € ) 2br

Let f eK .. Then,

_y Z(fe) pet 4 r)Z(k ~1)(f e,) b .
(1-r )2 k=1 (z-r) &
Now using the change of variables v =b_(u), we get

2
n

3 ), 0GOS i > (k=00 e,), b} d

r)2k1

Z(fe)z

Pl—r?y i (V)—r P

r—z r(1—rz) z(r
Now, b, —r =——;

= LBl

2

dv .

k-1

‘1) , which gives
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2

£ = S £ V" M r) (1- N)Z(k ~1)(f e,), v 7 dv
a —-r )2 k=1 ( )
. rZ(f ,ek)szk‘l—(l—rv)i(k ~D(f e) v 7| dv
k=1 k=2
S e v ek D ey v v
k=0 k=0
Thus,
1 n-2 n-1
1-v )Y (k +1)(F e, ,,) V" ry (f.e.) V" 26
||f ”Hz\/n(l"'r) U‘( )é( +1)(f e, 2)H2 |_§+ é( k )Hz Lg:l (26)
i lf '”Lg > 1 H(l—rv)nf:(k +1)(f e..,) v - rnz_l:(f A
[z~ [ 2 W@+ ) = SR e ST TR |
Now,
(=) K+ )" = ST 8, ), 0 =T S D ), 0
k=0 k=0
=S D ), v TSk ),
k=0 k=0
:(f ’ez)Hz +2(f ’es)sz +Z[(k +1)(f ’ek+2)H2 — 1k (f !ek+1)H2]‘/ <+
k=2
H[(F ey, v+ (N-D)(F e,) v "]
=(f &), +[(f &) ,—T(f ;) . +§[(k D 80), 0 — K (Fey,,) N+
k=2
—r(n=1)(f ;) v"",
which gives
‘(1—rv)ni(k S ) V0| =[ e, +%‘(f ) .1 ) [ + @7)
k=0 2
L i1y 5> LS 2
+-r'(n-1) (e, 2 ) i (e,
On the other hand,
n-1 v 3
S| s Sl el | e (28)

Now, let s =(s,) be a sequence of even integers such that
lim s =oands, =o(n) as n —oo.

n—)OO n

Then we consider the following function f in K ,:

S+2

= Z(_l)ken—k

k=0

Applying (27) with such an f , we get

-mS et e, - O S aorie, ), -0

),

setting the change of index | =n -k in the last sum. This finally gives

( )
1 ¥ )



‘(1—rv)n§2:(k FA)F ) vt =D ) +Sf:(n | +1)fL+ r(”
o H 2 n +1
B 4(n_1)2 s+l B ~ 1 2
=r = +I§(n I+1){l+r(1 n—I+1H :
and
H(l—rv)nf,(k +1)(f ) V| 2
s (n-1)? ) ) 17
>r T+(S+l 2+1)(n (s+1)+1){1+r[1 n—(s+1)+1ﬂ
:r4ﬂ+s(n—s){l+r(1—iﬂ :
n n-s
In particular,

‘(1_ v )nz_zl(k +1)(f 'ek+2)H2V ‘

>s(n —s)[1+r(1—iﬂ .
Lg n-s

-3 KD o) v

Now, since |f | . =s, +3, we get

liminf

" nlf '

> liminf— 2t [, (- Jf |/ 2){1”[1_%)} _

R | IIHz
1 2
—||m(1——)|:1+r(1——}j| =(1+r)%.
n—e n n-s
On the other hand, applying (28) With this f , we obtain
I’]*)OOI” || rZ(f’ k+1) V

Thus, we can conclude passing after to the limitas n t ends to +oo in (26), that

=0

N e R - 1tr
liminf lim L _l(1-rv k +1)(f e vl > =Jl+r,
n—>o n ”f ||H2 \/1+r naw Hf HZ*F‘( )é( )( k+2)H2 Lg ,/14_[‘
and
f
liminf ||D|| 2 2 liminf 1-r ||||f ””L2 >1+r.
n—oo n—o0 H2
Step 3. Conclusion. Using both Step 1 and Step 2, we get
|imsup‘/1_—rcn,r(|_§, H 2) = liminf /LTrCM(Li,H % =1+r,
which means that the sequence ( G (L2 2))n>1 Is convergent and
Iim\/:Cn,(Lj,H ) = /“—r
noe\p 1-r
Theorem (4.2.6)[150]: Let n>1, and r [0,1). Then,
7,,(H%B2)<[(C, (L2 H Y)Y +1]. (29)
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Let 2D and the corresponding one-point interpolation set o, , ={4,4,...,4}. We
%/_/

n

have,
1
1 2 2 242
(o, H?B2)> || QA =5=7 (30)
‘ ’ =210 2@+
In particular,
1 1
2 1 _ 2
1+r 1_3 LSIM(HZ,BZZZ)S 1+r+i+1—r L, (31)
2 n )| \1zr ' ’ N \jl—r
1 1
Tor 7 (H?B2 _ Z. (H?B2
2 sliminstllmsup n. 22) < 1rr : (32)
1_r n—o0 ﬁ n—oo ﬁ 1_r
and
— 1 — 1
gs liminf liminf /1—rInr(H ?,B7,) < limsuplimsup /1—rInr(H 2 B2)<\2. (33)
rol- n—o n ! ’ r-1- n—o n ’ '

Proof. Proofs of inequality (29) and of the right-hand side inequality of (31). Let ¢ be a
sequence in D, and B =B_ the finite Blaschke product corresponding to ¢. If f eH?, we

use the same function g as in [65] which satisfies g =f_ . More precisely, let
g =P,f eK, (see Definitions (4.2.2), (4.2.3) and Remark (4.2.4) above for the
definitions of K, and K, ). Then g —-f eBH ? and using the definition of C,, (L, H?)
g' ig < (Cn,r(Lezl’ H 2))2||g||2|_|2 '
Now applying the identity (17) to g we get

loll, <[ (L2 H)* +1]lalf-

Using the fact that |g]|, . =[P, |,.» <[ |

we finally get

H2’

1
ot <[C (L HA +1FIf ||,

lo
and as a result,

1 1

| (o H 2,85, ) <[(C,, (L2 H )" +1].

It remains to apply the right-hand side inequality of (23) in Theorem (4.2.5) to show the
right-hand side one of (31).
Proof of inequality (30). 1) We use the same test function

n-1
f =Y @-|a)bla-2z)*,
k=0

as the one used in the proof of [65] (the lower bound[65]). f being the sum of n elements
of H?which are an orthonormal family known as Malmquist’s basis (associated with

o,, ={A.A.....,A}, see Remark (4.2.4) above or [43]) , we have |f ||2H2 =n.
%/_/

n

2) Since the spaces H? and B2, are rotation invariant, we have
| (6,,,H%B:,)=1(c,,, H?B:,) for every 2, u with |2|=|g=r. Let A=-r. To get a
lower estimate for [f | ..: consider g such that f —gebjHol(D) , i.e. such that
f cb, —gob, ez "Hol(D).
3) First, we notice that
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”g Obﬂ i

1
2
BS»

=|\(g Obﬂ)'”ig +[g ObA“iﬂ =||bz'(g'°bz)”i§ +[g Ob/1||2H2 =

= [, @) g, ) du +[g ob,[},> = [ |g'@)[ dw +]g b, [,

using the changing of variable w =b, (u). We get
lgob.[, =lo’llz +lg b,z =g

1
2
B%,

21 *loebifhe ol
and
~[g <b, ;2

~llo <b.[ly2 >[lg b,

1
2
BS

=loll> +lg <b.

1
2
BZ,

lolf

Now, we notice that

= (- |ﬂ,|)2 I _—nfl kK 70 |_
kZ} b, ) =(1-]2]) £1+(1 z)éz Az j_

=(1- rz)_% (1+(1+ r)niz “+rz “j.

k=1

4) Next,

2 n-1
Jlo bl -l ez = kg ob, ] = > k
Bzz,z k>1 k=1

since gob,(k)=f ob,(k), Vk €[0,n-1]. This gives

Jo b, ~laebie > (<1+r> S)-

(1+ r) n(n-1) 1+r n(n 1) 1+r (n 1)|| ”
1-r2 2 1-r 2 H2
for all n>2 since |f |[,. =n. Finally,

n 1+r
ol 2 —7(1——j||f e

T, (H%BZ,)> /—[“—r(l—lﬂz.
‘ 1-r| 2 n

Extension of Theorem (4.2.5) to spaces B;,, s >0. Using the techniques developped

in the proof of our Theorem (4.2.5) (combined with complex interpolation (between
Banach spaces) and a reasoning by induction), it is possible both to precise the sharp
numerical constant c,, in K. Dyakonov’s result (18) (mentioned above in paragraph d. of

the Introduction) and to show the asymptotic sharpness (at least for seNuUiN) of the
right-hand side inequality of (18). In the same spirit, we would obtain that there exists a

limit:
s-1 2 S
Cn (BZSZ’ ):(1+rj ] (34)
n—>0 n 1-r
Our Theorem (4.2.5) corresponds to the case s = 1.
Extension of Theorem (4.2.6) to spaces B,,, s >0. The proof of the upper bound in

our Theorem B can be extended so as to give an upper (asymptotic) estimate of the
interpolation constant Z . (H?B;,), s>0. More precisely, applying K . Dyakonov’s

result (18) (mentioned above in paragraph d. of the Introduction) we get

A

2 n-1
gob, (k)| =Y k|f
k=1

In particular,
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T, (H2,B,)<C, (%) ,with ¢, =<c,,, (35)

where c,, is defined in (18) and precised in (34). Looking at the above comment 1,
¢, =< (@+r)® for sufficiently large values of n. Our Theorem (4.2.6) corresponds again to
the case s=1. In this Theorem B, we show the sharpness of the right-hand side
inequality in (35) for s =1. However, for the general case s >0, the asymptotic sharpness
of (%) as r—1 and n—oo is less obvious. Indeed, the key of the proof (for the
sharpness) is based on the property that the Dirichlet norm (the one of B;?) is “nearly”
invariant composing by an elementary Blaschke factor b, , as this is the case for the H
norm. A conjecture given by N. K. Nikolski is the following:

Inr(Hz,Bsz)x{f% ezd (36)

' ' () ifs<3

and is due to the position of the spaces B,,, s >0 with respect to the algebra H ~.

Section (4.3): Rational Functions in Weighted Bergman Spaces

Estimates of the norms of derivatives for polynomials and rational functions (in
different functional spaces) is a classical topic of complex analysis (see surveys by A.A.
Gonchar [7], V.N. Rusak [8], and P. Borwein and T. Erd elyi [140]). Such inequalities
have applications in many domains of analysis; to mention just some of them: 1) matrix
analysis and in operator theory (see “Kreiss Matrix Theorem” [145, 149] or [152, 67] for
resolvent estimates of power bounded matrices), 2) inverse theorems of rational
approximation (see [151, 14, 1]), 3) effective Nevanlinna—Pick interpolation problems
(see [65, 53]).

Here, we present Bernstein-type inequalities for rational functions f of degree n with
poles in {z :|z|>1}, involving Hardy norms and weighted Bergman norms. Let 7, be the

complex space of polynomials of degree less or equal to n>1. Let D={z eC:[z|<1} be
the unit disc of the complex plane and D={z C:|z|<1} its closure. Given r [0,1), we
define

. . 1
7?’n,r ={q2: p,qEIPn,d p<dq!q(§)¢0|§|<F}’

(where d°p denotes the degree of p P ), the set of all rational functions in D of degree
less or equal than n>1, having at most n poles all outside of L1D. Notice that for r =0,
we get R, =R,

We denote by Hol(D) the space of all holomorphic functions on D. From now on, if
f e Hol(D) then for every pe(0,1) we define

1
f, i1 (pd), 56;111)-
We consider the two following scales of Banach spaces X < Hol(ID).
a. The Hardy spaces H? =H ?(D), 1< p <oo:
HP = {f e Hol(D): [ | » :(;sule'T‘fp(f)‘pdm(f) <oo},
<p<

where m stands for the normalized Lebesgue measure on T={z eC:|z|=1}. As usual,we
denote by H ~ the space of all bounded analytic functions in D.
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b. The radial weighted Bergman spaces L), 1< p <o (where ”a” means analytic),
I£M>=heHmmwmM@w=ﬂmwpmﬁxarmuﬁdp<w}
where the weight w satisfies w >0 and jolw (p)dp <. For the classical power weights

w(p)=w,(p)=(1-p) , B>-1, we have L'w,)=L:((-z)’dA(z)) , A being the
normalized area measure on D.

For general properties of these spaces we refer to [156, 157].

From now on, for two positive functions a and b, we say that a is dominated by b,
denoted by a<b, if there is a constant ¢ >0 such that a<cb ; and we say that a and b are
comparable, denoted by a <b, if both a<b and b <a.

By Bernstein-type inequalities for rational functions one usually understands the
inequalities of the form

Fly <dy MIF . feRr,, (37)
where R, is the set of all proper rational functions of degree at most n with the poles
in {lz|>1}, X andY are some normed spaces of functions analytic in the unit disc, and ¢

Is some increasing (often polynomially growing) function. Thus, for a given pair of the
function spaces X and Y , the question is to determine the dependence on n for the norm
of the differentiation operator (R,,||,) to Y . Bernstein-type inequalities of E.P.

Dolzhenko [18] and A.A. Pekarskii [1] are of this form; e.g., it is shown in [18] that
1
[t <emlf ., IF e <cn?[f],, feR,,
where H/ is the Hardy—Sobolev space, and B, is the Besov (or Dirichlet) space. Let us

also mention that this problem is a part of a more general one given by (see [155]).
Looking at (37), we notice that for some choices of X andY, we have g, , (n) =+

for every n=12,.... Indeed, it may happen for instance when the poles of our function f
are allowed to be arbitrary close to the torus T: we can observe this phenomenon for
example in the special case X =Y =H®, 1<p<+w but also when X =y =L"Ww),

1< p <+oo. This observation leads us to come back on the problem in (37) and to state it
more generally: that is replacing R, by R,, (for any fixedr<[0,1)) and 4, (n) by
¢, (n,r) so that to focus on this phenomenon of “natural dependence on the parameter r

”. For most of the classical cases already studied by others (for instance E. P. Dolzhenko
[18], A. A. Pekarskii [1], V.V. Peller [14]) the spaces X and Y are such that
SUP,on Ay (N,r)<+0 © in this case we can set ¢, (n)=sup, oy&y (Nr) . As a
consequence, if sup, ., &, (n,r) =+, it may be of interest to search (as a continuation of
the investigations of the second author [64, 150]) for the “best possible” ¢ , (n,r) in an

asymptotically sense, that is to say as n -« and r —1 . This question has already been
answered for the case X =Y =HP", 1< p <+wo by K. M. Dyakonov [34] see (38) below. In

this section, we answer the same question for the case X =Y =L"Ww), 1<p <+o0. Let us

give a general formulation of our problem for the special case X =Y for which we set
C,.(X)=d., (n,r): given a Banach space X of holomorphic functions in D, we are

searching for the best possible constant C,, (X ) such that
If 1l <C OO feR,,.
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For the case where X =H?" is a Hardy space, an estimate which gives a correct order
of growth for C, (X ) was obtained by K.M. Dyakonov [34] (as a very special case of

more general results): for any p e[1,c0] there exist positive constants A, and B such that
n n

A —<C (H?)<B,— 38

TG, (H") B, - (38)

for all n>1and r €[0,1). More precisely, the upper estimate for p e (1,+o) is treated in
[34], the case p =1, in [34], and the case p =+~ (known much earlier) is given in [140].
The below estimate follows trivially when applying the differentiation operator to the test
function f (z)=(1-rz)™".

For the case p =1 an asymptotically sharp result was obtained later in [64]: for any
r €(0,1) there exists the limit

2
lim C.(H) _ 1+ .
N 1-r

Related results about Bernstein-type inequalities in a more general setting of the so-
called model or star invariant subspaces may be found in [142],[60], and [55, 154].

We obtain estimates for the derivatives of rational functions with respect to weighted
Bergman norms. It turns out that there is an essential difference between slowly
(polynomially) decreasing weights and fast (superpolynomially) decreasing weights. In
the first case we have a two-sided estimate analogous to (38), while in the second case
only the above estimate remains true. Let us give the precise definitions. Recall that w is
always an integrable nonnegative function on (0,1).

Definition (4.3.1)[153]: The weightw is said to be y-polynomially decreasing if there

exists y >0 such that

pA-p)"wW(p),
Is increasing on [r,,1) for some 0<r,<1. We say that w is polynomially decreasing if it is
y-polynomially decreasing for some » > 0.
Definition (4.3.2)[153]: The weight w is said to be super-polynomially decreasing if for
any y >0 there exists r(y) (0,1) such that the function

pA=p)7w(p),
decreases on the interval [r(»),1).

Typical example of the weights from the first class are given by w(r)=@1-r)”, g>-1

, Or w(r)=(-r)’(log@-r)|+1)", B>-1, yeR. The weights w(r) =exp(<(@-r)"), ¢ >0,
7 >0 are super-polynomially decreasing.

Our first result may be considered as an analogue of Dyakonov’s theorem for the
radial weighted Bergman spaces.
Theorem (4.3.3)[153]: Let 1<p <« and let w be an integrable nonnegative function on

[0,2) . Then there exists a positive constant K depending only on p (but not on the weight
w) such that

C, (Lo@)) <K —— (39)

1-r
for all r €[0,1) and n >1. Moreover, if we fix r €(0,1) and let n tend to infinity, then we
have
p
S"msupCn,r(La(W))S K
n—o n 1-r

<liminf Co

n—oo

, (40)

Kr. (LEw))
1-r n

(
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where K is, as K, a positive constant depending only on p.
Proof. First, we notice that for any 0<a <1,

If By = JJ, . AIf (0w (p)dm($)dp (41)
forall f eL?@w), where C,={z :a<|z|<1}. Let f eR,, with r €[0,2) and n>1. Using
(41) with a =1 we get
Iy =[] L RO W ()M = [ o (p)i(H(f )
LEw) PELCy 1 o’ L
Now using the factthat f e R, , <R, forevery pe(0,1), we get
1 1 1
[ oS {1E T oo < e, oy [Low (o),
= (Co (H WP [y
In particular, using the right-hand side inequality of (38), we get
C, (L) <K,

p
Hp)dp.

Hp)pdp

forall pe[1,0), and ge(-1,x), where K is a constant depending on p only.

Now, let us show (40). Let
1

f (z)= eR, .
(1_rz)n ’
and D ={z eD:[1-rz|<2[Ll—r[}. We claim that

”fn”:ig(w)NID|fn(Z)|pW(Z)dA(Z), n—oo,

and, analogously,
f/(2)wz)dA@z), n—w.

fls ) N-[D
Indeed, by a very rough estimate
p C,
[ f@) W (@A) < ot
where C, >0 depends only on w. On the other hand, if we put D ={z eD:[1-rz|<3[1-r},
then

[_[f.@)fw()dA@)=> (3/2)p“§1_r)p“ [w(z)dA().

Since r (thus D and D) are fixed we see that
1 o 1 J‘
2 (1-r)™ | (3/2)"(1-r)™ o

W(z)dA(z)j, n—oo.

Thus,
fn, Ep
”f ”;‘W) ~ [ @) 'w@)dA@) /[ [f.@)f w(z)dA).
nllLe )
Obviously,
[ [/ we )dA(z):jDLzmpw (z)dA(z)
L-rz|
nPrP 1 nfrP b
> 7Ty jD |1_rz|pn4v(z )dA(z)zzp(l_r)p jD|fn(z ) 'w (z)dA(z).
Thus,
( ]
L 104 J



Iiminf”f"'”Lg(W’z r.
e ||fn||L§(w) 2(1-r)

Lemma (4.3.4)[153]: Let r €[0,1) and t >1. We set
| (t,r) :Lr|1—|r§|‘t dm (&) and ¢, (t) :LJ“ rel dm(g).
Then,
I (t, (-2
(t,r)= at )t_lco( )

for every t>2, and t > ¢ (t) IS an increasing function on [0,+x) for every r €[0,1) .

Moreover, both
r—e (t-2)and r=1(,r),

are increasing on [0,1), forall t >0.
Proof. Indeed, supposing that t >2, We can write
I(t,r)= | |

(where b, (z)=+=2). Using the fact that b, -b,(z)=z and changing the variable in the
above integral we get

6= II (é)l|1 5 1b (@rzdm(g)

tzd (&)

1 1
- - - - -2),
-— = b()| M) = a2

since 1-rb, (z)=2212) - i;j . Now,

27 t 2
(Dr(t):Io exp(gln(lJrr —2rcoss)jds,

Q)= %jOZHIn(1+ r’+2r coss)exp(%ln(lJr r’+2r coss)jds :

and
prt)== J‘ [In(L+r?—2rcoss)J exp( In(1+r? —2rcoss)jds >0,

for every t >0, r €[0,1). Thus, ¢, is a convex function on [0,:0) and ¢ IS increasing on
[0,00) for all r €[0,1). Moreover,

. (0) :%IOZ”In(1+ r?—2rcoss)ds =0.
Thus,
o t)=9;(0)=0, vte[0,x), rel01),
and so ¢, is increasing on [0,). The fact that
rl(,r),
Is increasing on [0,1) for all t >0 is obvious since
2
=Y amr™,

H?2 k >0

1
-l

where a, (t) is the kth Taylor coefficient of (1-z)™"?. The same reasoning gives that
r — o, (t) 1s increasing on [0,1).
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Lemma (4.3.5)[153]: If for some r, <[0,1) and y >0 the function % IS increasing on
[r,,1), then

J, (o1 1) = [ (o)1 .1 p)dp,
for all t such that t >y +3 and for all r >r,, with constants independent on t.
Proof. Clearly,
J, (N 1)z [ oW () G rp)dp, T el ).
Moreover,
J, (e C.rp)dp = [ (o)1 . p)dp + [ (o)) . p)p

and applying Lemma (4.3.4),
' r N (p)  (1-p°)
I (t,rp)dp =
I/JW(/?) t,rp)dp=| L) Ao (I’p)z)t
L W) r_pl-=pY) p=p%)
(1 r)VJ.ro(]_ (rp ))‘1 ”’() )7 rZ()I o (L—(r ))—1
because u — ¢, (t) is increasing for all t >0. For the same reason,

¢, (1)dp

' 1 1 w(p) pl-p%)

- - do = t)d

J Oy e O% = Ly ey e O

w(r) pl=p?y
Ay Ol @y

Now note that
pL-p*) - p2)

Iro(1 oy )y I(1 oyt reltd,

with constants independent on t > +3. Indeed, this estimate holds for t =»+3, and,
hence, by monotonicity of the function p— (1-(pr)*)™, forall t >y +3.

Thus, using Lemma (4.3.4) and the fact that the function (1-p)”w (p) is increasing
on [r,,1), we obtain

wir)_, oy L2

I (t dpo < -
Ipvv(p)( rp)dp < ( 2y 0 =G
<k, p-p*) 1 )do
(1 )7 o I(1 (rp))™ A= I’OW(‘))(1—(rp)2)t—1(”fp() o
(where k,, k, are positive constants which do not depend on t), which completes the

roof.
'?’he next theorem shows that for the polynomially decreasing weights the quantity
C,. (L)) admits a below estimate of the same form.
Theorem (4.3.6)[153]: Ifw is y-polynomially decreasing, then there exists a positive
constant K' depending only onw and p such that

, N n

K Egcn,r(Lap(W))gKE’ (42)

where K is defined in (39) and where the left-hand side inequality of (42) holds for all
re[0,1) and n>=z2+1 . In particular, (42) holds for the classical weights

W (p) =W (p)=1-p)'p, f>-1.
The polynomial decrease is essential and provides a sharp bound for the validity of the

( ]
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uniform estimate (42) for all possible values of n and r. Namely, if the weight is super-
polynomially decreasing, then (42) will fail along some sequence of radii.

Proof. We need to show only the lower bound, the upper bound is already showed in
Theorem (4.3.3). Let us show the minoration with the test function f (z) = e

Using (41) with a =r,, we need to show that

If gy

1
k=] o (o)1 (pn +p,rp)dp

C p
2 r)p J, A (o)1 (pn. 1o)== -

Since re[r,1) and n>22, by Lemma (4.3.5) applied with t =pn+p and t =pn this
means that

["aw (o)1 (pn+p.r ) 2 jm(pn (o, p)dp

(1
By Lemma (4.3.4), this is equivalent to the estlmate
1 @, (PN +p—2) @, (PN —2)
o o) G oy 2 o A O e

The last statement is obvious since
1 @ (PN +p—2) 1 Pp(PN+p—2)
I O ey > i LA Oy
1 1 gorp(pn _2)
O e
where the last inequality is due to the fact that u — ¢, (t) is increasing for all 0<u <1.
Lemma (4.3.7)[153]: Let n>1, r,s €[0,1) and p e[1,+x]. We set

M p.s (n,r) =Sup{|f (§)|§E]D)’f e,R’n,r’ ”f ”Lg(s]D) S1}

Then

(1_ )n+b !
where d >0, b >0, ¢ >1 are some absolute positive constants (may be, depending on p).
Remark (4.3.8)[153]: Lemma (4.3.7) is valid not only for s =2, but for every s (0,1),
with constants d >0, b >0, ¢ >1 depending both on s and p.

Proof. Forevery f eR,, and £eD, we have

f (%g}‘— ( j‘ Uf (k@) da@)),

where k,(z)=% is the standard Cauchy kernel associated with 2eD, and A is the

1-1

normalized area measure on D. Applying Holder’s inequality we obtain

F(EJ<bl N, =) e i)

where p’ is such that £+ =1. Now, note that

2
1, <N, () e

Finally, supposing |f ||, .., <1, we obtain

LP Z]D)

,2(n,r)<d (43)

<

<|If.

3

L geT,

L

L

<
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<|If

3 Yp
”f ”Lg(gm) H* (D) Slf{ij <24,

which gives
Mpvg(n,r)324M2‘i(n,r). (44)

It remains to obtain a suitable upper bound for M, (n,r) . Let us show that

Mz’l(n,r)szx/ﬁ(%j N (45)
For every f eR,,, we have f,eR , <R, . If {i/4,....1/2} is the set of the poles of f
(thus, |4|<r, j=1...,n), then f eK, with o={4,...4}crD, whereas the set
{2/%....2/2} is the set of the poles of the function f, and f,eK, with
o' ={44,..., 2.} 5D. Hence, there exist «,,...,a, € C such that

f,=Yae,, (46)

2 oka
on D, where (,);_, is the Malmquist basis associated with the set o'. Since both f,and
Ziﬂakek are meromorphic in C the equality (46) is in fact valid everywhere in C. Thus,

o (xah_oe\(1-3AL)
f = 2 - - ’ ID)!
o-Sa| IR TR «
and by the Cauchy-Schwarz inequality,

1
2\2

A Il R 134 F)
f ((f)lﬁ(klelaklj Z[Hl—i_g]( 1—I§) ‘ : (47)

k=t[\ j=1

forany £eD. Now, if 2erD and £eD,
%—35_2(1—5)1—2_62%2((5)(“ 32 j

1-28  1-2& 1-)¢ )
which gives
§_2532(1+3—r 1 ): 4 < 2 .
1- A& 41-r) 20-r) 1-r
We get
112
i 1 2)\2 h 2(k-1) 2n+1
n ﬁé‘—_ﬂf (1 ﬂﬁ|) < 1 2222(k1)[ij Sl(ij . (48)
SlGi1-2¢ ) 1-2¢ ‘ = 1-r a\1-r
Now we first notice that
" v2
(Seat] -l
k=1
For any function ¢(z)=>" _¢(k)z" in H?, one has
o (k)

2, =Y Lk +1ok)| <|g],.
. = 3 S R ot < ol o

We now use the upper bound of [150, Theorem A, (4)]: for p e R, , one has

2
By !
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2
BY5

2 2
L H

n
S(Z‘f‘l’)ﬁ”@ |2—|2 +||¢

n
o2 < 2«/5 ol -

In particular, with ¢ =f, we get p R, and

2 <4_n 2
Hz_l_r”(D

HZ!

which gives

n
f. <2
zlly2 1- r/2

We conclude from (47), (48) and (49) that for any £eb,
[1 22n+1 Jz < 1 (_j
4(1-r)" 2\1-r

2 n+%
CENC Py I PR )
Taking the supremum over £eD and f eR,, we obtain (45).

Combining (44) and (45) and choosing d =48, b =1 and ¢ >0 such that 2"v/n <c"for

any n >1, we complete the proof and obtain (43).
Theorem (4.3.9)[153]: Suppose that w is super-polynomially decreasing. Then there
exists a sequence r, —1— such that for any p,

C, n(LsW)) ( 1 j
o <0 , N —o0,
n 1-r,

For the proof of Theorem (4.3.9) we will need a definition from the theory of model

subspaces of the Hardy space. For a finite subset + of D with card o=n, consider the
finite Blaschke product
Bo‘ = Hb/l ]

Aeoc

where b,(z) =22, 2eD. Define the model space K, by
Ky =(B,H?)" _HzeBUHZ.
Consider the family (e )ieen N Ky (known as Malmquist basis, see [43]),

e,(z) = 'WZ and e, (z) = (Hb ¢ )]‘1 'ﬂ;k')]ﬁ, K el2.n],

2n ||f

(49)

If (&)< 2n |If

that is,

The family e, )., ., assomated with ¢ is an orthonormal basis of the n-dimensional space
K. -

In what follows we denote by L?(w,sD) and by H °(sD), s >0, the weighted Bergman
space and the Hardy space in the disc sD={z :|z|<s}, respectively. If w =1, we write
simply L?(sD) and we write L? if s =1,

of a function

L"( w)

feR,, asl +l1,,

[P 1 /I[P
W), W(p)dp, L2 =[] w (p)dp.
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Here and everywhere below in this proof, C ., i=1,...,5, are positive constants,
depending, may be, only on p and w (but not on n and r). By (38), we have for the first
integral

|,=C, (1 Rj j G )HW(p)dp<C (1 j If I

Note that f eR, , =R, ,, and, thus, |f | <Mm p’%(n,r)HfP . Applying (38) once again

Lhw)

LE(2D)

together with an obvious inequality |f, H <|f,|. , we get

<12 T w oo

<C,|f IILp(zD)( j I M P(n, rW (p)dp

n " ¢”
<C ”f ”Lp(z]]))( _ rj (1_ r.)pn+pb W (R) H
where the last inequality follows from Lemma (4.3.7). Note that
£ 15 s < O /3D [y,
Hence,

n )" c¢c” b
5071 g RO L
Now, choose a positive increasing sequence (y,),., such that n=o(y,), as n —+w. For

any n we fix r; such that the function w (r)(1—r)7 decreases on [r’,1). Now for a fixed
n take r, R sothat r' <R <r <1 and
1-R =(1-r)"?, 1-r=1-r)*
We have
A-R)" N1 pYolt
w(R)<w(r, )(1_ oy =w (r,))L-r)"".
Hence, using the fact that w is bounded on [r;,1), we obtain

_ 7n/4
1,<C, (1 j o A=

Lp(w) (1_r)pn+pb '
Let us show that for sufficiently large n,
1—r)n/*
S 0 SN I
(1_r)pn+pb
Indeed, choosing r so that c <(1-r)™, we get
}’/4 n
m U™ gy g, 1o
(1_ )pn+pb
since n=o(y,), n —oo. Hence, there exists a sequence (r,), r, —1—, such that
ol
=0 , n—>o0.
f e, \1-N

The corresponding estimate for 1, is obvious since 1-R_ =(1—-r,)"*.

Corollary (4.3.10)[221]: Let ¢>0 and letw be an integrable nonnegative function on
[0,1) . Then there exists a positive constant K depending only on 1+¢ (but not on the

weight w) such that
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s (L @) < 75K (50)

for all e>0. Moreover, if we fix ¢>0 and let 1+¢ tend to infinity, then we have
K~(1—6)<Ilmlnf ea (L W ))<|imsupclﬂ,1ﬂ(|-?‘(W))<£ (51)

€ e 1+e e 1+e €
where K is, as K, a positive constant depending only on 1+e.
The next theorem (see [1]) shows that for the polynomially decreasing weights of
quadratic factor the quantity C,, , .(L;“@w)) admits a below estimate of the same form.

Proof. First, we notice that for any o<r, <1,

v =L A= (@-)&) W (L-e)dm(£)d(L-e) (52)
for all f eL;*f(w), where C,O ={z :r,<|z|<L}. Let f eR, . with e>0. Using (52) with
r,=1 we get

—e)§)|1*‘w(1—e)dm(§>d<1—e)

”f ’”L;’(W) X.[J.(l )¢eCy
_jw(l e)( (I Ja@-e).
Now using the factthat f,_ . e®R,_ . c7?1+€1_€ for every ¢>0, we get
j W-e) (||(flf)||1;1 Jd@-e)<(2¢,., (H™ »”j @-ew A= ([f, ]y ) d@-9)

= (Coea (HE D [,
In particular, using the right-hand side inequality of (38), we get
Gy (L)) < 225K

for all >0, where K, is a constant depending on 1+e only.
Now, let us show (51). Let

1—¢

1+c

1

f.(z)= ,
1+(.( ) (l—(l—e)Z )1+¢, el]z’lﬂ,,l—(,
and D ={z eD:[1-(1-€)z|<2|e}}. We claim that
[fltic, ~ [ @ W@)dAG), oo,
and, analogously,
b, ~ [ @ w@)dAE), e

Indeed, by a very rough estimate

L+c Cl
J.D\D [fr ()] "w(z)dA(z) < W’

where C, >0 depends only on w. On the other hand, if we put D ={z eD:[1-(1—€)z|< |}
, then

1+¢ 1
j i @) w(z)dA(z) 2 A9 j W (z)dA(z).
Since 1-¢ (thus D and D) are fixed we see that
1 1
2T (T [(3/2)“”2 ()™ Jow@ne )j | o

Thus,
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If s o . .
S @) W @2)dAR) /[ [fL. @) W @2)dAR).

” Ite ”L;“ w)

Obviously,
1 1_ 2\1+¢
J'D|f1'+€(z )| w (z )olA(z):jD |1_(1(_ ; )|(2+()(1+()W(z )dA(z)
(1_62)l+
2 S )b TR AL
1_ 2\ 1+e L
2 (21+< (66))l+( -[D |f l+e (Z )| w (Z )dA (Z ) .
Thus,
f/ _
liminf b 1€
o ” L ||L1 “(w) 2¢

Corollary (4.3.11)[221]. Let ¢>0 and t >1. We set
| (t,1—¢) :Lr|1—(1—e)§|“ dm(&) and ¢, (t) :jT|1+(1—e)§|‘ dm(¢&).
Then,

I (t,1-€)= (-2
(t.1-¢) (@ ))_1(P (t-2)

for every t>2, and t—¢_(t) IS an increasing function on [0,+w) for every ¢>0.
Moreover, both
(l-e)> e (t-2)and (1-e)—~>1(t,1-¢),
are increasing on [0,1), forall t >0.
Proof. Indeed, supposing that t >2, we can write

1
It,1_€ B —’(Zd y
t1-9= 570 el

(where b,_.(z) =7 ). Using the fact that b_ -b,(z) =z and changing the variable in the
above integral we get
I (t,1-¢)=

_1
(2—¢€)e’T

1
b/ d
O o™

1 1
- b dm(&) =
(2—¢€)edT ‘(§)||1—(1—e)b1_((éj)|t2 m(e)= ((2- ))‘

since 1-(1—e)b,_ (z) =z dlez) _ . CIc Nowy,

1-(1-€)z 1-(1-€)z

o ([t)= IOZ”exp [t— INA+(1—€)*-2(1—¢) coss)jds ,

g A t-2),

o (t)== IO In(L+(1L—€)*+2(1— e)coss)exp( In(L+(1—€)*+2(1- e)coss)]ds,
and
ol (t)= %J‘Oz”[In(H (1-€)*-2(1—¢) coss)]zexp(%ln(1+(1—e)2 —2(1—e)coss)jds >0,

for every t >0, ¢>0. Thus, ¢_, is a convex function on [0,.) and ¢/ is increasing on
[0,0) for all ¢>0. Moreover,

o (0)= %J'OZ” IN(1+ (1—€)* —2(1—¢€)coss)ds =0.
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Thus,

P ()= (0)=0, Vte[0,0), e>0
and so ¢, isincreasing on [0,x). The fact that

l-e—>1(t,1-¢),

Is increasing on [0,1) for all t >0 is obvious since
1
1-(1-€)z)"
where a, (t) is the kth Taylor coefficient of (1-z)™*?. The same reasoning gives that
(1-€)> ¢, (t) Isincreasing on [0,1) .

Corollary (4.3.12)[221]. If for some r,[0,1) and »?>1 the function W(;y)zl is
(20~

| (t,1-¢) = =>alt)1-o*,

H2 k>0

increasing on [r,,1), then

Ll_((l—e)N (L-e)l (t,(1—€)*)d(L—¢) le A—ew (L—e)l (t,1-€)>)d(L—¢),
for all t such that t > »*+2 and for all e<1-r,, with constants independent on t.
Proof. Clearly,

jl - (191 ¢, A-))d1-) 2 [ A-ew(@- (t.A-e)dA-c), (-6 elr,D).
Moreover,
jl @L-ew Q- ¢,@-)dA-) = [ (@-ew@-e)l (t,L-e)dde)

+jl L-ew L=l (t,(1-e)?)d(1—¢),
and applying Lemma (4.3.4),

L-ew(1-6) (2o
1—ew (1-e)l (t,(1-€)*)d(l-e ,({t)d(1—e
[, a-agna-91¢.a-97da-o=[" 200" (-G ))tla)o( )
< W(l—E) Il— (L-o)(2-ey
(2=e)e)* e (1-(1-e)")"
L w(- e) ()I A-)((2- )"
(- 1w 1-(1-eH™
because u — ¢, (t) is increasing for all t >0. For the same reason,
1 1
[ a-ew- Vg gy e 00 =
[ wa-9 L-9(2-9e"*
S (2-eeyt A-@1-9)
w(1- 6) _2()j 1-e((2- e)et)jl_
(=) i 1-(1-¢)")

0, »1dA-9)

d(l-e),

0, - 0)da-6)

dil—e).

Now note that

(1= e)((2-9)e)” l L-9(2-e _
[ o GO Wi et RO TR SO B )
with constants independent on t > »* +2. Indeed, this estimate holds for t =»*+2, and,
hence, by monotonicity of the function (1-¢)—> @1-1-¢)*)*, forall t >y*+2.
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Thus, using Lemma (4.3.4) and the fact that the function (e)*”'w (1—¢) is increasing
on [r,,1), we obtain

T leow -1 t,1-e))dl-<—MA=D o o HQ-9@=99
[ Q- -1 .- e )], oy 49

e W@-9 e =999

< 1 ((2 . 6)6)},2_1 ¢(l*( )2 ( )J.l—r (1_ (1_ E)4)t—1 ( )
! 1

< ng.l_( (L-ew(l—e¢) m(pﬂﬂ 2 (t)d(l-e),

(where k., k, are positive constants which do not depend on t), which completes the

proof.
Corollary (4.3.13)[221]. If w is (*-1) -polynomially decreasing, then there exists a

positive constant K’ depending only onw and 1+¢ such that
ke, (W) <K (53)
€ €

where K is defined in (50) and where the left-hand side inequality of (53) holds for all
e>0 and el+e)>y*+2 . In particular, (53) holds for the classical weights
W(l—e)=w_,(1—€)=(e)'(L—¢).

The polynomial decrease is essential and provides a sharp bound for the validity of the
uniform estimate (53) for all possible values of 1+¢ and 1-<. Namely, if the weight is
super-polynomially decreasing, then (53) will fail along some sequence of radii.

Proof. We need to show only the lower bound, the upper bound is already showed in

Theorem (4.3.3). Let us show the minoration with the test function f (z)= (17(171)2)1%'

Using (52) with r,, we need to show that

(1+¢)

f' (1+e) 1
lh_;yﬂﬁ:jma—{yva-en(a+ex2+q41-@6da_e)
> e[ - - 91 (@9 @9 = S -

Since (1-¢)e[r,,) and (L+e€)*>y*+2, by Lemma (4.3.5) applied with ¢>0 this means
that
Ll (L-ew (1-)l (1+€)(2+¢),(1-€)*)d(1-¢) Z(G)CTE L-ew @-e)l (L+e)? 1L-e)*)d(d-¢)

By Lemma (4.3.4), this is equivalent to the estimate

1 @, - ((3+¢€)e) C 1
Lﬂﬂ—eMﬂl—d(Lja_Efyhyﬂda—f)zayﬂjLﬁa—EMKl—d
The last statement is obvious since

s 20(@199
J.l—( (1 )\N (1 ) (1_ (1_ 6)4)(l+< )+

0y 5 (A4 -2)
(1- (=) ) ™

d(1—e)

dl-¢) >

1 ! @, .((3+¢€)e) .
> WL (1-ew (1-e) L (_0"E" d(l-e)

1 1 0. L(L+€)-2)
=T N e l-¢ 1-¢ (€0
> ((2 _ 6)6)1+< .L_(( )W ( ) (1_ (1_ 6)4)(2+<)(,

where the last inequality is due to the fact that u — ¢, (t) is increasing for all 0<u <1.

d(1—e¢),

( ]
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Corollary (4.3.14)[221]. Suppose that w is super-polynomially decreasing. Then there
exists a sequence (1—e¢),,, —1- such that for any 1+,

1+e
C(l—( ), e (L W) <o 1 o0
1+e€ 1-(-¢),. )’

Proof. Take ¢>0 and R (0,1-¢) and let us represent the norm |f |

1+e

of a function

feR,.a I, +1,,
1+e

L= [ 6w a-gda-a, 1= | ) w@a-ada+e).
Here and everywhere below in this proof, C, , i=1...,5, are positive constants,
depending, may be, only on 1+¢ and w (but not on 1+¢ and 1-¢). By (38), we have for the

first integral
= (1%] [ IOl w @-ada-e <c, (1“]

Note that f,_ eR,_ .cR..., and, thus, |f_

l+e

aw)
Lé*‘(%ﬂ)) ' Applylng
, We get

LSM (1+el-¢) ||f1_6

(38) once again together with an obvious inequality |f,

1,<C, (“j LI

1+e

1+
- zm)( Gj j M., o5+ 61— ew (1-e)d(lL—e)

( Tre)™ o’
SCalf g 225 S R,

€ e )2 +(1+c)b

1+e S ||‘I::I-_6 9]

"W (1-€)d(1—e¢)

<c.f

where the last inequality follows from Lemma (4.3.7). Note that
IF 5 0 < @ 273 I [,
Hence,

L (1+e)2
|2£C4(1+6j c W(R)“f ”g“(w)'

€ (6)(1+( )2 +(L+o)b
Now, choose a positive increasing sequence ((»*—1),,.) oo SUCH that 1+e=0((»*-1),,.),

as ¢ — +o0. For any L+e we fix (1—¢)... such that the function w (1—e)(e)“” "+ decreases on
[(1—e¢);...1). Now for a fixed 1+¢ take 1-¢, R so that (1-¢);,. <R <1-e<1 and

1- (1_ €)Z+e = (6)4

=

1
2

1-R =(¢)?,
We have
(1_ R )(72*1)1_“

a-@-9,.)"
Hence, using the fact that w is bounded on [(1-¢);,1), we obtain

w(R) <w ((L-9);,.) —w (- e);, )0 P,

l)l+(/4
I <C (1+€j ||f 1+c (W) (1+ )2 (E)l ~ — .
€ ( )(+) +(1+c)
Let us show that for sufficiently large 1+,
%1y, /4
g () : 0, 1-e—o1-.

( 6)(1+< Y +(L+o)b
Indeed, choosing 1-¢ so that ¢ < (¢)™, we get

( ]
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(72—1)1 /4 (7*-1)
2 (e +e e p(146)2—(Lre)b
C(1+‘)()—< €) ¢ (L) =L+

> < —0, l-e—>1-.
(E)(l+() +(1+¢)b

since 1+e=0((y*-1),..), e >. Hence, there exists a sequence (1-¢)..), 1—¢),,. —>1—,
such that

| Yo [ 1 j
=0 ) € —> 00,
(1+¢) ||f ”L;“ ) 1-(1-¢),,

The corresponding estimate for 1, is obvious since 1-R,,, =(1—(1—¢),,.)"*.
Corollary (4.3.15)[221]. Lemma (4.3.7) is valid not only for s =2, but for every s €(0,1),

with constants d >0, b >0, ¢ >1 depending both on s and 1+e.
Proof. Forevery f eR,,.,. and £eD, we have

1 3 \2
f (Eéj‘= fgtzinfmfg(u)(k%(u)) dA (u)
where k,(z)=-L- is the standard Cauchy kernel associated with 21D, and A is the

1-Az

normalized area measure on D. Applying Holder’s inequality we obtain

1 2 3 Y(L+e) 2
‘f (Egj = f% LLre ‘(kif) Ly _(Ej ”f Ly (2D) (k%f) Lgu,)" §ET’
where ¢>0. Now, note that
2
2 2 1
K, <k, = =16.
], <fieT],.~(5)
Finally, supposing |f ey <1, We obtain
3 Y(L+e)
F b <IF b <18(3) <20
which gives
M1+€Y%(1+6,1—6)S24M 2'%(14-6,1—6). (54)
It remains to obtain a suitable upper bound for M, (1+¢,1-¢). Let us show that
M21(1+e,1—6)s2\/1+e(gj . (55)
p c

For every f eR,,., ., we have fLeRy iy S Ricae If {/4,...,1/ 2.} is the set of the poles
of t (thus, |4|<1-e, j=1...1+¢), then f eK, —with 1+e={4,...,4 }c(l-D ,
whereas the set {2/4,,...,2/4,..} is the set of the poles of the function fy and fieKy
with (1+¢) ={}4,....1 4, .} = %D. Hence, there exist r, ,...,r, <C such that

1+e

i = Zrokek ! (56)
k=1
on D, where (e, )=, is the Malmquist basis associated with the set (1+¢)'. Since both f,

and Zi:rokek are meromorphic in C the equality (56) is in fact valid everywhere in C.
Thus,

1+ k-1 /17;_26 (:L_ﬂ)L1< |2)J/2
f(§)=Zrok(H2 J , ¢eD,

GO Ual-4¢) 1-a¢
and by the Cauchy—Schwarz inequality,
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N 2 vl k—1ij_2§ (1_}1|2k|2)1/22 Y2
f (é)ls[g\rok\] Z( 12—/75] -4¢ || °

forany £eD. Now, if Ae(1-¢)D and £eD,
é—zg:2(1—5)1—%:2@(5)(“ 34 ]

1-2&  1-4& 1-4¢ 41-28) )’
which gives
i22 gz(u—?’(l‘e)lj:ﬁs%.
1-4¢ 4 ¢) 2 €
We get
2 1 PV ’ L 2(k-1) 342
M s o
k=1 1:11_ j§ 1_/115 G k=1 € 4\ e

Now we first notice that

L+ 2 y2
el 0
k=1

For any function ¢(z)=>" _o(k)z* in H?, one has

o(k)
” ”H2 Z ‘ ‘ "k +1‘¢(k )‘S”(””Lg ”(P B2 !
We now use the upper bound of [21]. for peR,. .. onehas
||¢’||;;; =P ig H?
1+e 4(1+ €)
<@-9= Il +lol < ==l

which gives

l+e¢

ol <2y=—lel. -

In particular, with p=f, we get peR, ., and

l+e
<2 |
H2 1-(1- 6)/2
We conclude from (57), (58) and (59) that for any 5 e,

1

3+2¢ \2 3
2
f, 12 ToT _1(2) 22(1+¢)|[f
2liz | 4 () 2\ e

! (§)|<a/zz(1+e( j .

Taking the supremum over éeD and f eR,,, . we obtain (55).

Combining (54) and (55) and choosing d =48, b =1 and ¢ >0 such that 2"“\1+¢ <c*<for
any >0, we complete the proof and obtain (43) (see [1]).

f,

2

(59)

A

If (&)<

1 1
21 2

that is,

ceD.
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Chapter 5
Integration and Loci of Integrability with Lebesgue Classes

The formalism is generalized to arbitrary first-order logic models and is illustrated by
several examples on the p -adics, on the Presburger structure and on o-minimal
expansions of groups. Furthermore, within this formalism, we define the Radon
transform and show the corresponding inversion formula. We generalize the main result
of the authors in Cluckers and Miller about the stability under integration of the class of
constructible functions, by relaxing the conditions on integrability. Further, we give an
interpolation result for constructible functions by constructible functions with maximal
locus of integrability. For any q >0 and constructible functions f and x on E xR", we

show a theorem describing the structure of the set
{(x,p) € E x(0,0]: f (x,) e L"(|)},
where |4 is the positive measure on R" whose Radon—Nikodym derivative with respect

to the Lebesgue measure is |u(x,’)[ 1y —|u(x,y)[' . We also show a closely related

preparation theorem for f and .. These results relate analysis (the study of L -spaces)
with geometry (the study of zero loci).

Section (5.1): Positive Constructible Functions against Euler Characteristic and
Dimension

By a subanalytic set we will always mean a globally subanalytic subset X <R",
meaning that X is subanalytic in the classical sense inside P"(R) under the embedding
R"=A"(R)cP"(R). By a subanalytic function we mean a function whose graph is a
(globally) subanalytic set.

By Sub we denote the category of subanalytic subsets X <R" for all n>0, with
subanalytic maps as morphisms. We work with the Euler characteristic y:Sub— Z and
the dimension dim:Sub — N of subanalytic sets as defined for o-minimal structures in
[82].

Note that if X eSub, then, by the o-minimal triangulation theorem in [82], the o-
minimal Euler characteristic »(X ) coincides with the Euler characteristic y,,, (X) of X
with respect to the Borel-Moore homology. If X eSub is locally compact, the o-minimal
Euler characteristic »(X) coincides with the Euler characteristic y (X) of X with
respect to sheaf cohomology of X with compact supports and constant coefficient sheaf.

By [82], the Euler characteristic y:Sub— Z satisfies the following:

x(0)=0,

7(X)=x( ) if X andy are isomorphic in Sub
and

2(XUY )= 2(X)+ x(V)
whenever X Y eSub are disjoint. The last equality for y,,, and y. follows from the long
exact (co)homology sequence. If we take X to be the unit circle in the plane R* andY a
point in X , we see that this equality does not hold for the Euler characteristic associated
with the topological singular (co)homology.

Thus we can think of y:Sub— Z as a measure with values in the Grothendieck ring
K,(Sub) of the category Sub and, for any X eSub and any function f : X —Zz with finite

range and the property that f ~(a) eSub for all aez (constructible functions), one has an
obvious definition for

118

——
| —



Jt 7
such that x(x)={ 1., (cf. [171]).

This measure and integration against Euler characteristic is what is considered by
Viro [171], Shapira [169,170] and Brocker [159]. However, for the measure y:Sub—Z
it is not true that »(X )= x(r ) if and only if X andy are isomorphic in Sub. Following
the recent work of the first author and Francois Loeser [160—162] on motivic integration,
we construct the universal measure p for the category Sub with values in the
Grothendieck semi-ring SK,(Sub) of Sub such that (X )= u( ) ifand only if X andy are
isomorphic in Sub. Furthemore, we develop a direct image formalism for positive
constructible functions, i.e., functions f : X —SK,(Sub) with finite range and the property

that f *(a) eSub for all aeSK,(Sub). This formalism is generalized to arbitrary first-order

logic models and is illustrated by several examples on the p-adics, on the Presburger
structure and on o-minimal expansions of groups. Moreover, within this formalism, we
define the Radon transform and show the corresponding inversion formula.

We start by pointing out that, instead of Sub, we can work in this section with any o-
minimal expansion of a field R using the category Def whose objects are definable sets
and whose morphisms are definable maps.

By a semi-group we mean a commutative monoid with a unit element. Likewise, a
semi-ring is a set equipped with two semi-group structures: addition and multiplication
such that 0 is a unit element for the addition, 1 is the unit element for multiplication, and
the two operations are connected by x (y +z)=xy +xz and 0x =0. A morphism of semi-
rings is a mapping compatible with the unit elements and the operations.

Let A:=ZxN be the semi-ring where addition is given by
(a,b)+(a,b") =(a+a’,max(b,b")), the additive unit element is (0,0), multiplication is given
by (a,b)(@,b’)=(aa’,b +b") , and the multiplicative unit is (1,0) . Note that the ring
generated by A by inverting additively any element of A is z with the usual ring
structure.

For Z eSub, we define C,(z) as the semi-ring of functions Z — A with finite image

and whose fibers are subanalytic sets. We call C (z) the semi-ring of positive
constructible functions on z. In particular, C ({0}) = A.
If Z eSub, then we denote by Sub, the category of subanalytic maps X —z for

X eSub with morphisms subanalytic maps that make the obvious diagrams commute.
We define the Grothendieck semi-group SK,(Sub,) as the quotient of the free abelian

semi-group over symbols [y —z] withY —Z in Sub, by relations

[0—2Z]=0, (1)

N >Z2]=F'>2Z] (2)
ify —Z isisomorphictoY '—Z in Sub, and

[ UY)>Z]+[( (Y )>Z]=lY >Z]+]¥ '>Z] 3)

fory andy' subsets of some X —Z . There is a natural semi-ring structure on SK,(Sub, )

where the multiplication is induced by taking fiber products over z .
We write SK,(Sub) for SK,(Sub,,) and [X ] for [X —{0}]. Note that any element of

SK,(Sub, ) can be written as [X —z] for some X Sub, , because we can take disjoint
unions in Sub corresponding to finite sums in SK,(Sub, ).

( ]
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Proposition (5.1.1)[158]: For zZ Sub, there is a natural isomorphism of semi-rings

T :SK,(Sub,) > C.(Z)
induced by sending [X —-Z] in Sub, t0 Z >A:z = (x(X,),dim(X,)), where X is the
fiber above :z . By consequence, SK,(Sub)=A .

Proof. This follows immediately from the trivialisation property for definable maps in
any o-minimal expansion of a field. See [82].
By means of this result, we may identify SK (Sub,) and C,.(Z).
A general notion of positive measures on a Boolean algebra S of sets is a map
1:S—G with G a semi-group satisfying
(X UY )= p(X )+ pu(Y )
and
1) =0
whenever X Y eS are disjoint. Often, one has a notion of isomorphisms between sets in
S under which the measure should be invariant and which allows one to take disjoint
unions of given sets in § (by taking disjoint isomorphic copies of the sets).
We let u:Sub— A be the positive measure which sends X to (x(X),dim(X)). This

measure is a universal measure on Sub with the property that (X )= u(¥ ) whenever there
exists a subanalytic bijection between X andY and where universal means that any other
positive measure with this property factorises through .

Note that x measures, in some sense, the topological size since, by the cell
decomposition theorem from [82], x(A) = «(B) will hold for two subanalytic sets A, B if
and only if, for any fixed n>0, there exists a finite partition of A, resp. B, into
subanalytic C"-manifolds {A.}",, resp. {B,}",, and subanalytic maps A, — B, which are
iIsomorphisms of C"-manifolds.

Now we can define the integral of any positive function f eC () as

[ fu=3tuz)
where {Z,} is any finite partition of z into subanalytic sets such that f is constant on
each part z, with value f, .

To show that this is independent of the partition {Z }, we just note that there is a
unique [X —Z] in SK,(Z) which corresponds to f under T and that > f u(Z))
corresponds to [X ]=(x(X),dim(X)) in A =SK,(Sub). This independence follows also from

the cell decomposition theorem ([82]).
For f :X —Y , there is an immediate notion of pushforward f,:C.(X)—>C.( ),

f,:SK,(Sub, ) = SK,(Sub, ), which is given by
@) =], .y, Ty
for g eC.(X), resp. by
f.([Z >X]D=[Z >Y ],
for z - X in Sub, and where Z —Y is given by composition with X —Y . Note that

these pushforwards are compatible with 7.
If Y ={0}, then SK,(Sub, )=A and we write x([z — X ]) for f,([Z — X 1) which is the

integral of [z — X ].
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Thus the functoriality condition (f oh),=hof, can be interpreted as Fubini’s

Theorem, since
.[x gﬂ:jv (L -1(y)g|f'1(y)'u)'u

for geC. (X) and h:y —{0}.
For f :X —Y a morphism in Sub, there is an immediate notion of pullback
f*:C(Y)—>C(X),resp. f :SK,(Sub, )—SK,(Sub,), which is given by
f'(g)=g-f

for geC.(X), resp. by

f'([Z ->Y]D=[Z2& X >X],
for Zz —»Y in Sub, and where Z ® X —X is the projection and z ® X is the set-
theoretical fiber product. Note that these pullbacks are also compatible with T and satisfy
the functoriality property (f ch) =h"of *.
Proposition (5.1.2)[158]: Let f : X —Y be a morphism in Sub and let g be in ¢ (X) and
hin C( ). Then

f,(gf “(h)) =f,(g)h.
Proof. This is immediate at the level of SK, since both the multiplication in SK,and the

pullback are defined by the fiber product.
Let S =X xY , X ,Y be subanalytic sets and write 7, : X x¥ - X and z, : X x¥Y —Y

for the projections and q, =7, and q, == . For geC,(X), we define the Radon
transform R, (g)eC.(Y ) by
R (9) =0, °0x (9) =7, ° (75 (9)L)

where 1, is the characteristic function on s .
Example:

Consider the case X =R", Y =Gr(n) with S ={(p,ID:p<ll}. Let Z =R" be a
subanalytic subset and o, : Gr(n) > A : 1+ (x(I1NZ),dim(ITNZ)). Then o, =R, (L,).

Let S'<Y xX be another subanalytic set and put g, =z, and q, =z . The

following proposition is showed just as in [170].
Proposition (5.1.3)[158]: Let r:S® S’ —X xX be the projection and suppose that the

following hypotheses hold:
(*) there exists A eA such that [r*(x,x)]=2 forall x #x’, x,x"eX ;

(**) there exists 0= @A such that [r*(x,x)]=0+4 forall x eX .
If g isin C (Y ), then

Ry oRs(9) =09 +A] gu (4)

and this is independent of the choice of 4.
Proof. Let h and h’ be the projections from S ®, S’ to S and S’, respectively. Then, by

definition of fiber product, q, ch=q/ oh’, and so, by functoriality of pullback and
pushforward, we have hoh"=qcq,, . Thus R oRs(9)=0dy, () 0,0y (9)
=0x,oh/oh"=q; (9).

The last formula is also equal to p,,orer*op’i(g), where p,p,:X xX —X are the
projections onto the first and second coordinates respectively, since q, ch =p,or and
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gy ch’=p,or . The hypothesis shows that r(,)=61, +1,, , moreover this
expression is independent of the choice of ¢ . By the projection formula,
L(r'(pi(9)) =g, s r(P(9))) = (L, s )P () = (AL, +41,,)p;(9) holds, hence we obtain
Pa((6L,, + AL, )P;(9)) = 6P (L, P;(9))+AP,(P(9)) =09 + 4] gu, asrequired.

We now show that the inversion formula is independent of the choice of 6. If
0+1=0'+2 and 0=0, then necessarily 1,>6,, 1,>6, and 6 =6 with 1=(1,4,) ,
6=(6,6,) and ¢ =(6,,6,) . Hence, 6g +/’t_[x gu=09q +/1jx guforall x ex .

Example:

Consider the case X =R",Y =Gr(n) with S ={(p,ID:p lT} and S'={(I1,p): p IT}.
Then [r*(x,x)]=[P""] and [r*(x,x)]=[P"?] for all x,x'eR" with x =x’ . Since
[P"]=(*52,n), we have

Ry oRs(9) =((-D"".,n-1)g +(%,n—2jjxgu-

In particular, we have

Rs:oRs (1) = ((-D)™",n - 1)1, +[

for every subanalytic subset z of R".
Let M be a model of a theory in a language £ with at least two constant symbols c,,

¢, satisfying c, #c,. For Z a definable set, we define the category Def, (M), also written
Def, for short, whose objects are definable sets X with a definable map X —z and

whose morphisms are definable maps that make the obvious diagram commute. We write
Def (M) or Def for Defy,(M). In M, one can pursue the usual operations of set theory

like finite unions, intersections, Cartesian products, disjoint unions and fiber products.
We define the Grothendieck semi-group SK,(Def,) as the quotient of the free

abelian semi-group over symbols [y —z] withy —Z in Def, by relations

1+(-D"

,n—ZJ[Z]

[¢—Z2]1=0, (5)

Y ->Z1=lY '»>Z] (6)
ify -2z isisomorphictoY '—Z in Def, and

[ UY ) Z]+ Y )>Z]=lY ->Z]+[ '>Z] (7)

for v and Y ' subsets of some X —z . There is a natural semi-ring structure on
SK,(Def,) where the multiplication is induced by taking fiber products over z . Note that

any element of SK,(Def,) can be written as [X —Z] for some X —Z < Def, , because
we can take disjoint unions in M corresponding to finite sums in SK(Def, ).

The map Def —SK,(Def) sending X to its class [X ] is a universal positive measure
with the property that two sets have the same measure if there exists a definable bijection
between them. For f :X —Y , there is an immediate notion of pushforward
f,:SK,(Sub, ) —SK,(Sub, ) given by

f.([Z > X1 =[Z ->Y 1,
for z — X in Def, and where Z —Y is given by composition with X —Y .
If Y ={c,}, then we write u([z —X]) for f,([Zz - X1]), which we call the integral of
[Z — X ]; note that x([Z — X 1) isjust [Z2] in SK,(Def). Thus the functoriality condition

( ]
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(f oh),=hf, can be interpreted as Fubini’s Theorem.
There is also an immediate notion of pullback f *:SK,(Sub, ) —SK,(Sub, ) given by
f'([Z »>Y]D=[Z2& X >X],
for z >y in Def, and where Z ® X —X is the projection and Z ® X the set-
theoretical fiber product. The pullback is functorial, i.e., (f ch)" =h"of *.
Proposition (5.1.4)[158]: Let f : X —Y be a morphism in Def and let g be in SK(Def, )
and h in SK,(Def, ). Then
f,(gf “(h)) =f,(g)h.
Proof. Exactly the same proof as for the subanalytic sets above works.
One can also define the Radon transform in this context in exactly the same way as in
the subanalytic case. Furthermore, the same argument as in the subanalytic case gives the
corresponding inversion formula. However, since, in general, there is no trivialisation

theorem, the conditions (*) and (**) in Proposition (2.8.1) have to be replaced by global
conditions. Using the embedding SK,(Sub) —SK,(Sub,) sending W] to W xU —U] where

W =xU —U is the projection, the statement becomes:
Let r:S® S’'—X xX be the projection and suppose that the following hypotheses

hold:
(*) there exists z, in Def such that in SK,(Def, ) we have
[Bl _)Xl]:[zl];
(**) there exists z, in Def such that in SK(Def, ) we have
[B, =>4, 1=[2,]+IZ,]
where X,=X xX\4, , B,=S® S'\r*(4,) , B,=S& S'Nr*(4,) and B, —>X, and
B, —4, are the restrictions of the projection r:S®, S’ > X xX'. If Z - X is in Def, ,
then
Rs o Rs([Z > XD =[2.1[Z »>X]+[Z,][Z] (8)
and this is independent of the choice of z, .
Example (5.1.5)[158]: For K any finite field extension of the field ¢, of p-adic numbers,
one can calculate explicitly the semi-ring of semialgebraic sets SK,(K,Sem), resp. of
globally subanalytic sets SK,(K,Sub), using work of [70] for semialgebraic sets, resp.

using work of [83] for the subanalytic sets. In both cases it is a subset of NxN, and the
class of a semialgebraic set x , resp. a subanalytic set X , is (4X,0) if X is finite and
(0,dimX ) if X is infinite. This is because there exists a semialgebraic bijection between
two infinite semialgebraic sets if and only if they have the same dimension, and similarly
for subanalytic sets. However, no trivialisation theorem is known, hence the relative
semi-Grothendieck rings SK,(K,Sem,), resp. SK,(K,Sub,), for z semialgebraic, resp.
subanalytic, are expected to be much more complicated than maps Z — NxN with finite
image.
Example (5.1.6)[158]: Consider the Presburger structure on z by using the Presburger
language

Lon ={+—0,1,<3U{=, [neN,n > 1},
with = the equivalence relation modulo n. Again, one can calculate explicitly the semi-
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ring SK,(Z,£.), using work of [68]. It is a subset of NxN, and the class of a Presburger
set X Is (#X,0) if x is finite and (0,dimX ) if X is infinite, where the dimension of [68]
Is used. Again, this is because there exists a Presburger bijection between two infinite
Presburger sets if and only if they have the same dimension. Again, no trivialisation
theorem is known, hence the relative semi-Grothendieck rings are expected to be more
complicated.

Example (5.1.7)[158]: Let K =(K,0,1,+,,<) be an ordered field and consider the
structure M=(K,0,1,+,(4).«.<), Where 4 is the scalar multiplication by ceK . The
category Def in this case is the category of K-semilinear sets with K-semilinear maps.

By [166], the Grothendieck ring K, (Def) is isomorphic to E =2Z[x]/(x (x +1)) and
there is a universal Euler characteristic «: Def —E (see also [164]).

Let D be the set whose elements are of the form zi”:lykiz " eN[y,z] with k, <I. and,
fori=j, —(y“z" =y iz ya—(yhz" <y iz a(y“z" <y z"). Here, yhz' <y"izh if
and only if k; <k; and I, <I,.

The set D can be equipped with a semi-ring structure in the following way: the zero
element 0, is Zf’:lykiz'i , the identity element 1, is y° °, the addition is given by

dyhiz+D ) yNz = max, {y “2' 1y*z' amonomialin > y“iz" +> y "z 'i}

i=1 i=1 i=1 i=1
and multiplication is given by

Dyiz DYy iz = max, {y “2'1y*z' amonomialin > y“iz" ) y*z 'i}

i=1 i=1 i=1 i=1
where the symbol > max_.S mean that we sum up the <-maximal elements of the finite
sets.

By [166], there is a universal abstract dimension &: Def — D and two sets in Def are
isomorphic in Def if and only if they have the same universal Euler characteristic and the

same universal abstract dimension. Thus, if A is the semi-ring ExD , then the
Grothendieck semi-ring SK,(Def) is isomorphic to A and the map u:Def — A given by
1(X)=(e(X),5(X)) is the positive universal measure on Def.

Note that the results that we used above from [166] were proved in the field of real

numbers, but the same arguments hold in any arbitrary ordered field K .
Example (5.1.8)[158]:Let K =(K,0,1,+,-,<) be a real closed field and consider the
structure M=(K,0,1,+,(4).«.B.,<), Where 4 is the scalar multiplication by c eK and B
is the graph of multiplication on a bounded interval. The category Def in this case is the
category of K-semibounded sets with K-semibounded maps.

By [165], all bounded semialgebraic subsets are in Def and, by [168], M is, up to
definability, the only o-minimal structure properly between (K,0,1+(4)..«,<) and
(K,0,1,+,-,<).

By [166], the Grothendieck ring K,(Def) is isomorphic to E =2Z[x]/(x(x +1)) and
there is a universal Euler characteristic ¢: Def —E (see also [164]). Furthermore, if D is
the semi-ring of Example (5.1.7), then there is a universal abstract dimension
&:Def — D and two sets in Def are isomorphic in Def if and only if they have the same
universal Euler characteristic and the same universal abstract dimension. Thus, if A is the
semi-ring E xD, then the Grothendieck semi-ring SK,(Def) is isomorphic to A and the
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map u:Def - A given by u(X)=(e(X),5(X)) Is the positive universal measure on Def.

The results that we used above from [166] were proved in the field of real numbers
and are based on Peterzil’s [167] structure theorem for semibounded sets in the real
numbers. However, the same arguments hold in any arbitrary real closed field K using
the structure theorem from [163].
Section (5.2): Zero Loci and Stability under Integration for Constructible Functions
on Euclidean Space with Lebesgue Measure

We define and study loci of integrability of certain (families of) functions. A recent
insight into parameterized integrals is that, for functions f belonging to certain classes of
functions on certain product measure spaces E xT , a set of the form

{X eE|T ->C:t—f (x,t)is measurable and integrable overT }, (9)

Is in fact equal to the zero locus of a function on E belonging to the same class of
functions; see [176]. If we call the set in (9) the locus of integrability of f in E, then we
can rephrase the recent insight as a link between loci of integrability and zero loci for
certain kinds of functions.

We give such a link for the class of constructible functions on Euclidean spaces with
the Lebesgue measure; see Theorem (5.2.8). We follow the terminology of [178]: a
constructible function is by definition a sum of products of globally subanalytic functions
and of logarithms of globally subanalytic functions; see below for more detailed
definitions. The advantage of the class of constructible functions is that it is closed under
integration. Indeed, in Cluckers and Miller [178] proved that if f is constructible on
R"xR™ such that y —f (x,y) is integrable over R™ for each x eRR",then

[T 0y )dy
is constructible on R", which generalizes results of [180]. We extend this stability result
by relaxing the conditions on integrability; see Theorem (5.2.10). Further, we give an
interpolation result, Theorem (5.2.9), of constructible functions by constructible
functions with maximal locus of integrability.

Recall that a function f : X <R" - R is called globally subanalytic if its graph is a
globally subanalytic set, and a set A =R" is called globally subanalytic if its image under
the natural embedding of R" into n-dimensional real projective space, namely
R" —P"(R):(X,,....Xx, ) (1L:x,,...,Xx,), IS a subanalytic subset of P"(R) in the classical
sense; see Definition (5.2.3) below for a self-contained definition.

From now on in this section, we write “subanalytic” instead of “globally subanalytic”

(see again Definition (5.2.3)).
Definition (5.2.1)[172]: For each subanalytic set x , let ¢(X ) be the R-algebra of real-
valued functions on x generated by all subanalytic functions on x and all the functions
x > logf (x) , where f :x —(0,+00) IS subanalytic. Functions in ¢(x) are called
constructible functions on X and ¢(X ) is called the algebra of constructible functions on
X .

In the whole section, we use the Lesbegue measure on R". We introduce the locus of
integrability of a function, as follows.

Definition (5.2.2)[172]: For E a set, and for f :E xR" —C a function, define the locus
of integrability of f in E as the set

Int(f ,E):={x €E |f (x,-) is measurable and integrable over R"},
where f (x,-) is the function sending y eR" to f (x,y), and where the Lebesgue measure
is used on R".
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The main results of this section are the following three theorems, for which we will

give relatively short and simple proofs.
Definition (5.2.3)[172]: Call a function f :X cR‘—R* analytic if it extends to an
analytic function on an open neighborhood of X . A restricted analytic function is a
function f :R" — R such that the restriction of f to [-1,1]" is analytic and f (x)=0 on
R"\[-1,1]".

Call a set or a function subanalytic if and only if it is definable in the expansion of
the real field by all restricted analytic functions. Thus in this section, “subanalytic” is an
abbreviation of “globally subanalytic”, and in this meaning, the natural logarithm
log : (0,+0) — R 1S not subanalytic.

For the rest of this section we fix an ordered list of variables x,,...,x, ., where n>0,
and we write x for (x,,...,x,) and write y for x since the variable x ., will play a

special role.
Definition (5.2.4)[172]: Consider subanalytic sets A cR"" and B cR"and an analytic
subanalytic function #:B —R.Then A is called a 0-cell over R" with base B if A equals
the graph of an analytic subanalytic functionc:B -»R:x >y =c(x).

Call A a 1-cell over R" with base B and with center ¢ if there are analytic
subanalytic functions a:B - R and b:B - R, with a<b on B, such that A is of the
following form:

n+l?

A ={(x,y)eB xR:a(x)oyo,b(x)},
with o either < or no condition for each i =1,2, and such that the graph r(9) of ¢
satisfies either

@ cA\A, or, T(E)NA=¢,
where A is the topological closure of A inside R"™. In any case, A is called a cell over
R".
Definition (5.2.5)[172]: Let A be a 1-cell over R" with base B and with center . A
basic function with center ¢ is a function ¢:A - R"*?, for some N >0, with bounded
image and which is of the form

0, Y) = @00, ay ()., 0]y =000 b0y =60 ™), (10)

where a,,...,a,,b,b, are analytic subanalytic functions from B to R and p is a positive
integer. A strong function on A with center ¢ is a function A - R of the form Fog,
where ¢ is a basic function with center & and where the function F is given by a single
power series that converges on an open neighborhood of the image of ¢. Note that strong

functions are automatically subanalytic functions.
Theorem (5.2.6)[172]: (Preparation of subanalytic functions [184, 189]). Let F be a
finite set of subanalytic functions on a subanalytic set X —R"*. Then there exists a finite
partition of X into cells over R" such that the following holds for any 1-cell A over R"
in this partition:

There exists a center ¢ for A such that each f < F can be written in the form

f(x,y)=g(x)|y —0(x) S(x.y)

on A, where g is an analytic subanalytic function on the base of A,r is a rational number
,and s is astrong function on A with center ¢, and such that, moreover, S >¢ on A for
some ¢>0.

The last part in the following corollary is new and simplifies the proofs concerning
integration and integrability when compared with [178].
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Corollary (5.2.7)[172]: (Preparation of constructible functions). Let # be a finite set of
constructible functions on a subanalytic set X <R"*. Then there exists a finite partition
of X into cells over R" such that for each 1-cell A over R" with base B in this
decomposition, there exists a center ¢ such that, the following holds for each f 7 and
all (x,y)eA,andwith y:=y -6(x):

f(X,y)=zdi(x)3i(x,y)l>7|ai (log|y * , (11)

for some M >0, functions d, eC(B), rational numbers ¢, , integers ¢ >0, and strong
functions S, on A with center 6. Moreover, one can ensure for each i that at least one of
the following two conditions holds:

(1) Si(xay)=1 on A;

(2) y = |y|" is integrable over A, forall x B .
Proof. Let 7' be a finite collection of subanalytic functions such that each f e 7 is a

finite sum of products of functions in F' and of logarithms of functions in F'. Apply
Theorem (5.2.6) to #'. Note that log(S) is a strong function with center ¢ if S is a strong

function with center ¢ satisfying S >¢ for some ¢>0. Hence, we are done with the first
part of the statement by writing logarithms of products as sums of logarithms, and since
the product of strong functions with center @ is a strong function with center 6. Suppose

now that, for some occurring term S;(x,y)d, (x)|y|* on some cell A with center ¢ and

base B, one has that y |y |" is not integrable over A, for some (and hence for all) x B

. Then, by the supposed presence of this nonintegrable term and by partitioning the cells
slightly further, we may suppose that exactly one of the following two conditions holds:
(i) The graph of the center ¢ liesin A and A, is bounded in k for each value of x B .

(if) The graph of the center ¢ is disjoint from A and A, is not contained in a compact

subset of R for any value of x B .

Since the argument is completely similar in both cases, let us suppose (i) holds. Then,
writing the strong function S, as F, .o with ¢ a basic function with center ¢, as in (10),
and F, a converging power series, and by recalling that the image of ¢ is bounded, one

sees that b,(x) =0 for all x eB, with notation from (10). Moreover, y is bounded on A,

for each x, and thus, |y["™ is integrable over A for all x eB as soon as qeQ is

sufficiently large. For any s >0 we can develop finitely many terms of F, in |37|1/p plus
the remaining series in |y[**, as follows:

Si(x,y)=(Zc,-(x)|y~|"”’}+(2ci(x)|y~|”"}. (12)
j=0 j>s

By pulling out the factor |;7|S/p from the last term, by writing out S, (x,y)d; (x)|y|" using
distributivity and (12), and by taking s large enough, the first s such terms will be as in
part (1) of the corollary, and the last term will be integrable as in (2). This completes the

proof.
Theorem (5.2.8)[172]: Let f bein C(E xR) for some subanalytic set E . Then there

exists h in C(E) such that
Int(f ,E)={x €E |h(x)=0}. (13)
Conversely, for every h in C(E) there exists f in C(E xR) such that (13) holds.
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Theorem (5.2.8) thus gives a correspondence between loci of integrability and zero
loci of constructible functions, at least when integration is in dimension 1, that is, over R.
One should not misunderstand Theorem (5.2.8): zero loci of constructible functions are
much more general than, say, Zariski closed sets, and for example, a zero locus of
heC(E) can easily be dense in E. Indeed, the characteristic function of any subanalytic
subset of E lies in ¢(E). Note that when f in Theorem (5.2.8) is moreover subanalytic,
then one can take h to be a subanalytic function as well by the main result of [180].
Theorem (5.2.8) implies Theorem 1.4 of [178]. In Cluckers and Miller [179] we treat a
higher dimensional variant of Theorem (5.2.8), also treating L®-integrability for various
p.

Constructible functions allow an interpolation by constructible functions with maximal
locus of integrability, as follows.
Theorem (5.2.9)[172]: Let f be in C(E xR) for some subanalytic set E. Then there
exists g e C(E xRR) with
Int(g,E)=E

and such that, for all x eInt(f ,E) and all y eR, one has

gx,y)=f(x,y).
Finally, we can integrate in any dimension m to find the following generalization of the
principal result, Theorem 1.3, of [178].
Proofs of Theorems (5.2.8) and (5.2.9). Let f be in C(E xR), with E cR" for some n.
Apply Corollary (5.2.7) to the collection of functions consisting only of f . Consider a 1-
cell A over R" in the obtained partition, with center ¢, and write f as in (11). By
regrouping the terms and using the notation of (11), we may suppose, for each i, that

either |y|® is integrable over A, , or that («;,¢) is different from the («;,¢) for all j =i .
Let | be those indices i such that |y|* is not integrable over A, . Now define Q, as the
set {x eB|d,(x)=0fori 1} and define, for (x,y) <A, the constructible function

g(x,y):=2d; (xS, (x,y)|y[* (log|y )" .
igl
Note that
{x €B :f (x,-) isintegrable over A }=Q,,
because of condition (1) in Corollary (5.2.7), and because we have taken the exponent
pairs («;,¢) mutually different for nonintegrable terms. Do the above construction for

each occurring 1-cell A over R". On any 0-cell A’ over R" in our partition, define
g(x,y) as f(x,y). Then g is as desired by Theorem (5.2.9). Now note that a finite

union of zero loci of constructible functions h. equals the zero locus of a single
constructible function by taking the product of the h,. Similarly, a finite intersection of
zero loci of constructible functions h, equals the zero locus of a single constructible
function by taking the sum of the squares of the h,. Now one is done for Int(f ,E).
Indeed, Int(f ,E) equals the finite intersection
AN

where A runs over all 1-cells over R" in the partition, and where, for any such 1-cell A,
Q. equals the set Q,U(E \B). Note that E\B is a subanalytic set and each of the Q)

equals thus the zero locus of a constructible function on E. For the converse statement of
Theorem (5.2.8), given h, it suffices to put f (x,y)=h(x)y forall (x,y)eE xR.
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Theorem (5.2.10)[172]: Let f be in C(E xR™) for some subanalytic set E and some
m >0. Then there exists g <C(E) such that, for each x < Int(f ,E), one has

gx)=] _.Foxy)dy.

The above theorem is proved in Cluckers and Miller [178] under the extra condition
that Int(f ,E) equals E (which in turn generalized main results from [180, 185]). Note
that integrals of constructible functions are related to what one could call families of
periods; see [181-183]. In several special cases, explicit formulas for parameterized
integrals of constructible functions are given in [173, 188]. Parameterized integrals of
constructible functions are often used for the study of singularities, as in [174, 186, 187].
For context on subanalytic functions we refer the reader to [175, 74].

[176] which contains several p-adic and motivic analogues of this section, where
[178] was more closely inspired on p-adic and motivic results of [83, 177]. The results
and proofs of this section can be used to replace some of the technical difficulties
encountered in Cluckers and Miller [178].

In this section, we recall a basic form of the subanalytic preparation theorem from [184]
(see also [189]), we fix some notation, and we give a new preparation result for
constructible functions.

Proof. Consider f in C(E xR™) for some m >0. If m =1, then apply Theorem (5.2.9) to f

to find g, in C(ExR) with Int(g,,E)=E and such that g,(x,y)=f (x,y) for all
x eInt(f ,E) and all y eR. Now Apply Theorem 1.3 of [178] to g,, which states that, if
one defines, for x eE,

g(x)=[ gy(x,y)dy ,
then g lies in C(E). Then this g is as desired. The result for general m now follows

from Fubini’s Theorem.

Alternatively to deriving Theorem (5.2.10) for m =1 from Theorem 1.3 of [178], one
can also derive the case m =1 from Corollary (5.2.7) by the integration procedure by
Lion and Rolin of [185], which is also used and explained in Cluckers and Miller [178].
This self-contained approach for obtaining Theorem (5.2.10) is simpler than the
approaches of [178, 180, 185], which moreover only yielded special forms of Theorem
(5.2.10).

Section (5.3): Preparation of Real Constructible Functions

The Lebesgue spaces, L°(x) for pe(0,0] , are ubiquitous in many areas of
mathematical analysis and its applications. Much of the research about the Lebesgue
spaces has been conducted in a very general measure-theoretic framework, with the
focus being on discovering a host of relationships between the various L" spaces. A
number of the classical theorems are inequalities that explain how various function
operations behave with respect to the Lebesgue spaces. For example, for addition there is
Minkowski’s inequality; for multiplication there is Holder’s inequality; for convolutions
there is Young’s convolution inequality; for Fourier transforms of periodic functions
there is the Hausdorff—Young inequality. Other classical theorems explain the structure
of linear maps between the various L spaces, such as the duality of Lebesgue spaces
with conjugate exponents and the Riesz—Thorin interpolation theorem.

This section explores theorems about the Lebesgue spaces of a rather different sort.
We use geometric techniques to study the structure of the Lebesgue classes of
parameterized families of functions, along with a related preparation theorem. The
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starting point of our investigation is the observation that, although much of the utility of
the Lebesgue spaces — and more generally, of the theory of integration as a whole —
stems from the generality of the measure-theoretic framework in which it has been
developed, it is many times applied to study integrals of very special functions that arise
naturally in real analytic geometry. And, if we focus our attention on studying the L?
properties of these very special functions, we should be able to obtain rather strong
theorems that cannot be shown, or even reasonably formulated, in a very general
measure-theoretic framework. This is because by focusing on special functions, we can
supplement the very general tools from mathematical analysis with much more
specialized tools from real analytic geometry and o-minimal structures. Similar
approaches have been followed in the context of p-adic and motivic integration; see
e.q.[177].

The o-minimal framework is still a bit too general for our purposes, and we choose to
focus on the constructible functions, by which we mean the real-valued functions that
have globally subanalytic domains and that can be expressed as sums of products of
globally subanalytic functions and logarithms of positively-valued globally subanalytic
functions. The study of constructible functions largely originated in the work of Lion and
Rolin, [196], where these functions naturally arose in their study of integration of
globally subanalytic functions. (In the context of p-adic integration, analogues of
constructible functions arose from the work by J. Denef [194].) The integration theory of
globally subanalytic and constructible functions was then further developed by Comte,
Lion and Rolin in [193] and also in [178] and [172]. Much of the utility of the
constructible functions stems from the fact that they are stable under integration — from
which it follows that they are the smallest class of functions that is stable under
integration and contains the subanalytic functions — and that they have very simple
asymptotic behavior (see [178]). In fact, these results have typically lagged behind the
motivic and p-adic developments. In this section, the real situation takes the lead over the
p-adic and motivic results.

We obtain two main theorems about the constructible functions; see Theorems (5.3.44)
and (5.3.2). The first theorem considers a constant q >0 and constructible

functions f and x on E xR", and it describes the structure of the set

LC(F ,|¢' \E):={(x,p) € E x(0,00]:f (x,) e L° (| )}, (14)
where |4 is the positive measure on R" whose Radon—Nikodym derivative with respect
to the Lebesgue measure is |u(x,-)[' :y = |u(x,y)['. The theorem and its corollaries show
that the set of all fibers of LC(f ,|«[*,E) over E is a finite set of open subintervals of

(0,0], and that the set of all fibers of LC(f ||’ ,E) over (0,o] is a finite set of subsets of

E, each of which is the zero locus of a constructible function on E . This theorem
therefore relates analysis with geometry, in the sense that Lebesgue classes are an object
of study in analysis, while zero loci of functions are widely studied in analytic geometry.
A similar link between geometry and analysis ( but with x=1 and with focus on L*-
integrability ) is obtained in p-adic and motivic contexts in [191].

The second theorem is a closely related preparation result that expresses f and x as
finite sums of terms of a very simple form that naturally reflect the structure of
LC(f ,|¢f*,E).This theorem can be most easily appreciated through the historical context

in which it was developed, starting with the following simple preparation result for
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constructible functions, which is a rather direct consequence of Lion and Rolin’s
preparation theorem for globally subanalytic functions:

Let f:ExR"—>R be constructible, with EcR™ , and write)
X,¥) =Xy, X, Yp--Y,) Tor the standard coordinates on E xR". Then f can be

piecewise written on subanalytic sets as finite sums > _ T, (x,y), where up to
performing translations in y by globally subanalytic functions of a triangular form,

——

(15)

each term is of the form T (x,y)=g, (x)(H?_l\yj\’” (logly ;)™ )uk(x,y) for some

constructible function g, , rational numbers r, ;, natural numbers s, ;, and globally
subanalytic unit u, which is of the special form as given by the globally

subanalytic preparation theorem.

Lion and Rolin [195] used (15) when proving that any parameterized integral of a
constructible function is piecewise given by constructible functions, but on pieces that
need not be globally subanalytic sets. Comte, Lion and Rolin [193] also used (15) when
proving that any parameterized integral of a globally subanalytic function is a
constructible function. The authors then subsumed both of these results in [178] by

showing that F(X)=IRnf (x,y)dy is a constructible function on E if f :ExR" >R is a

constructible function such that f (x,-) e L"(R") for all x eE . The key to doing this was to
improve (15) by showing that in the special case of n=1, if f (x,)eL'(R) for every
x e E, then the sums can be constructed in such a way so that each term T (x,y) is also
integrable in y for every x €E . This alleviated various analytic considerations employed

in [195] and [193] to get around the awkward fact that (15) allows the possibility of
expressing integrable functions as sums of nonintegrable functions. In [172] improved
upon (15) in the special case of n=1 by dropping the assumption that f (x,y) be

integrable in y for every xeE , and then showing that the set
Int(f ,E):={x €E :f (x,) e L"(R)} is the zero locus of a constructible function on E, and
that the sums in (15) can be constructed so that each term T, (x,y) is integrable in y for
every x eE, provided that we only require the equation f (x,y)=>" T, (x,y) to hold for

those values of (x,y) with x Int(f ,E).

The preparation theorem of this section strengthens this line of results even further by
considering an arbitrary positive integer n, not just n=1, and by considering all L®
classes simultaneously, not just L'. In order to convey the main idea of the theorem
without getting bogged down in technicalities, let us use the Lebesgue measure on R"
(thus =1, where 4 is the function from (14)), and let us also only consider the L?

classes for finite values of p . Under these simplifying assumptions, the preparation
theorems states that the sums > _ T, (x,y) in (15) can be constructed in such a way so
that there is a partition {K,}, of the finite index set K such that for each x eE and
p €(0,00) with f (x,-)eL?(R"), and for each i, either T, (x,-) isin L"for all k eK,, or else
ZkeKiTk(X’y)=0 for all y. So, for instance, if for some fixed value of p the function

f (x,) happened to be in L°(R") for every x eE , then the sums in (15) can be
constructed so that each term T, (x,-) is in L° for every x eE, for we may simply omit

the remaining terms in the sum because they collectively sum to zero.
Part of our interest in developing a good integration theory for constructible
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functions comes from a desire to study various integral transforms in the constructible
setting. And, to summarize, we now have three main tools at our disposal to conduct
such studies: the constructible functions are stable under integration, they have simple
asymptotic behavior, and they have a multivariate preparation theorem with good
analytic properties. We apply these three tools to the field of harmonic analysis in [192]
by showing a theorem that bounds the decay rates of parameterized families of
oscillatory integrals. This is an adaptation of a classical theorem found in Stein [197] but
with different assumptions. The classical theorem bounds a single oscillatory integral
with an amplitude function that is smooth and compactly supported and a phase function
that is smooth and of finite type. In contrast, we give a uniform bound on a
parameterized family of oscillatory integrals with an amplitude function that is
constructible and integrable and a phase function that is globally subanalytic and satisfies
a certain “hyperplane condition” (which closely relates to the notion of “finite type” in
our setting). Thus by restricting our attention to the special classes of constructible and
globally subanalytic functions, we obtain a much more global, parameterized version of
the classical theorem with significantly weaker analytic assumptions. This application of
our preparation theorem was, in fact, the initial stimulus for our work in this section.

This section formulates our main theorem on the structure of diagrams of Lebesgue
classes and also a simple version of the related preparation theorem; see Theorems
(5.3.44) and (5.3.2). It also gives two key supporting theorems used to show these
results; see Theorems (5.3.22) and (5.3.32). The full version of the preparation theorem
can be found as Theorem (5.3.48). We begin by fixing some notation to be used
throughout the section.

Notation (5.3.1)[190]: Denote the set of natural numbers by N={0,1,2,3...}. Denote the

subset and proper subset relations by < and ¢, respectively. Write x =(x,...,x,) and
y =(Y,,...,y,) for the standard coordinates on R"™ and R" , respectively. If
f =(f,,....f,):D > R" is a differentiable map with D cR™™", write

i(x,y){ﬁ(x,y)}
(i,0)efL...n¥

oy Y
for its Jacobian matrix in y. Define the coordinate projection I1_:R™" —R" by
I, (x,y)=x.

Forany D cR™" and x eR"™, define the fiber of D over x by

D, ={y eR":(x,y)eD}.
For any d €{0,...,n} and Oe{<,<,>,>}, define y_, =(y,),, - FOr example, y_, =(y,,---,¥4),
and in accordance with our above notation for coordinate projections, the maps
[1,:R">R* and [T, :R™" —>R™ are given by IT,(y)=y, and TT ., (x,y)=(X,y.) .
More generally, if 2:{1...,d}—{L...n} is an increasing map, define [, , :R™" - R™ by

Hm,/l(x’y) :(vaz),

where vy, =Y 2y Y 20)) -

For any set D —cR", call a function f : D —R"™ analytic if it extends to an analytic
function on a neighborhood of D in R". A restricted analytic function is a function
f :R" — R such that the restriction of f to [-1,1]" is analytic and f (x)=0 on R"\[-1,1]".
We shall henceforth call a set or function subanalytic if, and only if, it is definable (in the
sense of first-order logic) in the expansion of the real field by all restricted analytic
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functions. Thus in this section, the word “subanalytic” is an abbreviation for the phrase
“globally subanalytic”, and in this meaning, the natural logarithm log:(0,.0) - R IS not
subanalytic. For any subanalytic set D, let ¢(D) denote the R -algebra of functions on D
generated by the functions of the form x —f (x) and x ~logg(x), where f :D - R and
g:D —(0,0) are subanalytic. A function that is a member of ¢(D) for some subanalytic
set D is called a constructible function.

Consider a Lebesgue measurable set D cR™" and Lebesgue measurable functions
f:D—>Randv:D —[0,x), and put E =[] (D). Define the diagram of Lebesgue classes

of f over E with respect to v to be the set
LC(f v,E)={(x,p) €E x(0,%0]:f (x,)eL’(\v )},
where v, is the positive measure on D, defined by setting

v, (v )= [ vix,y)dy (16)
for each Lebesgue measurable setY <D, , where the integration in (16) is with respect to

the Lebesgue measure on R". Thus for each x €E , when 0< p <, the function f (x,-) is
in LP(v,) if and only if

JL Fooy)fvxoy)dy <o,
and the function f (x,-) is in L*(v,) if and only if there exist a constant M >0 and a
Lebesgue measurable setY <D, suchthatv, (f)=0 and f (x,y)|<M for all y eD, \Y .

The fibers of LC(f v,E) over E and over (0,] are both of interest, so we give them
special names. For each x €E, define the set of Lebesgue classes of f at x with respect
to v to be the set

LC(f v, ,x)={p €(0,]:f (x,)eLP(v,)}.
For each p (0,], define the L"-locus of f in E with respect to v to be the set
Int’(f v,E)={x €eE :f (x,)elL"(v,)}.
When v =1 (which is the case of most interest because it means we are simply using the
n-dimensional Lebesgue measure on D, ), it is convenient to simply write LC(f ,E),
LC(f ,x) and Int"(f ,E) and to drop the phrase “with respect to v” in the names of theses
sets. Also whenv =1, we shall write L?(D,) rather than L°(, ). The set Int'(f ,E) was
studied by the authors in [172] (focusing on the case of n=1), where it was denoted by
Int(f ,E) and called the “locus of integrability of f in E.”
We order the set [0,0] in the natural way, and we topologize (0,] by letting
{(a,b):0<a<b <ow}uU{{x}}
be a base for its topology. A convex subset of (0,c] is called a subinterval of (0,.c]. The
endpoints of a subinterval of (0,c] are its supremum and infimum in [0,c]. Note that the
empty set is a subinterval of (0,«], and that sup®@=0 and inf@=oo.
It is elementary to see that LC(f ,v,x) is a subinterval of (0,«] for each x eE . Much

more can be said when f and v are assumed to be constructible functions or their powers.
Theorem (5.3.44) has been formulated in such a way so as to make it adaptable to a
variety of situations. This section contains an extensive list of corollaries that further

explain how the theorem elucidates the structure of LC(f ,|4',E), and how it can be
easily adapted to give analogous theorems about local L” spaces, complex measures, and
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measures defined from differential forms on subanalytic sets, all within the context of
constructible functions.

The proof of Theorem (5.3.44) is intimately linked to the proof of a preparation
theorem for constructible functions that is stated in full strength in this section, where it
iIs showed. Here we state only a simple version of the preparation theorem that is
sufficient for our application to oscillatory integrals in [192]. But first, we need one more
definition: a cell over R™ is a subanalytic set A c R™" such that for each i {1,...,n}, the

set IT__. (A) is either the graph of an analytic subanalytic function on 11__. ,(A), or
l_[eri (A) ={(X ’ ygi ) : (X ’ y<i ) € l_[m+i (A)’a'l (X ’ y<i )qyl ELbl (X ’ y<i )} (17)
for some analytic subanalytic functions a.b, :11,,,,(A)>R : for which

a(x,y_,)<b (x,y_,) onTII_. (A),where (J and J, denote either < or no condition.

Theorem (5.3.2)[190]: Let p €(0,«) and f ec(D) for some subanalytic set D c R™",
and assume that Int?(f ,I1_(D))=1I1_(D). Then there exists a finite partition .4 of D into
cells over R™ such that for each A .4 whose fibers over 11_(A) are open in R", we may

write f as a finite sum
f(x,y)=>T.(x,y)
k

on A, with Int°(T,,I1_(A)) =11, (A) for each k, as follows: there exists a bounded function
@A —(0,0)" of the form

Jie{l,...,M}’
and for each k,

¢(X,Y)=(Ci(X)H\yj —0,(x,y )

=1

Tk (X Y ) =0k (X )(H|y| _gi (X Y i )|rk'i (Iog|yi _9i (X Y i )|)Sk'i ju k O(D(X ) y) ) (18)
i=1

where the g, : 11, (A) > R are constructible, the ¢, : 11, (A) - (0,) and 4 : 11, ,(A) >R
are analytic subanalytic functions, the graph of each ¢, is disjoint from I1_,;(A), the ~;
and r,, are rational numbers, the s, . are natural numbers, and the U, are positively-
valued analytic functions on the closure of the range of .

In addition, the fact that Int”(T,,I1_(A))=1I1_(A) only depends on the values of the
r. ., and not the values of s, ., in the following sense: we have Int(T/,11, (A)) =11, (A) for
any function T/ on A of the form

0y =TTl ~6.00y " Gogly, ~4 0y D™

where the r,, are as in (18) and the s; , are arbitrary natural numbers.

The key aspect of Theorem (5.3.2) that is of interest, and what makes its proof
nontrivial, is that the piecewise sum representation of f can be constructed so that each
of its terms T, (x,-) are in the same L° class as f (x,-); namely, Int°(T,,T1 (A))=T11_(A)

for each A and T, , provided that Int°(f ,I1_(D))=1I1, (D). There is an analog of Theorem
(5.3.2) for p =, but then one must replace (18) with the more complicated form

flci [|Ogﬁ‘yj -0, (X'y<j)ﬁi'jj | }Uk cp(x,y), (19)

where the g, ; are rational numbers and everything else is as before, and where the fact

Tk(x,y)—gk(x)(ﬁw.a(x,y<.>
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that Int(T,,I1_(A))=11_(A) now depends on all the values of the r_., s,
just the values of the r_; alone.
We shall also show a theorem on the fiberwise vanishing of constructible functions
and a theorem on parameterized rectilinearization of subanalytic functions, given below.
This section formulates a version of the subanalytic preparation theorem of Lion and
Rolin [195]. We begin with some multi-index notation.
Notation (5.3.3)[190]: For any tuples y =(y,,...,y,) and a=(«,,...,«,) in R", define
Y= (Y]s-ly ol
logy =(logy,,...,logy,), provided thaty y,,...,y, >0,
y“=y2...y® provided that this is defined,
o=+ +a,,
supp(e) ={i {L,...,n}: o =0}, which is called the support of «.
There is a conflict of notation between this use of |y| and ||, but the context will

always distinguish the meaning: if « is a tuple of exponents of a tuple of real numbers,
then |a| means o, +---+«, ; if y is a tuple of real numbers not used as exponents, then |y |

o y
...|yn|

and g, ;, not

means (y,|.....ly,)). These notations may be combined, such as with |y|* =]y,

and (logly|)” =(log|y,|)".....(log]y,|)" .
Definitions (5.3.4)[190]: Consider a subanalytic set Ac R™". We say that A is open
over R™ if A_isopenin R" forall x [T, (A).

We call a function 9=(4,...,6,): A —>R" a center for A over R™ if A is open over R",
and if for each ie{L...,n} the component ¢ is an analytic subanalytic function
0 11, ,(A)— R with the following two properties.

1. The range of ¢ is contained in either (-,0), {0} or (0,«) . And, when ¢ is
nonzero, the closure of the set {y, /6 (x,y_):(x,y)eA} is a compact subset of (0,x).

2. Let Yi=YVi—0X.Ya) The set Ui :(X.¥) €At s 3 subset of either (—o,—1), (~1,0),
(0,1) or (1,).
We call (x,y):=(x,y,,....¥,) the coordinates on A with center 6.

A rational monomial map on A over R™ with center ¢ is a bounded function
©:A —>R" of the form

P(x,y) =, 0)|V[", e C)Y]™), (20)

where c,,...,c,, are positively-valued analytic subanalytic functions on TI_(A) and
Y-y are tuples in Q. Note that o(A)c (0,)" . If ACR™x(0,1)" and #=0, we say
that ¢ is basic.

An analytic function is called a unit if its range is contained in either (—,0) or (0,).
A function f :A >R is called a ¢ -function if f =F -y for some analytic function F
whose domain is the closure of the range of ¢; if F is also a unit, then we call f a -
unit.

A function f :A >R is ¢ -prepared if

f (<, y)=g()|y["u(x,y)

on A for some analytic subanalytic function g, tuple ¢ Q" and ¢ -unitu.
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Definition (5.3.5)[190]: To any rational monomial map »:A —R" over R™ with center
0, we associate a basic rational monomial map over R"™, denoted by ¢,, as follows. For
each i e{L,...,n}, the set {y, :(x,y)eA} is contained in either (—w,-1), (-1,0), (0,1) or
(L), SO there exist unique ¢,,¢ e{-11} such that 0<¢y: <1 for all (x,y)eA . Define an
analytic isomorphism 7,: A — A, by
T,0¢,Y) = (X6 ey ).

Define ¢, :=poT,*:A, >R" .

Notation (5.3.6)[190]: Write ¢,(x,y)=(,(X)y™,....c,, (x)y ™) for some ~,,...,v,, €Q" .
For each ie{0,...,n}, define ¢,, to be the function on II,,(A) consisting of the
components c;(x)y ™ of ¢, such that supp(;)c{L....i}, and when i >0, such that

i esupp(;). Thus

S%(X’Y):(S%,o(x)v@a,l(xayl)a---a@y,n(xaylw-vyn))-
For each i €{0,...,n} and Oe{<,<,>,>}, define ¢, =(¢,;); 5 ON its appropriate domain.

For example, ¢, isthe functionon TT,, (A) given by

o (X2 Y ) =(00(X), 02 (X, Y1)+ 095 (XY 5)) -

Definition (5.3.7)[190]: If C cR™" is a cell over R™, then there exists a unique
increasing map A:{...,d}—{L...,n} whose image consists of the set of all i e{1,...,n} for
which TT_ .. (C) is of the form (17). We call ¢ a A-cell.

Note that IT, , defines an analytic isomorphism from a A-cell ¢ onto IT,, ,(C), and
I1,,(C) isacell over R™ that is open over R".
Definition (5.3.8)[190]: We say that ¢ is prepared over R™ if A is a cell over R™ such
that for each i {1,...,n}, if we write

I, (A) ={(xy o) 1 (X yg) eIl a(An).a (X y 5 ) <y <bi (X, y )}

then the functions a, b, and b, —a, are ¢, -prepared, and a, is either identically zero or

Is strictly positively-valued.

Proposition (5.3.9)[190]: Suppose that F is a finite set of subanalytic functions on a
subanalytic set D c R™". Then there exists a finite partition A of D into cells over R"
such that for each AeA, if A is a A-cell over R™ and we write g: 11, ,(A) — A for the

inverse of the projection Hmyﬂ‘A:AaHmvl(A), then there exists a prepared rational
monomial map ¢: 11, ,(A) > R" over R™ such that f -g is ,-prepared for each f 7.

Proof. This follows from the subanalytic preparation theorem (see [195] or [189]) by
inductionon n.

Corollary (5.3.10)[190]: Suppose that F is a finite set of constructible functions on a
subanalytic set D c R™". Then there exists a finite partition 4 of D into cells over R"
such that for each Ae.A and f F, the restriction of f to A is analytic. Moreover, if
each function in F is subanalytic, then A can be chosen so that f (A) is contained in
either (—,0), {0} or (0,) foreach A4 and f e F.

Proof. When F consists entirely of subanalytic functions, this follows directly from
Proposition (5.3.9). In the general constructible case, fix a finite set 7’ of subanalytic
functions such that each function in F is a sum of products of functions of the form
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(x,y)—f(x,y) and (x,y)—logg(x,y) with f,geF . Now apply the result of the
subanalytic case to 7.
Definition (5.3.11)[190]: If s is a set of subsets of a set X , we say that a partition A of
X is compatible with s if for each A <A and each S €S, either AcS or ACX \S.
Note that in Proposition (5.3.9) and Corollary (5.3.10), the partition A can be made
to be compatible with any prior given finite set of subanalytic subsets of D .
Throughout this section we use the notation of Theorem (5.3.44).
Corollary (5.3.12)[190]: Foreach 1 e,

{x eE :LC(f ,|y|q,x):l}:{x cE (g (X)=0)/\(/\QJ(X)¢0]}: (21)

where Z, ={0 e Z:1 CJ}.
Proof. This follows from (49) and from the fact that for each x eE, LC(f ,,x)=1 if and
only if I c LC(f ,u,x) and J ¢ LC(f ,,x) forall J eZ, .

The final sentence of Theorem (5.3.44) shows that when f is subanalytic, so is the
set (21).
Remark (5.3.13)[190]: The set LC(f ,|4,E) can be expressed as the disjoint union

U({X eE:LC(f,|,u|q,X):I}xI) (22)
and as the (not necessarily disjoint) union
UJ@x eE 1 cLC(f |y x)}x1). (23)

lel

Proof. The fact that LC(f ,|4[',E) equals (22), and that (22) is contained in (23), are both
clear. To see that (23) is contained in (22), note that if (x, p) is such that I c LC(f |« ,x)
and pel ,then J =LC(f ,|¢f*,x) and peJ forsome J eZ with | cJ.

Observe that (21) and (49) show how to use the functions {g,},_, to define the sets

occurring in (22) and (23).
Corollary (5.3.14)[190]: For each p c (0,0] there exists G, e C(E) such that

{x eE:P CLC(f |4 x)}={x €E :G,(x)=0}. (24)
Proof. Define G to be the product of the g, for all I ez with pc1. Then (24) follows

from (49) and from the fact that for each x <E, we have P c LC(f |4 ,x) if and only if
LC(f ,|¢f",x)=1 forsome | eZ with pcC1.
For each p €(0,], taking P ={p} in (24) shows that Int"(f |/’ ,E) is the zero locus

of a constructible function. A very elementary proof of this fact is given in [172] for the
special case when x=1, p=1and n=1.

Corollary (5.3.15)[190]: The set {Int"(f ,|¢{' ,E): p €(0,00]} is finite.
Proof. Since 7 is finite by Theorem (5.3.44), we may fix a finite partition 7 of (0,]
compatible with 7. If J e 7 and P <J, then foreach 1 ez, pel ifand only if Jc1;
SO Int’(f | \E)={x €E :J CLC(f |4 ,x)}. Therefore

{Int*(f ,|¢f" ,E): p e (0,0} ={{x €E:J CLC(f |4 ,x)}:I e T},
which is finite because 7 is finite.
Corollary (5.3.16)[190]: There exists geC(E) such that
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{x eE :f (x,)isboundedon D, }={x €E : g(x) =0}.
Proof. Zero loci of constructible functions are closed under intersections and unions (by
taking sums of squares and by taking products, respectively), so we may assume by
Corollary (5.3.10) that D is a cell over R™ and that f is analytic. By projecting into a
lower dimensional space, we may further assume that D is open over R™. Thus f (x,-) IS

bounded on D, if and only if it is in L*(D,), so we are done by applying Corollary
(5.3.14) with P ={}.

Although we will use Theorem (5.3.22) to show Theorem (5.3.44), it is interesting to
observe that, conversely, Theorem (5.3.22) also follows from Theorem (5.3.44), as
follows.

Corollary (5.3.17)[190]: There exist g,h e C(E) such that
{x eE:f(x,y)=0forally eD }={x €E :g(x)=0}

and

{x €E :f (x,y)=0for |y|x-almost ally eD }={x €E :h(x)=0}.
Proof. Define F:DxR—>R by F(x,y,z)=zf (x,y). Note that for each x eE, f (x,y)=0
forall y eD, if and only if (y,z)— F(x,y,z) is bounded on D, xR, and that f (x,y)=0
for |4 -almost all yeD, if and only if (y,z)F(x,y,z) is in L"(v,) , where
v:DxR—[0,0) is defined by v(x,y,z)=|u(x,y) . So we are done by applying
Corollaries (5.3.16) and (5.3.14) (with P ={«}) t0 F .

The following result generalizes [178, Theorem 1.4].

Corollary (5.3.18)[190]: Let q>0, pc(0,«] , and F,reC(X xY xR*) for some
subanalytic sets x and Y . Suppose that for each xeXx , the set
{yeY :PcLC(F,M,(x,y)} is dense inY . Then there exists a subanalytic set C c X xY

such that C xP c LC(F,|v[',X xY ) and C, isdenseiny foreach x eX .
Proof. Assume that X cR™. We may assume that Y =R" because the case of a general
subanalytic sety follows from this special case by arguing as in the second paragraph of
the proof of [178, Theorem 1.4]. By Corollary (5.3.14) we may fix geC(X xR") such
that

{(x,y)eX xR":P C LC(F,|v|q LOGYNI={(x,y)eX xR":g(x,y)=0}. (25)
By Corollary (5.3.10) we may fix a partition A4 of X xR" into subanalytic cells over R"
such that ¢ restricts to an analytic function on each A<.A. Let C be the union of the
members of A that are open over R™. Then C is subanalytic, 11,(C)=X , and C, is
open and dense in R" for each x e X . If there exists (a,b) eC such thatg(a,b) =0, then
{y €C,:9(a,y)=0} would be a proper analytic subset of the open set C, , so
{y eR":g(a,y) =0} would not be dense in R", contradicting (25) and our assumption on
F and |v['. Therefore g(x,y)=0 forall (x,y)eC , which by (25) shows the corollary.

We now show how Theorem (5.3.44) adapts easily to the study of local integrability,
complex measures, and measures defined from constructible differential forms on
subanalytic sets. We only discuss the analogs of Theorem (5.3.44) itself, but it follows
that analogs of the previous list of corollaries of this theorem hold as well, via the same
proofs.

Suppose that Y cR" and f :Y —R are Lebesgue measurable, that v is a positive
measure onyY that is absolutely continuous with respect to the n-dimensional Lebesgue
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measure, and that p € (0,0]. We say that f is locally inLP(v), written as f L (v), if for
each y ey there exists a neighborhood u of y inyY such that f |, isin L°(v|,). Similarly,
we say that 1 is locally bounded ony if for each y ey there exists a neighborhood u of
y iny suchthat f (U) is bounded.

For measurable functions f:D >R and v:D —[0,«) , where DcR™ and
E=II,(E), define the sets LC(f,v,E), LC.(f,v,x) and Int} (f ,v,E) analogously to
how LC(f ,v,E), LC(f ,v,x) and Int"(f ,v,E) were defined in this Section, but replacing
the condition f (x,-) eL"(v,) with f (x,) eLP (v,).

Proposition (5.3.19)[190]: The local analog of Theorem (5.3.44) holds, which describes
the structure of LC,(f ,|¢[" ,E) rather than LC(f ,|[ ,E).

Proof. By extending f and x by 0 on (ExR")\D, we may assume that D =E xR".
Define functions F and v on ExR"x[-11]" by Fx,y,z)=f(x,y+z) and

v(x,y,z)=|u(x,y +z)[' . The compactness of [-11]" implies that for each x cE and

loc

pe(0,], f(x,)eLp(u) ifand only if F(x,y,)eL’(v,,,) forall y eR". Therefore
LC,.(f .| . x) = [) LC(F,v,(x,Y)).

y eR"
Theorem (5.3.44) shows that {LC(F,v,(x,y)):(x,y) €E xR"} is a finite set of subintervals
of (0,0] with endpoints in (span {Lg}N[0,)) U{x}, SO the set
T ={LCy,o(f |1 X)X €E}
is of this form as well. Let | Z,_ . By Corollary (5.3.14) we may fix g eC(E xR") such
that
{(x,y)eExR":1 CLC(F,v,(x,y)}={(x,y)€E xR":g(x,y) =0}.
Thus
{x eE:l CLC(f |4, x)}={x eE:g(x,y)=0forally eR"},
and this set is the zero locus of a constructible function by Theorem (5.3.22) (or
Corollary (5.3.17)).

Suppose that f and v are complex-valued Lebesgue measurable functions on a
measurable set D c R™™ such that v(x,-) is Lebesgue integrable on D, for all x eE ,

where E =I1_(D). For each x €E , define a complex measure v, on D, by setting

v (Y )= vx.y)dy
for each Lebesgue measurable setY cD,. The notion of an L°-class with respect to a
complex measure is defined using the absolute variation of the measure, so we define
LC(f ,v,E)=LC(f ||v.E) , LC(f,v,x):=LC(f],|]v|,x) for each xeE , and
Int’(f ,v,E):=Int’(f |,|v|.E) for each p e(0,o].
Proposition (5.3.20)[190]: The complex analog of Theorem (5.3.44) holds with q =1,
which describes the structure of LC(f ,x, E) for complex-valued functions f and . on a
subanalytic set D c R™™" whose real and imaginary parts are constructible, where x(x,-)
is Lebesgue integrable on D, for all x in E =11, (D).
Proof. Apply Theorem (5.3.44) to the constructible functions |f [ and |z with q =1/2.
Then note that for any p €(0,0], |f |eL"( «|,) ifand only if |f PeL"?(u]).

For the last result of this section, consider a subanalytic set D c R™" such that for
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each x in E =11_(D), the fiber D, is a smooth k-dimensional submanifold of R". For
each x eE , consider a smooth k-form w, on D, , such that moreover there exist
constructible functions w, ; (x,y) on D with 1<i, <---<i, <n such that

()= D W, (Y)Y A ady,

1<iy <<y <n
For each x eE, write |w,| for the measure on D, associated to the smooth k-form w, .
For f ec(D), consider

LC(f ,w,,x)={p € (0,00 : f (x,") e L"(w;,},
and
LC(f ,w,E)={(x,p) €E x(0,]:f (x,) eL’(w,},

where w stands for the family (v, ), ¢ .
Proposition (5.3.21)[190]: With the above notation for D, w and E, and with f ec(D),
the analog of Theorem (5.3.44) holds for LC(f ,w,E). To adapt the last sentence of
Theorem (5.3.44) to LC(f ,w,E), the extra assumption that 4 be subanalytic should be
replaced by the condition that the «, , be subanalytic.
Proof. Because D is subanalytic, basic o-minimality implies that there exists a finite
family 1 of subanalytic subsets of D which covers D and is such that the following hold

foreachU eu/:
1. for every x eTI1,,(U), the fiber U, isopenin D, ;

2. there exists an increasing function 2" :{i,....k}—{L,...,n} such that for each
x eIl (U), the projection I1, is injective on U, and has constant rank k.
For eachU e/, let G” (x,y)=(x,g" (x,z)) be the inverse of 1, :U —»11_, (), where

z =(z,...,2,). Then for each U e/, the functions f -G" and
(97 ,...,9”)
W (x,2) = w o (x,0" (x,2) ——(X,2)
1si1<Z<ik§n e 8(21,...,Zk)
are both constructible functions on u, and in the case that f and all the w,_ , are

subanalytic, the ' and f o-GY also are. Hence, Theorem (5.3.44) applies
LC(f oGY,|w” |,IT, (U)). The proposition now follows relatively easily from this and from

the fact that
LC(f ||, w|,,T1,(U)) = LC(f G | |1, (U))
foreach U eus.
Theorem (5.3.22)[190]: If f ec(D) for a subanalytic set D c R™ and E =I1,, (D), then
there exists g eC(E) such that
{xeE:f(x,y)=0forally eD, }={x €E :g(x)=0}.

The parameterized rectilinearization theorem requires some additional terminology to
state. For any sets AcR™" and BcR™ , we call a map f =(f,,...f,,,):B >A
ananalytic isomorphism over R™if f is a bijection, f and f ~* are both analytic, and
f.(x,z)=x,,...f (x,z)=x,,where z =(z,,...,z,) .

For | €{0,...,d}, we say that a set B c R™ is I-rectilinear over R™ if B is a cell over
R™such that for each x [T, (B), the fiber B, is an open subset of (0,1)" of the form

B, =T1,(B,)x(0,)"",
where the closure of [1,(B,) is a compact subset of (0,1] . When B c R™ is I-rectilinear
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over R™, we call a function u on B an I-rectilinear unit if it may written in the form
u=U o4, where ¢:B —(0,0)"*" is a bounded function of the form

(X ,z)=(cl(x)l_l—[z;1’J eosCy (x)l_l_[zj”“" ,z|+1,...,sz (26)

for some positively-valued analytic subanalytic functions c; and rational numbers ~, ;,
and where U is a positively-valued analytic function on the closure of the range of « .
Proof. Let f ec(D) for a subanalytic set DcR™ , and put E=11_(D) . Write
V ={x eE :f (x,y)=0forally eD_}. We proceed by induction on n.

First suppose that n=1. By Corollary (5.3.10) we may fix a finite partition A of D
into cells over R™ such that the restriction of f to A is analytic for each A €.4. We claim
that for each A € A there exists g, e C(IT, (A)) such that

X eIl (A):f (x,y)=0forally eA }={x €I1,(A):g,(x) =0}.
The theorem (with n =1) follows from the claim, for then

v ={er:Z(g;(x»2:o},

AecA

where g, :E — R is the extension of g, by 0 on E\IT_(A). To show the claim, fix A e A
. We may assume that A is open over R™, else the claim is trivial. Since f (x,-) is
analyticon A, foreach x I1_(A), and since f |, is definable in the expansion of the real
field by all restricted analytic functions and the exponential function, which is o-minimal
(see [198], or [195]), it follows that we may fix a positive integer N such that for each
x eIl _(A), f (x,y)=0 for all y eA_if and only if there exist distinct y,,....y, €A, such
that f (x,y,)=---=f (x,y,)=0. So fix subanalytic functions &,....&, :T1_(A) >R whose
graphs are disjoint subsets of A. Then the claim holds for the function

0,00 =X (F (6,5 0O

This establishes the theorem when n =1.
Now suppose that n >1, and inductively assume the theorem holds with k in place of n
for each k <n. The setv is defined by the formula

(x eE)AVYy eR"((x,y)eD —>f (x,y)=0).
Applying the induction hypothesis twice shows that this formula is equivalent to

(X eE)AVY, eR((x,y,) eIl (D) —>h(x,y,)=0)
for some h eC(11, (D)), which in turn is equivalent to
(x eE)A(9(x)=0)

for some geC(E). ThusV ={x €E :g(x) =0}.
Definition (5.3.23)[190]: Consider | €{0,...,n} and a rational monomial map ¢ on B
over R™, where B c R™". We say that « is I-rectilinear over R™ if B is I-rectilinear over
R™ (as defined prior to Theorem (5.3.32)) and if ¢ is of the form

B0OGY) = (C0O)Y ey COY I Y e V)
for some positively-valued analytic subanalytic functions c,,...,c, on I1_(B) and tuples
Y-y, N Q. We say that set B, or a rational monomial map v on B over R", is

rectilinear over R™ to mean that it is I-rectilinear over R™ for some I.
Definition (5.3.24)[190]: For a subanalytic set D c R™*", an open partition of D over R"
is a finite family A of disjoint subanalytic subsets of D that are open over R™ and are

( ]
| 141 )



such that dim(D \UA), <n forall x eI1_(D).
The following lemma of one-variable calculus, and its corollary, are apparent.
Lemma (5.3.25)[190]: Let <R and g >0. Then the function t —t“(logt)” is
1. integrable on (0,1) if and only if a>-1;
2. bounded on (0,1) ifand only if >0 or a=p4=0.
Corollary (5.3.26)[190]: Suppose that AcR" is I-rectilinear over R°, and let
a=(a,....a,)eR" and g=(A,....5,) €[0,%)". Then the function y >y “|logy [’ is
1. integrable on A ifand only if forall i e{l +1,...,n}, o >-1;
2. bounded on A ifand only if forall i e{l +1,....,n}, ¢, >0 Or o =3 =0.
Note that if A c R™™" is I-rectilinear over R™, then by applying Corollary (5.3.26) to each
of the fibers A , we see that y — y”‘|logy|ﬁ Is integrable on A either for all x eI1,_(A) or
for no x eI1, (A), according to whether the condition given in clause 1 of the corollary
holds; and likewise for boundedness and clause 2.
Lemma (5.3.27)[190]: Let A cR" be I-rectilinear over R°, and let a =(«,,...,a,) eR".
1. If {y“:y eA} is bounded, then ¢, ,,...,a, >0.
2. Let pecQ and B ={(y,z)eAxR:a(y)<z <1}, where 0<a(y)<1 for all y eA. If
{y“z”:(y,z)eB} is bounded, then ¢, ,,...,a, >0.
Proof. Statement 1 is clear. Statement 2 follows from Statement 1 because {y“:y A} is
in the closure of the set {y“z”:(y,z)eB}, so {y“:y €A} is bounded if {y“z”:(y,z)eB}
is bounded.
The following lemma is apparent.
Lemma (5.3.28)[190]: Let ¢:A — R be a basic rational monomial map over R™, where
AcCR™ and ¢(x,y)=c(x)y“*.
1. If A is l-rectilinear over R™ and aeQ xN""', then c(x)y%" is bounded on
1., (A),and ¢ isa (c(x)y%",y,,...,y,) -function.
2. Let jefl,...,n}, and put y'=(y_.,y.;) and o'=(a,a;) . If the closure of
{y, :(x,y) eA} is contained in (0,1], then c(x)(y")* is bounded on A, and ¢ is a
(x)(y"”,y;)-function.
The proof of Proposition (5.3.31) will use two types of constructions, called pullback
and pushforward constructions, to achieve the desired pullback and pushforward
properties.

Definition (5.3.29)[190]: Suppose we are given a basic rational monomial map
¢:A >R over R", where AcR™" is a cell over R™. A pullback construction for ¢

consists of a subanalytic map F:A —B and a basic rational monomial map +:B — R"
over R™, diagrammed as follows,

BowEn 4
)
R_:\" R;’u

where B c R™" is a cell over R™, F:B —F(B) is an analytic isomorphism over R",
det&- and the components of F are ¢ -prepared, and - F is a ¢ -function.

Observe that these properties ensure that if h is any o-prepared function, then hoF is
Y -prepared.
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We will use the six types of pullback constructions listed below, where
o (A)={(x,y ) (X y ) el (A)a (X, y ) <y <bj(x,y )} (27)
for each j e{...,n}. When defining F below, we only specify its action on coordinates
on which it acts nontrivially.
1. Adjustment: This means that F is the identity map (but ¢ may be different from o).
2. Restriction: This means that F is an inclusion map and «=¢|, .
3. Power Substitution in y,: This means that F sends y, >y for some positive integer
p,and ¢ =poF.
4. Blowup in y;: This means that we are assuming that _; is prepared over R™*, that F
sends y, —y;b;(x,y_;), and that v is the pullback of & by the transformation sending
y; —y;b(x)y?, where b,(x,y_)=b(x)yfu(x,y_)is the ¢ -prepared form of b, and 5 is
the natural extension of ¢ to IT_(A)x(0,)".
5. Flip in y,: This means we are assuming that ¢ is prepared over R™*'*, that the closure
of {y, :(x,y) €A} is contained in (0,1], that b, =1, and that ¢ is of the form
e(X,Y) =(po; (X, Y)Y e (XY Y)) (28)
F is the transformation sending y, —1-y,, and v is defined by the formula on the right

side of (28), but on B rather than on A.
6. Swap iny, and y,: This means that F is the transformation sending (y;.y;)—(y;.y;)
and « = o F, provided that the resulting set B is still a cell over R™.
Definition (5.3.30)[190]: Suppose that we are given a basic rational monomial map
¢:B - R" over R™ and a subanalytic analytic isomorphism F:B —A over R™, where
A,B cR™". A pushforward construction for v and F is a basic rational monomial map
¢:A —>R" over R", diagrammed as follows,

B

4
¥ i
RY RM,
where the components of F* are y-prepared and o F™ is a -function.
Observe that these properties ensure that if h is any v-prepared function, then hoF™
IS p-prepared.
If F:B —A is a map from any one of the six types of pullback constructions described
above, v':B’—>R" is a basic rational monomial map over R™ with B'cB , and
A'=F(B"), then the maps F|,:B’—A’ and ¢' have an obvious pushforward construction
¢':A’>R" , provided that when F is a flip in y,, the map ¢ is of the form
wl(x1y):(w;j(x’y<j)1yj’w;j(x1y<j’y>j))'
The main purpose of this section is to show the following proposition.
Proposition (5.3.31)[190]: Let F be a finite set of subanalytic functions on a
subanalytic set D c R™". Then there exists an open partition A of D over R™ such that
for each A € A there exists a subanalytic analytic isomorphism F:B —A over R™ with
B c R™", and there exist rational monomial maps ¢ on A and » on B over R™ with the
following properties.
1. Pullback property: Each function in {f -F}, . u{detZ} is ¢ -prepared, and ¢ is
rectilinear over R™.
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2. Pushforward property: The components of F™ are ¢-prepared, and »oF ™ IS a -

function.

The purpose of the pushforward property is that it ensures that for each subanalytic

function h:B - R that is ¢ -prepared, hoF™ is ¢ -prepared. This proposition is
essentially Theorem (5.3.32), the only differences being that the theorem does not
mention the pushforward property and that the theorem deals with an actual partition of
D rather than just an open partition of D over R™. In the proposition we use open
partitions over R", rather than actual partitions, because it allows the proof of the
proposition to be stated somewhat more simply since we may ignore subsets of D whose
fibers over R™ have dimension less than n, and doing so is of no loss to the study of L°-
spaceson D, .
Proof. Let 7 be a finite set of subanalytic functions on D cR™". Apply Proposition
(5.3.9) to £, and focus on one rational monomial map ¢:A —R" over R™ that this gives
for which A is open over R™. Thus ¢ is prepared, and each function in F restricts to a -
prepared function on A. Let ¢ be the center of ». We will first construct finitely many
sequences of maps diagrammed as follows,

=1
F 18

B=A — A fe Ay Ag=Ag——— A
J =y j k=11 lg_m [ PO =y lp (29)
BN = RMk R;Uk_l R‘”l RM” — RM RM

where for each i e{L,....k} the maps F, and (! are a pullback construction for '™ of
one of the six types listed above, the map v is rectilinear over R™, and the ranges of the
maps F:B —A given by F=T,"-F,----ocF,_ for all such sequences (29) constructed form
an open partition of A over R" . Doing this shows the pullback property. We will
construct (29) to also have the following property.
Foreach j e{t,...,n}, at most one map F, in(29)isaflipiny,. (30)
Assuming we can construct (29) as such, to show the pushforward property it
suffices to define A’=F(B), to inductively define B, =B and B, ,=F (B,) for each
i e{L....k}, and to show that we can construct maps diagrammed as follows,

ly, o

Fi. By ¢ gy ,
D= DB By s By By A
J@"”=v Jvl*"] I«.:'“J la["l Jw’=u=“”ol"e‘,g (31)
R'N = RN“' B Nk-1 RM RNo R;’U o RN() ,

where for each i e{L,....k}, ¥ is a pushforward construction for F, |, : B, - B, jand ¢!
. (Thus the map »:A >R in the statement of the theorem is being denoted by
¢ :A’—>R" here in the proof.) These pushforward constructions will be possible
because if a map F, in (29) is aflip iny,, we can ensure that ¢! is of the form (28).
Indeed, from among the six types of pullback and pushforward constructions we use,
only blowups in one of the variables y ...,y can possibly destroy the form (28). So (30)
imply that, in fact, all the maps ,'1,...,o™* and ™! — ! are of the form (28).

So it remains to construct the sequences (29). This is done by an induction, and to
simplify notation we will write ¢:A —R" instead of the more cumber some
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oA R, (So we are now assuming that ¢ is basic.) Let d e{L,...,n}, and inductively
assume that ¢_, is I-rectilinear over R™ for some I €{0,...,d -1} and that ¢ is prepared

over R™*, Thus A is a cell over R, so we use the notation (27). To complete the
construction, it suffices to show that after taking an open partition of A over R™ and
pulling back », we may reduce to the case that ¢_, is rectilinear and , is prepared over

Rerd )

By pulling back by a blowup in y, and then by power substitutions in y, ,,...,y,, and
using Lemma (5.3.27), we may assume that b, =1 and that all the powers of y, ,,....y,
occurring in the components of ¢ are natural numbers, and when a, >0, that all the
powers of y, ,,...,y,, In the monomials occurring outside the units in the ,_, -prepared
forms of a, and 1-a, are also natural numbers. There are two cases that can be handled
very easily.

Case 1: a, =0.
In this case, 11, (A) is I-rectilinear, so we are done after using Lemma (5.3.31.1) to
adjust .
Case 2: The closure of {y, :(x,y) A} is contained in (0,1].
In this case, use Lemma (5.3.31.2) to adjust , to assume that ¢ is of the form (28),
and then apply a flip in y, to reduce to Case 1.
(Note that if we reduce to either of these two cases, we need not require that b, =1 or that
the requisite powers of y,,,...,y, are natural numbers, because the blowup and power
substitutions mentioned just prior to these cases can be applied if needed.) So assume
that a, >0, and write
3 (X, Y o) =ax)y Lu(x,y 4)
for some analytic subanalytic function 4, tuple of rational numbers a =(«,,...,,_,), and
¢, -unit u. We proceed by induction on |supp(«,,)|, the cardinality of the set supp(.,).

Suppose that supp(«.,) is empty, and write y* instead of y? . Fix a constant C that
Is greater than the supremum of the range of u. Construct a partition of 11__, (A) into cells
over R™ compatible with the condition &(x)y2C =1. By considering the restriction of ¢
to An(B xR"") for each cell B from this partition that is open over R™, we may assume
that either a(x)y%C >1 on A or a(x)y%C <1 on A. If 4(x)y2C >1 on A, then a, is
bounded below by a positive constant, and we are in Case 2. So assume that 4(x)yC <1
on A. Consider the two sets

{(x,y)eAa(x,y )<y, <d(x)ysC}and {(x,y) eA:a(x)ysC <y, <T.

By restricting ¢ to the first set and then pulling back by a blowup in y,, we reduce to
Case 2. By restricting ¢ to the second set and then swapping the coordinates y,, and y,,
we reduce to the case that _, is (I+1)-rectilinear and ¢ is prepared over R™, and we
are done. This completes the proof when supp («.,) is empty.

Now suppose that supp () is nonempty. By pulling back by a swap, we may
assume that I +1esupp(e,,) . By pulling back by the power substitution y, >y, we
may also assume that «,,, =1. Let y’ and o’ be the tuples indexed by {1,....d -3\{l +1}
that are respectively obtained from y_, and « by omitting their (I+1)-th components, and
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write y_, =(y"y,.,); thus o, =, ,) and &, =, ,,. FiXx @ constant C >1 that is greater
than the supremum of the range of a(x)(y")“u(x,y’y,,,); this may be done because
ax)(y)“y,,, is bounded (since it equals a,(x,y_)/u(x,y,) ) and y,, may freely
approach 1 independently of the other variables. Thus
a (X, Yy ) =ax)(y ,)a,ylﬂu(x YY) <CY g
on A. Consider the three sets,
{x,y)eA:C<y,,<T}
{(X1y)€A:O<y|+1<Cil anda(x,y "y, ) <Yq <Cy,.}
and
{(x,y)eA:0<y,,<CtandCy, <y, <1}.

By restricting ¢ to the first set, we reduce to the case that ¢_, is (I+1)-rectilinear, and we
are done by the induction hypothesis since |supp(c.,,,)|<[supp(e,)|. If we restrict ¢ to
either the second or third set, we may pull back by a blowup in y, , to assume that C =1.
On the second set, we may then pull back by a blowup in y,, and we are done by the
induction hypothesis since [supp(c, )| <|supp(e.,)|. The third set can also be written as
{(x,y)eA:0<y,<10<y,,<Y,}, SO we may reduce to Case 1 by swapping the
coordinates y, , and v, .

We use the proposition above to show Theorem (5.3.32) and also Theorem (5.3.44)
when f and . are assumed to be subanalytic.
Theorem (5.3.32)[190]: Let F be a finite set of subanalytic functions on a subanalytic
set D cR™". Then there exists a finite partition A of D into subanalytic sets such that
for each A € A there exist d €{0,...,n}, | €{0,...,d} and a subanalytic map F:B — A such
that F is an analytic isomorphism over R™ ,the set B c R™ is I-rectilinear over R™, and
each function g in the set ¢ defined by

{f °F},_,, ifd <n,
:{{f oF} ., U{detZ}, ifd =n,

may be written in the form
d
g(x,z):h(x)[Hz;j]u(x,z) (32)
j=1

on B for some analytic subanalytic function h, rational numbers r,, and I-rectilinear unit
u.
Note that if one desires, one can take the ~, ; in (26) and the r; in (32) to all be integers.
To do this, simply pull back each map F in Theorem (5.3.32) by a map,
(x,z) (x,z,%,...,z ) for a suitable choice of positive integers k,,...k, .

Proof. Let F be a finite set of subanalytic functions on a subanalytic set D c R"™". We
proceed by induction on n. The base case of n =0 is trivial, so assume that n >0 and that
the theorem holds with k in place of n for all k <n. Let A be the open partition of D
over R™ given by applying Proposition (5.3.31) to F, and let D'=U.A. Thus the theorem
holds for F|,.. It follows from the induction hypothesis that the theorem also holds for
Flow » Since D\D’' may be partitioned into cells over R™, and each of these cells

projects via an analytic isomorphism into R™* for some d <n.
Notation (5.3.33)[190]: For any set E c R™, let . denote the ring of all analytic germs
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on E, and let o_[y] denote the ring of all polynomials in y =(y,,...,y,) with coefficients
in o, . Each member of &_.[y]is an equivalence class of functions defined on
neighborhoods of E xR" in R™", and hence defines a function on E xR". For each
F c 2.[y], define the variety of 7 by

V(F)={(x,y)eE xR":f (x,y)=0forallf € F}.

For each x eR", the ring o, is Noetherian, so &,[y] is as well. This implies that

when E is compact, the varieties of o_[y] form the collection of closed subsets of a
Noetherian topological space on E xR"; in other words, for any F c o_[y] there exists a
finite 7' c F such that V(F") =V(F).
Notation (5.3.34)[190]: We partially order N“ by defining « < g if and only if o, < 3,
for all jefl....k}, where a=(a,....a) and g=(g,....5) . For any aeN* write
[e]={BeN“:B=>d}, and for any A cN* write [A]=( ] _ [«] for the upward closure of A.
If A cN* is nonempty, define min A to be the set of minimal members of A, and define
mind=0.

Dickson’s lemma states that min A is finite for every A cN*. The following is a

parameterized version of Dickson’s lemma.
Lemma (5.3.35)[190]: Let E cR™ be compact and {f,} . c @.[y]. Then the set

J min{aeN“:f (x,y)=0} (33)

(x,y)eExR"
is finite.
Proof. The proof is by induction on k, with the base case of k =0 being trivial. For the
inductive step, use topological Noetherianity to fix peN* such that

V{f }..5) =V, } ). Then (33) is finite because it is contained in

OO( U min{aeN”:fa(x,y);tO,aj:j}], (34)

i=1j=0\ (x,y)eExR"
and each of the sets in parenthesis in (34) is finite by the induction hypothesis.
Lemma (5.3.36)[190]: Let M cN* be finite. Then there exists a finite partition of
[M 1\ M that is compatible with {[«]},.,, and is such that each member of the partition
has a unique minimal member.
Proof. Define e=(¢,...,) by ¢ =max{e, :a M} for each i e{L,....,k}. Let the partition

of (M ]\ M consist of all the singletons {«} with ae(HL[O,ei ])m[M 1\M and all sets of
the form

{aeNk;(/\aixi)A( A a:ﬁj)},

ieN jell kAN )

Lemma (5.3.37)[190]: Let E xR™ be compact, and suppose that f is represented by a
convergent power series

fx,y,z)=> f.(x,y)z*

aeN¥

on E xR" x[0,1] , where f e @_[y] for each « e N*. Then we may write
f(x,y,z)= D 2%, (x,y)+ D 27 4(x,y,z) (35)

aeM @ peM ™

on ExR"x[0,1]°, where the sets M* ,M™ cN“ are finite and disjoint, each f, with
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LM is represented by a subseries of Zazﬂfa(x,y)z «# and for each (x,y)eE xR"

and each pem™, if f (x,y,z)=0 for some z [0,1], then f_(x,y)=0 for some aeM“
with a < g.

Proof. Let M be the set defined in (33), let S be the partition of [M “]\ M given by
Lemma (5.3.36), and let M ™ be the set of minimal members of the sets in S. For each
BeM™, write S, for the unique member of § whose minimal member is g, and define

fﬁ,(x,y,z)=zaesﬂfa(x,y)z“‘ﬂ. Then (35) holds. Consider peM™ and (x,y)eE xR"

such that f ,(x,y,z) =0 for some z €[0,1]°. Then f_(x,y)=0 for some veS,. Fix aeM®
such that f_ (x,y)=0 and a<~ . Thus S,N[a] is nonempty, so S,cC[a] by the
compatibility property of s, and hence o< 5.
This section shows the following proposition, which is a preparation result for
constructible functions in transformed coordinates on rectilinear sets.
Proposition (5.3.38)[190]: Let F be a finite set of constructible functions on a
subanalytic set D c R™". There exists an open partition A of D over R™ such that for
each A € A there exist a subanalytic analytic isomorphism F =(F,...,F,..):B —>A over
R™, rational monomial maps » on A and ¥ on B over R™, and I e{L...,n} with the
following properties.

1. Pullback property: The map v is I-rectilinear over R™, det<- is ¢ -prepared, and
for every f e 7 we may write f oF in the form

f oF(x,y)=Z(logy>|){Z yoif e OGya)+ D yl.fr,s(x,y)J (36)

seS I'ERSCr I’ERSHC

on B, where the sets S cN"* and R{",R* cZ"* are finite with R NR/™ =0 for each s,

and each function f,, may be written as a finite sum

f (X, ya)=>.0,6)y5(logy ) h(x,y,), ifreRS,
j

37)
fa(y)=29;(x)y 5 (logy )" h(x,y),  ifreRy,
J
where g, eC(I1,,(A)), o; €Z', p; eN', h, is either a v, -function or a y-function
according to whether r isin R or R, and the following holds:
{ Foreach seS, r'eR™ and (x,y,)ell, . (B),if f. . (x,y,,y.,)=0 (38)
for some y_, e(0,)"", then f, (x,y_)=0 for some r eR{" with r <r’.

2. Pushforward property: The components of F™ are y-prepared, and ¢ F™ is
a ¢-function.
The superscripts “cr” and “nc” in the notation RS and R/ stand for critical and
noncritical. We will use (38) to see that the L" -classes of f (x,-) are determined by which
of the terms f,  (x,) with r eR are identically zero, so in this sense these are the

“critical” terms.
In the degenerate case of | =n, (36) and (37) simply mean that

foF(,y)=>0,()y “ (logy )’ h;(x,y)

for some constructible functions g, , tuples «; eZ" and g, eN", and v -functions h,. To
see this, note that if f oF isnonzeroand | =n, then S =N°={0} and R{",R}* c Z° ={0}
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with RS NR* =0, 50 RS =0 and R;® =0 by (38).

Proof. For each f eF write f (x,y):zifi(x,y)HJIogfi’j(x,y) for finitely many
subanalytic functions f, =D -»R and f, ;:D —(0,«0) . Apply Proposition (5.3.31) to
U, _{fi.f. ;3 , and focus on one set A in the open partition of D over R™ that this gives,

along with its associated maps F:B —A, ¢ on A, and ¢ on B, where v is l|-rectilinear
over R™. Thus detZ is ¢-prepared, and we may write

foF(x,y)=2a()y "y (x,y)] Jloga, ; (x)y “'u; ;(x.y)

on B for some analytic subanalytic functions a, and a, ;, tuples «; and «;; in Q", and ¢ -
units u; and v, ;. By expanding the logarithms and distributing, we may rewrite this in

the form
foF(x.y)=20;(x)y“(logy)”h (x,y) (39)

for some constructible functions g;, tuples ¢, eQ" and B eN", and ¢-functions h, . By
pulling back by power substitutions in y, we may assume that «, € Z" for each «, in (39).
Write h (x,y)=H, (2, (x,y,).y.,) for some analytic function H, (X ,y_) on the closure of
the image of ¢ .

We are done if I =n, so assume that | <n and work by induction on n—1. Since the
closure of the range of ¢ is compact, we may fix >0 such that each function H, is

given by a single convergent power series in y_, with analytic coefficients in (X ,y_,),
say
Hi(X,y>|): Z Hi,w(X )yll , (40)

for all X in the closure of the range of ¢, and all y_, in [0,e]"". For each j e{l +1,...,n},
by restricting v to {(x,y)eB :y, >} and swapping the coordinates y,, and y,, we may
reduce to the case that « is (I+1)-rectilinear, in which case we are done by our induction
on n—I. So it suffices to restrict v to B n(R™ x(0,¢)""). After pulling back by the maps
sending y,; ey, for each je{l+1...n}, and again expanding the logarithms
logy ,e=logy; +loge and distributing, we may assume that e=1. We are now done
pulling back v. The pushforward property of the proposition we are showing follows
from the fact that , satisfies the pushforward property of Proposition (5.3.31), because
we have only applied some very simple pullback constructions to the map « originally

given by Proposition (5.3.31). It remains to show that we can express f «F as a sum in
the desired form.
By grouping terms in (39) according to like powers of logy , , factoring out suitable

monomials in y, and absorbing any remaining monomials in y_, with nonnegative
powers inside of y-functions, we may rewrite (39) in the form

foF(x,y)=>(logy,)’y* > g,(x)ys (ogy )" h,(x,y) (41)

seS jeds
for some finite s cN"" and finite index sets J., constructible functions g, , tuples &, e Z"
and o, 8, eN', and ¢-functions h, , which we still write as h, =H -4 with H, written as
a power series (40). For each s €S write
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G, oW (x,y)=>.0,(x)y5 (logy )" h (x,y),

jeds

where
‘Ils(x’y):(wsl(xiygl)’logysl’(gj(x))jer’y)i
G (XY ,Z,y)=>Z,yaY "H (X,y.),
jels
with 7, =(z,),,, andY =(,,...Y,). By computing
Z(iji?v 7Y H (X )yz.]= > [szy:’:v “H; (X )Jy;'., (42)
jeds yeN! yeN"\ jels
we may write
GS(X ’Y ’Zs1y>|): z Gs,'y(x ’Y 1Zs1yél)y>vl
'yeNrH
with each

G, (XY .Z,y4)= Zijg‘Y ﬁme(X).

jed;
Note that each G, _ is a polynomial in (v ,Z,y_) with analytic coefficients in X , and
X ranges over a compact set. So we may apply Lemma (5.3.40) to get
G,(X Y, Z,y)= D yIG, (XY ,Z,y)+ X yIGIE(X Y ,Z,,y),

Y ~—pNCc
yeRs yeRs

where RS and R are disjoint subsets of N, each G/° is an analytic function
represented by a subseries of > y’°G (XY ,Z,y,), and for each choice of

(XY.,Z,y,)and v eR”, if GX.(X Y ,Z,y,.y,)=0 for some y  [01]"", then there

S ]

exists yeR." suchthat G, (XY ,Z.,y,)=0 and v<~'. Write

f oF(x,y)=Z(logy>|)Sy"'S[Z YIG,. oW (X, Yy )+ D, y;’.Gs",iO\Ifs(x.y)}, (43)

seS yeRg" yeRy*

where ¥, is the map obtained from ¥, by omitting its components y_, . By distributing
each y* and expressing each function G° as a sum of terms indexed by jeJ,, via a
computation analogous to what was done in (42) for G, (but going from right to left
rather than from left to right), we see that (43) expresses f oF in the desired form.

We begin by fixing some notation to describe a situation that will be encountered
throughout the section.
Notation (5.3.39)[190]: Consider a finite set F of constructible functions on a
subanalytic set D cR™", and let 4 be an open partition of D over R™ obtained by
applying Proposition 6.1 to F. Focus on one A e.4, along with its associated maps
F=(F,...F,.,):B—>A, ponA,and v on B, where ¢ is |-rectilinear over R", as in the
statement of the proposition. Write (x,y) for the coordinates on A with center 9, where
6 is the center of ¢. Write

det%(x,y)=H (x)y'U(x,y)

on B for some analytic subanalytic function H, tuple v=(y,,...,7,) in Q", and y-unit U.
For each f e 7 write Eq. (36) as

foF(,y)= > frs(x,y)

(r,s)eA(f \,A)

on B, where
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A”(f ,A)={(r,s):seS andr eR/'},
A™(f ,A)={(r,s):seS andr eR},
A(f ,A)=A"(F ,A)UA™(f ,A),
¢ rvs(x’y)z{YL (logy.,)°f, s (X,y4), ff (r,s) e A%(f ,A),
yi(logy,, ). (x,y), if(r;s)eA™(f ,A),
for the sets s, R and R.° and the functions f _ defined from f and A in Proposition
(5.3.38). Foreach f e+ and x eI1_(A), define
AT (F L A X)={(r,s)eA”(f ,A):f (X,y,)=0forsomey_ eI, (B,)},
A"(F A x)={(r,s)eA™(f ,A):f (x,y)=#0forsomey eB,},
A(f A X)=A"(f A, X)UA™( ,A,X),
Q(fF ,A,x)={y, €I1,(B,):f, . (x,y,) =0 forall (r,s) e A(f ,A,x)}.
For each x eIT_(A) and i {l +1,...,n}, define
r(f ,Ax)=inf{r, : (r,s) e A" (f ,A,x)},
5, (f ,A,x)=sup{s, : (r,s)eA”(f ,x)andr, =T, (f ,A,X)},
under the convention that 7 (f ,A,x)=o and s, (f ,A,x)=0 when A“(f ,A,x) is empty.
Remarks (5.3.40)[190]. Consider the situation described in Notation (5.3.39), and let

feF.
I. Foreach x eIT_(A), the set Q(f ,A,x) is dense and open in 1T, (B,).

Ii. For each x eIl (A), the A"(f ,A,x) is empty if and only if f (x,y)=0 for all
y eA, .

Proof. i. This follows from the fact that for each x eIT,_ (A) and (r,s)eA”(f ,A,x),

f..(x,?) is a nonzero analytic function on 11,(B, ), and IT,(B,) is connected and open in

R'.

I. If A(f ,A,x) is empty, then (38) implies that f (x,-) is identically zero on A . If
A% (f ,A,x) is nonempty, then the following lemma implies that f (x,-) is not identically
zeroon A .

Lemma (5.3.41)[190]: Consider the situation described in Notation (5.3.39). Fix f e F,

ie{l +1,...,n}, x eIl _(A) with A"(f,A,x)=0, and y_ eQ(f ,Ax) . For any tuple
Yo =i Ya), Write y'=(yj)je{l+1,...,n}\{i} and y_, =(y"y;). Then the limit
i foF(X,y)
vi=0y A (Jogy )7 A%
exists for all y'<(0,1)""'*, and the set
{y'<(0,1)""'*:(44) is nonzero} (45)
is dense and open in (0,1)""'*.
Proof. Define
A (F A X)={(r,s)eA( ,Ax):r,=r(f ,x)ands, =5 (f ,x)},
AT(E A X)=A (F LA X)NAT(f ,A),
A A X)=A (F A X)NA(F A).
It follows from (38) that for each (r,s) e A(f ,A,x), either r, >F (f ,A,x),0r r, =F (f ,A,x)
and s, <5 (f ,A,x). Therefore the limit (44) exists and equals g(y'), where

(44)

( ]
| 151 )



g:(0,)""* >R is the analytic function defined by
gly)= D>, () (ogy Yt (x,y.)+ D (y) (logy ) f, (x,y4,y0).

(rs)eaf"(f ,AX) (r:s)eA(f A X)
So to show that (45) is dense and open in (0,1)""*, it suffices to show that g is not
identically zero. To do that we will show that go» is not identically zero, where
n:Ax(0,1) — (0,)""* is defined by

n(\t) =(t . )je{l 1.0}
for some suitably chosen open set A c (0,00)"" ™.
Note that
genht)= X N (logt)"f, (x,y.)

(r.s)eA{ (f ,Ax)

+ > N (logt) f, (X, y 4 m(Nt),0).

(r,s)eA(f ,Ax)

We may choose A so that there exist 7 e{r':(r,s)eA”(f ,A,x)} and c >0 such that for
all (r,s)eA”(f ,A,x) with r'=7,

N-T'+c<X-r" forall xeA. (46)
By (38), for each (r,s) e A™(f ,A,x) there exists p such that (p,s) e A™(f ,A,x) and p<r
(and necessarily p=r), so X-p'<X-r' for all xe A. Therefore by shrinking Aand ¢, we
can ensure that (46) also holds for all (r,s)e A (f ,A,x). So by defining
((r,s)eA’(f ,Ax)andr' =17},

=51,

§' = max{[s’
AL AX)={(r,s)eAT(f ,Ax)ir'=T"and

we see that as t tends to 0, gon(\t) is asymptotic with
tw(logt)?[ > XS’fm(x,yq)J,

(rs)eais (f Ax)

SI

which is not identically zero because the sum in parentheses is a nonzero polynomial in
AL
To show the next lemma, we need the following inequality:

(X, + X, ) <xP +-+x2 i x,...,x, >0 and 0<p<1. (47)
The inequality (47) can be verified when k =2 by considering f (t)=(x,+t)" and
gt)=x?+t? , where x,>0 and 0<p<1, and then showing that f (0)=g(0) and
f'(t)<g’(t) forall t >0. The general case then follows by induction on k.
Lemma (5.3.42)[190]: Let » be a positive measure on a set Y, let {f.},_, and {g,},_, be
finite families of real-valued » -measurable functions on v , and let p,gq>0. Put
M =max{p,q}. Then

i i (i j)Z;XJIY |fi|p‘gi‘qdy if M <1,
J.Y ;h Z}:gj dv< p q " y |
(i,n;xJ(IY il lo| d”) , if M>1,

Proof. By symmetry we may assume that p >q . Then

,[Y 2.0 129

iel jed

p

s (zn |jp (;\gj \jqdy [ Hz“ U@gj U‘WJ d
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IA

iel jed

p
IY ( Z |fi|‘gj‘q/pJ dv,
(i,j)el xJ

2 jY|fi|p‘gj‘qd7/, if p<1,

(i,j)elxd

) [(Zlfi IJ(Z\QJ- \‘”"J]pdy by (7.4),

<

Nz inrafa) ) ieen

(i,j)elxd
with the last inequality following from (47) when p <1 and from the triangle inequality
for L°(») when p>1.
Lemma (5.3.43)[190]: Consider the situation described in Notation (5.3.39), and
suppose that f ,ueF, g>0 and x I1_(A). Then

LC(f | el |4, x) M (0,00) = ﬁ{p €(0,00): i (f A X)p +T (1A, X)g +7; > -1}

i=l+1

And, woeLC(f |, u,,x) If and only if either A*(u,A,x) IS empty or else for each
i el +1,...,n}, F(f,A,x)>00r F(f ,A,x)=5(f ,A,x)=0.
Proof. Let x IT,_(A). The conclusion is clear from Remark (5.3.42.2) when either
A"(f ,A,x) Or A”(u,A,x) IS empty, for then LC(f |i°,x)=(0,0]and either (f ,A,x) =00
for all i e{l +1,...,n} (Wwhen A“(f ,A,x)is empty), or (u,A,x)=cw for all i e{l +1,...,n}
(when A“(i,A,x) IS empty). SO we assume that A“(f ,A,x) and A”(un,A,x) are both
nonempty. Let p e(0,).
Suppose that

F(FLAX)P +F (A X+, > -1 (48)

forall i e{l +1,...,n}. Then
Lp+rg+qy >-1

for all ief{l +1...,n}, (r,s)eA(f,A,x) and (r';s")eA(u,Ax) . By applying Lemma
(5.3.42) to the sums f oF :Z(r,5>f rs and poF :Z(r’s)ﬂrys using the measure defined

from the Jacobian of F in y, and then by applying Corollary (5.3.26), we see that
P & LC(F [xluf'[a %)

Conversely, suppose that p e LC(f |, J¢"|,,x), and let i e{l +1,...,n}. Fubini’s theorem
and Remark (5.3.42.1) imply that there exist y_ e Q(f ,A,x)NQ(u,A,x) and y’ in the set
(45) such that

oF
y > f oF(x,y)Iplqu(x,y)l“deta(x,y)

Is integrable on (0,1). So (48) holds by Lemmas (5.3.25) and (5.3.41).
The L® case is similar. Indeed, suppose that T (f,A,x)>0 or

r(f,Ax)=5(,Ax)=0 for all ie{l+1...n} . Then r>0 or r=s,=0 for all
i e{l +1,...,n} and (r,s) e A(f ,A,x). So applying Corollary (5.3.26) to each term of the
sum f oF =z(r’5)f s Shows that f oF(x,) is bounded on B and hence

oo e LC(f |Av|/~b|q |A!X) .

X ]
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Conversely, suppose that e LC(f |, |ul*|,,x). Then f «F(x,-) is bounded on B, . So
for each i e{l +1,...,n} we may choose y_ Q(f ,A,x) and y’ in the set (45), and thereby
conclude that 7 (f ,A,x)>0 or 7 (f ,A,x) =5, (f ,A,x)=0 by Lemmas (5.3.25) and (5.3.41).
Theorem (5.3.44)[190]: Let q>0 and f,uec(D) for some subanalytic set D cR™™",
and put E=1,(D) and Z={LC(f |4',x):x €E}. Then 7 is a finite set of open
subintervals of (0,oc] with endpoints in (span,{1,q}N[0,x)) U{=c}, and for each 1 7 there
exists g, e C(E) such that

{x €eE:l CLC(f |4, x)}={x €E :g,(x)=0}. (49)
Moreover, if f and x are subanalytic, then each of the functions g, can be taken to be
subanalytic.
Proof. in the subanalytic case. Suppose that q>0 and that f and » are real-valued
subanalytic functions on D c R™". Put E =11, (D) and Z ={LC(f ,| «[',x):x €E}. Apply
Proposition (5.3.31) to F={f,x}. This constructs an open partition A of D over R"

such that for each A € A, there exist a subanalytic analytic isomorphism F:B — A over
R™ and a rectilinear rational monomial map  on B over R™ such that f -F, uoF and

det < are y-prepared.
Focus on one A €A, along with its associated maps F:B —A and ¢ on B, where v
is I-rectilinear over R™. Define v:B —R by

v(x,y)=|ucF(x,y)f

oF
det—(x,y)|.
Y (x y)‘

On B write
foF(x,y)=a(x)y“ux,y),
v(x,y)=b(x)y v(x,y),
for some analytic subanalytic functions a and b , tuples a=(«,....a,)eQ" and
B=(B,...3,) e(span fLg})", and ¢ -units u and v. We may assume that a and b have
constant sign. If a=0 or b =0, let 1, =(0,0]. Otherwise, let 1, be the set consisting of all
p €(0,0) such that o;p+ 3 >-1 for all i e{l +1,....,n}, and also consisting of « if ¢, >0
for all ie{l+1....,n}. Note that 1, is a subinterval of (0,] with endpoints in
(span, {1, q}N[0,0)) U{ec}. Also note that by Corollary (5.3.26),
LC(E 1|4, 11, (A) =LC(F = F v, I, (A)) =T1,,(A) x1,

Now, for each x eE, the set LC(f ,xx) is a subinterval of (0,.0] with endpoints in
(span,{L,q}N[0,0)) U{xc} because it equals the intersection of the sets 1, forall A .4 with
x eI1_(A). This, and the fact that A is finite, also implies that 7 is finite. To finish, let
| €7, and note that {x eE :1 c LC(f , ,x)} equals

{xeE:lI Cl, forall A e Awithx €I1_ (A)},
which is a subanalytic set, and hence is the zero locus of a subanalytic function.

In the constructible case. Let f,ueC(D) for a subanalytic set D cR™", fix q >0,
and write E =I1,(D) . Apply Proposition (5.3.38) to F={f,u}, and use Notation
(5.3.39). We claim that for each A €A, the set

Ty ={LC(F |y |uf"[p,x) 1 x e TT, (A)}

154

——
| —



is a finite set of open subintervals of (0,ec] with endpoints in (span,{1,g}N[0,x)) U{x}, and
that for each I €Z, there exists g,, €C(I1, (A)) such that
{x eIl (A): 1 CLC(f [p )l |a x)}={x €I1,(A):9a, (x) =0}
The claim implies the theorem because for each x <E,
LC(f Juf',x) =[] LC( | lul'larx),

AeA st
x eIl (A)

so the claim shows that 7 is a finite set of open subintervals of (0,o] with endpoints in
(span{1,g}3N[0,)) U{ec}, and that for each 1 7,
{x eE:l CLC(f |i*,x)}={x €E : 1 CLC(f |,,|1d"]4,x) forall A € A withx eIT, (A)}

{X cE:) > (QAJ(X))Z},

AcAJeIpst.
1cJ

where each g, , :E —> R is defined by extending g,, by 0 on E\II, (A).
To show the claim, focus on one A €.A. Lemma (5.3.43) shows that each member of
Z,, is an open subinterval of (0,.c] with endpoints in (span,{1,q}N[0,x)) U{xc}, and that Z,
Is finite because
LC(F [ freffa %) = LCCF [ f1d[a X )
for all x,x"eTII_(A) such that A“(f ,A,x)=A"(f ,A,x") and A*(u,A,x)=A"(u,A,x"). FixX
| € Z,. We may define g,, =0 if | is empty, so assume that | is nonempty. Let a=infI
and b=supl . Lemma (5.3.43) implies that for any x eI1_(A), when the infimum of
LC(f |, "4, x) 1S finite, this infimum is determined by the inequalities (48) for all
i e{l +1,...,n} for which 7 (f ,A,x) is positive; and similarly, when the supremum of
LC(f |, |ul'],,x) 1S finite, this supremum is determined by the inequalities (48) for all
i e{l +1,...,n} for which 7 (f ,A,x) iIs negative. Therefore I c LC(f |, Ju"|,,x) If and only
if each of the following two conditions hold.
1. If 1 n(0,0) is nonempty, then
fo(x,yq)=0 and fg (X, Y 4) =0 forall y, eI, (B,),
for every (r,s)eA”(f ,A) and (r',s’) e A"(n,A) such that for all i e{l +1,...,n},
ra+rg+v, <=1 ifr,>0,
rg++, <-1, ifr, =0,
rb+rg+~ <=1 ifr, <0,
with the understanding that we are allowing computations in the extended real number
system since a or b could be .
2. If o<l , then at least one of the following two conditions hold.
(@) We have
pos(X,y4)=0 forall y, eI1,(B,),
for every (r',s") e A"(u,A).
(b) We have
fr,s(X’ySI)=O for all y, €Il (B,),

for every (r,s) e A“(f ,A) such that for all i €{l +1,...,n}, either r <0, orelse r =0
and s, >0.
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Therefore g,, can be constructed using Theorem (5.3.4).

We now turn our attention to stating and showing the preparation theorem.
Notation (5.3.45)[190]: When considering the situation described in Notation (5.3.39),
we shall now also write G =@G,,...,.G, .. ):A—B for the inverse of F, and for each

j e{l +1,...,n} write
Gy (,¥) =H, ()Y"V; (x,y)
on A, where H, is an analytic subanalytic function, g, eQ", and v, is a -unit.
Lemma (5.3.46)[190]: Consider the situation described in Notations (5.3.39) and
(5.3.45). Let f eF and (r,s)eA(f ,A), where r=(r, ,,...,r,) and s =(s,,,....s,). We may
express f s oG inthe form
frsoG(x,y)= D, T(x,y) (50)

keK, ¢ (f ,A)

on A, where K, (f,A) is afinite index set and for each k eK,  (f ,A),

T (6.Y) =05 ()G, (. Y)" (ﬁ(loglylﬁi ) Juux,y) (51)

for some g, ecC(I1,(A) , tuples R, =(R,,...R.,)eQ" and S, =(S,,...Sy,)eN
satisfying R, ; =r, and S, ; <s; forall je{l +1...,n}, and ¢-units u,.
Proof. By (37) we may write f .s(x,y) as a finite sum of terms of the form
g(x)y“(logy )’ h(x,y) (52)
on B, where g eC(I1, (A)), the tuples R=(R,,...,R,)eQ" and S =(S,,...,S,) eN" satisfy
R;=r,and S, =s; forall je{l +1,...,n}, and h is a ¢-function. Pulling back (52) by ¢
gives
9(x)G.,, (x,¥)*(l0gG.,, (x,y))*h G (x,y)
on A. In the above equation, by writing
IogGmH.(x,y)=IogHj(x)+Iog|)7|ﬂj +logV (x,y)

for each j e{1,...,n}, and then distributing, we obtain the desired form given in (50) and
(51), except that each u, is only a ¢ -function, not necessarily a ¢ -unit. But then by
writing u, =(u, —c)+c for some sufficiently large constant ¢ so that u, —c and ¢ are
both units, and then separating each term in (50) into two terms, we may further assume
that each u, in (50) is a ¢-unit.
Lemma (5.3.47)[190]: Consider a single term T, given in (51). We may express T, oF
as a finite sum

T, oF(,y)=2"g.(x)y *(logy)*h.(x,y) (53)

on B for some g.eC(IL,(A)), tuples S, =(S,,,....S.,) eN" satisfying S ., =S, ; for each
j e{L...,n}, and bounded functions h. .

Proof. Since
|~|ﬂ,~ _ Gm+j (X,y)
H;(xV;(x,y)
foreach j e{4,...,n}, it follows from (51) that
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T oF(x,y)=g,(x)y™ [f[(logH_(ny;F(x y)J | Juk oF(x,y)

on B. In the above equation, write

Yj
Hj(X)‘/j oF(x,y)
for each j e{1,...,n}, and then distribute.
Theorem (5.3.48)[190]: Let ® be a finite subset of C(D)xC(D)x(0,.0) for some
subanalytic set D c R™™". For each (f ,u,q) e® let

L(f, p,0) ={LC(f |uf',x):x eI1, (D)},

and let F={f ,u:(f ,u,q) e®}. Then there exists an open partition A of D over R™ into
subanalytic cells over R™ such that for each A .4 there exist a rational monomial map
¢ on A over R™ and rational numbers B ., where i,je{L...,n}, for which we may

ij!
express each f < F inthe form

log =logy; —logH ;(x)—logV; o F(x,y)

foay)= D) Telx,y) (54)
keK (f ,A)
on A, where K (f,A) is a finite index set and for each k eK (f ,A),
Tk<x,y)=gk<x>[n|y~.rk- ol T me.y) 55)
i=1 j=1

for someg g, €C(I1, (A)), rational numbers r,,, natural numbers s,,, and ¢-units u,,
where we are writing (x,y) for the coordinates on A with center ¢, with ¢ being the
center for . Moreover, for each f e 7 and A €A there exists a partition P(f ,A) of
K (f ,A) described as follows.

For each Ae A, (f,;1,)e®, K eP(f ,A), AeP(i,A), and | e Z(f ,,q), at least one
of the following two statements holds:

1. forall (k,\)eK xA, we have 1I_(A)xIl c LC(T,,T,[*,II (A));

2. for all x er1, (A) such that I cLC(f |uf,x), either >° T, (x,y)=0forall y eA

or > T.x,y)=0forall yeA;
and if Statement 2 does not hold, then
I, (A) < (1 \{oo}) C LC(T /T, T, (A)) (56)

for all (k,\)eK xA and all functions T/ and T, of the form

mx,y):Hwi|fw[lognwn|ﬁ*»iij |

i-1 -1

T;<x,y>:Hw-[lognwz |j
i1 =1

where the g .4, €Q and s ,s}; N are arbitrary and the r, ;, r,; are as in (55).

Proof. Apply Proposition (5.3.38) to F. Fix A<.A, and use the notation found in
Notations (5.3.39) and (5.3.45) and in Lemmas (5.3.46) and (5.3.47). Lemma (5.3.46)
shows that each f e 7 may be written in the form given in (54) and (55), where each T,
Is defined as in (51) and

K(E.A)= ] K. (f.A).

(r.s)eA(f ,A)

( ]
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For each f < F, define
P(f ’A) :{Kr,s (f ’A)}(r,s)eA(f A"
Now also fix (f,uq)e®, KeP(f,A), AeP(,A) and 1 eZ(f,uq) . Write
K=K, (f,A) and A=K, .(u,A) for some (r,s)eA(f,A) and (r',s")eA(n,A). We are
done if Statement 2 in the last sentence of the theorem holds, so assume otherwise.
Therefore we may fix x,eIl_(A) such that | cLC(f |u*,x,), (r,s)eA(f,A,x,) and
(r',s) e A(u,A,x,) . Lemma (5.3.43) gives the following.
{For all peln(w) andall i e{l +1...,n},

F(F A XD+ (1A X0 +7, > L. (57)
{If wel ,thenforall i efl +1...,n}, 58
r(f,Ax,)>0o0rr(f,AXx,)=5(,AXx,)=0. (58)

Let keK and AxeA. Write T, and T, as in (7.7) with k =« and k =X, respectively,
and write

T, oF(,y)=>9.(x)y “(logy)*h.(x,y), (59)
¢
T, oF(x,y)=>"g,0)y"(ogy)™h, (x,y), (60)
as in (53). Note that for each i e{l +1,...,n},
R, =r >F(f,AX,) and R, =r'>F (1,A,X,). (61)

So (57) holds with R ; and R,; in place of F(f ,A,x,) and F(x,A,x,), respectively.
Therefore by Corollary (5.3.26), Lemma (5.3.42), (59) and (60), it follows that

I, (A)x (1 \{oc}) C LC(T, T, [", IT,,(A)) .
Note that the proof of this fact depends only on the values of r and r’, being
independent of the values 3,...,3,, s and s’, so (56) follows.

Now suppose that «<l . Note that for each ¢ and i e{l +1...,n}, we have

S.; <S,,; <s,. Combining this with (61) shows that for each i e{l +1,...,n}, either R, >0

orelse R ; =S, =0 for all ¢. Therefore Corollary (5.3.26) and (59) show that T, -F(x,)
is bounded on B, foreach x eIl (A). So II_ (A)x{ec}C LC(T,,T,[,IT _(A)).

This completes the proof of the theorem, except for the fact that A need not be a cell
over R™. To remedy this, simply construct an open partition of A over R™ consisting of
cells over R™ (for instance, using Proposition (5.3.9)), and then restrict to each of these
cells.

Theorem (5.3.48) was formulated in such a way so as to be as strong and general as
possible, but at the cost of having a technical formulation that may obscure the fact that it
implies the simpler Theorem (5.3.2). The corollary of Theorem (5.3.48) given below
directly implies Theorem (5.3.2) and its analog for p =<« described in (19), and it
generalizes the interpolation theorem [172, Theorem 2.4].

The proof of the corollary makes use of the following observation: for the set F
from Theorem (5.3.48), if f 7 is subanalytic, then the restriction of f to A is ¢-
prepared (as opposed to being in the more general form allowed by (54) and (55)). This
observation follows from the way the proof of Theorem (5.3.48) uses Proposition
(5.3.38), and from the way the proof of Proposition (5.3.38) uses Proposition (5.3.31).
Corollary (5.3.49)[190]: Suppose that P c (0,«], that D c R™" is subanalytic, and that

® is a finite set of triples (f,u,q) for which f :D — R is constructible, x:D —R is
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subanalytic, and q >0. Define E 11, (D) and F={f :(f ,u,q) e®}. Then to each f e F

we may associate a function f *eC(D) in such a way so that the following statements
hold.

1. There exists an open partition 4 of D over R™ such that for each A .4 there

exists a rational monomial map ¢ on A over R"™ such that for every (f ,;,q) e®,

the function p is ¢ -prepared and we may express f * as a finite sum
frx.y)=2T(x,y) (62)
k

on A, where each function T, is of the form (55).
2. The following hold for all (f ,u,q) €®.
(@) We have f =f " on {(x,y)eD:P c LC(f ,Ju[',x)}.
(b) For all AcA and all terms T, in the sum (62), we have
I, (A)xP c LC(T Ju[*,TT_(A)). (Hence E xP c LC(f *|uf',x)).
3. If o¢ P, then we may take each function T, to be of the simpler form
T (X,Y)=9k(X)[HIViIr“ (logly, )" ]Uk(x,y), (63)
and the fact that 11, (A)xP c LC(T, |u[*,IT_(A)) only depends on the values of
the r.,, and not the values of the s, , in the following sense: we have
1, (A)xP c LC(T. Ju[*,T1,_(A)) for any function T/ on A of the form

Tk'(X Y)= H|y| |rk'i (IogN, DSM
i=1

where the r,; are as in (63) and the s, ; are arbitrary natural numbers.

Proof. Let 4 be the open partition of D obtained by applying Theorem (5.3.48) to &;
we use the notation of the theorem. Because . is subanalytic for every (f ,u,q) e®, it

follows that we may partition the members of A further in the x-variables to assume that
for each A €A and each (f ,u,q) e®, either u(x,y)=0 for all (x,y)eA, or else for each

x eIl _(A) there exists y eA,  such that u(x,y)=0. Therefore for all (f,uq)e®,
| eZ(f,1,q), AcA and K eP(f ,A), at least one of the following two statements holds.

1. Forevery k eK we have I1_(A)xI C LC(T, ,|uf',I1_(A)).

2. Wehave > T,(x,y)=00n{(x,y)eA:l CLC(f |Jul',x)}.
For each (f ,;,q)e® and A A, define K*(f ,A) to be the union of all K eP(f ,A) for
which there exists 1 e Z(f ,,q) such that P c1 and the above Statement 1 holds. For
each (f ,u,q) e®, define f * by

f *(X’y){zkem ST, If (X, y) €A with A e A,
f(x,y), if (x,y)eD \|JA

Observe that Statements 1 and 2 of the corollary hold.
To show Statement 3, suppose that « ¢ P . By writing

log [ Iy ;" =", ; logly |
j=1 j=1
in (55) and then distributing, we may write each term T, as a finite sum of terms of the

form (63) with the same values of the r,; but possibly different values of the s, ;. But
only the values of the r, ; are relevant by (56) since ¢ P .
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The analog of Theorem (5.3.2) for p =0 mentioned in the Introduction can be stated
as follows: if D cR™" is subanalytic and f ¢(D) is such that Int*(f ,II (D))=1I (D),
then there exists an open partition 4 of D over R™ into cells over R™ such that for
every Ae.A we may express f as a finite sum f (x,y)=>" T,(x,y) on A for terms T,

with LC*(T,,II (A)) =11 (A) that are of the form

Tk(x,y)—gk(x)[f[yif[logﬁyn-ﬂ'} }uk(x,y» (64)

as denoted in the previous section. This statement was shown in Corollary (5.3.49). A
more literal analog of Theorem (5.3.2) for p =« would require the terms T, to be of the

simpler form
T (x,y) =0, (x )(f[lyi " (logly ;| )™ juk (x,y); (65)

however, this more literal analog is false, and the purpose of this section is to show this
by giving a counterexample. It follows that in Statement 3 of Corollary (5.3.49), one may
not drop the assumption that « ¢ P ; and in Theorem (5.3.48), one may not replace (56)
with the statement 11, (A)xI c LC(T/ |7, 11, (A)) .
For the rest of the section, write (x,y)=(x,y,,y,) for coordinates on R*, and define
f:D—>R by
f(x,y)= Iog[%j, (66)

2
where
D={(x,y)eR®*:0<x <0<y, <lxy <y,<VY,}. (67)
Note that the function f (x,-) is bounded on D, for every x (0,1), and that the function
f is already a single term of the form given in (64) on D . The obvious way to express f
as a sum of terms of the form (65) is to write
f(x,y)=logy,—logy,
on D ; however, the terms logy, and logy, now become unbounded on each fiber D, . It
should therefore seem feasible that f is a counterexample for the more literal analog of
Theorem (5.3.2) for p =«. To show that this is in fact the case, we show the following
assertion.
Lemma (5.3.50)[190]: Let
A={(x,z)eR*:0<x <1,x <z <1},
and define an analytic isomorphism 7:(0,1)> - A by
n(x,t)=(x,x").
Suppose that g: A — R is a function of the form
g(x,z) = (logx)'x“z”g,(x,z) (68)

iel
where | cN is finite and nonempty, the « and B are integers, and each g, is a
function on A that is not identically zero and is of the form

— X
g, (x,z2) =G, (x,z,Z )
for an analytic function G, on [0,1]° represented by a single convergent power series, say
G (X)=>6G, X", for X e[0,1F.

'\/eNs
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Then there exist «<(0,1], a nonzero real number a, a natural number r, and integers p
and g such that for all t €(0,¢),

i ) =a. (69)
Proof. By factoring out the lowest powers of x and : in (68), we may assume that the «,
and g are all natural numbers. But then each monomial x“z# can be incorporated into
the function g,, so we may in fact assume that the numbers « and g are all zero. For
each i el ,

['e] [e'e]

_ t oy 1ty (1) [kI Ty K+t
g on(x,t) =G, (x,x" ,x**)=>'G; x” = kGi x <

y eN® k=01l=—

where

G= Y G,.

"y’Est.t.
N+v3=K 72 —73=l

So
g on(.t) = 3 (0gx)' g, on(x 1) = 3> 3G “ (logx ) . (70)

iel iel k=01=-k

Note that for each i 1, the function g, is not identically zero and » is a bijection, so
g, o is not identically zero, which implies that G*'1 =0 for some k and I.
Let (p,q) be the lexicographically minimum member of the set
H(k.1)eNxZ:k +1 20and G =0}, (71)
iel
and define r=max{i el :GP=0}, a=G"", and e=-i;. We claim that for all
(k,1)=(p,q) intheset (71) and all t €(0,¢),
K+It >p-+qt. (72)
The claim and (70) together imply (69). To show the claim, consider (k,I)=(p,q) In
(71). If k =p, then | >q, in which case (72) holds for all t >0. So suppose that k >p +1
. Simplifying the inequality (p+1)(1-t)>p+qt shows that it is equivalent to the
inequality t <e. So for all t €(0,¢),
K+lt=k@-t)+(k+I)t>(p+DA-t)+0t >p+qt,
which shows the claim.
In the following proof, we shall say that two functions g,h:A — R\ {0} are equivalent
on A if the range of g/h is contained in a compact subset of (0,).

Assertion (5.3.51)[190]: For the function f :D — R defined in (66) and (67), there does
not exist an open cover 4 of D over R such that for each A .4, f may be written as a
finite sum of terms T, of the form (65) with each T, (x,) bounded on A for all

x eIl (A).

Proof. Suppose for a contradiction that there exists an open cover A’ of D over R such
that for each A’e.4’, f may be written as a finite sum f (x,y)=> T, (x,y) on A’ for
terms T, of the form (65) with each T, (x,-) bounded on A’ for all x eI1_(A’); note that
we associate to A’ a certain rational monomial map ' on A’ over R that is used to
defined the terms T, . By Proposition (5.3.9) there exists an open cover A of D over R°
such that for each A <.4 there exist a unique A’e.4’ containing A and a prepared
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rational monomial map ¢ on A over R° such that for each function g, occurring in (65),
say of the form
g.(x)= ng i (X )HIOg 9iij (x) (73)
i i

for subanalytic functions g,; and g, ;, the functions g,; and g, ; are all ,_, -prepared
on IL(A).

The functions xy, and y, are not equivalent for x near 0, so we may fix Ae.A of
the form

A ={(x,y):0<x <b,,0<y, <b(x),a,(x,y;) <y, <b,(x,y,)}
with a, and b, not equivalent on T1,(A). Let ¢ be the rational monomial map on A over
R° associated with A. Note that x is not equivalent on 11,(A) to a constant, that y, is
not equivalent on 11,(A) to a function of x, and that y, is not equivalent on A to a
function of (x,y,), SO ¢ must have center 0. For the same reason, if A’ is the unique
member of A’ containing A, and if ' is the rational monomial map over R associated
with A’, then ¢’ must also have center 0. We are only interested in the restriction of f
to A, so we may therefore simply assume that A’=A and ¢ =¢'. SO we may write
Iog[%jzggk ()Y Y52 (logy,)™* (logy, )™ U, (X,yy,Y,) (74)

2

on A for the constructible functions g, given in (73), rational numbers r, and r,,,
natural numbers s, , and s, ,, and ¢ -units u, ; and we may write

a2(x,y1):x°‘y1u(x,y1) and bz(x,yl)zxﬂylv(x,yl)
on I1,(A) for some rational numbers « and g satisfying 0<pB<a<1 and some o, -

units u and wv.
Fix positive constants ¢ and d satisfying ¢ >u(x,y,) and d <u(x,y,) on II(A). Since

a > B, by shrinking b, we may assume that
A={(x,y):0<x <b,,0<y, <b(x),cxy, <y, <dx”y.}.
Pulling back Eq. (74) by the map (x,y,,y,)— (X,y,,Y.y,) gives

1 Nt oy, Te o Sk 1+Sk 2 IO "
|Og(—jzzgk (x)y; ey, (logy, )™ (14_&} U (Y1, Y1Y2) (75)
y,) 4 logy,

on the set
{(x,y,,y,):0<x <b,,0<y, <b,(x),cx“ <y, <dx”}.
By assumption, each term of (75) is bounded for each fixed value of x, so letting y, tend
to o for each fixed value of (x,y,) shows that for each k , either r,+r,,>0 or
Me1i+T =S +S,,=0(and s, +s,,=0 means that s,,=s,,=0). So letting y, tend to 0
in (75) gives
g 2| g 0y .y (76)

2

on
{(x,y,):0<x <b,,cx“ <y, <dx”},
where each v, isa ¢-unit with ¢ defined by «(x,y,)=lim,_,o(x,y.,y,y,).
By pulling back (76) by the map (x,y,) (x,cx”y ) and expanding logarithms
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using (73), we may write
logy, =D (logx)'x “y J'f; (x.y,) (77)

on
{(x,y,):0<x <by,x <y,<C} (78)
for some C >0, rational numbers « and g, and vy -functions f. (for an appropriately
modified v), where i ranges over some finite set of natural numbers. By pulling back by
(x,y,)— (x",y;) for a suitable positive integer r, we may further assume that all the ¢,
and g are integers, and that the components of «(x,y,) are also all monomial in (x,y,)
with integer powers. Thus each component of v is either of the form x* for some
positive integer p, is of the form yJ for some positive integer q, or is of the form
xP/yd=x""(x/y,)" for some positive integers p and q with p>q. So we may assume
that ¢(x,y,)=(x,y,,x/y,), and therefore write f (x,y,)=F (x,y,,x/y,) for some analytic
function F, defined on the closure of {(x,y,,x/y,):(x,y,)eA}. Fix 6>0 sufficiently
small so that
{(x,y,):0<x <8%0<y,<8,x/y,<5} (79)
Is contained in (78) and that F, is represented by a single convergent power series on
[-6°,8°1x[-5,8]x[-6,6] . Thus restricting to (79) and then pulling back by
(x,y,) = (5°x,06Y,) gives an equation of the form
logy, =2 (logx)'x“y;'F, [X’ywyiJ (80)

2
on

{(x,y,):0<x <Lx <y, <1},
with each F. represented by a single convergent power series on [-1,1]° centered at the
origin.

Applying Lemma (5.3.50) to the right side of (80) shows that there exist «<(0,1], a
nonzero real number a, a natural number r, and integers p and g such that for all
t €(0,¢),

t log x
o0 X PN (logx )
Considering this limit for any fixed value of t €(0,¢) shows that r =1 and that p +qt, SO
in fact p=q=0 since t €(0,¢) is arbitrary. But then t =a for all t €(0,¢), which is a
contradiction that completes the proof.
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Chapter 6

Existence of Primitives Lipschitz Maps and Integration
We show that if x is a quasi-Banach space with trivial dual then every continuous
function f :[0,1]]—X has a primitive, answering a question of M.M. Popov. We construct

the first known examples of functions in e ([a, b], X ) that fail to be Lipschitz. On the
positive side, we obtain a criterion for Riemann integrability of quasi-Banach valued
maps based on an approximation method by polynomial functions. Finally, with an eye
to finding a class of functions whose integral interacts well with differentiation, we give
sufficient conditions that guarantee the fulfillment of the fundamental theorem of
calculus, and show the Lebesgue differentiation theorem for the integral in the sense of
Vogt.
Section (6.1): Continuous Functions in a Quasi-Banach Space

Let X be a quasi-Banach space and let f :[0,1]—>X be a continuous function. We say

that f has a primitive if there is a differentiable function F:[0,1]— X so that F'(t) =f (t)
for 0<t<1. M.M. Popov has asked where every continuous Function f :[0,1]—L,

where 0< p <1 has a primitive; more generally, he asks the same question for any space
with trivial dual [202]. We show here that the answer to this question is positive. We
remark that by an old result of Mazur and Orlicz [201],[134], every continuous f is
Riemann-integrable if and only if X is a Banach space.

Let us suppose for convenience that X is p-normed where 0<p <1, and let 1 =[0,1].
Let C(I;X) be the usual quasi-Banach space of continuous functions f :1 —X with the
quasi-norm |f | =max,..|f (t)|. We also introduce the space C'(1 :X) of all functions

f eC(I1;X) which are differentiable at each t and such that the function g:1? =X is
continuous where g(t,t)=f '(t) for o<t <1 and

f(s)—f (t
gt - -2
when s =t It is easily verified that C*(1;X ) is a quasi-Banach space under the quasi-norm

i If @©—F ()|
s—t

e =l O+ sup,
Let C;(1;X ) be the closed subspace of C*(1;X) of all f such that f (0)=0. We consider
the map D :C.(1;X)—C(l;X) given by Df =f'. The following result is proved in [130].
Theorem (6.1.1)[199]: If X has trivial dual then for every x eX there exists f eC;(I;X)
such that Df =0 and f (1)=x .

From this we deduce the answer to the question of Popov.
Theorem (6.1.2)[199]: If X has trivial dual then the map D:C,(1;X)—>C(1;X) Is

surjective. In particular every continuous f :1 —X has a primitive.
Proof. From Theorem (6.1.1) and the Open Mapping Theorem we deduce the existence
of a constant M >1 so that if x eX there exists f C,(1;X) so that Df =0, f (1) =x and

If le: <M ]
Now suppose g eC (I;X) with |g| <1. Forany >0 we show the existence of
f eCo(l;X) with |Df —g| <e and |f|..<4*”M . Once this is achieved the Theorem

follows again from a well-known variant of the Open Mapping Theorem.
Since g is uniformly continuous, there is a piecewise linear function h so that
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lg—h| <e and |h| <1 Since h has finite-dimensional range there exists H eC,(I;X)
with DH =h. Now let n be a natural number, and let x,, =H (k/n)—H ((k —=1)/n) . For
k =12,...,n define f,  eC3(1;X) so that Df =0, |f, |, <M |x,] and f, (1) =x,,. Then

we define f eC;(1;X) by
F.t)=H(@{)-H (%)—fkn(nt -k +1)
For (k -1)/n<t <k/n.Clearly DF, =DH =h. It remains to estimate |F,
Let

cs”

()= sup 1L OH
sl t —s|

Itis easy to see that limz(c) = ||, <1. Now suppose £ <s <t <% for some 1<k <n. Then

F.©) - F )< 0 +07 o L) ¢ =)

<O+ M0 e, ) ¢ -s)

<(MP +1)]/p77(%)(t -S).

Since F,(¥)=0 for 0<k <n we obtain that for any 0<s <t <1,
[F.®)-F.&)] <27 (M ® +1*" () min(t s, 7).
By taking n large enough we have |F, s <4Y*M . Thus the theorem follows.

We close with a few remarks on the general problem of classifying those quasi-
Banach spaces x so that the map D :C;(1;X)—C(I;X) is surjective; let us say that such
a space is a D-space. The following facts are clear:

Proposition (6.1.3)[199]: (i) Any quotient of a D-space is a D-space.
(i) If x andy are D-spaces then X @y is a D-space.
Proof. (i) Let E be a closed subspace of X and let z:X — X /E Dbe the quotient map. Let

7:C(1: X) > C(I;X /E) be the induced map 7#f =f -~. We start with the observation that
7 is surjective. If geC e(I;X/E)with |g| <1 then we can find f eC(1;X) with
If | <2*** and |#f —g| <1. To do this suppose N is an integer and let f, be a function
which is linear on each interval [(k -1)/N ,k/N] for 1<k <N and such that
afy (k/N)=g(k/N) with |f,(k/N)|<1 for 0<k <N . For large enough N we have
log —7f |, <1 and our claim is substantiated.

Now if X is a D-space and g eC (1;X /E) then there exists f eC(1;X) with #zf =g.
Let F eC}(1;X) with DF =f . Then if G =%zF we have DG =g .

(i) is trivial.
In [130] the notion of the core is defined: if X is a quasi-Banach space then corex is

the maximal subspace with trivial dual.
Theorem (6.1.4)[199]: If corex ={0} then X is a D-space if and only if x is a Banach

space (i.e. is locally convex).
Proof. Suppose coreX ={0}and X is a D-space. Suppose DF =0 where F eC;(I;X ). Let

Y be the closed subspace generated by {F(s):0<s<1}. We show Y ={0}; if not there
exists a nontrivial continuous linear functional y* on Y. Then D(y*<F)=0 so that
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y*(F(s))=0 for 0<s<1. But then y*=0 onY . We conclude that Y ={0} and so F =0.

Hence D is one-one and surjective and by the Closed Graph Theorem D is an
isomorphism.
Let M be a constant so that |DF|_ <1 implies |F|..<M for F eCy(I;X). Let ¢be any

C “-real function on R with ¢(t)=0 for t <0 and ¢(t)=1 for t >1. Let K =max,, ¢'(t)‘.

Then F eCg(1;X)and |DF| <NK . Hence |F(1)|<NMK , i.e.

HNi(xl+---+xN) <MK .

This implies X is locally convex.
Combining Proposition (6.1.3) and Theorem (6.1.4) gives that if x is a D-space then
X /core X IS @ Banach space. It is, however, possible to construct an example to show that

the converse to this statement is false, and there does not seem, therefore to be any nice
classification of D-spaces in general.

To construct the example we observe the following theorem. First for any quasi-
Banach space X let a (X ) =sup{|x, +---+x, | :[x;[| <1} (so that a, (X )=N).

Theorem (6.1.5)[199]: Suppose X is a D-space; then for some constant C we have
a, (X)<Ca,(core X).

Proof. Let b, =a, (core X ) Suppose x,,...x, eX With |x,|<1 and define as in Theorem
(6.1.4), F(t)=ZkN:1¢(Nt -k +1)x, . Then |DF| <NK and so by the Open Mapping
Theorem, for some constant M =M (x), there exists G eC}(1;X) with DG =DF and
|G|l.: <MNK . Then |G (k/N)-G((k -1)/N)|<MK for 1<k <N .

Let H(t)=F(t)-G(). Since DH =0 and X /core X is a Banach space H has range in
coreX . Now for 1<k <N ,H(k/N)—H((k -1)/N)=x,-G(k/N)-G((k —-1)/N) so that
IH(k/N)=H ((k —)/N)[<(M °K® +1)*?. Hence if C* =M PK” +1, we have |H (1)|<Cb, or
X, +---+x,[<Cb,.

To construct our example we start with the Ribe space z ([200],[203]) which is a
space with a one-dimensional subspace L so that z/L is isomorphic to ¢,. A routine
calculation shows a, (Z)>cN logN for some ¢ >0. Then lety be any quasi-Banach space
with trivial dual so that a, (Y)=0o(N logN) (for example a Lorentz space L(1,p) where
l<p<wo). Let j:L—Y beanisometry and let X be the quotient of Y xZ by the subspace
of all (jz,z) for zeL. Then z embeds into X so that a (X)>cN logN but core X ~Y so

that X cannot be a D-space. However X /core X is isomorphic to z /L which is a Banach

space.
Corollary (6.1.6)[221]: If X has trivial dual then the map D, :Cy(1;;X)—>C(l;;X) are

surjective. In particular every series of continuous Y f,:>'I, »X has a primitive.

Proof. From Theorem (6.1.1) and the Open Mapping Theorem we deduce the existence
of a constant M >1 so that if x <X there exists f; eCy(I;;X) so that > D;f =0,

> @=x and 3], <M [x].
Now suppose g; C(1;;X) with |[>"g;| <1.Forany ¢>0 we show the existence of
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f; eCo(l;:X) with [3°Dif; ->g;| <e i|. <4"°M . Once this is achieved the

Theorem follows again from a well-known variant of the Open Mapping Theorem.
Since »'g; is uniformly series of continuous, there is a piecewise linear function

>h; sothat [ g;->h| <e and Y’|h;| <1 Since Y h; has finite-dimensional range
there exists H, eCy(1;;X )with >°D,;H, => h,. Now let n be a natural number, and let
=ZH.(k/n)—ZH.((k ~1)/n) . For k=12,...,n define (fj)kn eCo(1;;X) so that

D/f, =0, |(XF)),,
by

<|v| [ and (3f;), (@) =x,,. Then we define (f;) eCi(1;X)

(>F )n t)=>H, (t)—ZHj(%)—(Zfj )kn (nt —k +1)

For (k-1)/n<t<k/n. Clearly >'D;(3'F) =>D/H;=>h; . It remains to estimate

I=F)

Let

H. (t)-> H.
-5 EHO-ZH.0)

ﬂ*S‘S(

It is easy to see that Iirlgn(e):HZhj | <1. Now suppose *<s<t <k for some 1<k <n.
Then

(ZF), 0-(ZF), 0] <oty (1)),

<O M0, ') -9)

(t )

1
<(MP° +1)p77(%)(t -5s).
Since (3 F, )n (£)=0 for 0<k <n we obtain that for any 0<s <t <1,
H(ZFJ. ) ©-(3F) (s)H <2Y"(M P +)¥" p(L)min(t —s, 1).

By taking n large enough we have H(Z 5 ). HC <4Y"M . Thus the theorem follows.
Corollary (6.1.7)[221]: (i) quotient of a D-space are D-space.
(ii) If X, and Y, are D-spaces then X @Y, are D-space.
Proof. (i) Let E be a closed subspace of X, and let z: X, - X /E be the quotient map.
Let 7:C(l1:X;)—>C(I;X;/E) be the induced map 7#f =f oz. We start with the
observation that 7 is surjective. If geC e(I;X;/E)with |g| <1 then we can find
f eC(l;X,) with |f| <2'** and |#f —g| <1. To do this suppose N is an integer and let
f,, be a function which is linear on each interval [(k -1)/N ,k/N] for 1<k <N and such
that =f, (k/N)=g(k/N) with |f, (k/N)|<1 for 0<k <N . For large enough N we have
lo —7f |, <1 and our claim is substantiated.

Now if X, is a D-space and g eC(1;X; /E) then there exists f eC(1;X ) with zf =g
. Let FeCy(l;X ;) with DF =f . Then if G =zF we have DG =g .
(i) is trivial.
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Corollary (6.1.8)[221]: Suppose X is a D-space; then for some constant ¢ we have
,iaNj(X)gé,i:aNj .

Proof. Let b, =a, (coreX) Suppose {XNj}eX with |x;|<1 and define as in Theorem
(6.1.4), > F®)=>" > 4N t—k+1)x, . Then [DF,| <> N ;K and so by the Open
Mapping Theorem, for some constant M =M (x), there exists G eCl(1;X) with
DG, =DF; and |G|, <MN K. Then [G;(k/N)-G;((k —)/N )| <MK for 1<k <N .

Let H(t)=F,(t)-G,(t). Since DH =0 and X /core X is a Banach space H has range in
coreX . Now for 1<k <N;,H(k/N;)-H((k -1)/N;)=x, —G;(k/N;)-G;((k —)/N;) SO
that |H(k/N;)-H((k -)/N;)|<(M°K°+1**. Hence if CP=M’KP+1, we have
IH (1)||sc”ij or [x,+--+x,[<Cb,.

Section (6.2): Primitives for Continuous Functions in Quasi-Banach Spaces
If X is a Banach space, every continuous map f :[a,b]— X is Riemann-integrable and

the corresponding integral function, r(t) :jt f(u)du is differentiable at every te[a,b] with

derivative F'(t)=f (t), that is, F is a primitive of f. However, when X is a non-locally

convex F-space, a classical theorem of Mazur and Orlicz [201] informs us about the
existence of continuous X -valued functions on [a,b] failing to be integrable. Popov
investigated in [202] the properties of the Riemann integral for functions f :[a,b]— X
whereX is an F-space and showed that while some usual properties of this integral
remain true in the non-locally convex setting, other properties and techniques, like the
usual way of getting primitives for integrable functions, may be false. His work naturally
led to the question whether every continuous function  :[a,b]—> x has a primitive. Kalton

provided an affirmative answer for the quasi-Banach spaces X which, like the L  spaces
for p <1, have trivial dual [199], but the main question remained unsolved. In the first
part of this section we solve Popov’s problem by showing that if the space I with
o< p<1 embeds isomorphically in a quasi-Banach space x with separating dual, then
there exists an integrable continuous function f:[01]— X failing to have a primitive.
This will follow as a consequence of our main theorem.
Proposition (6.2.1)[204]: Let X be a quasi-Banach space. For a given pair (z,x) we have
the following.

(i) The function f =f (z,x):[0,1]— X is continuous at 1, hence continuous on [0,1], if
and only if x, —0.

(if) Suppose that x is p-convex for some O<p<1. If (x,) is bounded and the
sequence (4,) verifies Y " A° <o, then f is Riemann-integrable on [0,1].

(iii) F=F(z,x) can be extended continuously to [0,1] by putting F@)=>"" Ax, if
and only if the series > 2,x, converges in X.

(iv) Suppose (x,) is bounded. Then F:[0,1)— X is Lipschitz if and only if there is
K >0 so that for all integers m,n with m <n,
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Zj’kxk zﬂ“k Xy
m+1<k<n — m+1<k<n <k. 1
Z/lk ot <k ( )

m+1<k<n

In this case F extends to a Lipschitz function on the whole interval [0,1].

(v) Suppose x, —0. Then F:[01]— X is differentiable with zero left-derivative at t=1
if and only if
Zﬂ’kxk Zﬂ’kxk
I- k>n+1 — | k>n+1 — 0 ] 2
nlll]o Z/’Lk nIIDO 1_tn ( )

k>n+1

Proof. The proof of statement (i) is straightforward and so we skip it.
(it) By the Aoki—Rolewicz theorem we can assume that the quasi-norm on X is p-
subadditive for some 0< p <1. We will make use of this throughout the remainder of the

proof. Put B =sup, |x, | sothat |f (t)|<2B forall t €[0,1]. Since

the series Y 4 x, is Cauchy, so it converges. We will show that 2 x, is the Riemann
integral of f in the interval [0,1].

Fix ¢>0 and pick N eN suchthat > " =~ A? <eP/(3(1+2°3"")BP).

Now, since f is Riemann-integrable in [0,t,], there exists §>0 such that for all
Riemann sums, o(f ,z), of f associated with a partition ~ of [0,t,] with diameter at

most &, Ha(f )= D0 AKX,
Associated with a partition of [0,1],
m={0=g,<--<q ,<q <---<a_=1},
of diameter at most & =min{5,¢/(2-3""B)}, we consider a Riemann sum
o, (f ,nl):ZIL:lf () , Where 4 =a —a_, <6, and b, €[a_,,a). Using the p-subadditivity

p n n
< 3 I <B° 3 A0

k=m+1 k=m+1

pSep/3.

of the quasi-norm we estimate HZZ’:lﬁkxk —-o,(f 7)) ' by splitting it into four chunks:

DIEEA R RS 3LV

where (<L issuch that a,_, <t <a,.
Clearly,

p

Z f (o)

I=(+1

p p
+ +[f 0| +

pSB” > A

k>N +1

2 X

k>N +1

To find a bound for the second summand we observe that, since f (t,)=0,
> "f (b) isaRiemann sum of f also in [0, ], with diameter at most &, <& . Hence,

D ax -~ B
k=1 1=1
For the third term, simply note that

p
Ep

<
3

p
If ()| <(2B)° &7 s%.
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The fourth term requires some more work. The underlying idea behind the technicalities
Is to transform an expression involving the lengths of the intervals of the partition =, into

another expression involving the lengths of the intervals 1, . To that end, let
F={l>(:3nsuchthata, , <t 6 <a}.
Let M be the first element of 7. Notice that LeF so that L =maxF. If i e F/{L}, we
denote by m(i) and n(i), respectively, the smallest and the largest of the indices n with
the property that a,_, <t, <a . We have
”f (bi )ﬂi ”p < (ZB)p ((tm(i) _ai—1)p +(ai _tn(i))p + f ﬂkp]!

k=m(i)+1
where the last term is null if m(i)=n(i).
Analogously, if m(L) denotes be the first index n with a_, <t <a,
If bL)a | S(ZB)p[(tm(L)—aL_l)“r > ﬂf}-

k=m (L)+1
Let i and j be consecutive terms in F and denote i =i(j). From the definition of F we
infer that there is no n such that a <t <a; ;. Hence n(i)=m(j)-1 and [a .a_)c |
Then,

m( j)*

j-1
PRACNI
l=i+1

In the same fashion, for the indices to the left of M, we have m(M)-1=N,
[a,ay 1) = T and

3 (b))

I=(+1
Notice that n(i(j)=m@) -1 and xP+yP+zP<3"P(x+y+z)". Adding the four
inequalities above,

I=i+1 I=i+1

=me(,->u"['Z_f.mm(b.)u.j 3(28)"[’2 u.) =(2B)°(a; ,—&)".

p

<(2B)"(a,,—a,)" .

p

PRACHN

I=(+1

< (ZB)p Z ka +((a|v| 71_a()p +(tm(M) —ay 71)p)

k>N +1
k=m(j)

+(2B)P Z ((ai(i) ~thagy)” @ =) + (g _ai—l)p)
jeF
1#M

<(2B)° z A8 +((a[_aN )Pty —a)” + ) —aw —1)p)

k>N +1
k=m(j)

+(2B)" 3. ((aim ~to))” + (@1 —a)° + g, —aH)p)
jeF
1=M

<@B)?| D A +3PD AN, [<37P(2B)° D AP,

k=N +1 jeF k=N +1
k=m(j)

Gathering all the inequalities,
zikxk —o(f ,m)
k=1

(i1i) If F() can be defined continuously, then the sequence F(tn):ZEﬂﬂkxk must

P o)
<€’ /3+€P[3+BP(1+37P2P) D AP <P,

k=N +1

f ]
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converge to F(1) , i.e., >~ Ax, =F(1). To show the converse, suppose that >~ 2x,
converges and put F(1)=>"" 2x, . We will show that limF(@t)=F (). Since 4.x, »0 due
to the convergence of >° 2.x, , given >0, there exists N eN such that |2,x,[<2¥"¢ and
I Axi|<2¥Pe forall n=N

Thenift >t ,and n>N issuchthatt el , from (7) we get
0 p
2 Ay

k=n+1

IFQ)-FO| <[x.[ (f"fln(u)du)p ¥

p p p P
SIIXnII"(J,nf.n(u)du)p+%s||xn||unp+"‘7g%+L‘7=€p_

(iv) If F:[0,1) — X is Lipschitz, then whenever m <n,

2. Axi|=[FE)-F)|<[F[, € -t,)

k=m+1n

For the reverse implication, given any 0<s <t <1 find integers m <n such that s 1 and
t 1. Then, knowing that for t I, we can estimate

f“f,n(u)du <t-t (3)

and
['f, @dust, -t (4)
with the help of inequality (1) we obtain the foIIowing Lipschitz condition,

e @)-F et ([ o | o] £ ax[ e o
<BP(t,-s) +K"(t,-t,)" +BP(t-t,)°

gmax{K p,Bp}<(tm —s)® +(t, —t, )" +(t —tn)p)

<3 P max{K®,BP}(t-s)".

Finally, we note that (1) implies that )  2,x, is a Cauchy series, so it converges.

Using (iii), F can be extended continuously to [0,1].
A clarification might be in order here. If the space X is locally convex and the
sequence x=(x,) is bounded, then the series 3" 2x, converges and condition (1) is

fulfilled. But in this case there is a simpler way to look at the function F which allows us
to write F(t) = j;f (u)du even for t =1 without using the series as a bypass. The reason is

that in Banach spaces we have the tool of the Bochner integral, and the function f is
Bochner-integrable. If X is not locally convex, the tool of the Bochner integral is no
longer available and we should be more careful when writing the identity

F(1):Zk/1kxk:j:f (u)du . However, with an additional condition on (1) we can

interpret F(1) as a Riemann-integral, which as we know can be defined in quasi-Banach

spaces.
(V) Suppose F'(-1)=0. We have
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D X

k=n+1
1-t,

Conversely, suppose that (2) holds. Implicitly we are assuming that the series ZAXK

converges, so we define F(2) = Zk A X, . We will show that t"rﬂ(':(l) ~-F(t))/1-t =0.

FO-F)|
1-t

F'(-|=0

For any ¢ >0 there exists N eN such that forall n>N ,

Tanf 6
k>n+1 < and X <=
1_tn 2]/p71 || n” 21/pfl(2_\/§)
Givent >t , we have thatt 1, for some n>N . Then,

p [ . ’
||F(1)—F(t)||p <||Xn|| (L f|n(U)dU)p+ k;rlﬂyxk 3 2p—16p(tn_t)p +2p—l€p(1_tn)p o
- g i -1’ n

Corollary (6.2.2)[204]: Let X be a quasi-Banach space with separating dual. Suppose
the pair (z,x) is such that:

(i) x, =0,

(i) condition (1) holds, and

(iii) condition (2) does not hold.
Then we have the following.
(a) The function F(z,x):[0,1]— X is Lipschitz and differentiable at every t <[o,1) but fails
to be differentiable at t =1.
(b) The composition of F with the natural inclusion of X into its Banach envelope X is
(Lipschitz and) differentiable at every t [0,1) .

Theorem (6.2.3)[204]: Suppose o< p<1. Then there exists a continuous Riemann-

integrable function f :[01] 1, whose integral function F:[01]—>1, t—>£f(s)ds verifies:
(a) F is Lipschitz, i.e., there is C >0so that [F(s) - F(t)], <Cl|s—t| forall s,t[0.1];

(b) F is differentiable at every t [0,1) with derivative F'(t)=f (t);

(c) F Fails to have left derivative at t=1.

we exploit the construction used below in the proof of Theorem (6.2.3) to show that,
unlike for Banach spaces, every non-locally convex quasi Banach space X with
separating dual admits a continuously differentiable function f :[a,b]— X which is not
Lipschitz. Finally, gather remarks on the general problem of classifying those quasi-
Banach spaces X for which every continuous function f :[a,b]— X has a primitive. We
refer the reader to [202, 199] for background and to [200, 134] for the needed
terminology and notation on quasi-Banach spaces.

Proof. The proof of Theorem (6.2.3) relies on the following construction inspired by
[202]. Let = =(t, )7, be an increasing sequence of scalars contained in (0,1) tending to 1.

Witht,=0, let us denote the interval [t _,t) by 1, and its length by 4., ie,
A =l |=t. —t_;. This way we can write [0,))=(J 1, (disjoint union). For each keN let
f, :[01]—R be the nonnegative piecewise linear function supported on the interval I,
having a node at the midpoint of the interval c =(t +t_)/2 with f (c)=2 and
f, (t)="f, (t)=0,i.e,
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4
tk _tk—l
4
tk _tk—l
0 otherwise.

t-t.,) ifteft,.c,)

flk(t):

t-t,) iftelc,.t,)

Let x=(x,) , be a sequence of vectors in a quasi-Banach space X . We define the
function f =f (¢,x):[0,1] > x as
fo(t)x, if tel,,
f(t):{ IB() el ©)
Note that f is continuous and Riemann-integrable on [0,1) since for each s <1 the set
f ([0,s]) is a finite-dimensional subspace of X . Let F=F(r,x) be the corresponding
integral function on [0,1),

F(t)=[f (u)du. (6)
0
The additivity of the Riemann-integral with respect to the interval gives that for t el
F(t):iﬂkxk +_[: f(U)dU=zﬂka—f"f(u)du. (7)
k=1 nt k=1

Again, since F([0,s]) maps into a finite-dimensional subspace of X for each s<1, F is
differentiable with derivative F'(t)=f (t) at every t €[0,1). The next proposition deals
mainly with the behavior of the functions f and F at the point t =1 depending on the
choice of (z,x).
For 0<p<1 fixed, pick b=2-1 and any a><-1. Consider the pair (z,x), where
r=(t. )7 IS the sequence
ST
(k +2)°
and x=(x,)y, is the sequence in ¢, obtained by scaling down its unitary basis vectors
(e, )r, according to the formula
1
T e
Next define f =f (z,x):[0,1]1—>¢, and F=F(z,x):[0,1)—>¢, as in Egs. (5) and (6)
respectively.
Proposition (6.2.1)(i) gives that F is continuous on [0,1].

Note that the series >~ 4 x, convergesin X if and only if ((k‘kT)b)le:Z

k=12,...

e, k=12,...

© A
k=1 (k+1)° € € Kp

. Now,

p p

o0

-3

p k=1

S
Z(k +1)bek

k=1

itk _tk—l e
=

11 )]
; k* (k+D* J(k +1)°|
Since the sequences (.1 - )7, and (a L;);, are equivalent infinitesimals as k — o, the

(1+k

last series has the same character as )~ (k +1)"@**®  which converges because
(a+b+1)p>1. Using Proposition (6.2.1)(iii), we extend F:[0,1)—(, to a continuous

f ]
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function on [0,1] by putting F(1)=>"" 4x, . In fact, Proposition (6.2.1)(ii) yields that f
IS Riemann-integrable on [0,1] and so F(l):jolf (u)du .
To see that F is Lipschitz on [0,1] we use the simple inequality " -s®)"" <t —s for
all 0<s<t. Thus,
n 1 1 Yp
; z( Z K (@+b+1)p-1 - (k +1)(a+b+1)p—lj

n

2 AX

k=m+1

k=m+1

1 1 Yp
= [(m +1)(a+b+1)p—l - (n+1)(a+b+1)plj
< 1 _ 1 1
(M +2D)*PHY (ng)*P2YP (m41)® (e "™
whence condition (1) is fulfilled. As we argued above, F is differentiable at every
te[0,1). Since ¢, has separating dual, if F has a left derivative at t =1 it must be

F'(-1) =0. However, this fact fails by appealing to Proposition 6.2.2(Vv) since

2 X

k>n+1

p’\/OO 1
* 2 (e

p k>n+1

~ i ( 1 _ 1 ) = 1
Kol k (a+b+1)p—1 (k +1)(a+b+1)l171 (n+1) (a+b+1)p-1 ¥

2 X

k>n+1 P 1
l_tn nb+lfj/p

so that =1,

hence lim HZkZ”“&Xk H

n—»o —t

® cannot be 0.

n

We are now ready to show that for a wide class of quasi-Banach spaces, including
those with separating dual that contain a copy of ¢, for some 0<p <1, there exists a
function f :[0,11 > X as in the title of the section. This will follow combining Theorem
(6.2.3) with our next lemma. In [130], Kalton introduced the notion of core of a quasi-
Banach space X as the biggest subspace of x with trivial dual. Note that if X~ separates
the points of X then core(X )={0}, so the lemma applies to quasi-Banach spaces with
separating dual.

Lemma (6.2.4)[204]: Let X be a quasi-Banach space with core(X )={0}. Let J be an
interval of the real line. Suppose that F is differentiable with F'(t)=0 forall t J. Then
there is C eR so that F(t)=C forall teJ.

Proof. Assume F(a)=0 for some acJ and that F(u)=0 for some ueJ. LetY be the
closed linear subspace of X generated by {F(t):t €J}. Since Y =0, by hypothesis there
exists a nontrivial bounded linear functional y“:y — R. The composition y cF:J >R is
nonzero and differentiable at every s eJ with derivative

« evrey i (Y 2 F)(s+h)=(y "o F)(s)
(y oF)(s)=lim .
:y*(m F(s+ht)]—F(s)j:y*(F,(S)):O

By the fundamental theorem of calculus,
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(y*OF)(t)=(y*°F)(a)+£(y*°F)’(S)dS=0
for all t €J, a contradiction.
Theorem (6.2.5)[204]: Suppose the space ¢, with 0<p <1 embeds in a quasi-Banach
space x with trivial core. Then there exists a continuous Riemann integrable function
f :[0,1]— X failing to have a primitive.
Proof. Let 0<p <1 and assume, without loss of generality, that ¢, is a subspace of X . Let
f and F be the functions in Theorem 6.2.1. Suppose there exists a differentiable function
G:[01]]—>X so that G'(t)=f (t) for all t €[0,1]. Then (F-G)t)=0 for all t €[0,1). By
Lemma 6.2.5 it must be F(@t)=G(@)+C for all t [0,1), where C is some real number.
Using continuity, we extend this identity to [0,1]. But then F would be differentiable at
every t el , which contradicts our previous construction.

Let (x ) be an infinite-dimensional real quasi-Banach space. Let | be the unit
interval [0,1] and e(l1,X) be the usual quasi-Banach space of continuous functions
f :1 »>X with the quasi-norm |f |: max,.,|f (s)|. We will denote by e®(1,X) the space
of all x -valued functions f having a derivative at every point of |, and such that
f'ce(l,X). The closed subspace of e®(1,X) consisting of the functions that vanish at
zero will be denoted by e;(1,X).

When X is a Banach space, a function f ee®(1,X) is Lipschitz in | thanks to the

mean value theorem. This result breaks down for non-locally convex spaces [205],
allowing thus the possibility of having functions in the class e®(I,X) that are not
Lipschitz!

Theorem (6.2.6)[204]: Let X be a non-locally convex quasi-Banach space. Then there
exists F:1 —X such that

(@) F is differentiable on I ;

(b) F' is continuous and Riemann-integrable on | and F(t):.[;F’(u)du foralltel ;

(c) F is not Lipschitz on |.
Proof. As above, by the Aoki—Rolewicz theorem we can assume that x is a p-Banach
space for some o<p<1. Hence for any (y){, in (0,«) and (y;){, in X such that

thly,- =1 and Hyjﬂﬁl, we have

K Yp
. S(ny} <k¥rt,

For every k e N we set
k
Cy :Sup{ Z/ijj
j=t

Clearly (C,)r_,is an increasing sequence and, since X is not locally convex, C, — +w.
Moreover C, <k*"?,

Pick out a sequence (D,);,such that 0<D, ,<C, and C, -D, —»0. This yields
C,~D.,le, Eif?ock/Dk =1. From our choice of C,, for each k there exist positive scalars

203 =1y, x| <1
j=1

(#4,)5 and vectors (y, ), inx suchthat 3 u, =1, |y, ;[<tand |3 u v, ,|>D..

Every natural number n can be written in a unique way in the form
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2 i
_2k*+1 2j 1’ (8)
2 2
for some k eN and 1< j <k . In fact, for a fixed k we have
« the set {22 - 2121 < j<k} covers all the integers between k (k —1)+1 and k’;
« the set {24+ 212 1< j<k] covers all the integers between k*+1 and k (k +1),
so that the numbers fzca +2i2:3 < j<k}run over all the integers between k(k -~1)+1 and
k(k +1).
For each neN, let k =k(n), j=j(n), and &=¢g(n)e{-11} uniquely determined by
the representation (8).
First, for b > 2(1-p)/p fixed, we define

4 1 1 1
"Ml T @k )
Note that

g Zzzzﬂk‘(k“mk)j ii”“[kib_ﬁJ

k=1 j=1e=%1 k=1 j=1

1 o
=§£k_b_(1+k)b}l_"km(1+k)b:

Lett,=>" 4, and r=(,);, sothatt -t _,=24,.

Pick any 0<a<min{L,p/(1-p)}. Let x=(x,);, in X be given by x =¢Ay, ;, where
A =CM.
With this pair (z,x) we construct maps f =f(z,x) and F = F(z,x) from [0,1] into X .

Since A, -0 and |y, |<1, applying Proposition (6.2.1)(i) we obtain that f is
continuous on [0,1]. The function f is also Riemann integrable on [0,1] from Proposition
(6.2.1)(ii) since

Zip ZZZ (kb_(1+lk)b} ) 1_pzz"“[kb (1+1k)b)p

_11_1a+1 k=1 j=1

<Y 11 "Niklp 1 5 1
k® (1+k)b ~ k(b+1)p_k:lkbp+2p—1’

k=1 k=1

and this last series converges because bp +2p -1>2(1-p)+2p—-1=1. In particular, F is
well defined and continuous on the closed interval [0,1].
To compute F(1), observe that for fixed k ,
k (k+1) k
AX, = e —— 0=0.
n=k (k-1)+1 Zlgzﬂ 2[kb (1+k) }Akluk JykJ Jz—l:

Hence ™1 x,=0, whichyields F)=>" 4

n=1

That F is not Lipschitz in [0,1] follows from Proposmon (6.2.1)(iv). Indeed,

k (k+1) k 1( 1 1 A A k
2, nXn ) éz(kb (1+k)bj kM iYx i k J_Z_;,/‘k,Jyk,J

n=k 2+1
k(k+D)

S TR P S
” 2 k" @rk)y ) =i

n=k 2+1 j=1

=A

k
k Zﬂk,ij,j

j=1

>A.D, ~AC, =C2 > .
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As we argued above, F is differentiable in [0,1) with derivative F'(t)=f (t) for all
te[0,1). To conclude we show that F'(1)=0 aided by Proposition (6.2.1)(v). Let neN.
Suppose that n+1=(2k?+1)/2+(2j -1)/2 with k eN and 1< j <k. Taking into account
that the functions of the form t+ _t-(a,o>0) are increasing in t e(0,+w) and that

atht
11 (1 1 :
2(kb (1+k) j _ 2(1&)_(1+|<)*J)Akck‘“lzﬂ“
A 1 11 1 1(1
e L+ k)’ +2(kb (1+k) jz A @iy +2(kb (1+k) jz“k'

1( 1 1 1/ 1 1
o= _IAC,. == _|aC
- Z(kb (1+k)bj k~k—j+1 - Z(kb (1+k)bJ k™~ k

o1 111 r i1 1
@+k) 20 k° @+k) ) @+k)  2\k® @+k)

i Hy i <1,

> Ak

m>n+1

Z;uk |yk i

If n+1=(2k?*+1)/2-2j -1/2,with k eN and 1< j <N,

1( 1
Zﬂ,mxm 2(kb_(1+k) j z:uklykl

m>n+1 i=j+1

> A1 11 1
m>n+1 (1+k)b+2 kb (1+k) Z/ukl
1( 1 1 k
3 z(kb_(l_’_k)b]Aka—jlzﬂzuk,i
1 1( 1
(1+k)b+2(kb_(1+k) j( Z“k'}

1( 1 1 1( 1 1
- |AC, . | 5" |AC
Z(kb (1+k)bJ R Z(kb (1+k)bJ K

R O S r o111
@+k)y 2l k® @+k)) @+k) 2\k" (@+k)

In both cases,

1(1 1
Akl Sl Sy = |AC
Zl ZEKb (1+k)”j b 4
= ~—AC k™
> A 1,1 2
m=n-1 2k” 2(1+k)°

But

AC k™ =Cak T <kaWr Dt
and k2®*™* 0 since a(l/p -1) <1.
Corollary (6.2.7)[204]: Let x be a quasi-Banach space. We have that
e®(1,X)cLip(l,X)ifand only if X is locally convex.
Based on the results in the previous section it makes sense to define the space
(1,X) ofall f eel(1,X) which are Lipschitz, equipped with the quasi-norm

li (t)—f ©) ©)

®
€ Lip

[f s, = sup

0<s<t<1

We will also consider the space e(l) (1,x) ofall f ee® (1,X) with f (0)=0 such that the

Lip
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function g:1? > X given by
f(s)-f@)
g(s,t)= s—t
f(t) s =t
is continuous. Of course, when X is a Banach space, e} (1,X)=el (1, X)=e{’(1,X).
Kalton introduced the space el (1,X) in [199] (with a different notation) to provide
the only affirmative answer known as of today to the question of Popov. He showed that
if X has trivial dual then the map
D@ (1,X)>e(l,X), fDF)=f"
IS surjective and so every continuous function f :1 — X has a primitive (that belongs to
e (1,X)). His proof relied heavily on a pathology that we find in quasi-Banach spaces

al

X with trivial dual, namely, they admit nonconstant functions f el (1,X) with zero

derivative at every point [130]. Kalton’s result opened the problem of classifying those
quasi-Banach spaces X, which he named D-spaces, for which the operator
D:el (1,X)—e(l,X)is surjective.

Our first goal in this section is to show that if a non-locally convex quasi-Banach
space X has separating dual then x is not a D-space. In fact, with the help of the next
preparatory result we will obtain something stronger, that the operator D cannot be onto
even when it is defined on the bigger space e{;) (1,X).

Lemma (6.2.8)[204]: Let X be a quasi-Banach space.
(i) The linear map D:el(1,X)—e(l,X)given by D(f ) =f 'is bounded.

Lip
(ii) The space e} (1,X) is closed in Lip(1,X).

(iii) The space e% (1,X) isclosed in el (1,X).

Lip
(iv) The space ef;, (1,X ) is complete with the quasi-norm | . .

s =1

Theorem (6.2.9)[204]: Suppose X is a non-locally convex quasi-Banach space with
core(X ) ={0}. Then the map D:ef) (1,X)—e(l,X)is not surjective. In particular, there
exists a continuous function f :1 »X that fails to have a primitive in e{}) (1,X).

Proof. The operator D is bounded, and one-to-one thanks to Lemma (6.2.4). If D were
surjective, from the open mapping theorem we deduce the existence of a constant K >1
so that

If ., <KIf v eelp(1,X).

In particular, for every Lipschitz function f ee®(1,X ) we would have
||f t)-f (s)||£K f' t—s|, vs,itel .

By the mean value formula for quasi-Banach spaces [205] the space X should be locally
convex, a contradiction.

We close with some remarks and open problems. To simplify our discussion let us
make a definition.
Definition (6.2.10)[204]: A quasi-Banach space X will be said to have property (P) (or
that X is a P-space) if every continuous function f :1 — X has a primitive.

Trivially, Banach spaces are P-spaces. Quasi-Banach spaces with trivial dual are D-
spaces [199] hence they are P-spaces too. On the other hand, Theorem (6.2.3) tells us
that no space with separating dual containing a copy of , for p <1 is a P-space.

Problem. Does there exist a non-locally convex quasi-Banach space with separating dual
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having property (P)?

The answer to this question will determine the way in which some of the topics in
this section are related. We can entertain some digression.

When X is a Banach space, the vector space e{’(1,X) is complete both with the norm

[f g =1l

and the norm (9). In fact, it is well-known that these two norms are equivalent in
e’(1,X ). However, when X is not locally convex and has separating dual the space
e (1,X) is complete under the quasi-norm || but could fail to be complete under the

natural norm of the space, |-

Theorem (6.2.11)[204]: A quasi-Banach space x with separating dual is a P-space if
and only if e{’(1,X ) is complete with the quasi-norm |

D "
Proof. The operator
D:Eel01,.X),

Lip

e51))—>(e(l X )||-||w), f D )=F",
is a linear isometry of dense rank in e(1,X ). If €1 ,X),|

) were complete, the image

of D would be closed and so D would be onto, i.e., X would be a P-space. Conversely,
if X is a P-space then D is onto and we deduce that (ef”(1,X ).|{,.,) is complete.

Corollary (6.2.12)[221]: Suppose X is a non-locally convex quasi-Banach space with
core(X )={0}. Then the map D, :ef)(I,,X)—e(l;,X) are not surjective. In particular,

Lip

there exists series of continuous function )f,:1, »x that fails to have a primitives in

j=1
el (1,,X).

Proof. The operator D, is bounded, and one-to-one as in (6.2.4). If D, were surjective,
from the open mapping theorem we deduce the existence of a constant K >1 so that

20| <KIXf] vf el X))
j=1 =1 =1

Lip

In particular, for every Lipschitz function if;— ee®(1,,X) we would have

ifj(t)—ifj(s) if]f

By the mean value formula for quasi-Banach spaces [205] the space X should be locally
convex, a contradiction.
Section (6.3): Quasi-Banach Spaces and the Fundamental Theorem of Calculus

It is a part of the mathematical folklore that continuous functions from a compact
interval of the real line into a Banach space are Riemann integrable and that the
fundamental theorem of calculus holds.
Theorem (6.3.1)[206]: Suppose X is a Banach space and that f :[ab]>X is a

continuous function. Then:
(i) The integral function F(t):J:f is differentiable at every t e[a,b] and F'(t) =f (t).

<K t-s|, vstel;.

(i1) (Barrow’s rule) the element j:f of X can be computed as F(b)-F(a), where F is any

primitive of f .
The definition of the Riemann integral extends verbatim for functions f :[a,b]— X
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where X is a quasi-Banach space, i.e., a locally bounded topological vector space that is
complete for the metric induced by its quasi-norm. We recall the construction to render
our exposition self-contained. For a partition P={ }._, of the interval [a,b] with

a=t,<t, <---<t, =b, and a collection of points A={4 }_with 4 <[, .t ], the Riemann
sum of f associated to 7 and A is the vector

oy (P.A) = i_f )t ).

Then, f is said to be Riemann integrable on [a,b] if there exists an element j:f in X
such that

m o, (P,A):j.f :

li
[Pl=0
That is, for any ¢>0 there exists §>0 such that for each partition P of [a,b] with

|P|=max, (t, -t,,)<s and each A, we have <e. The linear space of

o, (P,A)—j.f

Riemann integrable functions on the interval | =[a,b] will be denoted by R(1,X).

The well-intentioned attempt to generalize the fundamental theorem of calculus to
non-locally convex spaces faces major obstructions from a very early stage since by a
result of Mazur and Orlicz such spaces admit continuous functions failing to be Riemann
integrable [201]. This initial drawback may be overcome by choosing to study for the
sake of it the differentiability properties of the functions Ft)-= j‘f whenever f is

Riemann integrable on an interval [a,b] and te[a,b].

The first mover in this direction was Popov. He investigated in [202] the properties
of the Riemann integral for functions f :[a,b]—>X where X is an F-space and showed
that while some usual properties of this integral remain true in the non-locally convex
setting, other properties and techniques, like the usual way of getting primitives for
integrable functions, may be false. His work also contains an example of a continuous
Riemann integrable function g:[0,1]—» ¢, for 0<p <1 whose integral function G (t):j:)g

does not possess a right derivative at t =0.
Which means that part (i) of Theorem (6.3.1) breaks down for x -, when 0<p<1!To

the best of our knowledge this connection, however trivial, had not been made explicit
before.

Bayoumi [209] claimed to have extended the fundamental theorem of calculus to
locally bounded topological vector spaces via the notion of quasi-differentiability (or
Bayoumi-differentiability, according to himself). These appeared shortly afterwards in
[210], a book rightfully devoted to the study of the theory of functions in the lack of local
convexity. Unfortunately, Bayoumi’s quasi-differential is nothing other than the Fréchet
derivative in disguise [207] and so, in view of Popov’s example, his extension of
Theorem (6.3.1)(i) to quasi-Banach spaces contained in [209] and [210] cannot hold. A
close look at the proofs reveals two important errors. The first one is an approach to the
Riemann integral for functions with values in a quasi-Banach space that mimics the
construction for normed spaces based on the boundedness of the integral operator on the
step functions. The other glitch has been recently noticed in [211] and consists of taking
for granted that the Riemann integral of a continuous function f :[a,b]— X fulfills the

familiar estimate,
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b

[t

a

<[If )ds. (10)

which is expected of any integral worth defining. This assumption permits one to write
for each fixed t [a,b],

t+h
HF(”hg FO ¢ ¢ sﬁ tj If (5)~f ©)]ds =[f @)~ Q)]
with u between t and t +h. From here, an appeal to the continuity of f att yields the
differentiability of F at this point. Of course, this is true when X is a Banach space. But
unfortunately we do not have an inequality like (10) in the lack of local convexity
because a quasi-norm does not satisfy the triangle law in the usual sense. The very same
reason hinders the construction of the Bochner integral in quasi-Banach spaces.

Aside from fixing the above misconception, this section is motivated by the work on
the subject of Maurey [214], Kalton [199], and Popov [202], and, continuing in the spirit
of [204, 208], aims at making headway in the theory of integration for quasi-Banach
spaces and its applications. To that end, we get started with the analysis of the
shortcomings that frustrate the efforts to define a satisfactory integral in quasi-Banach
spaces. We show that local convexity is not only a sufficient condition for the integral
operator to be bounded but it is also necessary. For that we introduce a new class of
spaces, namely Orlicz spaces of functions taking values in a quasi-Banach space,
modeled on a standard Orlicz function.

One of the earliest applications of integration as a tool in geometric functional
analysis has been the fundamental role it played in determining which Banach spaces x
have the property that Lipschitz maps f from the unit interval [0,1] into X are
differentiable almost everywhere. This problem, known in full generality as Tamarkin’s
question and which led to the forging of the Radon—Nikodym property, remains
unexplored for quasi-Banach spaces due to the absence of one of the most important
tools for the analyst, the Hahn—Banach theorem. Thus, with the intention to find a class
of Lipschitz functions from [0,1] into X with good differentiability properties, we
investigate which additional conditions guarantee the Riemann integrability and the
fulfillment of the fundamental theorem of calculus for a continuous function with values
on a quasi-Banach space. We provide a criterion in terms of approximation by
polynomials, which leads to the introduction of the new class of functions called analytic
of order .

We discusses the validity of the second part of the fundamental theorem of calculus
for the Riemann integral. The conclusion is that, while Barrow’s rule breaks down in
spaces with trivial dual like the spaces L, [0,1] for p <1, a slightly weaker version of

Theorem (6.3.1)(ii) still works as long as X~ has enough linear functionals to separate
the points of X , like in ¢, for p <1.

Finally, we revisit the notion of integral specifically designed for p-normed spaces
with p <1 by Vogt in 1967 [220] and use it to show the first “Lebesgue differentiation
theorem” for functions mapping in a non-locally convex space.

The unfamiliar reader with quasi-Banach spaces and F-spaces will find the few
required prerequisites in the books [200, 134].

Given a quasi-Banach space x and (Q,%,z) a measure space, we will denote by
L,(«,X) the topological linear space of all =-measurable functions f:Q—>X of
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separable range mapping into the quasi-Banach space X, equipped with its standard
topology that gives the convergence in measure, with the usual convention about
identifying functions equal almost everywhere. We will also consider the linear subspace
S (u,X ) of the simple functions in L,(x X ),l.e., the -measurable functions s:Q—Xx of

the form

S = ;XiZAi ’
where {x, ¥}, =X, {A}, <= with u(A,)<w, and n is an arbitrary integer. The following
IS the main theorem of this section.
Theorem (6.3.2)[206]: Suppose X is a quasi-Banach space and let (Q,%, ) be a non-
purely atomic measure space. Suppose that for some F-space E which embeds
continuously in L,(x X ), with S (X )cE we have:
(@) There exists a continuous linear operator Z7Z:E —X so that for every

ZinzlxiZAi eS(uX),

I(;XiXAij:;Xiﬂ(Ai)-
(b) Whenever a function gelL,(x,X) satisfies |p(w)|<|w(w)| almost everywhere for
some y ek, it implies that p<E .
Then X is locally convex (and so isomorphic to a Banach space).
Proof. Let x, be any norm-one vector in X , and define the sets

F={f eL,(«&.R):x,f €E},
and

E,={#cE :d(w) e Rx ,uae.w €},
which are in bijective correspondence through the natural mapping
FoE, f —oxf.
Note that E, is a closed subspace of E, so that F equipped with the topology it inherits
via the above bijection is an F-space that embeds continuously in L,(«R). Of course,
neither of them is trivial since F contains the real-valued simple functions S(u,R).
Suppose g el (u,X),1.e., g el (X ) with
la]. = inf sup|f (&)]<.

H(A)=0 peqy/n
Then, for any f eF we have
la(@)f (@) <[g][f (@)|=[lg],xof (@), ae wen.

Since the function |g|_x.f (w) belongs to E,, the hypothesis (b) yields that of <E .
Combining the closed graph theorem with the uniform boundedness principle gives that
the bilinear operator

T:L (u,X)xF—>E, (g,f)—>0df ,
IS continuous.

Pick an atomless set A X with 0< u(A) <. Using the continuity of T we deduce

that the set

T (BL@(MX) x{ra ) ={9 24 :||g||oo <1
IS bounded in E. Therefore its image under the operator 7 will be bounded in X . In
other words, there exists a positive constant C so that
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IZ(gx,)|<C, Vgel, (X )with|g| <1. (11)

For neN arbitrary, let {x,}', be any norm-one vectors in x, and let {1}, be
nonnegative scalars with > 4 =1. Using Sierpi‘nski’s theorem on the range of a real
nonatomic measure (see [216]), we pick recursively a partition {A,,...,A } of A such that
u(A) =2 /u(A) for i=1,...,n. Thus, the simple function g :zin:lXiZA. verifies |g| <1,

and so, by (2.1), |Z(9)|=|Z(g9x.)|<C. That is, HZ?:lxiy(Ai)Hsc , Which implies
Hzi”:lﬂ,,xiHsCy(A). We have showed that the origin of X has a convex neighborhood,

I.e., X is locally convex as claimed.
Let ¢ be an Orlicz function, that is, a right-continuous, increasing function on [0, +)

such that ¢(0)=0. Define
L (X >={f Lo X): [ w(”%
The properties of ¢ yield that if for f < L(:(z,u,X ) We put
If |, =inf {p>0:f¢[@]dy(x)<p},

Then [ satisfies the axioms of a A-normin L, (X ) (see [11]):
« |f] >0iff =0.
4
o |lof |, <|f |, whenever |o|<land f eL, (uX);

jd,u(x)<oofor some p>0}.

o lim_|of | =0 forany f eL (uX);
« |f +g,<«(f|, +]o|,) forall f and g in L, (uX), where x>1 is the modulus of

concavity of the quasi-normin X .
Moreover, || is equivalent to an F-norm under which L (xX) is complete, whence

(L, (X ),||~||¢) is an F-space. We will put M _(«,X) for the closure of S (4, X ) in L (x.X),

and note that if the Orlicz function ¢ satisfies the A,-condition,

p(2t)<Cop(t), Vt=0, (12)
for some constant C, then M (xX)=L,(xX). The rigorous proof of these facts is
similar in spirit to the case of Orlicz spaces of scalar valued functions. The details are left
to the reader, who can look up the classical work [215] on the subject.

The following theorem gains in interest if we realize that it evinces that the Bochner
integral cannot be defined in non-locally convex spaces like the spaces L (u,X) for
0< p <o When X is quasi-Banach.

Theorem (6.3.3)[206]: Let X be a quasi-Banach space. Suppose there exist a non-purely
atomic measure space (Q,%,) and an Orlicz function ¢ so that the integral operator :
Z:M (i, X)—X given by

I[Z;XiZAij:Zl:Xiﬂ(Ai)’ S:_Zl:XiZAi €S (uX),
Is continuous. Then X is locally convex.
Proof. It suffices to apply Theorem (6.3.2)to E =M (1, X).

Now we will delve deeper into the matter and show that the Riemann integral
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operator also cannot be extended when mapping into a quasi-Banach space x . To that
end, let 1 =[a,b] be a fixed compact interval of the real line and C(1,X) be the usual
quasi-Banach space of continuous functions f :1 -X with the quasi-norm
If | =max,, [f ). We will denote by S(1,X)the linear space of all step
functions s:1 -X and by sq,x) its closure in L _(1,X). Recall that an x-valued
function s defined on [ab] is called a step function if there is a partition
a=t,<t, <---<t, =b such that for each k the function s assumes only one value on the
interval [t ,.t.).

If f ec(1,x) then f is uniformly continuous on | hence C(I,X)c=S(I,X)cL (1,X).
Each sin S(I,X) can be written in the form

n-1
S= Zxkl[tk—lvtk) + X”l[tn-ptn] ! (13)
1

Kk =
where P={t, }  isa partition of | with a=t,<t,<---<t, =b and x, ex for k =1...,n. For
such an s put

b n
[s=Ta(s) =Dt -t ) eX . (14)
2 k=1

When X is a Banach space,

CACIE) RO B YN R R SETTR (15)

and so Z,, defines a bounded linear map from S(1,X) into X . Thus Z, extends uniquely
to a continuous linear operator Z=:S(1,X)— X satisfying

an(f )Hs(b ~a)ff |, Vf eS(,X). (16)
A tedious but straightforward argument shows that Z=(f ) may be computed as

Zr(f ) = fim if CO ~ty),

PI>0 =

where, for each partition P={t,}' = of I, the point ¢, may be chosen arbitrarily inside
[t, ,—t,] for 1<k <n. It follows that a function f €S (1,X) if and only if f eR(1,X),

and Zx(f )=Lbf .

However, if as it is done in [209, 210], we try to reproduce this operator approach
to the Riemann integral when X is a quasi-Banach space, we get in trouble. Indeed,
assuming that the quasi-norm on X is p-subadditive for some p <1, the inequality path

that we must follow to bound the quasi-norm |Z, (s)| of a step function s:1 —X becomes
[Ze @I = 2%l (=t )” < max(e | >t ~t )" (17)
k=1 k=1

1<k <n
But now the amount Zﬂzl(tk —t,,)? depends on the partition of the interval and, unlike

for Banach spaces, tends to infinity as n increases. Consequently from (17) we cannot

infer an estimate of the form
b

s

for some constant C >0 as stated in [209] and incorrectly proved in [210].
Actually, the following theorem prevents such an inequality from being true at all,

<Cl|s|., seS(,X), (18)
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unless the space is already locally convex.

Theorem (6.3.4)[206]: Let x be a quasi-Banach space. Suppose the Riemann integral
operator Z,:S(1,X)— X defined by (14) satisfies (18). Then x is locally convex.

Proof. The argument runs as the last part of the proof of Theorem (6.3.2), but we include
it nevertheless for completeness. For n arbitrary, let {x,}', be any vectors contained in

the closed unit ball B, of x , and let {1}/, be nonnegative scalars with >" 2 =1. Pick a

partition P={t, }. = of | with a=t,<t, <---<t, =b and 4 =t, —t,, for 1<i <n. Then, the
hypothesis yields

iﬂ’lxi i(ti—l_ti)xi I(ixil[til,ti)j

which implies that the origin has a convex neighborhood.

Alternative proof. Since |f| <(b-a)|f | for all f ec(1,X) and S(1,X) is dense in
L (1,X) we deduce from (18) that there exists a linear bounded operator: Z:L,(1,X)—> X
such that Z(x y,4,)=(d-c)x whenever a<c<d <b and xeX . We infer that Z(x ) =|E|x
for every measurable set E c[a,b] and x eX . Using Theorem (6.3.3) we obtain that X is
locally convex.

Another alternative proof. Since C(1,X)<S(1,X) we can extend Z,to a bounded linear

operator: Z:C(l,X)— X . Itis straightforward to check that Z(f ) is the Riemann integral

of the continuous function f . By Mazur—Orlicz theorem, X is locally convex.
Throughout the section, x will denote a quasi-Banach space, unless otherwise
specified. Recall that a p-Banach space, 0< p <1, is a quasi-Banach space (X ,|-|) whose

quasi-norm is p-subadditive, that is,
P +y[" <" +y]", wxy e

In [213] Gramsch proved that the X -valued analytic functions are Riemann-
integrable on a compact interval 1 =[a,b] of the real line. His proof is based on the

following sufficient condition for Riemann integrability.
Theorem (6.3.5)[206]: Let X be a p-Banach space (0<p<1)and f :1 - X . Suppose that

F)=Yx.f,0), Viel, (19)

Where (x,)i,=X, (f)iscR(OR) and > x| [f,[. <. Then, f eR(1,X) with
integral

<C <C,

o0

n
ZX i Z[ti—l'ti)
i=1

b - b
! f Z;x j f, .

Since the class of analytic functions is very restrictive, it makes sense to study
weaker conditions that guarantee Riemann integrability. We will attain such a criterion
through a concept that originated in [130].
Definition (6.3.6)[206]. Let 0<r <w. A function f :1 -X will be called analytic of
order r on | if for every integer k with 0<k <r, there exist functions f®:1 -x and
o, -1 x1 =X, such that the following Taylor expansions hold

Lrlk ¢ (k+]
FOH= 3! ( :(S)(t —s) +(t ) p (t.5).

j=0 '
Moreover, the functions f ) (the derivatives of f =f ) and the Taylor remainders p,

f ]
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must be continuous, and p, (t,t)=0 for all t 1. The class of all analytic functions of
order r will be denoted by ¢ (1,X).
In ¢”(1,X) we consider the topology of uniform convergence of the functions,

their derivatives and their Taylor remainders in the above expansion. We will denote by
C™)(1,X) the intersection of all spaces ¢ (1,x) for r >0.

Theorem (6.3.7)[206]: Let 0<r <o, U R open, andV cU relatively compact. There
exist a continuous linear operatorT =(T,)-,:C"”U,X)—c,(X) and a sequence of

functions (y,);, in C*(V,R) with |y, | <Cn™" for some constant C independent of neN
so that every ge C(”(U ,X) can be expanded in the form

90) =T, @), VEev . (20)

The convergence of this series is understood in the sense of ¢y ,X).

Turpin and Waelbroeck made good use of this approximation to prove in [219] that a
function in ¢c”(U,X) is integrable in the sense of Vogt with respect to a finite measure
with compact support (cf. Section 5). Let us explain how their ideas can be adapted to
imply Riemann integrability. The key ingredient is the following lemma.

Lemma (6.3.8)[206]: Suppose g,<C"”([a,b],X) and g,eC”([b,c],X) are such that
997 =gl (") for all k=01...,|r]|. We define functions h, :[ac]—>X for 0<k <|r |
by

- [I0 1 clan)

g{@) if teb.c].

Then, h, eC”([a,c],X) and h{’ =h, forall k =0,1,...,[r |.
Proof. We must show that the functions h, have a suitable Taylor expansion. We will do
this for h;, and the same argument will be valid for h,, with 1<k <|r |.

To that end, define for s,t €[a,c],

p(s.t) = (t—s)"(hy(t) -
0 if s=t.

Our goal is to show that p is continuous. Since f and g are C *’-functions, we need only
seethat lim_ . p(s,t)=0.Fora<s<b<t<c put
h; (b)
p(s.t)= Z T s)’,

j=0

“h'j()( ~5)) i st

and
'l h

7(s,t) :Z

JJ'

so that
ps,t) =t —s)" ([hy(t)—o(s,t)]-[z(s.,t) —o(s,1)]).
Now, on the one hand,

ho(t)—a(s,t)=o((t—b)r)+

and, on the other hand,

rJh(b)
io !

-b) -t -s)' ],
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h, (S) h; (b)

(s.t)-o(s.t) = A7 07 (¢t —s)!
Lr] Lr] _
:o((b—S)r)+J >, 2 l(kh_(tj))|(— ) ( -s)’
Lr] k=
:o((b—s)r)+ 2 hk(?)[ j(s b)) (t —s)
L")
=o((b-s)")+ b)[(s b)* —(t-s)" |.

?T

=0
Subtracting the two equations,

p(st)=(t-s)" [o((t—b)f)+o((b—s)f)].
We conclude by noting that (t —s)" <(t —b)" and (t —s)" <(b-s)™
As a consequence, we obtain the following extension lemma.
Lemma (6.3.9)[206]: There exists a continuous linear operator E :C(1,X)—C"(R,X)
such that f ©“¢)=[E(f )1“@t) forall f eC"”(1,X), tel and 0<k <|r |. Moreover, if we
fix a compact neighborhood of | ,say J, we can get supp E(f )< J forall f.
Proof. Let 1 =[ab]. Wepick —w<a<a<b<b <o such that [a,b]cJ. Let
f eC”([a,b],X). Using a standard polynomial interpolation technique we construct
functions f, eC”([a,,a],X), f, €C”(b,b,1,X) such that f @) =f ©(), f b)=Ff “(b)
and f,“ (@) =f “(b)=0.Define
f(t) if tefab],
f,(t) if tefa,a],
f @) if tefb,b],
0 otherwise.
By Lemma (6.3.8), E(f)eC"”(R,X). Finally, we observe that the assignment of an
interpolating polynomial through the mapping f ~ (f,,f,) is linear and continuous.

Now we are able to give an analogous of Turpin and Waelbroeck’s theorem for
analytic functions of order r on I.
Theorem (6.3.10)[206]: Let O<r<w. There exist a bounded linear operator
S=(S,)r,:C(,X)—>c,(X) and a sequence of functions (v, )7, in Cc*@1,R) with

[w&| <c,n* for all k eNU{0} and neN, where the constants ¢, are independent of

E(f)®) =

n N, so that whenever g eC”(1,X),
g()=>S,(9)y, ), vtel. (21)

The convergence of this series is understood in the sense of ¢”(1,X).
Proof. Let v be a bounded open set such that | cv . By appealing to Theorem (6.3.7),
thereare T =(T,):C”(R,X ) —>c,(X) and (y,)eC*™ ,R) such that

O =T, w, ), inCOy X).

But, a careful reading of the proof of [218] evinces that |y!’| <C,n*" for all neN and

k e NU{0}. Appealing to Lemma (6.3.9), we simply need to consider S =T -E .
Theorem (6.3.11)[206]: Let X be a p-Banach space (0< p <1). Suppose that f :1 —X is
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analytic of orderron I. If r >1/p, then f eR(1,X). Moreover, if we define F(t):j;f (u)du,
the f eCc®(1,X) and F'=f .
Proof. We use Theorem (6.3.10) to write f :Z::lxng/n , Where (x,)7,=S(f). Then,

Sl ol <ls @ €5 30" <o
By Theorem (6.3.5), f eR(1,X) and F(t):Z::lxnﬂwn(u)du.
For s =t define
1 t
L) :mll//n (u)du,

and

F{t)-F(s)
t-s

Put ¢ (t,t)=w(t) and g(t,t)=f (t). We have

0(s.t)= x4 (s.1), Vstelabl.

g(s.t)=

Since |4,], =|w.|, and " |x,["Jw.]. <, the above series converges uniformly on 1°.
Hence, since 4 are continuous functions, g is continuous, i.e., f eC®(1,X). Moreover
F't)=g(t)=f ().

As usual, we can apply this result to pseudo-convex spaces, noting that such spaces

are projective limits of locally p-convex spaces.
Corollary (6.3.12)[206]: Suppose that X is a pseudo-convex F-space and that

f eC™(1,X). Then f eR(I,X ). Moreover, if we define F(t):J:f (U)du, then F'=f

When dealing with a quasi-Banach space x we run the risk of having no bounded
linear functionals on x besides the zero map. If this is the case, a beautiful theorem of
Kalton informs us that for every x e X there exists a continuously differentiable function
F from | =[a,b] into X such that F(a)=0, F(b)=x,and F'=0 (see [130]). This prevents
the second part of the fundamental theorem of calculus from holding for these particular
spaces since, by another result of Kalton [199], when X “={0} every continuous function
f :1 - X has primitives. The validity of Theorem (6.3.1)(ii) is also biased for quasi-
Banach spaces x with separating dual from the moment we know that not every
continuous function f :1 —X has a primitive [208]. However, in this case the following
version of Barrow’s rule does hold.

Theorem (6.3.13)[206]: Let X be a quasi-Banach space with separating dual. Let F be
differentiable on 1 so that F'eR(1,X). Then,

j.F’:F(b)—F(a). (22)

Proof. Given any x eX’, the composite function x -F:1 - R is differentiable with
derivative (x oF)(t)=x oF'(t) for all tel. Using the (real) fundamental theorem of
calculus and the fact that the Riemann integral commutes with linear functionals we have

X"(F(b)-F(@)=(x"eF)b)—(x"=F)(a)
:Tx*oF'(t)dt :X*[TF’(t)dtJ.
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Since X" separates points, we deduce Eqg. (22).
Theorem (6.3.14)[206]: Let X be a p-Banach space (0<p<1). Suppose that f is

analytic of order r on I . If r>(p+1)/p, then f'eR(l,X) and

f(b)-f (a) :Tf (u)du . (23)

Proof. We use Theorem (6.3.10) to write f =% " x v, , where (x,)" =S(f). We have
/=3 xw, uniformly. From |y;| <Cn** and p(r-1)>1, we obtain >" x|’ [w.|} <co.
Applying Theorem (6.3.5) we get that f eR(1,X) and

b © b ©

[fdu=3x, [y @du =3, (v,(0) ~v, @) =f ()~ ().

a n=1 n=1

a

In [220] Vogt introduced a concept of integrability quite different from that of
Riemann. Let (Q,%, ) be a measure space and let X be a p-Banach space. A function

f :Q—X is said to be integrable in the sense of Vogt, and we write f eL; (1, X) (also,
f ell(I,X) when x is the Lebesgue measure on a subset | cR") if f admits an
expression of the following guise

FO)=Yxf,0) aetel, (24)
where x =(x, )7, in X and f=(f )<, in L (& R) verify the condition
N F) =D %[ [f o F < oo (25)

The space L} (1, X ) equipped with the gauge
| |, =inf{N (x,f)": (24) and (25) hold]
is a p-Banach space. Moreover, for E X the expression

;xnifndﬂ

does not depend on the decomposition (24) chosen for f , and so it is consistent to define
the Vogt integral of f on E as

[fdu=3x,[f,du
E n=l

The crucial fact in the work of Vogt is the possibility to identify isometrically
L: (1, X ) with the completion of the tensor product X ®L, (x4 R) endowed with the quasi-

norm

N 1/p N
||<I>||=inf{(znxn||"||fn||f] o-$x. ot NeN}.
n=1 n=1

Simple functions are dense in L, (xX). In general L, (uX)cL,(x,X) and, as a

consequence of the next proposition, the two spaces coincide for all measure spaces if
and only if X is a Banach space.

Proposition (6.3.15)[206]: Let X be a p-Banach space for some 0< p <1. Suppose that
there exist a non-purely atomic measure space (©,%,) and an Orlicz function ¢ such
that M (1. X )<L (1. X). Then p=1 (i.e,, X is a Banach space).

Proof. Define Z:M (1,X)—>X by Z(f ):IQfdy (integral in the sense of Vogt). For
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s=Y" Xz, €S(1,X) we obtain Z(s)=>"" x,u(A). By Theorem (6.3.2), x is locally

CONvex.
The corresponding statement to the fundamental theorem of calculus for functions in
L («,R) is the Lebesgue differentiation theorem. It is well-known that Lebesgue

differentiation theorem works for a Banach space x and for functions in L,(R%,X). It
seems natural to ask if this theorem will remain valid for a p-Banach space x and for
functions in L, (R*,X).

We begin our discussion with some ideas from harmonic analysis (see e.g. [212]).
Let 0<s <oo.The Lorentz function space L., («,R) consists of all measurable functions f

verifying
CS
p{weQ:[f (w)|>t}) < o (26)
for some constant C that does not depend on t eR*. Denote by |f |~ the best constant C

such that (26) holds. Then, (L, («R),||.,) is @ quasi-Banach space. If s>1, the space
L,.. («R) is locally convex, i.e., there exists a constant D(s) such that for all N eN,

an < D(S)Z”fn”s,w ) (27)

The space L, (R',R) appears in a natural way when studying the Lebesgue
differentiation theorem since the Hardy—Littlewood maximal operator .44, is bounded
from L (R*,R) into L,, (R’,R). Explicitly, there exists a constant L such that for every
measurable function g : R* —[0,+x),

440 @), <Ll
where A4, (g) is defined for t eR’ as

S W

MHL(g)(t):sup{éJ'g(u)du A acube,gat}.

Now we define a maximal operator for vector-valued functions. If X is a p-Banach
space, f :R" - X is locally Vogt integrable (f €L} (K,X) for every compact set K cR’,

forshort f eL; . (R*,X)),and t eR’,

Mf (t)= sup

teop,ocube

éif (u)du

In what follows, ¢ —t means the directed set of cubes containing t as interior point.
Theorem (6.3.16)[206]: Let X be a p-Banach space (0<p <1). If f eL . (R*,X), then

lim = [ @)du =f (),
o0t |Q|Q

Jloc

almost everywhere t in R’.
Proof. The result is true for f eS(x,X), and S(x,X) is dense in L, (R*,X). Moreover,

the maximal operator M satisfies the following p-subadditivity condition
M (f +g)<((MF )" +(Mg)?)".
Thus it suffices to show that M maps L} (R‘,X) into L, (R*,R).
Let f eL, (R,X), x=(x,)>, In X and f=(f )=, in L'(«R) such that (24) and (25) hold.

f ]
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Using p-convexity of the space we get
w p
Mf (1) < (lexnn" [, (|fn|)(t)]p} .

Hence, denoting s =1/p,

nZ:;‘”X n ”p [MHL (|f n |)]p

S

[Mmf 1, <

S w

<LIDE) (inxnll" If. j =LIDWPIPN ().

Taking the infimum we obtain |[Mf | <L[D(/p)I"|f |, as desired.

Corollary (6.3.17)[221]: Suppose X is a quasi-Banach space and let (Q,%, ) be a non-
purely atomic measure space. Suppose that for some F-space E which embeds
continuously in L,(x, X ), with S (x,X ) cE we have:

(@) There exists a continuous linear operator Z:E —X so that for every

zin:l(xi—1 +Z;:léj—l)l[gi71,5i71+€i] €S (u,X),
I(Z(Xi—l + Zij:lé‘j_l)l[‘il’(ilJr(i]j = Z(Xi—l + Zij=l5j—1)/u[€i—l’€i a1t6 ]
i-1

i=1

<[DE)F (inxnn" L ()P

<[D@)F (;nxnn" |+ (1))

(b) Whenever a function geL,(x,X) satisfies |p(w)| <|w ()| almost everywhere for
some y ek, it implies that p<E .
Then X is locally convex (and so isomorphic to a Banach space).
Proof. Let x, be any norm-one vector in X , and define the sets

F={f eLy(&.R):x,f €E},
and
E,={#cE :d(w) e Rx,uae.w € Q},

which are in bijective correspondence through the natural mapping
FoE, f —oxf.

Note that E, is a closed subspace of E, so that F equipped with the topology it inherits
via the above bijection is an F-space that embeds continuously in L,(«R). Of course,
neither of them is trivial since F contains the real-valued simple functions S(«,R).
Suppose g el (uX), 1.6, gel,(uX) with
lof.. = inf, supf ()] <co.

Then, for any f eF we have
la(@)f (@)|<]9],[f (@)|=|la], xf (@), ae wcQ.
Since the function |g| x.f (@) belongs to E,, the hypothesis (b) yields that ¢f <E.

Combining the closed graph theorem with the uniform boundedness principle gives that
the bilinear operator

T:L(uX)xF—>E, (9,f)—>gdf ,
IS continuous.
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Pick an atomless set e e with 0< u(e) <o . Using the continuity of T we deduce that
the set
T (B gy D ={ox. 9], <B
IS bounded in E. Therefore its image under the operator z will be bounded in X . In
other words, there exists a positive constant C so that
IZ(gx)|<C, vgel,(uX)with|g| <1.

For neN arbitrary, let {xi_lquzijzlcsj_l}i“:1 be any norm-one vectors in X, and let

{1}, be nonnegative scalars with Zi”:lﬂ,, =1. Using Sierpi'nski’s theorem on the range
of a real nonatomic measure (see [18]), we pick recursively a partition
{ley 6 +6l,-.[60 60+ €61} Of € such that ufe ¢, +¢]=4/u(e) for i =1,...,n. Thus, the

simple function g:zi”:l( .1+Z . Jl);([emm] verifies |g| <1, and so, by (11),
||I(g)||:||I(g;(€ Jl=c. That is, |37 (xiu+ 2,0 )l e +e]

HZ. 12“ .1+Z 4 Jl)

neighborhood, i.e., x is locally convex as claimed.
Corollary (6.3.18)[221]: Let X be a quasi-Banach space. Suppose there exist a non-
purely atomic measure space (,%,) and an Orlicz function ¢ so that the integral

operator: Z:M (u,X)— X given by
[Z( —1+Z-1 1—1) 16+ j Z( —1+Z_1 J—l) €6at6],
_Z ( —1+ZJ 4 1-1)Z[eifl,qfl+q]Es(ﬂlx),

Is continuous. Then X is locally convex.
Proof. It suffices to apply Theorem (6.3.2)to E =M (1, X ).

Corollary (6.3.19)[221]: Let x be a quasi-Banach space. Suppose the Riemann integral
operator Z,:S(1,X)—X defined by (14) satisfies (18). Then X is locally convex.

Proof. The argument runs as the last part of the proof of Theorem (6.3.2), but we include

<C, which implies

<Cu(e). We have showed that the origin of X has a convex

it nevertheless for completeness. For n arbitrary, let {xi_lJrZ‘j_l 5j_1}" be any vectors
- i=1

contained in the closed unit ball B, of x, and let {4} be nonnegative scalars with

' 4 =1 Pick a partition P={e+>, ¥ of I with

Eo:€o<€o+51<%+zi2:15i <<+ S5 =q+e and 4 =5 for 1<i<n. Then, the
hypothesis yields

Z( SEOIE J‘l) oL 0T )|

=1

which implies that the origin has a convex neighborhood.
Alternative proof. Since |f | <(¢)|f | forall f ec(1,X) and S(I,X) is dense in L,(1,X)

we deduce from (18) that there exists a linear bounded operator: Z:L,(1,X)— X such that
Z(X y47) =@ -c)x Whenever ¢ <c<d<g+e and xeX . We infer that Z(x y.)=|E|x for
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every measurable set E c[e,¢, +¢€] and x eX . Using Theorem (6.3.3) we obtain that X is

locally convex.
Another alternative proof. Since C(1,X)<S(1,X) we can extend Z, to a bounded linear

operator: 7:C(I1,X)—X . Itis straightforward to check that Z(f ) is the Riemann integral

of the continuous function f . By Mazur—Orlicz theorem, X is locally convex.
Corollary (6.3.20)[221]: Suppose g, eC” ([, +€],X) and g, e C([¢, +¢,¢,+2¢],X ) are

such that g((,+€e))=0"((,+e)*) for all k=01..[r|. We define functions
h :[6.6+2e] > X for 0<k <|r | by
(e 1 5) = {gf(kk>)(eo+5) it (+8) el +el.
g, (& +0) if (g+09)ele +e€€ +2€].
Then, h, € C" ([, ¢, +2¢],X ) and h{’ =h, forall k =0,1,...,[r |.
Proof. We must prove that the functions h_have a suitable Taylor expansion. We will do
this for h;, and the same argument will be valid for h,, with 1<k <|r |.
To that end, define for (¢, +5—h,),(¢, + ) €[e,, €, + 2¢],

"] h. (60+5 h) .
h h,(¢, +0 —————(h f o—h 0),
ple, +5—h, ¢, +6) = (h) ™" (hy (e )— z 1 ( )) if (¢+ ) # (6 + )
0 if (¢,+6—h)=(¢+0)
Our goal is to show that p is continuous. Since f and g are C *’-functions, we need only
seethat lim 0 @ s PE+S—h6+8)=0.FOr 0<5-h <e<s5<2e put
L h.
P+ 5t 8)= S0 (6°+€)<h)1
j=0
and
h 5—h
e+ 6—he+8) =S &I 4y
j=0 J
so that

ple+6—h,6+6)=
(h) ™" ([hy(e, + ) —o(e +5—hy, g+ 8)]—[e(6, +5—h, g+ 5) —o(g+5—h, g+ 5)]).

Now, on the one hand,

'l h (e +¢ . .
hy( +5) —o(ey+ 5 —hy,q+8) =0 ((5—¢)" ) + ’(j°!+)[(5—e)‘—(hl)‘],

j=0

and, on the other hand,
'l h o—h)-h

(e, +0—h,e+0)—o(e,+0—h,e+0) = Z i (6 + )I i (6 +¢€)

j= J!
W h (6+9) (5

T (k=j)!
=o((e—5+hl)')+z_ —hk(%“)(jj(a—hl—e)k“’(hl)"

(h,)’

=0((e—5+h1)‘)

+
‘M

0

=0((e-5+h) )+ —[(5—h1—e)k - ()" ].

Subtracting the two equations,
ple+5—h,q+8)= ()" [o((6-e))+o((e=5+h))].
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We conclude by noting that (h,)" <(5-¢)" and (h) " <(e-5+h)™".

Corollary  (6.3.21)[221]:  There exists a continuous linear  operator
E:C”0,X)—>C7(R,X) such that f®(e+8)=[E(F)]“(,+5) for all fecu,x),
(,+0)el and 0<k <|r|. Moreover, if we fix a compact neighborhood of |, say J, we
can getsupp E(f)cJ forall f .

Proof. Let I =[e,¢+e]l. Wepick —o<(g), <¢ <6 +e<(g+e),<o  Such that
(&) (e +€),1cd. Let f eC”([g,¢+€],X). Using a standard polynomial interpolation
technique we construct functions f, eC”([(¢),,&1, X ), f, eCV([e +e (g +¢€),1,X ) such that
%) = “(&), f, (g +e)=f (e +e) and £, (),) =, (¢ +¢),) = 0.Define

f(g+0) If (6, +0) €le €, +el,

£ ) +5) = f (e, +06) if (6, +6) (&), 6],
T £ (g, +6) if (6+06) el +6 (g +6),],

0 otherwise.

By Lemma (6.3.8), E(f)eC"”(R,X). Finally, we observe that the assignment of an
interpolating polynomial through the mapping f ~ (f,,f,) is linear and continuous.

Corollary (6.3.22)[221]: Let 0<r<oew. There exist a bounded linear operator
S =(S,)7,:C7(I,X)>c,(x) and a sequence of functions (v )7, in Cc®(,R) with
w9 <c,n*" for all k eNU{0} and neN, where the constants ¢, are independent of

n N, so that whenever g eC”(1,X),

0(6+6) =35, (@)W, (6 +3), V(e+d)el .

n=1

The convergence of this series is understood in the sense of ¢(1,X).
Proof. Let v be a bounded open set such that 1 cv . By appealing to Theorem (6.3.7),
thereare T =(T,):C”(R,X ) —>c,(X) and (v, )eC*™ ,R) such that

flo+8)= T, ( Wyle+8), inCOW X).

<C,n*" for all neN and

k e NU{0}. Appealing to Lemma (6.3.9), we simply need to consider S =T -E .

Corollary (6.3.23)[221]: Let X be a (1 — €)-Banach space ¢>0. Suppose that f :1 — X
is analytic of order ron I. If r>:, then f eR(l,X). Moreover, if we define

Flq+)=]""f ()du, then f ec®(1,x) and F'=f .

Proof. We use Theorem (6.3.10) to write f=>%" (mZ “l)yxn, where
( Y Jl) =S(f). Then,

~ (Xnﬂ*z?ﬁj 1) w5 <8 (£ i Zn"“-><oo
By Theorem (635)’ f ER(I ,X) and F(€0+5):Zn:l( n l+z; =1 J*l)J. l//n(u)du

For ¢,+5—h #¢ +0 define
@+o
¢n(eo+5-hl,eo+5)=hi [ v,@du,

1 (0+57h1
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and

F(e,+0)—F(e,+0-N)
h, '

Put ¢ (¢, + 3,6, +5) =w(e,+0) and g(e, + 35,6, +9) =f (¢, +5) . We have

(e, +0—h,e,+0) = Z( n1+z . 11) ¢ (e +0—h,e+5), V(e +0—h),(e+0)ele e+l

(e +0—h,e+0)=

Since |¢,|. =|w,|. and Znﬂ( D J_1) L||1//n||ij ‘<o, the above series converges
uniformly on 12. Hence, since 4 are continuous functions, gis continuous, i.e.,
f eCO(l,X). Moreover F'(¢,+3)=g(e,+3,6,+) =f (¢, +9).

Corollary (6.3.24)[221]: Let x be a quasi-Banach space with separating dual. Let F be

differentiable on 1 so that F'eR(1,X). Then,

(T(F'zF(eo+e)—F(eo). (28)

Proof. Given any x eX”, the composite function x oF:1 - R is differentiable with
derivative (x oF)'(e,+5)=x oF'(¢,+05) for all (¢+d)el. Using the (real) fundamental
theorem of calculus and the fact that the Riemann integral commutes with linear
functionals we have

X*(F(eOJre)—F(eo)):(x*oF)(eo+e)_<x*o|:)(€0)
=‘°Jf(x*o F'(6 +0)d (& +9) =X*[‘T‘ F'(¢ +0)d (eo+5)j,

Since X" separates points, we deduce Eqg. (28).
Corollary (6.3.25)[221]: Let X be a (1 —€)-Banach space ¢>0. Suppose that f is
analytic of order r on 1. If r > 2 then f’'eR(l,X) and

1—€ !
f (e +€)—f (¢) = jf '(u)du .
Proof. We wuse Theorem (6.3.10) to write f _Zf( —1+Z, . ,_1)l//n, where

(xn_1+2?215j_1);:8(f ). We have f'=3"" ( it ,1)% uniformly. From |y, <C,n*'

1( 1+Z =1 1—1)

and (1-¢)(r-1)>1, we obtain " ‘<. Applying Theorem (6.3.5)

N oo

we get that f eR(1,X) and

jf '(u)du —Z( n_1+z;]_l5j_l)(Tl//r:(u)du -

n=1

=Y (%0t 00+ -y (@) =1 (6 + 9~ (&)

Corollary (6.3.26)[221]: Let X be a (1 — €)-Banach space for some ¢>0. Suppose that
there exist a non-purely atomic measure space (©,%,) and an Orlicz function ¢ such

that M (1, X) <L) (1, X ). Then e=0 (i.e., X is a Banach space).
Proof. Define 7:M (u.X)—>X by Z(f )=J'Qfdﬂ (integral in the sense of Vogt). For

S= ZL(XH +Zzzl5jfl)z[€ifl,€ifl+q] €S (1, X) we obtain
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By Theorem (6.3.2), X is locally convex.
Corollary (6.3.27)[221]: Let X be a (1 — €)-Banach space e>0. If f el (R",X),

then
jf U)du =f (¢, +5),

g»( 0+5) | |

almost everywhere (¢, +5) in R’.
Proof. The result is true for f eS(x,X), and S(x,X) is dense in L, (R*,X ). Moreover,
the maximal operator M satisfies the following (1 — €)-subadditivity condition

M (f +g)<((MFf )" +(Mg)" ).
Thus it suffices to show that M maps L} (R‘,X) into L,, (R, R).
Let f el! (RX), x=(xn,l+zj”_:15j,l)wf in x and f=(f.)~, in L'(xR) such that (24)
and (25) hold. Using (1 — €)-convexity of the space we get

Mf (€0+5)<( ( Yy J_l) ([/I/IHL(|fn|)(60+5)]1-(jll<.
Hence, denoting s = ;-
L =[S S o |
S[D(s)]“( (k0 2000 )| i (,DE j
0O (S X o))

< L[D(S)]M(Z_l: ( n 1+Z 4 1—1)

LD ()N (x, )=

. +¢
"1t
1

Taking the infimum we obtain |Mmf | < L[D(ﬁ)]i If [, as desired.
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List of Symbols

Symbol page
HP Hardy Space 1
H* Hardy Space 1

BMOA | Analytic Bounded Mean Oscillation 1
)y Lebesgue Space 1

ess Sup | Essential Supremum 1
max maximum 1
inf infimum 3
arg argument 5
min minimum 6
L? Hilbert Space 15
H? Hardy Space 15
L Lebesgue Space 15
Lt Lebesgue Space on the Real Line 15

const constant 15
Wl Sobolev Space 16
Lip Lipschitz 16
Brg Besov Space 18
dist distance 22
Hol Holomorphic 22
card Cardinal 23

p Hilbert Space 24
e Direct difference 25
Im Imaginary 25

RKHS | Reproducing Kernel Hilbert Space 29
mod modular 33
pres Presburger 33
Dom Domain 35
dim dimension 35
Mac Macintyre 39

HBEP Hahn-Banach Extension Property 65

L, Orlicz Space 69
co convex 70
a.e almost every where 77
® Tensor product 121
def definable 122
sem semi 123
int integrability 125

supp Support 135
loc Local 139
det determinant 146
Kal Kalton 177
HL Hardy Littlewood 190
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