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Abstract 

   

We show the inequalities of Bernstein-type for derivatives of rational 

functions, inverse theorems of rational approximation, Kernels of Toeplitz operators, 

smooth functions and effective essential Hardy space interpolation constrained by 

weighted Hardy and Bergman norms. The Presburger Sets,  -minimal fields, analytic 

 -adic cell decomposition, integrals, and the classification of semi-algebraic  -adic 

sets up to semi algebraic bijection are considered. We characterize the basic 

sequences and curves with zero derivative in  -spaces and an  -space with trivial 

dual where the Krein-Milman theorem holds. We discuss the asymptotic sharpness 

and application of a Bernstein-type inequality for rational functions and interpolation 

in Hardy, Dirichlet and weighted Bergman spaces. Methods of integration of positive 

constructible functions against Euler characteristic, dimension, loci of integrability, 

zero loci, stability under integration for constructible functions on Euclidean space 

with Lebesgue measure, Lebesgue classes and preparation of real constructible 

functions are studied. The existence and Lipschitz maps of primitives for continuous 

functions and the fundamental theorem of calculus with integration in quasi Banach 

spaces are established.  
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 الخلاصــــة

 
لنوع بيرنشتاين لاجل الاشتقاقات للدوال النسبية والمبرهنات الانعكاسية تم ايضاح المتباينات  

للتقريب النسبي والنويات لمؤثرات التبوليتز والدوال الملساء وفضاءات هاردي الاساسية الفعالة 
وتفكيك   -اعتبرنا فئات بريسبيرجير والحقول الأصغرية. بواسطة هاردي المرجح ونظائم بيرجمان

شبه الواحد لواحد الجبرية الي -أديك شبه- التحليلية والتكاملات وتصنيف فئات  أديك-  الخلية
  -تم تشخيص المتتاليات الأساسية والمنحنيات مع المشتقة الصفرية في فضاءات. الجبري
درسنا قاطعية التقاربية وتطبيق . ميلمان تتحقق-مع الثنائي البديهي حيث مبرهنة كرين  -وفضاء

بيرنشتاين لاجل الدوال النسبية والاستكمال في فضاءات هاردي ودرشلت وبيرجمان -عمتباينة نو 
تمت دراسة طرق التكامل للدوال القابلة للبناء الموجب المقابل مميز اويلر والبعد والمحال . المرجح

لاجل دوال البناء علي الفضاء الاقليدي مع قياس الهندسية الصفرية والاستقرارية تحت التكامل 
تم تأسيس وجود ورواسم لبشتز للبدائيات . بيق وعائلات لبيق واعادة تجهيز دوال البناء الحقيقةل

 .لاجل الدوال المستمرة والمبرهنة الاساسية للحسبان مع التكامل في شبه فضاءات باناخ
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Introduction  

 Let pH  be the Hardy space of functions f  that are analytic in the disk 1z   and let 

J f  be the derivative of f  of order    in the sense of Weyl. It is shown, for example, 

that if r  is a rational function of degree 1n   with all its poles in the domain 1z  , 

then 
HH p

J r cn r 



 , where (1, ]p  , 0  , 1 1( )p      and 0c   depends only 

on   and p . Given a finite subset   of the unit disc  and a holomorphic function f  

in  belonging to a class X , we are looking for a function g  in another class Y  which 

satisfies | |f g  and is of minimal norm in Y . We consider the interpolation constant 

, 1 | |
( , , ) sup inf

X
ff X f Y

c X Y
 

  
 g g . When Y H  , our interpolation problem includes 

those of Nevanlinna–Pick and Carath´eodory–Schur. We show a cell decomposition 

theorem for Presburger sets and introduce a dimension theory for Z-groups with the 

Presburger structure. Using the cell decomposition theorem we obtain a full 

classification of Presburger sets up to definable bijection. We show a conjecture of 

Denef on parameterized p-adic analytic integrals using an analytic cell decomposition 

theorem, which we also show. We show that two infinite p-adic semi-algebraic sets 

are isomorphic (i.e. there exists a semi-algebraic bijection between them) if and only 

if they have the same dimension. We establish a conjecture of Shapiro that an F-

space (complete metric linear space) with the Hahn-Banach Extension Property is 

locally convex. We show that in certain non-locally convex Orlicz function spaces L  

with trivial dual every compact convex set is locally convex and hence the Krein-

Milman theorem holds. We show a Bernstein-type inequality involving the Bergman 

and the Hardy norms, for rational functions in the unit disc  having at most n  poles 

all outside of 1
r

, 0 1r  . The asymptotic sharpness of this inequality is shown as 

n   and 1r  . Given 1n   and [0,1)r  , we consider the set ,n r  of rational 

functions having at most n poles all outside of 1
r

, were  is the unit disc of the 

complex plane. We give an asymptotically sharp Bernstein-type inequality for 

functions in ,n r  in weighted Bergman spaces with “polynomially” decreasing 

weights. Following recent work of R . Cluckers and F. Loeser on motivic integration, 

we develop a direct image formalism for positive constructible functions in the 

globally subanalytic context. We show a correspondence between zero loci and loci 

of integrability for constructible functions on Euclidean space, where a function is 

called constructible if it is a sum of products of globally subanalytic functions and of 

logarithms of globally subanalytic functions. We call a function constructible if it has 

a globally subanalytic domain and can be expressed as a sum of products of globally 

subanalytic functions and logarithms of positively-valued globally subanalytic 

functions. We show that for a wide class of non-locally convex quasi-Banach spaces 

 that includes the spaces for      , there exists a continuous function X
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          failing to have a primitive, thus solving a problem raised by M.M. 

Popov in 1994. We make a general approach to integrability and its interplay with 

differentiability in quasi-Banach spaces. This endeavor demands studying first the 

defects of Bochner and Riemann integration in the setting of p-Banach spaces when 

   . The conclusion will be that the local convexity is a necessary (and sufficient) 

condition of the space for the integral operator to work in the expected way. 
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Chapter 1 

Bernstein Type Inequalities and Kernels of Toeplitz Operators  

with Effective    Interpolation Constrained 

Let  be a unimodular function on the unit circle  and let ( )pK  denote the kernel 

of the Toeplitz operator T  in the Hardy space pH , 1p  ;                   . 

Suppose ( ) 0pK  . The problem is to find out how the smoothness of the symbol  

influences the boundary smoothness of functions in ( )pK . If X  is a Hilbert space 

belonging to the families of weighted Hardy and Bergman spaces, we obtain a sharp 

upper bound for the constant ( , , )c X H   in terms of cardn   and max 1r   . If X  

is a general Hardy–Sobolev space or a general weighted Bergman space (not necessarily 

of Hilbert type), we also establish upper and lower bounds for ( , , )c X H   but with some 

gaps between these bounds. This problem of constrained interpolation is partially 

motivated by applications in matrix analysis and in operator theory. 

Section (1.1): Derivatives of Rational Functions and Inverse Theorems of Rational 

Approximation 

Let X  be a quasinormed space of functions that are analytic in the disk 1z  , and let 

( , )( , 1,2, )nR f X f X n    be the best approximation to f  in X  by rational fractions of 

degree at most 1n  . Dolzhenko [18] showed that if f H   and ( , )nR f H     then f  

belongs to the Hardy-Sobolev space 1

1H . Under the same conditions on f , Peller [14] 

showed that f  belongs to the Hardy-Besov space 1

1B . Since 2 1

1 1B H

 , Peller's result is 

stronger than Dolzhenko's. Nevertheless (see [18]) both of these inverse theorems on 

rational approximation are best possible in the following sense. For every nonincreasing 

sequence of numbers ( 1,2, )na n   that satisfies the condition na   , there exists an 

*f H   such that *( , ) ( )n nR f H O a   and 1

* 1f H , and consequently 1

* 1f B . These results are 

generalized in the present section. In particular, we obtain the best possible sufficient 

conditions on the rate of decrease of ( , )n pR f H (1 )p    that guarantee that f  belongs to 

the Hardy-Sobolev space H 

  or the Hardy-Besov space B 

  1 1( 0, ( ) )p       . In 

addition, in contrast to [14], [28] and [29], we show the implication 
1

1( ( , ))nR f BMOA f B 

     (first obtained by Peller [14] for 0 1   and then 

generalized to the case 1   in [28], [29] and [32]) without making use of the connection 

of ( , )nR f BMOA  with Hankel operators. The method for solving these problems uses 

inequalities of Bernstein type, obtained here, for derivatives of rational functions.  

The main results of this section were presented without proof in [30],[33]. 

Let S  be a rectifiable curve in the complex plane. We denote by ( )pL S , (0, ]p  , the 

set of functions f , measurable on S , for which 
,p s

f   , where we set 

 
1

,
( ) ,

p
p

p s s
f f z dz p   , 

,
sup ( ) ,

s
z S

f ess f z p




   . 

We denote by T , D , and D , respectively, the circle 1z  , the disk 1z   and the domain 

1z  ; by ( )A D  we denote the set of functions that are analytic in D . We denote by pH , 

0 p   , the Hardy space [1] of functions in ( )A D  for which the quasinorm 

1 0
lim ( )

pH p
f f




 
   
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is finite, where we write for short 
,p p T

g g  for ( )pg L T . The indicated limit exists 

because of the monotonicity of ( )
p

f   with respect to   [2]. If pf H  and z T  we 

denote by ( )f z  the nontangential limit of ( )f   as z   [2]. It is known that 
PH p

f f .  

Let ( )f A D  and let ˆ( )f k ( 0,1, )k   be the Taylor coefficients of f . If 0  , the 

following functions in ( )A D , 

( ) [ ]

[ ]

( [ ] 1 ) ˆ( ) ( )
( [ ] 1)

k

k

k
f z f k z

k

 



 








   


  
 , 

0

ˆ( ) ( 1) ( ) k

k

J f z k f k z 




  , 

where   is Euler's gamma function and [ ]  is the integral part of  , are called the  

derivatives of f  in the Riemann-Liouville and the Weyl senses, respectively. Evidently, 

if l   is a positive integer, ( )( )lf z  is the ordinary derivative, and ( ) [( ) ] ( )l lJ f z d dz z f z . 

The function J f  will also be considered for 0  . In this case it is called the integral of f

of order   in the sense of Weyl. It is easy to establish (see also [3]) that when 0   
1

( ) 1 [ ](1 ]
( ) ( ) 1 , 1,

2

z
f z f d z p

i



 

 


  

 

 

 



  
    

 
               (1)  

where the branch of 1(1 )     is chosen so that 1(1 ) 0     for ( ,1)  . We denote by 

pH   ( ( , ), (0, ])p      the Hardy-Sobolev space, i.e. the set of ( )f A D  with finite 

quasinorm 
p p

H H
f J f

 . We denote by ,p qH   ( ( , )   , (0, ]p  ,
 

(0, ]q   ), the 

Hardy-Besov space, i.e. the set of ( )f A D  with finite quasinorm  

 
,

1
1( ) ( ) 1

0
(1 ) ( ) ,

p q p

q
q

q

B H
f J f d q

           , 

,

( ) ( )

0 1

sup(1 ) ( ) ,
p p

B H
p

f J f q

    




 

     . 

Here   is arbitrary,   . The space ,p qB   is independent of   [3] and the quasinorms for 

different values of   are equivalent. In this connection, we call the quasinorm with 

1    fundamental, and denote it by 
,p qB

f  .We abbreviate ,p qB   to pB  .  

Unlike J f , the derivative ( )f   does not have the semigroup property. In fact, the 

equality 1 2 1 2( ) ( ) ( )
( )f f   

  is satisfied for every f  only in the case when 1  and 2  are 

integers. Lemma (1.1.1), showed below, lets one avoid this inconvenience.  

Definition. Let W  be a quasinormed space of elements of ( )A D . A sequence 0{ }k
  is 

called a multiplier in W  if, for each f W , we have 
W W

g c f  where 
0

ˆ( ) ( ) k

kg z f k z



, with 0c   and independent of f . 

Lemma (1.1.1)[1]: Let , 0   . Then the sequences 1( )[ ( )( 1) ]k k k k             and 
1

k k  ( 0,1,2, )k   are multipliers in the spaces pH   and ,p qB  .  

Proof. It follows from the definitions of pH   and ,p qB   that we may restrict our attention to 
0

p pH H . Let m  be the smallest integer such that 1 1m p   . From the asymptotic series for 

the gamma function [4] we obtain 
1 2 1

0 1 2( 1) ( 1) ( 1) ( 1)m m

k m kb k b k b k b k d               , 

where 0 1, , , mb b b  are numbers depending only on   and  , and 0{ }kd   is a bounded 

sequence. Consequently, if pf H  and 
0

ˆ( ) ( ) k

kg z f k z


 , then 
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1

0 0 0

ˆ( ) ( ) ( )( 1) ( ) ( )
m mdef

j m k

j k j j

j k j

g z b J f z f k k d z b f z z


  

  

       .                (2) 

Moreover, we have (see [5]) 
1( )

pp
j HH

f c j f  and (see [3]) 

1

2
ˆ( ) ( )( 1) ( 0,1,2, )pf k c p k k   . 

Consequently 2

3
ˆ( ) ( ) ( 1)

pH
k c p f k    and 4( )

p pH H
c p f  . Thus we obtain 

5( )
p pH H

g c p f  from (2). We can show in a similar way that the sequence 0{ }k
  is a 

multiplier in pH . This completes the proof of Lemma (1.1.1).  

Let X  and Y  be quasinormed spaces. By an embedding X Y  we shall always 

understand a continuous embedding, i.e. if f X  then f Y  and 
Y X

f c f , where 0c   

is independent of f .  

Lemma (1.1.1) lets us extend various embedding theorems that were proved for the 

Riemann-Liouville derivative to the Weyl derivative. For example, we have [5] 
0 1

0 1

1 1

0 1 0 1 0 1(0 , )p pH H p p p p
            .                 (3)  

There are the following embeddings between the spaces ,p qB   [3]:  

01

1 1 0 0, , 1 0 1 0( , )p q p qB B p p
     ,                  (4) 

1 0, , 1 0( )p q p qB B q q   ,                   (5) 

01

1 0

1 1

, , 1 0 1 0 0( 0, )p q p qB B p p p
           .                  (6)  

The following two embeddings [3] reflect the connection between pH   and pB  : 

(2 )p pH B p     ,                   (7) 

(0 2)p pB H p    .                  (8)  

We denote by BMOA the space of analytic functions of bounded mean oscillation [6], 

i.e. f BMOA  if there exists ( )g L T  such that 

1 ( )
( ) ,

2 T

g d
f z z D

i z

 

 
 

 .                 (9) 

The norm in BMOA is defined as follows: 

inf
BMOA

f g


 , 

where the lower bound is taken over all ( )g L T  for which (9) holds. Evidently 

(0 )pH BMOA H p      .             (10) 

Surveys of inequalities for the derivatives of rational functions are given by Gonchar 

[7] and Rusak [8]. Here we present only the inequalities that are directly related to the 

subject of the present section. The first result in this direction was obtained by 

Dolzhenko [9], who showed that a rational function r  of degree 1n   with poles only in 

D  satisfies 

1
1

1H H
r c n r



 ,              (11) 

1
2
2

1
2

2B H
r c n r



 .              (12)  

For any s   and (0, ]p   the following generalization of (11) follows from the results 

of Sevast'yanov [10]: 

 1 1

3( , , ) ( ) , (0, )s
p

s

H H
r c s p n r s p

 

   


     .           (13)  

As was observed in [10], one cannot take 0   in the preceding inequality if 1
p
 . To 

see this, it is enough to consider the function 1( ) (1 )r z z     as 0  . We showed in 



 4 

[11] that for p    and any s   we can take 0   in (13). Inequality (12) was 

generalized by Danchenko [13], who showed that 

 
,

1 1

3( , , , ) (0,1], (1, ], ( ) , 0
t q pB H

r c t q n r p t p q            .          (14)  

Another generalization follows from a result of Peller [14] on best rational 

approximations for the class 1B 

 , (0,1] , in the space BMOA. This is 

1
4( ) (0 1)

B BMOA
r c n r



    . 

Our Theorem (1.1.7) generalizes and strengthens the results quoted above.   

Lemma (1.1.2)[1]: If z T  and l N  then 

2 1 (2 1)

2

1

(2 1)!
( , ) ( 1) [ ( ) ]

2

l
l l l j l j j j l l

l
T

j

l
z d z C B B z z 



    




  Q . 

Proof. For z  and T   we have d d i    and 

2
( , ) ( , ) ( , ) ( , )

( ) ( )

z
z z z z

B B z


   


  2

Q Q Q Q . 

Consequently 
2(2 1)!

( , ) ( ) ( )
2

l l l

l
T

l
z d z B z I z 




 Q ,             (15) 

where  

2 1(2 1)!
( ) ( , ) ( )

2

l l l

l
T

l
I z z B d

i
   



 
  Q . 

Since ( )lI z  is continuous in D T  , it is enough to calculate it for z D . Thus we have 

2 ,

1

( ) ( ( )) ( ) ( )
l

l j l j

l l l j

j

I z C B z I z z D 





   ,             (16)  

Where 
1

, 2

(2 1)! ( )
( )

2 ( )

j l

l j lT

l B
I z d

i z

 


 




 . 

By Cauchy's formula we obtain 
(2 1)

, ( ) [ ( ) ] ( 1, , )j l j l

l jI z B z z j l   .             (17)  

If 0l j   , the point 0   is a zero of order at least 2 of the function 
1 2( ) ( )j l lB z    . 

Therefore , ( ) 0l jI z  ( , ,0)j l  . By using (15)-(17), we obtain the conclusion of Lemma 

(1.1.2).  

Lemma (1.1.3)[1]: For all z T  and s N  
( )( ) 2 ! ( ,1 )s s sB z s z s . 

Proof. We set 1( ) ( )(1 )k k kb z z a a z    . Then 

0 1( )

0 1

0 1

!
( ) ( ) ( ) ( )

! ! !
nj j js

n

n

s
B z b z b z b z

j j j
 ,             (18)  

where the summation is over all collections 0 1, , , nj j j  of nonnegative numbers satisfying 

the condition 0 1 nj j j s    . It is evident that for every z T , 0 k n   and 1 j s   we 

have 
1

( ) 1 1
( ) 2 !

j
s

j k

k

k k

a
b z j

z a z a

 
 
  
 

.              (19)  

Lemma (1.1.3) follows from (18) and (19).  

Lemma (1.1.4)[1]: If z T  and 0  , then 
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( 1)

1
( , ) ( ) ( ,1 ( 2))z c z 


  


  Q . 

Proof. It follows immediately from Lemmas (1.1.2) and (1.1.3) that 

2 2 1 1
( , ) ( ) , ( , )

2 1

l l

T
z d c l z z T l N

l
     

   
 

 Q .            (20)  

Let m  be the smallest odd number such that m  . We introduce 1( 1)( 1)p m     , 
1( 1)( )q m m      and 1 1( ) { : arg arg ( , )}S z T z z m       . From (20) and Holder's 

inequality, we obtain 

1

1, ( ) , ( )( )

1
( , ) 1 ( , ) ( ) ,

q S z p S zS z
z d z c m z

m

    
  

    
 


1+

Q Q .            (21) 

On the other hand, 

1 11

2
( ) ( )

1
( , ) 2 ( ) ,

T S z T S z
z d z d c z

m

       
    

    
 

 Q .            (22) 

Since ( , )z   does not increase in   for fixed z T , Lemma (1.1.4) follows from (21) and 

(22). 

Lemma (1.1.5)[1]: if ( )pf L T , (1, ]p  , 0  and 
1

( ) ( , ) ( )
T

g z z f d


  


  Q , 

Then ( , )
p

g c p n f


 , where 1 1( )p     .   

Proof. For p    the necessary inequality follows from Lemma (1.1.4) and the relation

   1( , ) ( ) ( 0)
T

z dz c n     .             (23) 

Now let (1, ]p   and 11 p   . Then 1   and consequently, by Lemma (1.1.4), 

Holder's inequality, and (23),  

1

21 1

1
( , ) ( ) ( ) , ( ) )

2T T
g z f d c f d       



  
    

 
 Q  

               2 31
( ) ( )

p p
c f c n f

     . 

Therefore Lemma (1.1.5) is established in the case under consideration. Now let   be 

arbitrary. Choose positive numbers , , l  , and s  satisfying the conditions (1, )l p , 
1 1 1l s   ,      and 1l l p   . Then, by Holder's inequality, 

def1 1
1 1

1 1
( ) ( , ) ( , ) ( ) ( ) ( )

s l
s l lg z z z f z z        Q Q             (24)  

for every z T . From Lemma (1.1.4) and (23) we have  

41
( , )c s n


                  (25)  

Using the fact that the lemma has already been established for 11 p    (in this case 
11 ( )l p l   ), we obtain  

1 1

5( , ) l p

l p
c l p n f



  .              (26)  

Thus we obtain the conclusion of Lemma (1.1.5) in the case (1, )p   and 0   from 

(24)-(26) and Holder's inequality.  

Lemma (1.1.6)[1]: Let r  be a rational function of degree 1n   with all its poles in D , 

0   and (1, ]p  .  

1) There are continuous functions ( )   and ( )h   of period 2  that satisfy the conditions 

,[0,2 ]
( , )

pp H
c p r


  ,   and  ( ) 0    

1,[0,2 ]
h n


 ,   and  ( ) 1h    
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   1(1 ) ( ) min( , ( )) , (0,1), [0,2 ]iJ r x e x h x
          . 

2) There is a continuous function ( )g   of period 2  that satisfies the conditions 

1,[0,2 ]
( ) ( ) 1g c n and g


   , 

   1(1 ) min( , ( )) , (0,1), [0,2 ]i

BMOA
J r x e r x g x

        . 

Proof. It is evident that for (0,1)x   and [0,2 ]   

   
[0,1]

(1 ) max ( )
def

i iJ r x e J r e G   


 


   .            (27) 

From Lemma (1.1.1) we find that there is a function f , analytic in D T  , such that 
( )J r f  and 1( )

p pH H
f c p r . Consequently we find from (1) that 

1

1 [ ]

( )

(1 )
( ) ( ) 1 ( {0})

2 S z

z
J r z f d z D

i



 
  

 

 

 



  
   

 
 , 

where ( )S z  is the convex curve formed by the circle 1
2

   and the tangents to it from 

the point z z . Hence we obtain 

  2
( )

(1 ) ( ) ( ) , ( ) max ( )i

S z
J r x e c F x F f  


   


   ,             (28)  

where (1 ) iz x e   . Let us show that the functions 

 
11 1 1

3( ) ( , ) ( ) 1 ( )
p

r

H
h c p n r G p    

      
 

, 

(1 ) 1

4( ) ( ) ( , ) ( )
pH

F c p n r G
           

satisfy the requirements of the lemma for suitable choices of the constants 3( , )c p  and 

4( , )c p . In fact, from (29) together with (Theorem (7.36) of [2]), we obtain 

5,[0,2 ]
( , )

pH
G c p n r

 
 , 

6,[0,2 ]
( )

pp H
F c p n r


 . 

Using (27) and (28), we obtain assertion 1) of Lemma (1.1.6).  

For the proof of assertion 2) we observe that 

 
1

1 [ ](1 )
( ) ( ) (1 ) 1 ( )

2 T

z
J r z f s d z D

i



 
   

 

 

 



  
    

 
 , 

where 1s H  and (0) 0s  . Consequently, instead of (28) we must use the inequality 

  7(1 ) ( )i

BMOA
J r x e c r x     . 

To obtain the analog of (27) we have to use (31). Everything else is obtained as in the 

proof of assertion 1) for p   . 

Theorem (1.1.7)[1]: Let r  be a rational function of degree 1n   with all its poles in D ; 

let 0  , (1, ]p  , and 1 1( )p     . Then 

0
1( , )

pH H
r c p n r

 ,             (29) 

0
2( , )

pB H
r c p n r

 ,             (30) 

1
3( )

H BMOA
r c n r



 ,             (31) 

1
4( )

B BMOA
r c n r



 .             (32) 

In the proof of Theorem (1.1.7) we shall consistently use the following notation. Let 

1, , na a , belong to D . We set 



 7 

0

0

( ) ( 0)
1

n
k

k k

z a
B z a

a z


 


 , 

( ) ( )
( , )

B z B
z

z










Q , 

0

1 1
( , ) ( 0)

n
k

k k k

a
z

z a z a



  


 
  

  
 . 

Proof. Let the poles of the rational function r  be located, counting multiplicities, at the 

points 11 , ,1 na a , where 1, , na a  belong to D
+
. Then the function 1 1 [ ]( ) ( )(1 )k zr B  

       

( )k and z D   is an analytic function of   in D  and has a zero of order at least 2 at 

 . Consequently 
1

1 [ ]( ) ( ) 1 0k z
r B d



   


 

   
  

 
 . 

Therefore if we expand the function 1(1 ( ) ( ))B z B    ( z D  and T  ) in a Taylor 

series in ( )

( )

B z

B  , we obtain from (1) 
1 1

( ) 1 [ ](1 ) ( )
( ) ( ) 1 1

2 ( )T

B z z
r z r d

i B

 

 
  

  

  

     
     

   
 .           (33)  

From (33) and Lemmas (1.1.1) and (1.1.5) we obtain (29). To show (31) it is enough to 

observe that (33) remains valid if we replace ( )r   by ( ) (1 )r h   on the right, where 1h H  

and (0) 0h  .  

     Let h  and   be the functions from Lemma (1.1.6) corresponding to 1   . Then 

we obtain (30) from Lemma (1.1.6):  

 
2 1 ( ) 1

( 1) 1 1

0 0 1 ( )
( )

h

B h
r h x dx x dx d



      


          

      
2

1 2
0

( , ) ( ) ( ) ( , )
pH

c p h d c p n r
          . 

Here in obtaining the last inequality we have also applied Holder's inequality. Similarly 

we obtain (32) from Lemma (1.1.6).  

Corollary (1.1.8)[1]: Let 0  , (1, ]p  , 1 1( )p     , (1, ]s   , (1, ]q    and 

 
,

1
( , , , ) sup

s q p
n n nB H

A p s q r r


 , 

where the upper bound is taken over all rational functions 0nr   of degree at most n  

( 1)n  . Then 

( , , , ) ( )nA p q n q   ,             (34)  
1 1

( , , , ) ( )q p

nA p q n q  
   ,             (35)  

( , , , ) ( , (0, ])nA p s q s q      ,              (36) 

( , , , ) ( , (0, ])nA p s q n s q    .            (37) 

Proof. The upper inequality in (34) follows from (30) and (5). To obtain the lower 

inequality in (34) it is enough to consider the function ( ) n

nr z z . The upper inequality in 

(35) follows from (30) and (6). To obtain the lower inequality we consider the function 
1

2 1

0

( ) [(1 ) ]
n

ik n

n

k

r z e z






    

for sufficiently small 0  . We immediately verify (36) by the example of the function 
1

1( ) (1 )r z z     as 0  . To obtain the lower inequality in (37) we consider the 
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function ( ) n

nr z z . To obtain the upper inequality in (37) we use Lemma (1.1.6). Let h  

and   be the functions of Lemma (1.1.6) corresponding to 1 1s p     . Then (with 

corresponding changes for q   ) we have 

 
,

1

1 1 1 2( ) ( ) 1

1 0
2 ( ( ) )

s q

q q
ss qq s

B n
r x d x dx

     


  
 
 
 
 
   

 
1

1 1 1 2
2 ( ) 1

0 0
2 ( ( ) ( ))

q q
n s qq s h d x dx


     


 

 
 
 
 
   

2( , , , )
p

n H
c p q s n r . 

Corollary (1.1.8) is showed.  

Let the rational function r  of degree n m  have no poles on T , but n  poles in D  and 

m  in D . Then ( ) ( ) (1 )r z r z r z   , where r  and r  are rational functions of respective 

degrees n  and m  with all their poles in D . It is easy to obtain the following corollary of 

Theorem (1.1.13). 

Corollary (1.1.9)[1]: if 0  , (1, ]p   and 1 1( )p      then 

( , ) , ( , )
B p B p

r c p n r r c p m r 
 

     . 

In conclusion, we remark that it would be interesting to extend Theorem (1.1.7) to 

the Smirnov spaces pE . Some special results in this direction were obtained in [12], [15] 

and [16]. 

Let pf H  and 0n  . Let ( , )n pR f H  denote the best approximation to f  in pH  by 

rational fractions of degree at most 1n  . Following [17], we introduce the approxima-

tion space ,p qR   ( 0  , (0, ]p  , (0, ]q   ) of functions pf H  with finite quasinorm 

,

1

2
0

(2 ( , )) ,k
p q p

q

k q

pR H
k

f f R f H q






 
    

 
 , 

, 2
0,1,

sup 2 ( , )k
p p

k

pR H
k

f f R f H



 

  . 

We denote by ( , )nR f BMOA  the best approximation to f  in BMOA by rational fractions 

of degree at most 1n  , and the corresponding approximation space by *,qR  .  

Lemma (1.1.10)[1]: [2]. Let ( )f x  be a nonnegative function defined for 0x  , and let 

1r   and 1s r  . If ( )r sf x x  is integrable on (0, ) , then 

0 0 0

1
( ) ( )

1

r r
x

s r sr
f y dy x dx f x x dx

x r s

    
   

    
   . 

Lemma (1.1.11)[1]: Let { }k


  and { }kh 

  be sequences of nonnegative numbers 

satisfying the conditions 

1 ( 0, 1, 2, ), ( )l m rk
k k

kk

h
q k h

h







      , 

Where 0l m  , 1r   and 1q  . If 

1( ) (min( , )) ( [0, ))l

k k

k

x h x x 






   , 

Then 

1

0
( ) ( , , , ) ( )r mr l m r

k k

k

x x dx c l m q r h 


 



  . 
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proof. We define a function ( )y  on (0, )  in the following way. If j  is a positive 

integer and 1( , ]j jy q q  then ( )y  equals j

kq   if 1( , ]j j

kh q q  and equals 0 when no kh  

belongs to 1( , ]j jq q . Since 1k kh h q   for every k , the interval 1( , ]j jq q  contains at most 

one kh  and consequently ( )y  is well defined. It is easy to verify the inequality 

  2

1
2 1

1
0 0

( )
( ) ( ) ( ) ( 0)

x x
dyl

yl y

c q
x c q y y dy x

x
      . 

Making an appropriate change of variable in the improper integral, we find from Lemma 

(1.1.10) that 

1 ( 1)

3
0 0 0

1
( ) ( , ) ( )

r
x

r mr l r l mx x dx c r q y y dy x dx
x

 
 

   
  

 
    

  2

11
4

0 0

1
( , )

x
dy mr

y y
c r q x dx

x



 

  
 

   

( 1) 1

5
0

( , , , ) ( )r r l mc r m q l x x dx


    . 

By the definition of ( )x  we obtain 

 ( 1) 1

6
0

( ) ( , , , )
r

r r l m l m

k k

k

x x dx c r m q l h 


   



  . 

Thus the conclusion of Lemma (1.1.11) follows from the preceding two inequalities. 

Theorem (1.1.12)[1]: Let 0  , (0, ]p   and 1 1( )p     . Then 

,pR B 

  ,               (38) 

,min(2, )pR H 
  ,              (39) 

,1 1R B 

   ,               (40) 

      *,min(2,1 ) 1R H 
  ,              (41) 

proof. is divided into five cases:  

1. Embedding (1.1.12) for 1  . Following Bernstein's classical method, we represent 

a function ,pf R 

  in the form  

0

0

( ) ( ) ( )k

k

f z a u z z D






    ,              (42) 

where ku  is a rational function of degree at most 12k  , with all its poles in D , that 

satisfies 

2
3 ( , )k

p
k pH

u R f H ,             (43)  

and 0a  is a constant such that 0 2
pH

a f .  

Taking account of the restriction 1  , we find from (30) and (43) that  

,
0

0

( , )
p

kB B B R
k

f a u c p f   
   

   






   .  

2. Embedding (38) for 1  . We again use (42) and (43), and also suppose that all 

0ku  . Let k  and kh  be the continuous functions of period 2  from Lemma (1.1.6) for 

ku  and 1   . We set 
* 2 ( 1) 2

0 1( ) 2 ( ) 2 ( ) ( )k k

k kh h h h       . 

Then, for every  , we have 
*

* 21

* 1,[0,2 ]

( )
2 ( [0,2 ]), 2

( )

kk
k

k

h
h

h 


 



     ,           (44) 

1 2,[0,2 ]
( , ) ( , )kk pp

c p R f H


   ,             (45)  
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    
1

1 1 *(1 ) ( ) min , ( ) ( (0,1))i

k kJ u x e x h x


    


    . 

Therefore we find from Lemma (1.1.11) that for every [0,2 ]   

 
1

1 1 *

2 0 3
0

0

(1 ) ( , ) ( , ) ( )( ( ))i

k k

k

J f x e x dx c p a c p h
         


 



   
  .          (46)  

From Holder's inequality and (44) and (45) we obtain 

 
2

*

4 20
( )( ( )) ( , ) 2 ( , )k

k

k k ph d c p R f H
        

  . 

Thus the required embedding follows from (46). If some 0ku   in (42), we have to make 

evident modifications in the proof.  

   3. Embedding (39) for (0,2]  . This follows from (38) and (8).  

   4. Embedding (39) for 2  . This is proved just like (38) for 1  . Here, along with 

Lemmas (1.1.6) and (1.1.11), we also have to use the Littlewood-Paley theorem [5] 

according to which  

 
212 1

0
2,[0,2 ]

( , ) (1 ) ( 2)i

H
f c p J f x e xdx



 

 

    . 

   5. Embeddings (40) and (41). These are proved just like the embeddings (38) and (39) 

respectively. Theorem (1.1.12) is showed. 

Lemma (1.1.13)[1]: If 0  , 0 q   , and if the sequence 0{ }kb   is nonincreasing and 

tends to zero, and the series 

 
0

2
q

k

k

k

b




               (47)  

diverges, then the series 

 1

0

2 ( )
q

k

k k

k

b b






              (48)  

also diverges.  

Proof. Suppose that (48) converges. We show that in this case 

1 1( , )2 2 ,
2

q qk j q a

k j j j j

j k

b c p b b  
   








 
    

 
            (49)  

for all 0,1,k   In fact, since 0kb   , then 1k k kb       and since (48) converges we 

have, for 1q  , 

2 (2 )q q qk j q

k j j

j k j k

b   
 



 

   . 

If 1q  , let 1( 1)q q q     and from Holder's inequality we obtain  
1 1 1

22 (2 ) ( , )2 (2 )

q q q

jq j q k j q

k j j

j k j k j k

b c q     


  

 

  

     
      
     
   . 

Thus we obtain (49) from the preceding two relations. From (49) we obtain 

3

0 0

(2 ) ( , ) 2 (2 )k q k q i q

k j

k k j k

b c q   
  

  

     

            ( )

3 4 1

0 0 0

( , ) 2 ( , ) 2 ( )
j

q q
j k j

j j j

j k j

c q c q b b   
 





  

    . 

The last inequality contradicts the divergence of (47). This completes the proof of 

Lemma (1.1.13).  

For use below, we introduce the notation 
1

, ( , 2 1 2 2)n n

n j j n j        , 
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12 2
2

, , ,

2 1

{ :1 2 1, arg },

n

n

n

n j n j n n j

j

G z z z G G

 


 

      . 

Lemma (1.1.14)[1]: Let 0  , (1, ]p   and 1 1( )p     . Then for every n  there is 

a rational function n  of degree 2n  that satisfies the conditions  

a. 1( , )
p

n H
c p  , 

b. ( )

2
,

2 ( , )
n

n

n G
c p 


  , 

c. ( )

,
1( )

m
n G

n m


  .  

Proof. We set 
12 2

1 1

,

2 1

( ) 2 ( )

n

n

n p p

n n j

j

z z  

 
 

 

   

1

, ,( ) ( )n j n jz z z   ,  ,

, (1 ) ( 0)n ji

n jz e


    . 

It is easily shown that 
1

1 1

,
0

1
lim /

2 2p

p

p

n j H

p p


  



    
      

    
,              (50) 

,

1

1 1 ( )

, ,0
lim (1 )

n j

p

n j G p








   



 
    

 
.             (51) 

In (50) the right-hand side is to be taken to be 1 for p   ; to obtain (51) we need to use 

the equality 

 
1

( ) 1 1 [ ]

, , ,( ) (1 ) 1n j n j n jz zz z
  

 
      , 

which follows from (1). The functions n  and ( )

n

  tend uniformly to zero as 0  , 

outside an arbitrarily small neighborhood of nG . Hence it follows from (50) and (51) that 

n  satisfies conditions (a-c) for sufficiently small 0  . This completes the proof of 

Lemma (1.1.14). 

Theorem (1.1.15)[1]: Let 0  , (1, ]p  , and 1 1( )p     . 

i. Corresponding to every sequence 1{ }na   that is nonincreasing and tends to zero, and 

satisfies 

 
min(2, )

2
0

2 k

k

k

a






  ,             (52)  

there is an pf H  such that ( , ) ( )n p nR f H O a  and f H 

 .  

ii. Corresponding to every sequence 1{ }na   that is nonincreasing and tends to zero, and 

satisfies 

         2
0

2 k

k

k

a






  ,             (53)  

there is an pf H  such that ( , ) ( )n p nR f H O a  and f B 

 .  

Thus, embeddings (38) and (39) cannot be improved. It follows from (10) that, in the 

same sense, embeddings (40) and (41) also cannot be improved. Moreover, by a result of 

Peller [14], [28], there is actually equality in (40). In addition, since (38) admits an 

inverse for 1 p   , see, assertion (i) of Theorem (1.1.15) is of interest only when p  

. Since the proof is the same for all p , we take (1, ]p   for the sake of completeness of 

presentation. Assertion (i) for 1   and p   , and (ii) for 1
2

   and p    in Theorem 

(1.1.15), were obtained previously by Dolzhenko [18].  
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proof. is divided into four cases. 

a. Assertion i) for 1  . As the required function we take  

1

( ) ( )k k

k

f z p z




 , 

where 1 22 2k kkp a a    and the k  are the rational fractions from Lemma (1.1.14). From 

condition 1) of Lemma (1.1.14) we obtain 

112 2
( , ) ( , )j j

p

p k k

k j H

R f H p c p a  





   

for every n , and consequently ( , ) ( )n p nR f H O a  as n  . On the other hand, for 

arbitrary n  we have from conditions 2) and 3) of Lemma (1.1.14). 

( )

2 2,,
1

,

2 ( , )[(2 ) 2 ]
nn

n

n n

n n k k nGG
k
k n

G

f p p c p p a



     





  


 




    . 

Setting 
1 nG G


 , we obtain ( )

,G
f 


   from Lemma (1.1.13) and (52), and conse-

quently, by Carleson's embedding theorem [19], ( )f H

 . The proof of this part of the 

theorem is completed by applying Lemma (1.1.1). 

b. Assertion i) for 0  . As the required function we take 

1 2

2

2 2
1

( ) ( )
k

k kk k

k

f z p z p a a 





   .            (54) 

Evidently ( , ) ( )n p nR f H O a . On the other hand, for every (0,1)p  we have, by Holder's 

inequality and Parseval's equality, 

 
1 2

2
1 1 2 2

,
1

( ) (2 ) 2
kk

k
T

k

J f  


   








 
   

 
 . 

Consequently, we obtain f H 

  by letting 1 0    and using Lemma (1.1.13) and (52). 

c. Assertion ii) for 2  . This follows from assertion i) and (8). 

d. Assertion ii) for 2  . We show that the function (54) is the required function. In 

fact, let 1 2 n

n
  , n , and 1[ , ]n n    . Then, by Holder's inequality and Parseval's 

theorem, 

   
2

2 2 2
1 1 2 1 ( 1)

3
0 0

( ) (2 ) ( ) ( , ) 2i i n

nJ f e d J f e d c p p
                  . 

By (53) we find from Lemma (1.1.13) that  

1 2
1 1

0
1

( ) (1 )
n

n

i

B
n

f d J f e d


     


   




 



     . 

This completes the proof of Theorem (1.1.15). 

We denote by ( , )k pf  ( , 0, ( ))pk f L T    the kth order modulus of 

smoothness of f , i.e. 

( )

0 ,[0,2 ]

( , ) sup ( 1) ( )
k

k i h

k p k
h

p

f C f e  

  

  

 

  . 

Corollary (1.1.16)[1]: if l  is the smallest positive integer such that l  , then for every 
1
2

(0, ]   

  
2

1

2
0 log (1 )

( , ) ( , ) 2 ,m

m

l p

m

f c p R f H




 





  
 

 
  

 
 .            (55) 
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To obtain (55) we observe that for   we have l k  and it suffices to suppress the 

terms with 0,1, , 1m n   on the left-hand side of (61). However, if  , then 1l k   

and by Marchaud's inequality (see, [20]) the left-hand side of (61) majorizes 

1( , )(2 (2 , ) )nl n

lc p f 

  . 

In view of Corollary (1.1.9), inequalities (61) and (55) remain valid if we suppose 

that ( )pf L T  and 
2

( , )m pR f H  is replaced by 
2

( , ( ))m pR f L T , the best approximation to f  in 

( )pL T  by rational fractions of degree 2 1m  .  

An inequality of the type of (55) was obtained by Dolzhenko [21] for 1   and p  

; by Sevast'yanov [22] for (0,1)  and p   ; and finally by Brudnyi [23] for 11 p   , 

[1, ]p  , and with k  instead of l .  

For the proof of Theorem (1.1.20) we require the following two lemmas.  

Lemma (1.1.17)[1]: Let (0, ]p  , min(1, )s p , k   and 0

,p sf B . Then for every 

(0,1]   

 
1

1
1

1
( , ) ( , ) ( ) (1 )

p

s
s

k ks

k p
H

f c k p J f d


   


   . 

Proof. For every z D  we have 1 2( ) ( ) ( )f z f z f z  , where  

1 2 1

0

( ) ( 1) 1 , ( ) ( ) ( )
k

kf z C f z f z f z f z
k

 








  
      

  
 . 

From Lemma (1.1.1) and a result of Storozhenko [24] we obtain, since ( )
p

g   is 

nondecreasing with respect to   ( )pg H ,  

2 1 2 2( , ) ( , ) ( , ) ( (1 ))
p p

k k k k

k p
H H

f c k p J f c k p J f k       .           (56) 

From the properties of finite differences [25] we have, for every z D ,  

   ( )

1 1 2 1 2
0 0 0

( ) 1 ( )
k k k

k k

k kf z z dt dt f t t t z dt
  

        

  
1 2

1 2

( )

1 2 1 2

, , , 0

1 ( )

k

k

k

k k

t t t
t t t

f t t t z dt dt dt




   

        

1
( )

0

1
((1 ) )

( 1)!

k
kf t z dt

k

 

 
  .              (57) 

If [1, ]p   we find from (57) that 

  ( ) 1

1
0

1
1

( 1)! p

k k

p H
f f t t dt

k


  

  .             (58) 

Therefore we obtain the necessary inequality for [1, ]p   from (56), (58), and Lemma 

(1.1.1). For (0,1)p  we introduce  
( )

0 1
( ) max ( )kF z f z

 
 . 

We find from (57) that 

    ( 1)

2
1

1
2

0

( ) 1 ! 1
m

m

p
pp k

m

f z k F t z t dt






 


 



 
      

 
  

1
1

3
1

( , ) ( )(1 )p kpc k p F z d


  


  .             (59) 

Using the fact that ( )

4( ) ( ) ( )k

p p
F c p f     for every

 
(0,1)p  [2], we obtain the 

conclusion of Lemma (1.1.17) for (0,1)p  from (56), (58) and Lemma (1.1.1). This 

completes the proof of Lemma (1.1.17). 



 14 

Remarks (1.1.18)[1]: 1) With a corresponding definition of 
,p qB

f 
  the conclusion of the 

lemma remains valid for q   .  

2) The lemma is well known for [1, ]p   and [1, ]q    (see, for example, [26]).  

3) For the proof of Theorem (1.1.20) we need only the necessity for p q . 

Lemma (1.1.19)[1]: Let 0  , (0, ]p   and (0, )q   , and let k  be the smallest positive 

integer such that k  . Then a function pf H  belongs to class pB   if and only if 

  
,

1

1

2 2 ,
p q p

q
q

m m

kB H p
m

f f f








      
 
 .            (60) 

Here the quasinorm (60) is equivalent to the quasinorm 
,p qB

f  . 

Proof. For j   we introduce ((1 2 ) )
p

k j

j
H

J f    . From Lemma (1.1.17) we obtain 

1

1(2 , ) ( , ) (2 ) , min(1, )

s

m kj s

k p j

j m

f c k p s p


 



 
  

 
 . 

As in the proof of Lemma (1.1.13), we obtain 

( )

2(2 (2 , ) ) ( , , )2 (2 ) ,
2

m m q mq k j q

k p j

j m

f c p q   
  


  



  . 

Consequently 
, ,

3( , , )
p q p qB B

f c p q f   , since ,p q pB H   for 0  . The reverse inequality 

follows from a result of Storozhenko [27]: 
( ) 1

4 2
( ) ( , )(1 ) (1 , ) ( 1)

p

k k

k p
H

f c p k f          

and Lemma (1.1.1). This completes the proof of Lemma (1.1.19). 

Theorem (1.1.20)[1]: Let 0  , (1, ]p   and 1 1( )p     , and let k  be the smallest 

positive integer such that k  . 

i. if pf H  then for every n  

2
0 0

(2 (2 , ) ) ( , ) (2 ( , ))m

n n
m m m

k p

m m

f c p R f H   

 

 

  .            (61) 

ii. If f BMOA  then for every n  

1 1

1 2
0 0

(2 (2 , ) ) ( ) (2 ( , ))m

n n
m m m

k

m m

f c R f BMOA   

 

 

  .            (62)  

Proof. Let pf H , 1 p   , and let nr  be a rational function of degree 2 1n   for which 

2
2 ( , )n

p
pH

f r R f H  . From (38) and Lemma (1.1.19) we obtain 

,

1 1

1( , ) ( 0, ( ) )
p

n nB R
r c p r p 

 

          .            (63) 

Evidently, 
2

( , ) 0j nR r f   for j n , and  

 
2 2 2 2

( , ) ( ), ( , ) 3 ( , )j j j j
p

n p n p p n pH
R r H R f f r H R f H f r R f H        

For 0,1, , 1j n  . On the other hand, for every j  , 

      1(2 , ) 2 , ( ) 2 (2 , ) 2 ,j j j j

k n k n k k nr f f r f f r

 

             

1 12 (2 , ) 2 ( , )j k

k n pf R f H


    . 

Consequently, from (63) we obtain  

   2 3 2
1 0

2 (2 , ) ( , ) ( , ) 2 ( , )m

n n
m m m

k pp
m m

f c p f c p R f H
  

  

 

   . 

Now if in the preceding inequality we replace ( )f z  by ( ) (0)f z f  and use the inequality  
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4 1( ) (0) ( ) ( , )
p

pH
f z f c p R f H  , 

we obtain (61). Inequality (62) is showed similarly. This completes the proof of Theorem 

(1.1.20). 

Section (1.2): Smooth Functions and Bernstein Type Inequalities 

In this section we study the relationship between the smoothness of the symbol of a 

Toeplitz operator and the smoothness of functions belonging to its kernel.  

Notation.              ;     ;   is normalized Lebesgue measure on  ; 

          ,      ;    is the Hardy space [38, 39, 43] of holomorphic functions on  , 

also treated as a subspace in   ;   
 
              ;        is the orthogonal projection 

from    onto       
  , extended, if necessary, to    in a natural way.  

Let     , and let    be the Toeplitz operator with symbol  , so that           , 

    . By      ,      , we denote the kernel of    in the Hardy space   : 

                  . 

Assume in addition that the function   is unimodular (i.e.,       a.e. on  ) and 

possesses certain smoothness properties (say, belongs to the Sobolev space   
  or the 

Besov space   
  for some      ); moreover, assume          . What kind of 

conclusions can one derive concerning the differential properties of functions belonging 

to      ? In various settings we provide an answer (which often turns out to be 

unimprovable, in a certain sense) to the above question.  

Meanwhile, we note that restricting ourselves to unimodular symbols   leads in fact 

to no loss of generality. Indeed, in [50, 51] it was shown that, given      with       

   , one can find an  ,     , such that                 . We also remark that if    is an 

inner function (i.e., a unimodular function lying in   ) then the subspace        is 

invariant under the backward shift operator     and coincides with the class   
     

   
     . Further, if     

  or     
  with      , then   must be a finite Blaschke product, 

whereas the functions in   
  are rational fractions.  

This section contains a number of statements of the following form: 
                   

where   and   are certain spaces of smooth functions on the circle. The results obtained 

here can also be restated as "Bernstein-type inequalities," 

                   
                              (64) 

where    ,      and      are the norms (or quasinorms) in   and  , respectively, while 
     stands for the    norm. As special cases of these inequalities we obtain, first, the 

estimate 

      
 
          

 

 
            

 , 

due to the author [41] which generalizes the well-known S. N. Bernstein inequality for 

polynomials (or entire functions), and second, the estimates due to A. A. Pekarskii [1] for 

derivatives of rational fractions.  

We recall that the classical S. N. Bernstein inequality 
    

 
       

(where   is a polynomial of degree   , i.e.,    
    
 ) arises in the proofs of various 

inverse theorems of the polynomial approximation theory [36, 44], whereas the above-

mentioned A. A. Pekarskii inequalities are used as a tool in the proofs of similar 

theorems of the rational approximation theory. Similarly, the inequalities of the form 

(64) provided below can be used to derive certain inverse approximation theorems 

yielding in turn both the classical (i.e., polynomial) Bernstein-type theorems and the 
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inverse theorems from [1] pertaining to the rational approximation theory. 

Yet another application of (64) enables us to find out how the boundary smoothness 

of the argument      of an analytic function    affects the smoothness of   itself.  

Finally, as by-products, this section contains some results concerning the 

convergence of Fourier series for inner functions   (and also for functions lying in   
 ) at 

a fixed point of the circle. 

Let   
    

    ,    , denote the Sobolev space, consisting of those absolutely 

continuous functions   on   for which      . (Here                       , 

        .)   

Theorem (1.2.1)[34]: (Caldero'n [47]). Let     and   satisfy the hypotheses of Theorem 

(1.2.3), and let   be an absolutely continuous function on the real line   such that 

        . Then the singular integral operator    ("Calderon's commutator") defined by 

              
         

      
       

 

  

 

is a bounded mapping from       to      . In addition, we have  

                               
 
.            (65) 

A slightly modified version of Theorem (1.2.1) will be needed. In fact, Calderon's 

proof shows that (65) remains valid if    is replaced by   
   ,    , where  

   
          

         

         
       

 

  

 

(Moreover, the constant on the right side of (65) is independent of  .) The corresponding 

result for the circle reads as follows.  

Theorem (1.2.2)[34]: Under the same assumptions on       and under the assumption 

    
  the operator             given by 

             
         

       
      

 

                            (66) 

is a bounded mapping from            to           ; furthermore, 
                              

 
. 

Theorem (1.2.3)[34]: Let    ,     ,       , and              . If     
 , 

     , then 
        

 ; 

moreover, for         one has  

    
 
           

 
     , 

where        is a positive constant depending only on   and  .  

The proof is based on. 

Proof. Since        , one has      
     , and so                      for any    . 

Therefore, given         and    , we have 

       
 

   
 

      

       
 

 

   
         

           

       
   

 

   
               

(this last notation was introduced in (66) above). Applying Theorem (1.2.1) we get 

   
     

          
 
      

   

           
 
                

 
     

Thus,       and the desired inequality holds true. 

Corollary (1.2.4)[34]: Let        . If            
    and      , then         

 ; 

moreover, for         one has  

         
 
     

  
 
                          (67) 

Proof. In the case        it suffices to apply Theorem (1.2.3) with     . For     
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inequality (67) (and hence also the inclusion         
 ) can be derived from the proof of 

Theorem (1.2.3) Indeed, the operator       is a Calderdn-Zygmund operator. Therefore 

(see, e.g.[40]), being a continuous mapping from    to   , it also acts from   
       

      to 

  ; moreover,  
   

     
         

    
          

     
            

          
 
  

Since        , it follows that      
      and  

    
 
 

 

  
   

     
           

 
          

 
      

Now let   ,       , denote the Holder class (Zygmund class, if    ) on the 

circle: 

              
   

      
          

where   is any fixed integer with     and   
  stands for the  -th order difference 

operator with step  . (We recall that the operators   
  are defined by induction:    

       

                      and   
       

    .) Further, we set        

A well-known theorem of Duren, Romberg, and Shields [49] says that the space 

  
       is the dual of          with respect to the standard antilinear pairing. From this 

one can easily deduce the following assertion (which is also known to experts).  

Lemma (1.2.5)[34]: Let    ,               and          . Given     , the 

Hankel operator    defined by 
                    

is a bounded mapping (or possesses an extension which is a bounded mapping) from    

to   
     ; furthermore, 

    
     

                  

where       is a natural norm in    and const is a constant depending only on  .  

Now we point out another consequence of Theorem (1.2.3).  

Corollary (1.2.6)[34]: Assume that   is an absolutely continuous function on  ,      , 

and        .  

(a) If         ,    ,     , and              , then 

        
 
             

 
         .              (68)  

(b) If          then 

        
 
           

 
   

 
                    (69)  

(c) If      , then 

         
 
     

  
 

 
                             (70)  

Proof. (a) Define the exponent   by            . Then we have          . On the 

one hand Theorem (1.2.3) yields     
 
          

 
     On the other hand, the above 

Lemma gives 
                

 
               . 

Combining the two inequalities, we arrive at (68).  

 (b) Apply (68) with    

 
,    .  

 (c) Apply (69) with     and note that   
      .  

Remarks (1.2.7)[34]: i. All the above inequalities are sharp in a sense. We consider, for 

example, inequality (68), which is the most general one. (Theorem (1.2.3) is contained in 

(68) as a special case where     .) Setting                   and                   

  −  where    ,    ,   >1 we have     1  , and a straightforward computation shows 

that 
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As        . (Here the sign   means that the ratio of the two quantities is bounded from 

below and above by positive constants independent of  .)  

ii. It is interesting to compare (67) and (70).  

iii. In [41], the author proved a version of inequality (67) (including, in particular, the 

case     ) in the setting where     ,   being an inner function on the upper half-plane 

  , and     
 
           ,          . If we set               ,    , the classical 

Bernstein inequality for entire functions follows (though not with a sharp constant). 

Furthermore, it was proved in [41] that, under the assumption          , the higher 

order derivatives      satisfy 

          
 
                    

 
                (71) 

in which case one can take                 
 

 
. The converse was also shown to be true: if 

(71) holds with a constant independent of  , then            

Given     , we set                   
 

. We denote by    the space of 

trigonometric polynomials of degree  , i.e.                              . Finally, let 

                        , so that         is the minimal approximation error for      

with respect to polynomials of degree  . The following simple theorem makes it 

possible to estimate the Fourier (Taylor) coefficients of a function  ,        , in terms 

of the quantities         , where 
 

 
 

 

  
  .  

Theorem (1.2.8)[34]: Let   be a unimodular function on  , and let        ,       . 

Then  

                                                    (72) 

Proof. Let     . Since      
      and             , it follows that             , and so  

                               

whence 
                     

Taking the infimum over     , we obtain (72). 

       Now we recall the definition of the Besov spaces    
               . Given  

    ,  

     
 

   
  

 
 
 

 
  

   
    

 

       
  

 

  

               

   
       

 

  
                 

  

where   is some fixed integer with    . We will also make use of the so-called 

constructive characterization of Besov classes (see e.g. [44]): given     ,  

     
  

 
 
 

 
              

 

 

   

               

          
 

  
                 

  

Moreover, the two norms in    
  arising in a natural way in connection with the two 

definitions above turn out to be equivalent.  

As usual, we let   
     

 . We also note that the spaces    introduced in the previous 

section coincide with   
 .  

Theorem (1.2.9)[34]: Let    ,     ,    , and let   be a unimodular function lying in 

   
 ; assume further that         . The following statement's hold true: 

(a) If     , then 
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      ,               (73) 

  where const depends only on     and  .  

(b) If      then                     
            

Proof. (a) In view of (72),  
                    . 

Raising the two sides to the power  , then multiplying by       and summing over  , we 

arrive at (73). (It is here that the constructive characterization of    
  is needed.)  

The proof of part (b) is similar to the above (in fact, it is even simpler). 

Corollary (1.2.10)[34]: Let    be a unimodular function on  , and let        . If 

      and       , then  
     

          
   

        
 , 

where 

     
           

 

   

 

   

 

Proof. It suffices to apply (73) with       and to use the Hausdorff-Young inequality 

           
  .  

Corollary (1.2.11)[34]:  Let   and     have the same meaning as above, and let      

  ,       ,    . Then 
      

 
         

 
    
            

where           ,           , and      stands for the fractional derivative of order  , 

defined by 

                   

 

   

 

Proof. We rewrite (73), replacing   with    and   with   : 

               
  

 

   

 

    

          
    
      

Set      

  
. Then the left-hand side in the last inequality reduces to       

  
  , and so, by 

the Hausdorff- Young theorem, it can be estimated from below by       
 
. 

Remarks (1.2.12)[34]: i. It might be interesting to compare Corollary (1.2.10) (which 

becomes interesting for        ) with the inequality  
                          

valid for         in the case    ,               (see the proof of Corollary (1.2.6)).  

ii. Corollary (1.2.11), with     and          yields a result which is close to 

Theorem (1.2.3) but cannot be reduced to it.  

Now let     , where   is an inner function on  . We recall the notation   
 
       

 
       

        and set        
        (See [38, Chapter VI] for the definition of the space 

BMOA and a discussion of its properties.) The BMOA norm      will be introduced as 

follows:  

                                   

So that      is equivalent to the standard BMO norm defined in terms of mean 

oscillations.  

The next theorem is a refined version of Theorem (1.2.8) in the case where      and 

    .  
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Theorem (1.2.13)[34]: For        and      one has  

                        .              (74)  

Proof. Given      , the proof of Theorem (1.2.8) yields 

                      

Since                   , we have                  . Taking the infimum over     , we 

arrive at (74).  

Theorem (1.2.9) admits a similar refinement: If     then, given       , one can 

replace the inequality (73) by 

              
 

 

   

 

   

            
       

with the usual interpretation for     :  

                       
      

  .              (75)  

We cite [45] as a source of some explicit criteria for the membership of an inner function 

in   
  with     ; in connection with Blaschke products belonging to    

 , see also [37].  

Theorem (1.2.14)[34]: Assume that   is a Blaschke product in   whose zero sequence 
       

  satisfies the "weak Newman condition" 

             
  

                             (76) 

The foflowing statements hold true:  

(a) For every  ,       , one has             .  

(b) If, moreover, the Frostman condition  

           
      

      
 
                             (77) 

holds at some point    , then the series        
      converges for every function       .  

Proof. It is known [37] that (76) implies      
 . Applying (75) with     and    , we 

arrive at (a). To show (b), we use a result from [48] saying that (77) is equivalent to the 

existence of the radial limits               for all       . Combining this latter fact, part 

(a) above, and the Tauberian theorem of Littlewood, we conclude that the Fourier series 

of any such function   converges at  . 

Theorem (1.2.15)[34]:  Let    , and let       be an inner function. If  

      
      

      
    

     

      
                    (78) 

then the series             converges. 

Proof. Let   be a fixed point of the disk, and let                                   be the 

corresponding reproducing kernel in the space   
 . By Theorem (1.2.8),  

                                       
  

      
   

             (79) 

A straightforward verification yields  

                                 
                      

         

      
 
   

            (80)  

As is well known (see e.g., [46]), condition (78) ensures that   has an angular 

derivative at   This means that the two limits                    and                

      exist, and the former one satisfies         . Moreover, 

           
     

         

   
    

     

          

    
  

      
 

      
 

 

   
     

      
 

Substituting (80) in (79), letting      and then making   tend to    , we get from (79)  
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whence the desired conclusion follows immediately. 

The results contained on this section are based on the following elementary 

observation: if     , then             . Indeed,  
                    

Due to this fact, we can use the "Bernstein-type inequality"  

                   
                                (81) 

(where   and   are certain spaces of smooth functions) to derive the following corollary: 

if      and       , then    . To do this, one only needs to apply (81) with          

(note that multiplication by    preserves membership in a reasonable class  ).  

Thus, in many cases the smoothness of the function      (or arg  ) on the circle implies 

the smoothness of   itself, once     . The next theorem comprises a few assertions to 

that effect. All of them are readily derived from inequalities of the form (81) that were 

established above.  

Theorem (1.2.16)[34]: Let     .  

(a) If       ,       , and               (for     , the values       

are also admissible), then the implication 
       

        
holds true.  

(b) If       and    , then  
       

         
(c) If          and          , then  

              
(d) If       ,       , and    , then  

      
    
      

     
                           

(We recall that                  
   ,           , and           .)  

Finally, we supplement this theorem with the following proposition, which can be 

derived from Corollary (1.2.10).  

Proposition (1.2.17)[34]: Let         and     
  (i.e.,      and         

 
      ). If, 

in addition.         
   

  then     
 . 

Here we announce, without providing any proof, one more Bernstein type inequality 

for the space   
 
       

     , where   is an inner function on  .  

The proof (which is rather laborious) will be published elsewhere. We remark, 

however, that the ideas involved are different from those used above. 

First we recall the definition of the Sobolev space   
  (   ,    ). Namely,   

  

                 where                     
          It is well known that   

    
  if 

     , and   
    

  if       

The norm      
  will be defined by      

                
 
  

Theorem (1.2.18)[34]: Let    ,     ,    , and           . Assume that        . 

Then   
   

   
    

 ; moreover, for every function  ,     
   , one has  

             
       

                  
                   (82)  

Remark (1.2.19)[34]: In the case      , the condition         means that   is a finite 

Blaschke product. In this case   
    is finite dimensional and consists of rational functions 

with the same poles as those of  . Thus, the inclusion   
   

   
    

  becomes obvious; 

however, inequality (82) is still nontrivial. On the other hand, if      , then the class of 

inner functions   with         is much larger; see [46].  

Consider two special cases of inequality (82).  

i. Let      . Then we have      , and so (82) implies  
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 .            (83)  

In the case where    , this latter inequality was proved by the author [41] via the 

multiple Calderdn commutators.  

ii. Let      and         . Now we have                , where   is the number of 

zeros (counted with multiplicities) of the Blaschke product   in the disk  . Thus, (82) 

reduces to  

             
       

               ,             (84)  

where            and   is an arbitrary rational function of degree   having all its 

poles in        . Inequality (84) was obtained by A. A. Pekarskii in [1], where it was 

used to characterize the classes   
     and   

     in terms of best rational    

approximants.  

Similarly, following the classical pattern going back to S. N. Bernstein, one can use 

(82) to derive a number of approximation theorems. We restrict ourselves to stating one 

of them, arising in the case     . 

 Set  

       
          

 

  

Thus, the elements of    are rational functions "of degree not exceeding  ," provided 

that the "degree" of a rational fraction   is understood as    
   , where    is the Blaschke 

product formed from the poles of   in a natural way.  

Theorem (1.2.20)[34]: Suppose that     ,    ,      and    . The following are 

equivalent:  

i.      
 .  

ii.                    
   

 
     

Sketch of the proof. Since the set    
 , consisting of polynomials of degree  , is 

contained in   , the "Jackson-type theorem" iii is a consequence of the corresponding 

implication in the classical theorem on polynomial approximation [44].  

The proof of the "Bernstein type theorem" iii runs exactly as in the classical 

situation; the only difference is that Bernstein's inequality for polynomials must be 

replaced by its generalized version (83). 

In conclusion, we remark that there is also a "nonanalytic" analog of Theorem 

(1.2.20), in which case one merely assumes a priori that     , whereas the 

approximating rational functions may have poles both in   and in         (cf. [42]). 

Section (1.3): Weighted Hardy and Bergman Norms 

Statement and historical context of the problem. Let { : 1}z z   be the unit disc 

of the complex plane and let Hol( )  be the space of holomorphic functions on . We 

consider here the following problem: given two Banach spaces X  and Y  of holomorphic 

functions on the unit disc , , Hol( )X Y  , and a finite subset   of , what is the best 

possible interpolation by functions of the space Y  for the traces |f   of functions of the 

space X , in the worst case? The case X Y is of no interest, and so one can suppose that 

either Y X or X  and Y  are incomparable. Here and later on, H   stands for the space 

(algebra) of bounded holomorphic functions in the unit disc  endowed with the norm 

sup ( )zf f z
 . 

More precisely, our problem is to compute or estimate the following interpolation 

constant 
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| |
, 1

( , , ) sup inf{ : }
X

Y
f X f

c X Y f 
 

 g g . 

For [0,1)r   and 1n  , we also define 

, ( , ) sup{ ( , , ) : card , , }n rC X Y c X Y n r         . 

It is explained in [65] why the classical interpolation problems, those of Nevanlinna–

Pick and Carath´eodory–Schur (see [62, p.231]), on the one hand and Carleson’s free 

interpolation (1958) (see [62]) on the other hand, are of this nature. 

From now on, if 1{ , , }n    is a finite subset of the unit disc, then 

1
j

n

j

B b 



  

is the corresponding finite Blaschke product where 
1

z

z
b 
 




 ,  . With this notation 

and supposing that X  satisfies the division property 

[ , and ( ) 0]
f

f X f X
z

 


 
      

, 

we have 

1

( , , ) sup inf{ : , }
X

Y
f

c X Y Y f B X


   g g g . 

A direct relation between the study of the constants ( , , )c H W  and some numerical 

analysis problems is mentioned in [65, (b)- p.5]. Here, W  is the Wiener algebra of 

absolutely convergent Fourier series. In the same spirit, for general Banach spaces X  

containing H  , our constants ( , , )c X H   are directly linked with the well known Von-

Neumann’s inequality for contractions on Hilbert spaces, which asserts that if A  is a 

contraction on a Hilbert space and f H  , then the operator ( )f A  satisfies 

( )f A f


 . 

Using this inequality we get the following interpretation of our interpolation constant 

( , , )c X H  : it is the best possible constant c  such that ( ) ,
X

f A c f f X   . That is to 

say: 

2 2
1

( , , ) sup sup{ ( ) : : ( , ) ( , ), 1, ( ) }
X

n n

f

c X H f A A A A  



      , 

where the interior sup is taken over all contractions A  on   dimensional Hilbert spaces 

2
( , )n  , with a given spectrum ( )A  . 

An interesting case occurs for f  such that | |(1 )f z   (estimates on condition 

numbers and the norm of inverses of n n  matrices) or | |[1 ( )]f z   (estimates on the 

norm of the resolvent of an n n matrix), see for instance [67]. 

Let pH (1 )p    be the standard Hardy spaces and let 2

aL  be the Bergman space on 

. We obtained in [65] (in which a more general approach to this effective interpolation 

problem is also given) some estimates on ( , , )c X H   for the cases 2{ , }p

aX H L . 

Theorem (1.3.1)[53]: Let 1n  , [0,1)r  , [1, ]p   and r  . Then 
1 1

, ,1

1
( , , ) ( , )

1 1
32

p p
p p

n n r p
p

n n
c H H C H H A

r




 
   

     
   

,            (85) 

1

2 2 4
, ,

1
( , , ) ( , ) 210

32 1 1
n a n r a

n n
c L H C L H

r




   
 

,             (86) 

where 
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, { , , }n    , ( n times), 

is the one-point set of multiplicity n corresponding to  , pA is a constant depending only 

on   and the left-hand side inequality in (85) is valid only for 2p  . For 2p  , we 

have 2 2A  . 

Note that this theorem was partially motivated by a question posed in an applied 

situation in [58, 59]. 

Trying to generalize inequalities (85) and (86) for general Banach spaces X  (of 

analytic functions of moderate growth in ), we formulate the following conjecture: 
1

, ( , ) (1 )r
n r n

C X H a x   , where a  is a constant depending on X  only and where ( )x t  

stands for the norm of the evaluation functional ( )f f t  on the space X . The aim of  

this section is to establish this conjecture for some families of weighted Hardy and 

Bergman spaces. 

Here, we extend Theorem (1.3.1) to the case where X  is a weighted space 

0 0

ˆ ˆ( ) ( ) : ( ) ( 1) , 0
ppp k p

a

k k

l f f k z f f k k  
 

 
       
 

  . 

First, we study the special case 2p  , 0  . Then ( )p

al  are the spaces of the 

functions 
0

ˆ( ) k

k
f f k z


 satisfying 

2
2

0

ˆ( ) ( 1)
k

f k k 



   . 

Notice that 2 2(1)aH l . Let 2 1 1      . The scale of weighted Bergman spaces of 

holomorphic functions 

   2 2 22 2( ) (1 ) Hol( ) : ( ) (1 )a aX L L z dA f f z z dA         , 

gives the same spaces, with equivalence of the norms: 
2 2( ) ( )a al L  . 

In the case 0   we have 2 2(0)a aL L . 

Theorems (1.3.10), (1.3.11) and (1.3.12) were already announced in the note [66]. 

Let   be a finite set of , and let f X . The technical tools used in the proofs of the 

upper bounds for the interpolation constants ( , , )c X H  are: a linear interpolation 

1

,
n

k k

k

f f e e


 , 

Where .,.  means the Cauchy sesquilinear form 
0

ˆ ˆ, ( ) ( )
k

h h k k


g g , and  
1k k n

e
 

 is the 

explicitly known Malmquist basis (see [43]) or Definition 1 below) of the space 
2 2

BK H BH θ where B B , a Bernstein-type inequality of Dyakonov (used by 

induction): pp p
f c B f


  , for a (rational) function f  in the star-invariant subspace 

p pH B zH∩ generated by a (finite) Blaschke product B , (Dyakonov [60, 41]); it is used in 

order to find an upper bound for 
1

,
n

k kk
f e e




 (in terms of 
X

f ), and finally the 

complex interpolation between Banach spaces, (see[57] or [63,). 

The lower bound problem (for , ( , )n rC X H  ) is treated by using the “worst” 

interpolation n  tuple , { , , }n      , a one-point set of multiplicity n  (the 

Carath´eodory–Schur type interpolation). The “worst” interpolation data comes from the 

Dirichlet kernels 
1

0

n k

k
z



 transplanted from the origin to  . We note that the spaces 
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( )p

aX l   satisfy the condition X b X  when 2p  , whereas this is not the case for 

2p  . That is why our problem of estimating the interpolation constants is more difficult 

for 2p  . 

we develop the technical tools mentioned above, which are used later on to establish 

an upper bound for ( , , )c X H  . 

In Definitions 1, 2, 3 and in Remark (1.3.2) below, 1{ , , }n    is a sequence in the 

unit disc  and B  is the corresponding Blaschke product. 

Definition 1. Malmquist family. For [1, ]k n , we set 1

1 k
k z

f


 , and define the family 

 
1k k n

e
 

, (which is known as Malmquist basis, see [43, p.117]), by 

1
1

1 2

f
e

f
  and 

1

1 2

j

k
k

k

j k

f
e b

f






 
  
 
  

for [2, ]k n ; we have  
1

2 2

2
1k kf 



  . 

Definition 2. The model space BK

. We define BK


to be the   dimensional space: 

2 2 2( )BK B H H B H
  

  θ . 

Definition 3. The orthogonal projection BP


 on BK

. We define BP


 to be the orthogonal 

projection of 2H on its n dimensional subspace BK

. 

Remark (1.3.2)[53]: The Malmquist family  
1k k n

e
 

corresponding to   is an 

orthonormal basis of BK

. In particular, 

  2

1

,
n

B k kH
k

P e e




  , 

where   2.,.
H

means the scalar product on 2H . 

We now recall the following lemma already (partially) established in [65, p. 15] 

which is useful in the proof of the upper bound in Theorem (1.3.12). 

Lemma (1.3.3)[53]: Let 1{ , , }n    be a sequence in the unit disc  and let  
1k k n

e
 

 

be the Malmquist family corresponding to  . Let also ,   be the Cauchy sesquilinear 

form 
0

ˆ ˆ, ( ) ( )
k

h h k k


g g , (if Hol( )h  and k  , ˆ( )h k  stands for the thk  Taylor 

coefficient of h ). The map : Hol( ) Hol( )   given by 

1

: ,
n

k k

k

f f e e


  , 

is well defined and has the following properties: 

(a) 2| BH
P


  , 

(b)  is continuous on Hol( )  with the topology of the uniform convergence on 

compact sets of , 

(c) if ( )p

aX l  with [1, ]p  , ( ,0]   and | |X XId   , then  Im B X  , 

(d) if Hol( )f  , then 

    , Bf f P k 
  , 

for all   , where BP


is defined in 3 and  
1

1k z 


  . 

Proof. Points (a), (b) and (c) were already proved in [65]. In order to show (d), we 

simply need to write that 
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       
1 1

, ,
n n

k k k k

k k

f f e e f e e  
 

    , 

Hol( )f  ,    and to notice that     21 1
,

n n

k k k k Bk k H
e e k e e P k 


 

   . 

Bernstein-type inequalities for rational functions are the subject of a number of 

references and monographs (see, for instance, [55, 56, 60, 41, 61]). We use here a result 

going back to Dyakonov [60, 41]. 

Lemma (1.3.4)[53]. Let 
1 j

n

j
B b
 , be a finite Blaschke product (of order n ), 

max j jr  , and let Bf K . Then 

2 23
1H H

n
f f

r
 


. 

Lemma (1.3.4) is a partial case ( 2p  ) of the following K . Dyakonov’s result [41] 

(which is, in turn, a generalization of Levin’s inequality [61] corresponding to the case 

p   ): the norm p p
BK H

D


 of the differentiation operator Df f   on the star-invariant 

subspace of the Hardy space pH , :p p p

BK H B zH , (where the bar denotes complex 

conjugation) satisfies the following estimate: 

p p
B

pK H
D c B

 
 , 

for every p , 1 p   , where pc is a positive constant depending only on p , B  is a finite 

Blaschke product and 

 means the norm in  L . In the case 2p  , Dyakonov’s result 

gives 36 2 3
2pc 


 , which entails an estimate similar to that of Lemma (1.3.4), but with a 

larger constant ( 13
2

 instead of 3 ). Our lemma is proved in [65]. 

The sharpness of the inequality stated in Lemma (1.3.4) is discussed in [64]. Here we 

use it by induction in order to get the following corollary. 

Corollary (1.3.5)[53]: Let 
1 j

n

j
B b
 , be a finite Blaschke product (of order n ), 

max j jr  , and Bf K . Then, 

 
22

!4
1

k

k k

HH

n
f k f

r

 
  

 
, 

for every 0,1,k   

Proof. Indeed, since  11
k

kk

B
z f K

  , we obtain applying Lemma (1.3.4) with kB instead 

of B , 

         1 1 11 2 1

2 2 2
1 3 3

1 1

k k k kk k k

H H H

kn kn
z f k z f z f f

r r

       
 

. 

In particular, 

       1 11 2

2 2 2
1 3

1

k k kk k

H H H

kn
z f k z f f

r

    


, 

which gives 

         1 1 1

2 2 2 2
3 1 4

1 1

k k k k

H H H H

kn kn
f f k f f

r r

  
   

 
. 

By induction, 

 
22

4
!

1

k

k

HH

n
f k f

r

 
  

 
. 

Lemma (1.3.6)[53]: Let 1X and 2X be two Banach spaces of holomorphic functions in 

the unit disc . Let also [0,1]   and  1 2 [ ]
,X X


 be the corresponding intermediate 
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Banach space resulting from the classical complex interpolation method applied between 

1X  and 2X , (we use the notation of [57, Chapter 4]). Then, 

      
1

, 1 2 , 1 , 2[ ]
, , , ,n r n r n rC X X H C X H C X H

 




   , 

for all 1n  , [0,1)r  . 

Proof. For the proof of this lemma, we refer to [65, p.19].  

The case 2( )aX l  , 0  . We start with the following result. 

Corollary (1.3.7)[53]: Let 0N  be an integer. Then, 

 
2 1

2
2

, ( ),
1

N

n r a

n
C l N H A

r



  
   

 
, 

for all  0,1r  , 1n  , where A  depends only on N  (of order !(4 )NN N , see the proof 

below). 

Proof. Indeed, let 2( )aX l N  ,   a finite subset of  and B B . If f X , then using 

part (c) of Lemma (1.3.3), we get that | |( )f f   . Now, denoting *X the dual of X  with 

respect to the Cauchy pairing ,   (defined in Lemma (1.3.3)). 

Applying point (d) of the same lemma, we obtain * 2( )aX l N  and 

     
 

1
2 22

* 2
2

N

B N B BX XX H
H

f f P k f K P k P k  
 

    
 

, 

for all   , where 

( 1)

!

, 3( 1) ( 1)
max ,sup max ,

( 1) ( 1) ! , 1,2

NN N
N N

N NNk N
N

N if Nk N
K N N

k k k N N if N

      
      

       

. 

(Indeed, the sequence  ( 1)

( 1) ( 1)

Nk

k k k N
k N



  


 is decreasing and ( 1)

!
3

NNN

N
N N   
  

. Since 

B BP k K  , Corollary (1.3.5) implies 

       

1
12 2 22

2 1 ! 4
1 1

N N

N BX XH

n n
f f K P k N A N f

r r


    
             

, 

where     
1

2 222 1 ! 4 N

NA N K N  , since 

   
2

22
21 1

2
,

1

n n

B k k kHH
k kH

n
P k k e e e

r
  

 

  


  .                     (87) 

An upper bound for ( , ( ), )p

ac l H   , 1 2p  . The purpose of this section is to show the 

right-hand side inequality of Theorem (1.3.11). We start with a partial case. 

Lemma (1.3.8)[53]: Let 0N   be an integer. Then 

 
1
2

1

, 1( ),
1

N

n r a

n
C l N H A

r



  
   

 
, 

for all  0,1r  , 1n  , where 1A depends only on N  (it is of order  ! 4
N

N N , see the proof 

below). 

Proof. In fact, the proof is exactly the same as in Corollary (1.3.7): if σ is a sequence in 

 with card n  , and 1( )af l N X   , then * ( )aX l N  (the dual of X  with respect to 

the Cauchy pairing). Using Lemma (1.3.3) we still have  | |( )f f   , and for every   , 
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       
 

 *
0 1

max sup ,sup
N

B N B BX XX
k N k N

f f P k f K P k k P k k N  
   

 
    

 
 

                
  2

2
max ,

N

N B BX H
H

f K P k P k  , 

where 
NK is defined in the the proof of Corollary (1.3.7) Since B BP k K  , Corollary 

(1.3.5) implies that 

    2 1 !4
1

N

N

N BX H

n
f f K P k N

r


  
       

, 

for all   , which completes the proof using (87) and setting  1 2 2 !4N

NA N N K . An 

upper bound for ( , ( ), )p

ac l H   , 2 p   . Here, we show the upper bound stated in 

Theorem (1.3.12). As before, the upper bound  
3 2
2

1
n p

r

 


 is not as sharp as above, we can 

suppose the constant  
11

1
n p

r

 


 should be again a sharp upper (and lower) bound for the 

quantity , ( ( ), )p

n r aC l H  , 2 p   . 

First we show the following partial case of Theorem (1.3.12). 

Corollary (1.3.9)[53]: Let 0N   be an integer. Then, 

 
3
2

, ( ),
1

N

n r a

n
C l N H A

r



 



 
   

 
, 

for all [0,1)r  , 1n  , where A  depends only on N  (it is of order  ! 4
N

N N , see the 

proof below). 

Proof. We use literally the same method as in Corollary (1.3.7) and Lemma (1.3.8). 

Indeed, if 1{ , , }n   is a sequence in the unit disc  and ( )af l N X   , then 
* 1( )aX l N and applying again Lemma (1.3.3) we get | |( )f f   . For every   , we 

have 

     
 

*

N

B N B BX XX W
W

f f P k f K P k P k    
    

 
, 

 where 

   
0 0

ˆ ˆ: :k

W
k k

W f f k z f f k
 

 
     
 

  , 

stands for the Wiener algebra, and NK  is defined in the proof of Corollary (1.3.7). Now, 

applying Hardy’s inequality (see [43, p.370], ), we obtain 

          
 

   
1

11

0 0
N N

N B B B BX
HH

f f K P k P k P k P k     
 

     
 

    

     
 

 
1

2 222

N N

N B B B BX H HHH

f K P k P k P k P k   
 

    
 

, 

for all   . Using Lemma (1.3.4) and Corollary (1.3.5), we get 

   
1

2

3 4
1 ( 1)! !

1 1

N

N BX H

n n
f f K P k N N

r r
 

  
           

, 

for all   , which completes the proof using (87). 

The case 2( )aX l  , 0  . We start with verifying the sharpness of the upper 

estimate for the quantity 
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2

,

1
,

2
n r a

N
C l H   

  
  

, 

(where 1N   is an integer), in Theorem (1.3.10). This lower bound problem is treated by 

estimating our interpolation constant ( , , )c X H   for the one-point interpolation set 

 , , , ,n

n

    ,   

 ,( , , ) sup : , 1nn H b H X
c X H f f X f


  

    , 

where  inf :n

n

H b H
f f b X


 


  g g . In the proof, we notice that 2( )al  is a reproducing 

kernel Hilbert space on the disc  (RKHS) and we use the fact that this space has some 

special properties for particular values of   1
2

, 1,2,N N   . Before giving this proof 

(see below), we show that 2( )al   is a RKHS and we focus on the special case 1
2
N  , 

1,2,N  . 

The spaces 2( )al   are RKHS. The reproducing kernel of  2( )al  , by definition, is a  2( )al  

valued function k 

 ,  , such that ( , ) ( )f k f

  for every 2( )af l  , where  .,.  

means the scalar product   2

0

ˆ ˆ, ( ) ( )( 1)
k

f h k k k 


 g g .Since one has 

 

21
20 1

ˆ( ) ( ) ( 1)k

k k
f f k k 

 
 

   ( ), it follows that 

2
0

( ) ,
( 1)

k k

k

z
k z z

k



 

 



 


 . 

In particular, for the Hardy space 2 2(1)aH l , we get the Szeg¨o kernel 

 
1

( ) 1k z z 


  , 

and for the Bergman space 2 2 1
2

( )aL l  , the Bergman kernel  
1 2
2 ( ) 1k z z 



  . 

Now let us explain that more generally if 1
2
N  , \{0}N  , the space 2( )al   

coincides (topologically) with the RKHS whose reproducing kernel is 

   ( ) 1
NN

k z z 


  . Following the Aronszajn theory of RKHS (see, for example [54, 

62]), given a positive definite function    , ,z k z   on   (i.e. such that 

,
( , ) 0i j i ji j

a a k     for all finite subsets ( )i   and all non-zero families of complex 

numbers ( )ia ) one can define the corresponding Hilbert spaces  H k  as the completion of 

finite linear combinations ( , )i ii
a k   endowed with the norm 

2

,

( , ) ( , )i i i j i j

i i j

a k a a k     . 

When k  is holomorphic with respect to the second variable and antiholomorphic with 

respect  to  the first  one, we obtain a RKHS of  holomorphic functions ( )H k  embedded 

into Hol( ) . Now, choosing for k  the reproducing kernel of 2H , 

   
1

: , ( ) 1k z k z z 


  , and Nz  , 1,2,N  , the function k is also positive 

definite and the corresponding Hilbert space is 

2 1
( )

2
a

N
H k l

 
  

 
.             (88) 

(Another notation for the space ( )H k  is 2( )H  since k  is the reproducing kernel of 
2H ). The equality (88) is a topological identity: the spaces coincide as sets of functions, 
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and the norms are equivalent. Moreover, the space ( )H k  satisfies the following 

property: for every 2f H , 2( )f H  , and 

 2 2

2( )H k H
f f


  ,           (89) 

(the Aronszajn-deBranges inequality, see [62, p.320]). The link between spaces of type 

 2 1
2
N

al
  and of type ( )NH z k  being established, we give the proof of the left-hand side 

inequality in Theorem (1.3.10). 

Theorem (1.3.10)[53]: Let 1n  , [0,1)r  , ( ,0]   and r  . Then 

   

1 2 1 2
2 2

2 2

, ,, ( ), ( ),
1 1

n a n r a

n n
B c l H C l H A

r

 

  


 

 
   

     
   

. 

Equivalently, if ( 1, )     then 

   

2 2
2 2

2 2

, ,, ( ), ( ),
1 1

n a n r a

n n
B c L H C L H A

r

 

  


 

 
   
      

   
, 

where A  and B  depend only on  , A   and B   depend only on   , and both of the two left-

hand side inequalities are valid only for   and   satisfying 1 2   and 2

2

  . 

Proof. There exists an integer N such that 1N N    . In particular, there exists 

0 1  such that     1 1 .N N       . Since 

 2 2 2

[ ]
(1 ), ( ) ( )a a al N l N l


   , 

(see [57, 63]), this gives, using Lemma (1.3.6) with 2

1 (1 )aX l N  and 2

2 ( )aX l N  , and 

Corollary (1.3.7), that 

 
    2 1 1 2 1

2 2
2 1

, ( ), ( 1) ( )
1

N N

n r a

n
C l H A N A N

r

 

 

  


   
   

 
. 

It remains to use that 1 N    and set 1( ) ( 1) ( )A A N A N    . 

This show the proof of the right-hand side inequality in Theorem (1.3.10). Now the left-

hand side inequality 

0) We set 1 2N   , 1,2,N   and ( ) Nz z  . 

1) Let 0b  , 2 1Nb n  . We set 

 
1

2 2
1

0

1
, ,

1

n
k

n n n n

k

Q b H Q bH
z













   


 . 

Then 
2

2nQ n , and hence by (89), 

 2 22 2

2
( ) 1nH

b Q b n


     . 

Let 0b   such that 2 ( ) 1b n  . 

2) Since the spaces H   and H are rotation invariant, we have 

, ,( , , ) ( , , )n nc H H c H H       for every  ,   with r   . Let r   . To get a lower 

estimate for nH b H  

  consider G H   such that Hol( )nG b  , i.e. such that 

Hol( )n

nbH b G b z   . 

3) First, we show that 
: nb bH b     

is a polynomial (of degree nN ) with positive coefficients. Note that 
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 
 

1
2 2
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0 1

1
1 1 (1 )
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b z
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 

 

  
        
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      
11 1

2 22 2
1

1

1 1 (1 ) : 1
n

k n

k

r r z rz r


 



 
       

 
 . 

Then,  
1

2 2
1: 1nb bH b b r  

 
     

 
. Furthermore, 

1 1 ( )N z  . 

Now, it is clear that  is a polynomial of degree Nn  such that 

1
2 2

0

1ˆ(1) ( ) (1 ) (1 ) 0
1

N
Nn

j

r
j b r r n b n

r






  
       

   
 . 

4) Next, we show that there exists ( ) 0c c N   (for example, 2[2 ( 1)!]Nc K N  , K  

being a numerical constant) such that 

0 0

ˆ ˆ( ) : ( ) ( ) (1)
m m Nn

j j

j c j c
 

     , 

where 1m   is such that 2m n if n  is even and 2 1m n   if n  is odd. 

Indeed, setting 

0

n
j

n

j

S z


 , 

we have 
1

1 1

1

( ) 1 (1 ) ( )

N
m m n m

N k n N

n

k

r z rz S






  
         

    . 

Next, we obtain 

   
 

1

1 1

1 1 1 1
( )

1 ( 1)! 11

N
n Nm m m m

N

n N N

z d
S

z N dz zz



 

      
                 
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1

1

0 0

( 1)

( 1)! ( 1)!

N Nm m
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N j

j j

j m
C K

N N



 

 


  

 
  , 

where 0K   is a numerical constant. Finally, 

 
1

(1 )( 2)
( )

( 1)! ( 1)! 2 ( 1)! (1 )

NN Nm
N

N N

r nm n K
K K

N N N r


   

   
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      1(1)
2 (1 ) ( 1)!

N

N N

K

r N
 

 
, 

which gives our estimate. 

5) Let m

n m mF z   , where k stands for the k  th Fejer kernel. We have 

1n nL
F F

 
 *g g for every ( )Lg , and taking the infimum over all H g satisfying 

ˆˆ( ) ( )k kg , [0, 1]k n   , we obtain 

1

2
n nH z H

F  
 * , 

where *  stands for the usual convolution product. Now using part 4), 
1 1

( )(1)
2 2

n n n nH b H H z H
F F


    

   * *  

      
2

0

1 1ˆ( ) (1)
2 2 2 1 1

NN
m

j

c c r n
j b n B

r r

   
      

   
 . 
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6) In order to conclude, it remains to use (88).  

The case ( )p

aX l  , 1 p   . 

Theorem (1.3.11)[53]: Let [0,1)r  , 1n  , [1,2]p , and let 0  . We have 
1 2

1
1 2

, ( ( ), )
1

pp

n r a

n
Bn C l H A

r









 
  

   
 

, 

Where ( , )A A p  and ( , )B B p  are constants depending only on   and p . 

It is very likely that the bounds stated in Theorem (1.3.11) are not sharp. The sharp one 

should be probably  
11

1
n p

r

 


. In the same way, for 2 p   , we give the following 

theorem, in which we feel again that the upper bound  
3 2
2

1
n p

r

 


 is not sharp. As before, 

the sharp one is probably  
11

1
n p

r

 


. 

Proof. Step 1. We start by showing the result for 1p   and for all 0  . We use the same 

reasoning as in Theorem (1.3.10) except that we replace 2( )al  by 1( )al  . 

Step 2. We now show the result for [1,2]p  and for all 0  : the scheme of this step is 

completely the same as in Step 1, but we use this time the complex interpolation between 
1( )al  and 2( )al  (the classical Riesz-Thorin Theorem [57, 63]). Applying Lemma (1.3.6) 

with 1

1 ( )aX l   and 2

2 ( )aX l  , it suffices to use Theorem (1.3.10) and Theorem (1.3.11) 

for the special case 1p   (already showed in Step 1), to complete the proof of the right-

hand side inequality.  

Now we give the proof of the left-hand side inequality (the lower bound). We first 

notice that 

, ( , )n rr C X H   

increases. As a consequence, if ( )p

aX l  , 1 p   , then 

, ,0 ,0( ( ), ) ( ( ), ) ( , ( ), )p p p

n r a n a n aC l H C l H c l H       , 

where  ,0 0,0, ,0n

n

  . Now let 1

1
1

0
( 1)p

n k

n k
f k z 


  . Then 1

X
f  , and 

,0( , ( ), )p
nn a H z H

c l H f  
 

1

2
nf F


 *  

      
1

( )(1)
2

nf F *
0

1 ˆ( )
2

m

j

f j


  , 

where *  and nF  are defined in part 5) of the proof of Theorem (1.3.10) (lower bound) 

and where 1m   is such that 2m n if n is even and 2 1m n   if n  is odd as in part 4) of 

the proof of the same Theorem. Now, since 

1
0 0

1ˆ( ) ( 1)
m m

p
j k

f j k
n



 

   , 

we get the result. 

Theorem (1.3.12)[53]: Let [0,1)r  , 1n  , [2, ]p  , and let 0  . We have 
3 2

1
1 2

, ( ( ), )
1

p
pp

n r a

n
B n C l H A

r






 
 

  
    

 
, 

where A   and B   depend only on   and p . 

Proof. The proof repeates the scheme from Theorem (1.3.11). (the two steps) excepted 

that this time, we replace (in both steps) the space 1( )aX l   by ( )aX l  .  
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Chapter 2 

Presburger Sets with Analytic  -Adic and Classification 

of Semi-Algebraic  -Adic Sets 

We exhibit a tight connection between the definable sets in an arbitrary  -minimal 

field and Presburger sets in its value group. We give a negative result about expansions 

of Presburger structures and show uniform elimination of imaginaries for Presburger 

structures within the Presburger language. The cell decomposition theorem describes 

piecewise the valuation of analytic functions (and more generally of subanalytic 

functions), the pieces being geometrically simple sets, called cells. We also classify 

subanalytic sets up to subanalytic bijection. 

Section (2.1): P-Minimal Fields 

In this section we classify the Presburger sets up to definable bijection (2.1.11), using 

as only classifying invariant the (logical) algebraic dimension. In order to show this 

classification, we first formulate a cell decomposition theorem for Presburger groups 

(2.1.4) and a rectilinearisation theorem for the definable sets (2.1.9). Also a 

rectilinearisation theorem depending on parameters is shown (2.1.10).  

Expansions of Presburger groups have recently been studied intensively. One could 

say that on the one hand one looks for (concrete) expansions which remain decidable and 

have bounded complexity, and on the other hand different kinds of minimality conditions 

(like coset-minimality, etc.) are used to characterize general classes of expansions (see 

e.g., [69], [80]). We examine expansions of Presburger groups satisfying natural kinds of 

minimality conditions.  

In [75], D. Haskell and D. Macpherson defined the notion of  -minimal fields, as a 

 -adic counterpart of  -minimal fields. A  -minimal field always is a  -adically closed 

field, and its value group is a Z-group. Interactions between definable sets in a given  -

adically closed field and Presburger sets in its value group have been studied in the 

context of  -adic integration for several  -minimal structures (see [73], [74]). In 

Theorem (2.1.17), we exhibit a close connection between definable sets in arbitrary  -

minimal fields and Presburger sets in the corresponding value groups.   

In the last, we use the cell decomposition theorem in an elementary way to obtain 

uniform elimination of imaginaries for Z-groups without introducing extra sorts.  

In this section G  always denotes a  -group, i.e., a group which is elementary 

equivalent to the integers  in the Presburger language  
0

, , (mod ) ,0,1Pres n
n


   L  

where (mod )n  is the equivalence relation in two variables modulo the integer 0n  . We 

call ( , )PresG L  a Presburger structure and we write H for the nonnegative elements in G . 

By a Presburger set, function, etc., we mean a PresL ‐ definable set, function, etc., and by 

definable we always mean definable with parameters (otherwise we say 0 ‐ definable, S-

definable, etc.). We call a set mX G  bounded if there is a tuple mz H  such that 

i i iz x z    for each x X and 1, ,i m . For k m we write : m k

k G G   for the 

projection on the first k  coordinates and for k nX G   and  ( )kx X  we write xX  for 

the fiber { | ( , ) }ny G x y X  . We recall that the theory Th ( , )PresL  has definable Skolem 

functions, quantifier elimination in PresL  and is decidable [81].  

We show a cell decomposition theorem for Presburger structures, by first showing it 

in dimension 1 and subsequently using a compactness argument. An elementary 

arithmetical proof can also be given, using techniques like in the proof in [71], but our 
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proof has the advantage that it goes through in other contexts as well. As always,   

denotes a  -group.  

Definition (2.1.1)[68]: We call a function : mf X G G   linear if there is a constant 

G   and integers ia , 0 i ic n   for 1, ,i m  such that 0(mod )i i ix c n   and  

1

( ) ( )
m

i i
i

i i

x c
f x a

n





  . 

for all 1( , , )mx x x X  .  We call f piecewise linear if there is a finite partition P  of  X  

such that all restrictions | ,Af A P  are linear. We speak analogously of linear and 

piecewise linear maps : ng X G .  

The following definition fixes the notion of (Presburger) cells.  

Definition (2.1.2)[68]: A cell of type (0) (also called a (0)-cell) is a point { }a G . A (1)-

cell is a set with infinite cardinality of the form  

    1 2{ | , (mod )}x G x x c n   ,                 (1) 

with  ,   in { }a G , integers 0 c n  and i either   or no condition. Let {0,1}ji   for 

1, ,j m  and 1( , , )mx x x . A 1( , , ,1)mi i -cell is a set A  of the form  

    1

1 2{( , ) | , ( ) ( ), (mod )}mA x t G x D x t x t c n     ,               (2) 

with ( )mD A  a 1( , , )mi i -cell, , : D G   linear functions, i either   or no  condition 

and integers 0 c n  such that the cardinality of the fibers { | ( , ) }xA t G x t A    can not be 

bounded uniformly in x D by an integer. A 1( , , ,0)mi i -cell is a set of the form 
1{( , ) | , ( ) }mx t G x D x t   , 

with : D G   a linear  function  and mD G  a 1( , , )mi i -cell.  

Remarks (2.1.3)[68]: (i) Although we consider in Definition (2.1.2) a condition on the 

cardinality of fibers, the type of a cell does not alter if one takes elementary extensions.  

(ii) To an infinite 1( , , )mi i -cell mA G  we can associate (as in [82]) a projection 

: m k

A G G   such that the restriction of A  to A  gives a bijection from A  onto a (1,...,1)-

cell kA G  . Also, a 1( , , )mi i -cell is finite if and only if 1 0mi i   , and then  it is a 

singleton.  

(iii) Let A  be a 1( , , ,1)mi i -cell as in Eq. (2), then it is clear that a linear function 

:f A G  can be written as  

     ( , ) ( ) ( ), ( , )
t c

f x t a x x t A
n




   ,                (3)  

with a  an integer, : D G   a linear function and c , n , D  as in Eq. (2).  

Theorem (2.1.4)[68]: Let mX G  and :f X G  be PresL -definable. Then there exists a 

finite partition P  of X  into cells, such that the restriction |:f A G  is linear for each cell 

A P .  Moreover, if X  and f  are  -definable, then also the parts A  can be taken S-

definable.  

Proof. by induction on m . If X G , :f X G are PresL -definable, then Theorem (2.1.4) 

follows easily by using quantifier elimination and elementary properties of linear 

congruences. Alternatively, the more general [80] can be used to show this one 

dimensional version (see also Proposition (2.1.13) below). Let 1mX G   and :f X G  

be PresL -definable, 0m  . We write 2

1 2( , ) { ,0}    to say that 1 , resp. 2 , represents either 

the symbol   or no condition. Let S  be the set 2 2{( , ) | 0 } { ,0}n c c n       . For any 

1 2( , , , , )d a n c S  and 3

1 2 3( , , ) G      we define a Presburger function 
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( , ) 1 1 2 2 3:{ | , (mod )} : ( )d

t c
F t G t t c n G a

n
   


    . 

The domain ( , )( )dDom F   of such a function 
( , )dF   is either empty, a (1)-cell or a finite 

union of (0)-cells. For fixed 0k   and kd S , let ( , )( , )d k x   be a Presburger formula in 

the free variables 1( , , )mx x x  and 1( , , )k   , with 1 2 3( , , )i i i i    , such that  

( , )| ( , )d kG x   if and only if the following are true:  

 (i) ( )mx X ,  

(ii) the collection of the domains ( , )( )
i idDom F   for 1, ,i k  forms a partition of the  fiber  

xX G ,  

(iii) ( , )( ) ( , )
i idF t f x t   for each ( , )( )

i idt Dom F   and 1, ,i k .  

Now we define for each k   and kd S  the set 

( , ) ( , ){ | ( , )}m

d k d kB x G x     . 

Each set ( , )d kB  is PresL -definable and the (countable) collection ( , ) ,{ }d k k dB  covers ( )m X  since 

each ( )mx X is in some ( , )d kB  by the induction basis. We can do this construction in any 

elementary extension of G , so by logical compactness we must have that finitely many 

sets of the form ( , )d kB  already cover ( )m X . Consequently, we can take Presburger sets 

1, , sD D such that { }iD  forms a partition of ( )m X  and each iD  is contained in a set ( , )d kB  

for some k  and k -tuple d . For each 1, ,i s , fix a k  and k -tuple d  with ( , )i d kD B , then 

we can define the Presburger set 
3

( , ){( , ) | ( , )}k

i i d kx D G x       

satisfying ( )m i iD    by construction. Since the theory Th ( , )PresG L  has definable Skolem 

functions, we can choose definably for each ix D  tuples 3kG   such that ( , ) ix   . 

Combining it all, it follows that there exists a finite partition S  of X consisting of 

Presburger sets of the form 
1

1 2{( , ) | , ( ) ( ), (mod )}mA x t G x C x t x t c n     , 

such that |Af  maps ( , )x t A  to ( ) ( )t c
n

a x  ; with , , :C G     and mC G -definablePresL

, i  either   or no condition, integers a , 0 c n   and ( )m A C  . The theorem now follows 

after applying the induction hypothesis to C  and , , :C G     and partitioning further.  

Any Presburger structure satisfies the exchange property for algebraic closure. This 

is a corollary of a more general result in [69] but can also be shown using the cell 

decomposition theorem elementarily. In particular this yields an algebraic dimension 

function on the Presburger sets in the following (standard) way.  

Definition (2.1.5)[68]: Let mX G  be A -definable for some finite set A  by a formula 

( , )x a  where 1( , , )sa a a  enumerates A , then the (algebraic) dimension of X ,  written 

dim( )X , is the greatest integer k  such  that  in  some  elementary extension  G  of G  there 

exists 1( , , ) m

mx x x G   with | ( , )G x a  and 1 1 1rk( , , , , , ) rk( , , )m s sx x a a a a k  , where 

rk( )B  of a set B G  is the cardinality of a maximal algebraically independent subset of 

B  (in the sense of model theory, see [77]).  

This dimension function is independent of the choice of a set of defining parameters 

A  and the following properties of algebraic dimension are standard.  

Proposition (2.1.6)[68]:    

(i) For Presburger sets , mX Y G  we have dim( ) max(dim ,dim )X Y X Y .  
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(ii) Let : mf X G  be - definablePresL , then dim( ) dim( ( ))X f x .  

The dimension of a cell C  is directly related to the type of C  (see (2.1.7)). Also, if we 

have a Presburger set X  and a finite partition P  of X  into cells, the dimension of X  is 

directly related to the types of the cells in P  (see (2.1.8)).  

Lemma (2.1.7)[68]: Let mC G  be a 1( , , )mi i -cell, then 1dim( ) mC i i   .  

Proof. For a (0)- and a (1)-cell this is clear. Possibly after projecting, we may suppose 

that mC G  is a (1 ...., 1)-cell. The Lemma follows now from the definition of the type of a 

cell using induction on m  and a compactness argument.  

Corollary (2.1.8)[68]: For any Presburger set mX G  and any finite partition P  of X  into 

cells we have 

  1 1dim( ) max{ | is a ( ) - cell}m mX i i C C i i     P,                (4) 

     1 1= max{ | a ( ) - cell}m mi i X contains i i    .  

Proof. The first equality is a consequence of Lemma (2.1.7) and Proposition (2.1.6). To 

show (4) we take a 1( , , )mi i -cell C X  such that 1 mi i   is maximal. By the cell 

decomposition we can obtain a partition P  of X  into cells such that C P . Now use the 

previous equality to finish the proof.  

The cell decomposition theorem provides us with the technical tools to classify the 
0-definable Presburger sets up to -definablePresL  bijection. The key step to this 

classification is a rectilinearisation theorem, which also has a parametric formulation. 

We recall that G  denotes a Z - group  and { | 0}H x G x   , we also write 0 {0}H  . Also 

notice that a set A  is 0-definable  if and only if A  is  -definable, to be precise, definable 

over 1 G  .  

Theorem (2.1.9)[68]: Let X  be a 0-definable  Presburger set, then there exists a finite 

partition P  of X  into 0-definable  Presburger sets, such that for each A P  there is an 

integer 0l   and a 0-definable  linear bijection :f A H  .  

Proof. We give a proof by induction on dimX . If dim 0X   then X  is finite and the 

theorem follows, so we choose a Presburger set X  with dim 0X  , 0m  . Any 

-definablePresL  object occurring in this proof will be 0-definable : we will alternately 

apply 0-definable  linear bijections and partition further. By the cell decomposition 

theorem and possibly after projecting (see remark (2.1.3) Definition (2.1.2)), we may 

suppose that X  is a (1,...,1)-cell contained in 1mG  , so we can write 
1

1 2{( , ) | , ( ) ( ), (mod )}mX x t G x D x t x t c n     , 

with 1( , , )mx x x , ( ) m

m X D G    a (1,...., 1)-cell, integers 0 c n  , , : D G     

0-definable  linear functions and i  either   or no condition. By induction we may 

suppose that mD H . If both 1  and 2  are no condition, the theorem follows easily, so we 

may suppose that one of the i , say 1 , is  . Moreover, after a linear transformation 

( , ) ( , )t c
n

x t x   we may assume that 0c   and 1n  , then we can apply the following 

linear bijection 

1: : ( , ) ( , , , ( ))mf X A x t x x t x  , 

onto  
1

2{( , ) | ( ) ( )}mA x t H t x x    . 

Because ( ) ( )x x   is a linear function from mH  to G there are integers ik  such that 

1

2 0

1

{( , ) | }
m

m

i i

i

A x t H t k k x



   .                 (5) 
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Moreover, since ( ) m

m A H  , all integers 
ik  must be nonnegative. We proceed by 

induction on 
1 0k  . If 

1 0k   then 
2 0 2

{( , , , ) | }
mm

m i ii
A H x x t H t k k x


      and the 

theorem follows by induction on the dimension. Now suppose 1 0k  , then we partition A  

into two parts 
1

1 1{( , ) | 1}mA x t H t x    , 

1

2 1 0

1

{( , ) | }
m

m

i i

i

A x t H x t k k x



     , 

where 
2( ) m

m A H   and 
1 1( ) { |1 }m

m A x H x    . We apply the linear bijection 

2 1 1: ( , ) ( , , , )mA B x t x x t x   

with  

1

0 1 1

2

{( , ) | ( 1) }
m

m

i i

i

B x t H t k k x k x



       

and the theorem for B  follows by induction on 1k . We conclude the proof by the 

following linear bijection:  
1

1 1 2: ( , ) ( , 1 , , , , )m

mA H x t x t x x t   . 

Theorem (2.1.10)[68]: Let m nX G   be a 0-definable  Presburger set, then there exists a 

finite partition P  of X  into 0-definable  Presburger  sets, such that for each A P  there is 

a set m nB G   with ( ) ( )m mA B   and a 0-definable  family ( ){ }
m Af     of linear bijections 

: n nf A G B G      with B  a set of the form lH   where   is a bounded 

-definable  set and the integer l  only  depends on A P .  

Proof. We give a proof by induction on n , following the lines of the proof of Theorem 

(2.1.9). So we assume that X  is a cell 
( 1)

1 2{( , , ) | ( , ) , ( , ) ( , ), (mod )}m nX x t G x D x t x t c n          , 

with 1( , , )m   , 1( , , )nx x x , m nD G   a cell, integers 0 c n  , , : D G  

0-definable  linear functions and i  either   or no condition. By subsequently applying 

the induction hypothesis to D , partitioning further and applying linear bijections (similar 

as to obtain Eq. (5) in the proof of Theorem (2.1.9), keeping the parameters    fixed 

now), we may assume that X  has the form 
1{( , , ) | ( , ) , 0 ( , )}m nX x t G x D t x          , 

with ( ) m n

m n X D G 


   a Presburger set such that for each ( )m D    lD H 

    

where   is a -definable  bounded set, l  a fixed positive integer and : D G   a  

0-definable  linear function. If 0l  , X   is a bounded set for each   and the theorem  

follows immediately. Let thus 0l  , i.e., the projection of X  on the 1 - coordinatex  is  H , 

then the function   can be written as 1 1 2( , ) ( , , , )mx k x x x    with 1k  an integer, 

necessarily nonnegative because the projection of X  on the 1 - coordinatex  is  H  and    is a 

linear function. The reader can finish the proof by induction on 1 0k  , similar as in the 

proof of Theorem (2.1.9). 

Theorem (2.1.11)[68]: Let X  be a 0-definable  Presburger set with dim 0X m  , then 

there exists a 0-definable  Presburger bijection : mf X G . In other words, there exists a 

0-definable  Presburger bijection between two infinite 0-definable  Presburger sets X , Y  if 

and only if dim dimX Y .  

Proof. Let X  be 0-definable  and infinite. We use induction on dimX m . We say for 

short that two Presburger sets X , Y  are isomorphic if there exists a 0-definable   
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Presburger bijection between them and write X Y . If 1m  , then Theorem (2.1.9) yields 

a partition P  of X  such that  each part is either a point or isomorphic to H . Consider the 

bijections 

1

2 ,
: :

2 1 ,

x x
f H G

x x


 

 
 

2 : { 1} : 1,f H H x x    

3

(0, ) 2 ,
: ({0} ) ({1} ) :

(1, ) 2 1;

x x
f H H H

x x


   


  

the bijections 
1f , 

2f , applied repeatedly to (isomorphic copies of) parts in P  yield a 

definable bijection from X  onto H  and thus G X  by applying 1f  (in the obvious way). 

Now let dim 1X m  . Using Theorem (2.1.9) we find a partition P  of X  such that each 

part is isomorphic to lH  and thus to lG  since H G  by 
1f . Since dimX m , at least one 

part is isomorphic to mG . Take ,A B P  with mA G  and lB G , then it suffices to show 

that mA B G . If 0l   this is clear and if 0l   then ( )A B G A B    for some disjoint 

and 0-definable  sets A , B   with 1mA G    and 1lB G   . The induction hypothesis applied to 

A B  finishes the proof.  

We define the notion of Presburger minimality ( - minimalityPresL ) for expansions of 

Presburger structures ( , )PresG L . This notion of - minimalityPresL  is a concrete instance of 

the general notion of - minimalityL  as in [78] and has already been studied in [80].  

Definition (2.1.12)[68]: Let G  be a Z-group and L  an expansion of the language PresL , 

then we say that ( , )G L  is - minimalPresL  if every -definableL  subset of G  is already 

-definablePresL  (allowing parameters as always). We say that Th ( , )G L  is 

- minimalPresL  if every model of this theory is - minimalPresL .  

Comparing this notion with the terminology of [80], a structure ( , )G L  is 

- minimalPresL  if and only if it is a discrete coset-minimal group without definable 

proper convex subgroups (see [80]). [80] says that a definable function in one variable 

between such groups is piecewise linear. We reformulate this result with our 

terminology.  

Proposition (2.1.13)[68]: [80] Let ( , )G L  be - minimalPresL , then any definable 

function  :f G G  is piecewise linear.  

Proposition (2.1.13) allows us to repeat without any change the compactness argument 

of the proof of the cell decomposition theorem for any model of a - minimalPresL theory. 

This leads to the following description of - minimalPresL  theories.  

Theorem (2.1.14)[68]: Let ( , )G L  be an expansion of a Presburger structure ( , )PresG L , 

then the following are equivalent:  

(i) Th ( , )G L  is - minimalPresL ;  

(ii) ( , )G L  is a definitional expansion of ( , )PresG L ; precisely, any -definableL  set 
mX G  is already -definablePresL .  

Thus, the theory Th ( , )PresG L  does not admit any proper - minimalPresL  expansion.  

Proof. Any Presburger minimal theory has definable Skolem functions. For if  1mX G   is 

a definable set in some model G , we can choose definably for any ( )mx X  the smallest 

nonnegative element in xX , if there is any, and the largest  negative element otherwise. 

This implies the definability of Skolem functions by induction. Now replace in the 
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statement of the cell decomposition Theorem (theorem (2.1.4)) the word -definablePresL  

by -definableL . Then repeat the case 1m   of the proof of Theorem (2.1.4), using now 

the
 

- minimalityPresL and Proposition (2.1.13). Using the same compactness argument as 

in the proof of Theorem (2.1.4) we find that any -definableL  set mX G  is a finite 

union of Presburger cells, thus a fortiori, X  is -definablePresL .  

We let K  be a  -adically closed field with value group G . Recall that a  -adically 

closed field is a field K   which is elementary equivalent to a finite field extension of the 

field p  of  -adic numbers; in particular, the value group G  is a  -group and K  has 

quantifier elimination in the Macintyre language 1, ,.,0,1,{ }Mac n nP   L  where nP , 

denotes the set of n-th powers in K  . We write : { }v K G   for the valuation map and 

for any 0m   we write   for the map 
1: ( ) : ( ( ), , ( ))m m

mK G x x v x   . We give a 

definition of  -minimality, extending the original definition of [75] slightly.  

Definition (2.1.15)[68]: Let K  be a  -adically closed field and let ( , )K L  be an 

expansion of ( , )MacK L . We say that the structure ( , )K L  is  -minimal if any 

-definableL subset of K  is already -definableMacL  (allowing parameters). The theory 

Th ( , )K L is called  -minimal if every model of this theory is  -minimal.  

Lemma (2.1.16)[68]: Let K  be a  -adically closed field with value group G , then for any 

-definablePresL  set mS G  the set 1

1( ) {( , , ) ( ) | ( ) }m

mS x x K x S      is 

-definableMacL .  

Proof.  Let mS G  be -definablePresL . By Theorem (2.1.4) we may suppose that S  is a 

Presburger cell. The Lemma follows now inductively from the fact that conditions 

imposed on 1 1( , , , ) ( )m

mx x t K 

   of the form 
1

1

1
( ) ( ( ))

m

i ie i
t a x d 




    or ( ) (mod )t c n   

are -definableMacL  for any integers ia , 0e  , 0 c n   and d G (see e.g.,  [72]). 

Theorem (2.1.17)[68]: Let ( , )K L  be a  -minimal field with  -minimal theory and let G  

be the value group of K . Then for any -definableL  set ( )mX K   the set 

1 1( ) { ( ), , ( )) ( ) | ( , , ) )}m m

m mX x x G x x x G       

is -definablePresL .  

Proof. Put { ( ) | ( ) , is -definable}m m

mS X G X K X    L , then it is easy to see 

that the collection ( ) 0m mS   determines a structure on G  (i.e., the collection m mS  is 

precisely the collection of -definableL  sets for some language L ). We first argument 

that this structure is in fact - minimalPresL . Choose a -definableL  set X K  , then, by 

 -minimality, X  is -definableMacL . We can thus apply the p-adic semi-algebraic cell 

decomposition ([72], in the formulation of [70, Lemma 4]) to the set X  to obtain that X  

is a finite union of  p-adic cells, i.e., sets of the form 

1 1 2 2{ | ( ) ( ) ( ), }nx K a x c a x c P K         , 

with 1 2, , ,a a c K  and i  either  , < or no condition. The image under   of such a cell is 

either a finite union of (0)-cells or a (1)-cell and thus a -definablePresL  subset of G . By 

consequence, the structure ( ) 0m mS   is - minimalPresL . By the Presburger minimality of 

( ) 0m mS  , the  -minimality of Th ( , )K L , and  Lemma (2.1.16) to interprete G  into K , 

we can repeat the compactness argument of the proof of the cell decomposition theorem 

(2.1.4) for the structure ( )m mS  on G  to find that each m mA S  is a finite union of 

Presburger cells. This shows the theorem. 
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As a last application of the cell decomposition theorem we show uniform elimination 

of imaginaries for Presburger structures. We say that a structure ( , )M L  has uniform 

elimination of imaginaries if for any 0-definable  equivalence relation on kM  there 

exists a 0-definable  function : k rF M M  for some r  such that two tuples , kx y M  are 

equivalent if and only if ( ) ( )F x F y .  

Theorem (2.1.18)[68]: The theory Th ( , )PresL  has uniform elimination of imaginaries, 

precisely, any Presburger structure ( , )PresG L  eliminates imaginaries uniformly.  

Proof. Since Th ( , )PresL  has definable Skolem functions, we only have to show the 

following statement for an arbitrary Z-group G  (see e.g., [77]). For any 0-definable  

Presburger set 1mX G   there exists a 0-definable  Presburger function : m nF G G  for 

some n , such that ( ) ( )F x F x   if and only if 
x xX X  , (if ( )mx X  then we put 0xX  

). So let 1mX G   be a 0-definable  Presburger set.  Apply the cell decomposition 

theorem to obtain a partition P  of X  into cells. For each cell A P  of the form 
1

1 2{( , ) | , ( ) ( ), (mod )}m

A AA x t G x D x t x t c n     , (as in Eq. 2) and each 2

1 2( , ) G     

we define a set  

1 1 2 2( ) { | , (mod )}A A AC t G t t c n     . 

Notice that for each ( )mx X  we have at least one partition of X , into sets of  the form 

( )AC   with A P  and 2G  . For ,x y G  we write x y  if and only if one of the 

following conditions is satisfied  

(i) 0 x y  ,  

(ii) 0 x y   ,  

(iii) 0 x y   , 

(iv) 0 x y    . 

This gives a new ordering 0 1 1 2 2   on G  with zero as its smallest element. 

For each 0k   we also write  for the lexicographical order on kG  built up with . The 

order  is - definablePresL  and each Presburger set has a unique -smallest element. For 

each mx G  and each I P  with cardinality 0I s   we let ( ) ( )I A A Iy x   , 2

A G  , be 

the -smallest tuple in 2sG  such that ( )A I A A xC X   if  there exists at least one such 

tuple and we put 2( ) (0, ,0) s

Iy x G   otherwise. One can reconstruct the set xX  given all 

tuples ,Iy I  P . Let F  be the function mapping ( )mx X  to ( ( ))I Iy y x 
P
. Since the 

lexicographical order  is -definablePresL  it is clear that F  is -definablePresL  and that 

( ) ( )F x F x   if and only if  x xX X   for each , mx x G . 

Section (2.2): Cell Decomposition and Integrals 

Let p denote a fixed prime number, P  the ring of  -adic integers, P  the field of  -

adic numbers, |·| the  -adic norm, and ( )   the  -adic valuation. 

Let 1( , , )rf f f  be an r-tuple of restricted power series over P  in the variables 

1 1( , ) ( , , , , , )s mx x x   , i.e., the if are power series converging on s m

P

 . To f  we 

associate a parametrized  -adic integral 

( ) ( , )
m
P

I f x dx   ,                  (6) 

 where dx  is the Haar measure on m

P  normalized so that m

P  has measure 1. 
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A subanalytic constructible function on a subanalytic set X  is by definition a 

- linear  combination of products of functions of the form (h)  and h , where 

: ph X   and : ph X   are subanalytic functions. 

We show the following conjecture of Denef [73]: 

Theorem (2.2.1)[83]: The function I  is a subanalytic constructible function on s

P
. 

In the case that the functions if  are polynomials, the map I  has been studied by Igusa 

for 1r  , by Lichtin for 2r  , and by Denef for arbitrary r (see [91, 92, 93], [94], and 

[73]). In the more general case that the ( , )f x  in (6) is replaced by an arbitrary 

subanalytic constructible function, the conclusion of Theorem (2.2.1) still holds (see 

Theorem (2.2.14) below), where now I  is identically zero if the integrated function is not 

integrable for some λ. 

The rationality of the analytic  -adic Serre–Poincar´e series was conjectured in [101] 

and [102] and proven by Denef and van den Dries in [74]; the rationality can 

immediately be obtained as a corollary of integration Theorem (2.2.1). This is because it 

is well known how to express the Poincar´e series as a  -adic integral (see [73]). 

A second key result of the present section is a cell decomposition theorem for 

subanalytic sets and subanalytic functions (Theorem (2.2.10)), in perfect analogy to the 

semialgebraic cell decomposition theorem of [86] and [72]. Roughly speaking,  -adic 

cell decomposition theorems describe the norm of given functions after partitioning the 

domain of the functions in finitely many basic sets, called cells. Cell decompositions are 

very useful to study parameterized  -adic integrals (see below and [73]) and to show the 

rationality of Igusa’s local zeta functions and of several Poincar´e series (see [86]). Many 

of the applications of cell decomposition (in for example [73] and [71]) cannot, up to 

now, be proven with other techniques. 

The proof of the analytic cell decomposition is based on several results by van den 

Dries, Haskell, and Macpherson [76] on the geometry of subanalytic  -adic sets and 

subanalytic functions; we state some of these results in this section. 

We also extensively use the theory of  -adic subanalytic sets, developed by Denef 

and van den Dries in [74] in analogy to the theory of real subanalytic sets; in particular, 

we use the dimension theory of [74]. We apply cell decomposition to obtain the 

following classification: 

Theorem (2.2.2)[83]: Let m

pX   and n

pY   be infinite subanalytic sets. Then there 

exists a subanalytic bijection X Y if and only if dim( ) dim( )X Y . 

This classification of subanalytic sets is similar to the classification of semialgebraic sets 

in [70]. Note that in particular there exists a  semialgebraic  bijection  between  p  

and p

 ; this is the main result of [85]. 

The theory of  -adic integration has also served as an inspiring example for the 

theory of motivic integration and there are many connections to it (see e.g. [89] and 

[88]). 

Many of the results of [74] and [76] are formulated for p  and not for finite field 

extensions of p ; nevertheless, all results referred to in this section also hold for finite 

field extensions of p  (see [74]). All results of this section also hold in finite field 

extensions of p . 
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Let p  denote a fixed prime number, 
p
 the field of  -adic numbers and K  a fixed 

finite field extension of  
p
 with valuation ring R . For x K    let ( )x   denote the  -

adic valuation of x  and ( )xx q   the  -adic norm, with q  the cardinality of the residue 

class field. We write { | }n

nP y y K   , and nP  denotes { | }nx x P   for K . 

For 1( , ,x )mx x  let { }K x  be the ring of restricted power series over K  in the 

variables x ; it is the ring of power series i

ia x  in [[x]]K  such that ia  tends to 0 as 

i  . (Here, we use the multi-index notation where 1(i , , i )mi  , 1 imi i    and 

1

1( , ,x )mi ii

mx x .) For 
0

mx R  and i

if a x  in { }K x  the series 0

i

ia x converges to a 

limit in K , thus, one can associate to f  a restricted analytic function given by 

if x R ,
: :

0 else.

i m

im i
a x

f K K x
 

 


  

We extend the notion of  -functions of [74] to our setting: 

Definition (2.2.3)[83]: A  -function is a function mK K for some 0m  , obtained by 

repeated application of the following rules: 

(i) for each 1{ , , }mf K x x , the associated restricted analytic function ( )x f x  is a 

 -function; 

(ii) for each polynomial 1{ , , }mf K x x , the polynomial map ( )x f x  is a  -

function; 

(iii)  the function 1x x  , where 10 0   by convention, is a  -function; 

(iv)  for each  -function f  in n  variables and each  -functions 1, , ng g  in m variables, 

the function 1( , , )nf g g  is a  -function. 

A (globally) subanalytic subset of mK  is a subset of the form 

1 1

r s

ij

i j

X X
 

  

where each ijX  is of the form { | ( ) 0}m

ijx K f x   or { | ( ) }
ij

m

ij nx K f x P  , where the 

functions ijf  are D-functions and 0ijn  . We call a function : m ng A K K  subanalytic 

if its graph is a subanalytic set. We refer to [74], [73] and [76] for the theory of 

subanalytic  -adic geometry and to [96] for the theory of rigid subanalytic sets. 

We will use the framework of model theory. We let an  be the first order language 

consisting of the symbols 
1

0, , , ,{ }n nP

   , 

together with an extra function symbol f  for each restricted analytic function associated 

to restricted power series in 1{ , , }mm
K x x .We consider K  as an - structurean  using the 

natural interpretations of the symbols of an . 

We mention the following fundamental result in the theory of subanalytic sets. 

Theorem (2.2.4)[83]: ([74]). The collection of subanalytic sets is closed under taking 

complements, finite unions, finite intersections, and images under subanalytic maps. 

A semialgebraic subset of mK  is a subset of the same form as X  above but with the 

ijf  polynomials over K , and a function is semialgebraic if its graph is a semialgebraic 

set. It is well known that also the collection of semialgebraic sets is closed under taking 

complements, finite unions and intersections, and images under semialgebraic maps (see 

[98], [72]). 
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To state cell decomposition one needs basic sets called (subanalytic) cells, which we 

define inductively. For , 0m l   write : m l m

m K K    for the linear projection on the first 

m  variables and, for m lA K   and ( )mx A , write 
xA  for the fiber { | ( , ) }lt K x t A  . 

Definition (2.2.5)[83]: A cell A K  is a (nonempty) set of the form 

      1 2{ | , }nt K t t P        ,                 (7) 

with constants 0n  , , K   ,  , K   , and i  either   or no condition. If 0   we call 

A  a 0-cell and we call A  a 1-cell otherwise. 

A (subanalytic) cell 1mA K  , 1m  , is a set of the form 
1

1 2{( , ) | , (x) (x) (x) , ( ) }m

nx t K x D t t x P         ,               (8) 

with 1( , ) ( , , , )mx t x x t , 0n  , K , ( )mD A  a cell, subanalytic functions 

, : mK K   , : mK K  , and i  either   or no condition. We call   the center and 

nP  the coset of the cell A . If D  is a cell of type 1(i , , i )m  with i {0,1}i  , we call A  an 

1 m(i ,…,i ,0) - cell  if 0   and we call A  an 1 m(i ,…,i ,1) - cell  otherwise. If at each stage of this 

inductive definition all occurring functions ,  , and   are analytic on the respective 

projections ( )i A , 1, , 1i m   , we call A  an analytic cell. 

Let 1K  be an an -elementary extension of K  and let 1R  be its valuation ring. In view 

of Theorem (2.2.4), we can call a set 1

mX K  subanalytic if it is an -definable (with 

parameters from 1K ) and analogously for subanalytic functions, cells, and so on. 

Expressions of the form x y  for 1,x y K  are abbreviations for the corresponding an -

formula’s expressing x y  for ,x y K , as in Lemma 2.1 of [72]. Cells in 
1

mK  are 

defined just as in mK  by replacing K  by 1K  everywhere in the definition. By a D-

function 1 1

mK K  we mean a function given by an an -term (with parameters from 1K ) 

in m  variables. Similarly, one can speak of semialgebraic subsets of 1

mK  (with parameters 

from 1K ). 

Theorem (2.2.6)[83]: ([76]). Each subanalytic subset of 1K  is semialgebraic. 

The following two lemmas treat the one-dimensional part of Theorem (2.2.10). 

Lemma (2.2.7)[83]: Let 1 1:f R K  be a subanalytic function. Then there exists a finite 

partition of 1R  into semialgebraic sets A  such that for each A  there exist polynomials p  

and q  such that 
1

( ) ( ) ( ) ,
e

f x p x q x for each x A  , 

where q  has no zeros in A  and 0e   is an integer. 

Proof. By [87], there exists a finite partition of 1R  into subanalytic sets B  such that 
1

( ) ( ) ( ) ,
e

B Bf x x h x for each x B g , 

Where Bg  and Bh  are  -functions, ( ) 0Bh x   on B  and 0e  . (In [87] this is proven for 

subanalytic functions m

p p  using quantifier elimination in an elementary way; its 

proof can be repeated for our situation 1 1R K  or otherwise one can instantiate 

parameters in the result of [87] to deduce this as a corollary.) By Theorem B  of  [76], the 

sets B  are semialgebraic. 

In [76] it is proven that the norm of any  -function in one variable is piecewise equal to 

the norm of a rational function, the pieces being semialgebraic sets. More precisely, by 
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Proposition (4.1), Corollary (3.4) and Lemma (2.10) of [76], there exists for each 

function Bg  a finite partition of 1R  into semialgebraic sets C  such that on each C  

( ) ( ) ( ) ,B BC BCx x h x for each x C g g , 

where BCg  and BCh  are polynomials over 1K  and ( ) 0BCh x   on C .The same holds for each 

function Bh . Taking an appropriate partition using intersections of these sets C  and B  the 

lemma follows. 

Lemma (2.2.8)[83]: Let 1X R  be a subanalytic set and 
1:f X K  a subanalytic 

function. Then there exists a finite partition  of X  into cells, such that for each cell 

A   with center 1K   and coset nP  
1

( ) ( ) for each
na af t t t A     , 

with 
1K   and a  an integer. We use the convention that 0a   and 00 1  when 0  . 

Proof. We extend f  to a function 1 1R K  by putting ( ) 0f x   if x X . By [76], the set 

X  is semialgebraic. Apply Lemma (2.2.7) to f  to obtain a partition . Intersecting each 

set in  with X , we obtain a partition   of X . Now apply the semialgebraic cell 

decomposition (in the formulation of [70]) to the sets in   and the respective 

polynomials occurring in the application of Lemma (2.2.7). If we refine the obtained 

partition such that for each cell A C  with coset nP  the number n  is a multiple of e

(for the occurring fractional powers 1 e ), then the lemma follows. 

We will use the previous lemma and a model-theoretical compactness argument to 

show the following variant of Theorem (2.2.10). 

Theorem (2.2.9)[83]: Let 1K  be an arbitrary an -elementary extension of K  with 

valuation ring 1R . Let 1

1

mX K   be subanalytic and 1:jf X K  subanalytic functions for 

1, ,j r . Then there exists a finite partition of X  into subanalytic cells A  with center 

1 1: mK K   and coset nP  such that for each ( , )x t A  
1

( , ) ( ) (t (x))
nj ja a

j jf x t x  


  , 

with 1( , ) ( , , , )mx t x x t  , integers a j , and 1 1: m

j K K   subanalytic functions, 1, ,j r . 

Here we use the convention that a 0j   and 00 1  when 0  . 

Proof. The proof goes by induction on 0m  . It is enough to show the theorem for 0r   

(the theorem then follows after a straightforward further partitioning; see for example 

[72]). 

When 0m  , the usual change of variables 1t t   reduces the description of what 

happens outside 1R  to what happens on 1R , and an application of Lemma (2.2.8) gives 

the desired result. 

Let 1

1

mX K   and 1:f X K  be subanalytic, 0m  . We write 1( , ) ( , , , )mx t x x t   and 

know by the previous discussion that for each fixed 1

mx K  we can decompose the fiber 

xX  and the function ( , )t f x t  on this fiber. We will measure the complexity of given 

decompositions on which ( , )f x   has a nice description and see that this must be 

uniformly bounded when x  varies. 

To do this, we define a countable set 2{ | , 0} { ,0}nP K n         and
2 2

1 1( )K K   . To each 1 2( , , , )nd P a  in  and 1 2 3 4( , , , )        we associate a set 

( , )dDom   as follows: 
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( , ) 1 1 1 3 2 2 3{ | , }d nDom t K t t P          . 

The set ( , )dDom   is either empty or a cell and is independent of 
4  and a . For fixed 0k   

and tuple 
1( , , ) k

kd d d  , let ( , )( , )d k x   be an an -formula in the free variables 

1( , , )kx x x  and 1( , , )k   , with 1 2 3 4( , , , )i i i i i     , such that 4

1( , ) m kx K   satisfies 

( , )d k  if and only if the following are true: 

(i) ( )mx X  and ( )k  , 

(ii) the collection of the sets ( , )i idDom   for 1, ,i k  forms a partition of the fiber 

1{ | ( , ) }xX t K x t X   , 

(iii) 
1

4 3( ) ( , )
nii ia a

i i it f x t     for each ( , )i idt Dom   and each 1, ,i k . 

Now we define for each 0k   and kd   the set 

1{ | ( , )}m

d dB x K x     . 

Each set dB  is subanalytic and the (countable) collection ,{ }d k dB  covers ( )m X , because 

each ( )mx X  is in some dB  by the induction. Since 1K  is an arbitrary elementary 

extension of K , finitely many sets of the form dB  must already cover ( )m X  by model-

theoretical compactness. Consequently, we can take subanalytic sets 1, , sD D  such that 

{ }iD  forms a partition of ( )m X  and each iD  is contained in a set dB  for some 0k   and 

k-tuple d . For each 1, ,i s , fix such a d  with i dD B , and let i  be the subanalytic set 

{( , ) ( ) | ( , )}k

i i dx D x      . 

Then ( )m i iD    by construction ( m  is the projection on the x -coordinates). By [74] on 

definable Skolem functions, there is a subanalytic function 4

1

k

iD K  associating to x  a 

tuple ( ) ( )kx   such that ( , ( )) ix x   for each ix D . The theorem now follows by 

partitioning further with respect to the x -variables and using the induction hypothesis. 

Theorem (2.2.10)[83]: Let 1mX K   be a subanalytic set, 0m  , and :jf X K  

subanalytic functions for 1, ,j r . Then there exists a finite partition of X  into cells A  

with center : mK K   and coset nP  such that for each ( , )x t A  
1

( , ) ( ) (t (x))
nj ja a

j jf x t x  


  , for each 1, ,j r ,                (9) 

with 1( , ) ( , , , )mx t x x t  , integers a j , and : m

j K K   subanalytic functions. If 0  , we 

use the conventions a 0j   and 00 1 . Moreover, the cells A  can be taken to be analytic 

cells such that the j  are analyticon ( )m A . 

For  the  proof  of  Theorem (2.2.10)  we  use  techniques  from  model theory, namely a 

compactness argument. (For general notions of model theory we refer to [77].) 

Proof. We only have to show that we can partition X  using analytic cells A  in such a 

way that the functions j  are analytic on ( )m A . In [74] one proves that any subanalytic 

function is piecewise analytic. Theorem (2.2.10) then follows from Theorem (2.2.10) by 

partitioning further using this fact. 

For mX K  subanalytic and nonempty, the dimension dim( )X  of X  is defined as the 

largest integer n  such that there is a K-linear map : m nK K   and a nonempty 

( )U X , open in nK  (for alternative definitions, see [74]). 

Theorem (2.2.11)[83]: For any subanalytic set mX K  and subanalytic functions 

:if X K , 1, ,i r , there is a semialgebraic set Y , a subanalytic bijection :F X Y and 
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there are semialgebraic maps :i Y Kg such that 

( ( )) ( )i iF x f x for each x X g . 

Proof. We will give a proof by induction on m . Suppose that 1mX K   is subanalytic and 

that :if X K  are subanalytic functions, 0m  . Apply cell decomposition to X  and the 

functions if  to obtain a finite partition  of X . For A   and ( , )x t A , suppose that 
1

( , ) ( ) (t (x))
nj ja a

j jf x t x  


  , 1, ,i r , and suppose that A  is a cell of the form 

1

1 2{( , ) | , (x) (x) (x) , ( ) }m

nx t K x D t t x P         , 

as in (8). After the translation ( , ) ( , ( ))x t x t x  we may suppose that   is zero on D . 

Apply the induction hypotheses to the sets D  and the subanalytic functions  , , and 
i . 

Repeating this process for every A  , and noting that there is a semialgebraic function 

: nh P K  such that 
1

( )
n

h t t , the proposition follows after taking appropriate disjoint 

unions inside mK  of the occurring semialgebraic sets. 

We show the following generalization of Theorem (2.2.2). 

Theorem (2.2.12)[83]: Let mX K  and nY K  be infinite subanalytic sets. Then there 

exists a subanalytic bijection X Y if and only if dim( ) dim( )X Y . 

Proof. By Theorem (2.2.11) there are subanalytic bijections X X   and Y Y   with 

X   and Y   semialgebraic, but then there exists a semialgebraic bijection X Y   if and 

only if dim( ) dim( )X Y   by  [70]. Since the dimension of a subanalytic set is invariant 

under subanalytic bijections (see [74]), the theorem follows. 

We show that certain algebras of functions from m

p  to the rational numbers  are 

closed under  -adic integration. These functions are called subanalytic constructible 

functions, and they come up naturally when one calculates parametrized  -adic integrals 

such as (6). 

For 1( , , )mx x x  an m-tuple of variables, we will write dx  to denote the Haar 

measure on mK , so normalized that mR  has measure 1. 

Definition (2.2.13)[83]: For each subanalytic set X , we let ( )X  be the -algebra 

generated by the functions X   of the form ( ( ))x h x  and ( )x h x , where 

:h X K   and :h X K   are subanalytic functions. We call ( )f X  a subanalytic 

constructible function on X . 

To any function f  in ( )m nK  , , 0m n  , we associate a function ( ) : m

mI f K   by 

putting 

    ( )( ) ( , )
n

m

K

I f f x dx   ,              (10) 

if the function ( , )x f x  is absolutely integrable for all mK , and we put 

( )( ) 0mI f    otherwise. 

Theorem (2.2.14)[83]: (Basic Theorem on p-Adic Analytic Integrals). For any function 

( )m nf K  , the function ( )mI f  is in ( )mK . 

Proof. By induction it is enough to show that for a function f  in 1( )mK 

 in the variables 

1( , , , )m t   the function ( )mI f  is in ( )mK . Suppose that f  is a -linear combination of 

products of functions if  and ( )j g , 1, ,i r , 1, ,j s , where if  and jg  are subanalytic 

functions 1mK K   and ( , ) 0j t g . Applying cell decomposition to 1mK   and the 

functions if  and jg , we obtain a partition  of 1mK   into cells such that ( )( )mI f   is a 
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sum of integrals over { | ( , ) }A t t A    for each cell A  , where the integrands on these 

pieces A  have a very simple form. More precisely, on each piece A  the integrand is a 

-linear combination of functions of the form 

    
1

( ) ( ) ( ( ))
na a lt t        ,            (11) 

where A  is a cell with center : mK K   and coset nP , and with integers a  and 0 l , 

and a function   in ( )mK . We may suppose that ( ) 0    for some ( )m A  . Regroup 

all such terms where the same exponents a  and l  appear, possibly by replacing the 

functions ( )   by other functions in ( )mK . The integrability of such an integrand then 

only depends on the integers a , l , and n  occurring in each of the terms as in (11) and on 

the symbols i  and   occurring in the description of the cell A . By consequence, we may 

suppose that the integrand is a single term of the form as in (11) and that this term is 

absolutely integrable over A . It suffices to show that the integral 

     
1

( ) ( ( )) ( ( ))
na a l

t A

t t dt



       



              (12) 

is in ( )mK . Write ( )u t    ; since A  is a cell with center   and coset nP , the set A  is 

of the form 
1

1 2{( , ) | , ( ) ( ) , }m

nA u K D u u P          , 

with i  either   or no condition, D a cell, and , : mK K    subanalytic functions. 

Taking into account that the integral (12) is, by supposition, integrable, only a few 

possibilities can occur (with respect to the integers a , l , and n , the conditions i , and   

being zero or nonzero). If 0  , the set A  is a point for each D , thus the statement is 

clear. Suppose 0  . In case that both 1  and 2 represent no condition, the integrand has 

to be zero by the supposition of integrability, and the above integral trivially is in ( )mK . 

We suppose from now on that 1  is  ; the other cases can be treated similarly. The 

integral (12) can be rewritten as 

 
11

( ) ( ) ( ) Measure{ | ( ) }
nna a l ak a l

ku A

u u du q k u A u k



         



      

           
1

( )
nak a l k

k

q k q       

for sq . Measure{ | ( ) }u A u s   (where s  is any number such that 0 { | ( ) }u A u s    ), 

and where the summation is over those integers ( )modk n   satisfying 

2( ) ( )kq    . 

We may suppose that on A , the residue classes 

( ( )) (mod )n    and ( ( )) (mod )n    

are fixed (possibly after refining the partition ). Then this sum is equal to a - linear  

combination of products of the functions  ,  ,  , ( )   and ( )  . For example, if 

1a n   , 1  and 2  are necessarily   and one obtains a polynomial in ( )   and ( )   of 

degree 1l  , multiplied with  . For more examples of calculations of sums of this kind, 

see [71]. Thus, the integral (12) is in ( )mK  as was to be shown. 

As a corollary we will formulate another version of the basic integration theorem, 

conjectured in [8]. 

Definition (2.2.15)[83]: A set n mA K   is called simple if 
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1

1, ,

{( , ) | ( ( ), , ( ), ) 0}n m

n i

i n

x K x A     



    

is a subanalytic set. A function : n m

ph A     is called simple if its graph is simple. 

For a simple set X  we let simpl ( )e X  be the -algebra generated by all simple functions on 

X  and all functions of the form hq , where h  is a simple function on X . 

For a function f  in simple( )k l m nK  , k , l , m , n  integers 0 , we define 

, ( ) : k m

k mI f K   as 

, ( )( , ) ( , , , )
l n

k m

z K

I f z f z z x dx 


    

if the function ( , ) ( , , , )z x f z z x   is absolutely integrable for all ( , ) k mz K    with 

respect to the Haar measure on nK  and the discrete measure on l , and we define 

, ( )( , ) 0k mI f z    otherwise. 

Theorem (2.2.16)[83]: For each f  in simple( )k l m nK  , the function , ( )k mI f  is in 

simple( )k lK . 

Proof. It is enough to show that for a function f  in simple( )k mK  in the variables 

1 1( , , , , , )k mz z x x  the function obtained by eliminating mx  by integration, resp. 

eliminating kz  by summation, is in the respective algebra simple . 

We first focus on integration with respect to mx . To : k mf K   we can associate 

a function : k mK  g  by replacing the variables z  running over k  by variables   

running over kK  in such a way that 1( , ) ( ( ), , ( ), )kx f x    g  for each ( )kK   and 

( , ) 0x g  if one of the i  is zero. By the definitions it is immediate that g  is in ( )k mK   

and the integral of f  with respect to mx  corresponds to the integral of the function g  

with respect to mx . If we eliminate mx  by integration from g , then we get the function 

1( )k mI   g  which is in 1( )k mK    by Theorem (2.2.14). This function only depends on 

1 1 1( ( ), , ( ), , , )k mx x      and thus corresponds to a function in 1

simple( )k mK   , as one can 

check. 

If we want to eliminate kz  by summation, we associate to f  the subanalytic 

constructible function : k mK  g  determined by 

1

1( , ) ( ( ), , ( ), )
1

k k

p
x f x

p
     


 


g  

if 
1, ,

0ii n



  and ( , ) 0x g  if 

1, ,
0ii n




 . Integrating with respect to k  then 

corresponds to summing over kz , and the same argument as above can be applied to 

complete the proof. 

Section (2.3): Semi-Algebraic Bijection 

In real semi-algebraic geometry (as opposed to  -adic semi-algebraic geometry) the 

following classification is well-known [82]: 

There exists a real semi-algebraic bijection between two real semi-algebraic sets if 

and only if they have the same dimension and Euler characteristic. 

More generally L. van den Dries [82] gave such a classification for  -minimal 

expansions of the real field, using the dimension and Euler characteristic as defined for 

 -minimal structures. Since the semi-algebraic Euler characteristic χ is in fact the 

canonical map from the real semi-algebraic sets onto the Grothendieck ring (see [85]) of 
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 (which is ), we see that the isomorphism class of a real semi-Algebraic set only 

depends on its image in the Grothendieck ring and its dimension. 

we treat the  -Adic analogue of this classification. The Grothendieck ring of 
p
is 

recently proved to be trivial by D. Haskell and the author [85], so the analogue of the real 

case is a classification of the  -adic semi-algebraic sets up to semi-algebraic bijection 

using only the dimension. We give such a classification for the  -adic semi-algebraic sets 

and for finite field extensions of p , using explicit isomorphisms of [85] and the  -adic 

Cell Decomposition Theorem of J. Denef [72]. The most difficult part in giving this 

classification is to show that for any semi-algebraic set X  there is a finite partition into 

semi-algebraic sets, such that each part is isomorphic to a Cartesian product of one 

dimensional sets, in other words semi-algebraic sets have a rectilinearization. Since all 

arguments hold also for finite field extensions of p , we work in this more general 

setting. 

Let p  denote a fixed prime number, p  the field of  -adic numbers and K  a fixed 

finite field extension of p . For x K  let ( ) { }x    denote the valuation of x . Let 

 { | 0}R x K x    be the valuation ring, \ {0}K K   and for 0n  let nP  be the set 

{ | }nx K y K y x    . We call a subset of nK  semi-algebraic if it is a Boolean 

combination (i.e. obtained by taking finite unions, complements and intersections) of sets 

of the form { | ( ) }m

nx K f x P  , with 1( ) [ , , ]mf x K X X . The collection of semi-

algebraic sets is closed under taking projections 1m mK K  , even more: it consists 

precisely of Boolean combinations of projections of affine   -Adic varieties. Further we 

have that sets of the form { | ( ( )) ( ( ))}mx K f x x   g  with 1( ), (x) [ , , ]mf x K X Xg  are 

semi-Algebraic (see [72] and [98]). A function :f A B is semi-Algebraic if its graph is 

a semi-Algebraic set; if further f  is a bijection, we call f  an isomorphism and we write 

A B . 

Let   be a fixed element of R  with ( ) 1v   , thus   is a uniformizing parameter for R . 

For a semi-algebraic set X K  and 0K   we write 
(k) ( ){ | 0 and ( 1) , 0}v xX x X x x k x        , 

which is semi-algebraic (see [72]); (k)X  consists of those points x X which have a  - 

adic expansion i

ii s
x a 




  with 1sa   and 0ia   for 1, , 1i s s k    . By a finite 

partition of a semi-algebraic set we mean a partition into finitely many semi-algebraic 

sets. Let nX K , mX K  be semi-algebraic. Choose disjoint semi-algebraic sets X  , 
kY K   for some k , such that X X   and Y Y  , then we define the disjoint union of X  

and Y  up to isomorphism as X Y  . In the introduction of [85] it is shown that we can 

take max( , )k m n , i.e. we can realize the disjoint union without going into higher 

dimensional affine spaces. 

We recall some well-known facts. 

Lemma (2.3.1)[70]: Let ( )f t  be a polynomial over R  in one variable t , and let R , 

e  . Suppose that 2 1( ) 0mod ef     and ( ( ))v f e  , where f   denotes the derivative of 

f . Then there exists a unique R   such that ( ) 0f    and 2 1( ) 0mod ef    . 

Corollary (2.3.2)[70]: Let 1n   be a natural number. For each ( )k n , and ( )k k n    

the function 
( ) ( ) :k k n

nK P x x


   

is an isomorphism. 
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The next theorem gives some concrete isomorphisms between one dimensional sets. 

Proposition (2.3.3)[70]:[85].  

(i) The union of two disjoint copies of \ {0}R  is isomorphic to \ {0}R . 

(ii) For each 0k   the union of two disjoint copies of ( )kR  is isomorphic to ( )kR . 

(iii) \ {0}R R . 

We deduce an easy corollary, also consisting of concrete isomorphisms. 

Corollary (2.3.4)[70]: For each k  we have isomorphisms 

(i) ( ) \ {0}kR R , 

(ii) \ {0}R K . 

Proof. (i) There is a finite partition ( )\ {0} kR R  with ( ) 0   , say with s  parts. Then 

\ {0}R  is a fortiori isomorphic to the union of s  disjoint copies of ( )kR , which is by 

Proposition (2.3.3)(ii) isomorphic to ( )kR . 

(ii) The map 

     
(0, ) ,

0 1 \ 0 :
(1, ) 1 (

}
,

{
)

x x
R R K

x x


   


 

is a well-defined isomorphism. It follows that K  is isomorphic to the disjoint union of R  

and \ {0}R . Now use (i) and (iii) of Proposition (2.3.3).  

Give mK  the topology induced by the norm max( )i p
x x  with ( )ix

i p
x p   for 

1( , , ) m

mx x x K  . P. Scowcroft and L. van den Dries [104] proved there exists no 

isomorphism from an open set mA K  onto an open set nB K  with n m , so we can 

define the dimension of semi-algebraic sets as follows. 

Definition (2.3.5)[70]: [104]. The dimension of a semi-algebraic set X   is the greatest 

natural number n  such that we have a nonempty semi-algebraic subset A X  and an 

isomorphism from A  to a nonempty semi-algebraic open subset of nK . We put 

dim( ) 1   . 

P. Scowcroft and L. van den Dries [104] proved many good properties of this 

dimension, for example that it is invariant under isomorphisms. 

Proposition (2.3.6)[70]: [104]. Let A  and B  be semi-algebraic sets, then the following 

is true: 

(i) If A B  then dim( ) dim( )A B , 

(ii) dim( ) max(dim( ),dim( ))A B A B . 

(iii) dim( ) 0A   if and only if A  is finite and nonempty. 

We will show the converse of (i) for infinite semi-algebraic sets. 

Lemma (2.3.7)[70]: For any semi-algebraic set X  of dimension 0m   there exists a 

semi-algebraic injection mX K . 

Proof. By [104] there is a finite partition of X  such that each part A  is isomorphic to a 

semi-algebraic open kA K   for some k m . Now realize the disjoint union of the sets 

A   without going into higher embedding dimension (see the introduction). 

We formulate the  -adic Cell Decomposition Theorem by J. Denef [72, 86], which is 

the analogue of the real semi-algebraic Cell Decomposition Theorem. 

Theorem (2.3.8)[70]: [72,86]. Let 1( , , )mx x x  and 1 1
ˆ ( , , )mx x x  , 0m  . Let 

ˆ( , )i mf x x , 1, ,i r , be polynomials in mx  with coefficients which are semi-algebraic 

functions from 1mK   to K . Let 0n  be fixed. Then there exists a finite partition of mK  

into sets A  of the form 
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1 1 2 2
ˆ ˆ ˆ ˆ{ | ( ( )) ( ( )) ( ( ))}m

mA x K x D and a x x c x a x      , 

such that 
ˆ ˆ( ) ( ) ( )( ( ) ivn

i i i mf x u x h x x c x  , for each x A , 1, ,i r , 

with ( )iu x  a unit in R  for each x , 1mD K   semi-algebraic, 0iv  , ih , 1a , 2a , c semi-

algebraic functions from 1mK   to K  and 1 , 2  either  ,  , or no condition. 

The next Lemma is also due to J. Denef [86]. 

Lemma (2.3.9)[70]: [86]. Let : mb K K  be a semi-algebraic function. Then there exists 

a finite partition of mK  such that for each part A  we have 0e   and polynomials 

1 2 1, [ , , ]mf f R X X  such that 

1

2

1 ( )
( ( )) ( )

( )

f x
b x

e f x
  , for each Ax  , 

with 
2( ) 0f x   for each Ax  . 

We give an application of the Cell Decomposition Theorem and Lemma (2.3.9), 

inspired by similar applications in [86]. For details of the proof we refer to the proof of 

[86], By nP  with 0   we mean {0}. 

Lemma (2.3.10)[70]: Let mX K  be semi-algebraic and : m

jb K K semialgebraic 

functions for 1, ,j r . Then there exists a finite partition of X  s.t. each part A  has the 

form 

1 1 2 2
ˆ ˆ ˆ ˆ ˆ{ | , ( ( )) ( ( )) ( ( )), ( ) }m

m m nA x K x D a x x c x a x x c x P         , 

and such that for each Ax   we have 

ˆ ˆ( ) (
1

( ( ))) (( ) )j

mj j

j

b x d
e

x c x x


   , 

with 1 1
ˆ ( , , )mx x x  , 1mD K   semi-algebraic, 0je  , j  , K , c , ia , jd semi-

Algebraic functions from 1mK   to K  and i  either  ,   or no condition. 

Proof. By Lemma (2.3.9) we have a finite partition of X  such that for each part 0A  we 

have 0je   and polynomials 1, [ , , ]j j mR X X g g  with 

( )1
( ( )) ( )

( )

j

j

j j

x
b x

e x
 



g

g
, for each 0x A , 1, ,j r . 

Let if  be the polynomials which appear in a description of 0A  as a Boolean combination 

of sets of the form { | ( ) }m

nx K f x P  .. Apply now the Cell Decomposition Theorem as 

in the proof of [86], to the polynomials if , jg and j
g  to obtain the lemma. 

The proof of the next proposition is an application of both the Cell Decomposition 

Theorem and some hidden Presburger arithmetic in the value group of K ; it is the 

technical heart of this section. If 0l   then ( )

1

l k

i
R

  denotes the set {0}. 

Definition (2.3.11)[70]: We say that a semi-algebraic function :f B K  satisfies 

condition (13) (with constants  e ,  i ,  ) if we have constants  0e  ,  i  ,  K   

such that each ( )ix x B   satisfies 

    
1

( ( )) ( )i

i

i

f x x
e

    .              (13) 

Proposition (2.3.12)[70]: Let X  be a semi-algebraic set and :jb X K  semi-algebraic 

functions for 1, ,j r . Then there exists a finite partition of X  such that for each part A  

we have constants l  , 0k  , ij  , j K  , and an isomorphism 
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( )

1

:
l

k

i

f R A


 , 

such that for each ( )

1

1

(x , ,x )
l

k

l

i

x R


   we have 

1

( ( )) ( )ij

l

j j i

i

b f x x


  


  . 

Proof. We work by induction on dim( )m X . Let dim( ) 1X   and :jb X K  semi-

algebraic functions, 1, ,j r . By Lemma (2.3.7) we may suppose that X K . We 

reduce first to the case that X  and jb  have the special form (14) (see below). By Lemma 

(2.3.10) there is a partition such that each part A  is either a point or of the form 

1 1 2 2{ | ( ) ( ) ( ), }nA x K a x c a x c P       , 

and such that for each Ax   we have 1( ( )) ( ( ) )j

jj je
b x x c


    , with ia , c ,  , j K  , 

0je   and j  . We may assume that 0  , 1 20a a  , i  is either   or no condition 

and since the translation 

1 1 2 2{ | ( ) ( ) ( ), } :nx K a x a x P A x x c       

is an isomorphism, we may also assume that 0c  . If both 1  and 2  are no condition we 

can partition A  into parts { | 0 ( )}x A x   and { | ( ) 1}x A x   . It follows that if 1  is no 

condition we may suppose that 2  is  , then we can apply the isomorphism 

2

1 1 1
{ | ( ) ( ), } :nx K x x P A x

a x
     , 

and replace j  by j . This shows we can reduce to the case that X  has the form 

     1 2 2{ | ( ) ( ) ( ), }nX x K a x a x P      ,           (14) 

with 1 20a a  , 0  , 2  either   or no condition and 1( ( )) ( )j

jj je
b x x


    for each 

x X . 

Case 1: 2  is   (in equation (14)). 

By Hensel’s Lemma we can partition X  into finitely many parts of the form sy R  for 

some fixed 2( )s a  and with 1 2( ) ( ) ( )a y a     for each y . For each such part there is a 

finite partition  { }sy R A y



  , with  (1)sA y R     and ( ) 0    for each  . The 

functions (1): : sf R A x y x     are isomorphisms which satisfy 

1( ( )) ( )j

jj je
b f x y



    for all (1)x R . This last expression is independent of x , so there 

exists j K  such that ( ( )) ( )j jb f x    for all (1)x R . This shows Case 1. 

Case 2: 2  is no condition (in equation (14)). 

The map 

1 1: :nf R P X x a x  , 

with 1a    is an isomorphism. Let n   be a common multiple of 1, , re e  and n . Choose 

( )k n   and put ( )k k n   . Let nR P B
   be a finite partition, with 

( )( )k

nB R P  

  and 0 ( ) n    . Now we have that the map (k): : nf R B x x   
  is an 

isomorphism by corollary (2.3.2). Let g  be the semi-algebraic function 1f f  , which is 

an isomorphism from ( )kR  onto a semi-algebraic set A X  . The sets A  form a finite 

partition of X . Put j j jn e   , then we have for each ( )kx R  that 
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1 1

1 1
( ( )) ( ( ) ) ( ( ) ) ( )j j jn

j j j

j j

b x a x a x
e e

  

       


  g
 

    
( ) ( ) ( )j j

j jx x
 

    
 

    ,
 

with j   in K  such that 1
1( ) ( ( ) )j

jj je
a


      . This shows case 2. 

Now let dim( ) 1X m   and let :jb X K  be semi-algebraic functions, 1, ,j r . By 

Lemma (2.3.7) we may suppose that mX K . 

Claim. We can partition X  such that for each part A  we have an isomorphism of the 

form 1 1: mf D D A  , with 1D K  and 1

1

m

mD K 

   semi-algebraic, such that the 

functions jb f  satisfy condition (13), i.e. there are constants 0je  , ij  , j K 
 

such that each 1 1( )i mx x D D     satisfies 

1
( ( )) ( )ij

j j i

ij

b f x x
e


    . 

If the claim is true, we can apply the induction hypotheses once to 1D  and the 

functions 1

1
jx x


 and once to 1mD   and the functions 

2 2
( , , ) ij

m

m j ii
x x x




  for 

1, ,j r . It follows easily that we can partition X  such that for each part A  there is an 

isomorphism ( ): k

i
f R A  such that all jf b  satisfy condition (13) with constants je  , 

ij  and j  . Now we can proceed as in Case 2 for 1m   to make all 0je    occurring in 

condition (13) equal to 1. The proposition follows now immediately. 

Proof of the claim. First we show we can reduce to the case described in equation 

(15) below. Using Lemma (2.3.10) and its notation, we find a finite partition of X  such 

that each part A  has the form 

1 1 2 2
ˆ ˆ ˆ ˆ ˆ{ | , ( ( )) ( ( )) ( ( )), ( ) }m

m m nA x K x D a x x c x a x x c x P         , 

and such that for each Ax   we have 1 ˆ ˆ(( ) ()) ))( (( ) mj

j mj je
b x dx c x x


   , with mj  . 

Similar as for 1m  , we may suppose that ˆ( ) 0c x   for all x̂ . Apply now the induction 

hypotheses to the set 1mD K   and the functions 1a , 2a , jd . We find a finite partition of 

A  such that for each part A   we have an isomorphism :f B A  , where B  is a set of the 

form 

1 1 2 2

1 1

ˆ{ | , ( ) ( ) ( ), }i i

l l
m

i m i m n

i i

B x K x D x x x x P      
 

     , 

with ( )

1

l k

i
D R


  , 1l m  , such that each jb f  satisfies condition (13). We will 

alternately partition further and apply isomorphisms to the parts which compositions 

with jb  will always satisfy condition (13). By the induction hypotheses we may suppose 

that 0   and dim( ) 1D m   , i.e. 
1 ( )

1

m k

i
D R




  . Analogously as for 1m   we may 

suppose that 1 20   , 2  is either   or no condition and 1  is the symbol   (possibly 

after partitioning or applying 1 1( , , ,1 )m mx x x x ). 

Choose  ( )k n  and put  ( )k k n   . We may suppose that  k k  , so we have a 

finite partition B B
  with 

1( , , ) m

m K    , 0 ( )i n    and ( ){ | }k

i i nB x B x P  
   . 

Now we have isomorphisms 

1 1: : ( , , )n n

m mf C B x x x     , 

with 
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1 1 1
( ) ( )

1 2 2

1 1 1

{ ( ) | ( ) ( ) ( )}i i

m m m
k k

i m i

i i i

C x R K x x x 

     
  

  

       , 

for appropriate choice of i K  . Put i i iv    , 
2 1    , then we have the 

isomorphism 
1 1( )

2 1 1 11 1 1
{ | ( ) ( )} : ( , , , )i i

m m mvk

m i m m ii i i
x R x x C x x x x x 

   
 

  
    . 

If 
2
 is no condition, the claim is trivial. It follows that we can reduce to the case that 

we have an isomorphism 

    
1

( )

1 1

: { | ( ) ( )}i

m m
vk

m i

i i

f E x R x x X  


 

                 (15) 

with 0  , 0k  , and iv  , such that each jb f  satisfies condition (13). 

Suppose we are in the case described in (15). If 0iv   for 1, , 1i m   then we have 

a finite partition s

s
E E  , with {0,1, , ( )}s    and { | ( ) }s

mE x E x s    . Also, 

( )

1 1 1{( , , ) | ( , , ) } { | ( ) }s s k

m m m m mE x x x x x E x R x s 

      and the claim follows. 

Suppose now that 1 0v   in (15). First we show the proposition when 1 1v  , using 

some implicit Presburger arithmetic on the value group. We can partition E into parts 1E  

and 2E , with 
1

1

2

{ | ( ) ( )}i

m
v

m i

i

E x E x x  




    , 

1

2

2

{ | ( ) ( )}i

m
v

i m

i

E x E x x  




    

      

1 1
( )

1

1 2 2

{ | ( ) ( ) ( )}i i

m m m
v vk

i m i

i i i

x R x x x x    
 

  

      . 

Since 
1 1

12 2
( ) ( )i i

m mv v

i ii i
x x x   

 

 
   for 1x E , it follows that 

  
1

( ) ( )

1 2

2 2

{( , , ) | ( ) ( )}i

m m
vk k

m m i

i i

E R x x R x x  


 

     , 

and the restrictions 1|jb f E  satisfy condition (13). 

As for 2E , let 1mD   be the set 

  
1

( )

1 2

2 2

{( , , ) | ( ) ( )}i

m m
vk

m m i m

i i

D x x R x x  




 

    . 

We may suppose that ( )kK  , then the map 

  ( ) 1
1 2 21

2

: ( , , , )
i

k m
m mm v

ii

x x
R D E x x x

x
 



 


, 

can be checked by elementary Presburger arithmetic to be an isomorphism. This shows 

the claim when 1 1v  . 

Suppose now that X  is of the form described in (15) and 1 1v  . We show we can 

reduce to the case 1 1v   by partitioning and applying appropriate power maps. Choose 

1( )k v  and put 1( )k k v   . We may suppose that k k , so we have a finite partition 

E E
 , with 1( , , ) m

m K    , 1( ) 0   , 10 ( )i v    for 2, ,i m  and 

   
1

( ) ( )

1 1{ | ,k k

i i vE x E x R x P   
     for 2, , }i m . 

By corollary (2.3.2) we have isomorphisms 
1 1

1 1 2 2: : ( , , , )v v

m mf C E x x x x      , 



 55 

with 
1( )

11 2
{ | ( ) ( )}i

m m vk

m ii i
C x R x x x   



 
     , where K   depends on  . This 

reduces the problem to the case described in (15) with 1 1v   and thus the proposition is 

showed.  

Theorem (2.3.13)[70]: Let X  be a semi-algebraic set, then either X  is finite or there 

exists a semi-algebraic bijection kX K  with 0k   the dimension of X . 

Proof. We give a proof by induction on dim( )X m . Let dim( ) 1X  . Use Proposition 

(2.3.12) to partition X  such that each part is isomorphic to either ( )kR  or a point. By 

combining the isomorphisms of Proposition (2.3.3) and Corollary (2.3.4), it follows that 

X K . 

Now suppose dim( ) 1X m  . Proposition (2.3.3) together with the case 1m   implies 

that we can finitely partition X  such that each part is isomorphic to lK , for some 

{0, , }l m , with 0 {0}K  . By proposition (2.3.3) at least one part must be isomorphic to 
mK . Suppose that A  and B  are disjoint parts, such that lA K  and mB K , with 

{0, , }l m . It is enough to show that mA B K . First suppose that 0l  , so A  is a 

singleton { }a . Since 1m   there exists an injective semi-algebraic function :i R A B  

such that ( \{0})i R B  and (0) ai  . It follows that mA B B K   since \ {0}R R  

(Proposition 1). If 1 l  we have ( )A B K A B   , for some disjoint sets 1lA K    and 
1mB K   . By induction we find 1mA B K     and thus mA B K . This shows Theorem 

(2.3.13).  

We obtain as a corollary of Theorem (2.3.13) the following classification of the p-

adic semi-algebraic sets. 

Corollary (2.3.14)[70]: Two infinite semi-algebraic sets are isomorphic if and only 

if they have the same dimension. 
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Chapter 3 

Basic Sequences and  -Space with Trivial Dual and Curves 

This complements the example constructed by Roberts of a compact convex set 

without extreme points in (0 1)pL p   and answers a question raised by Shapiro. We 

substantiate a conjecture of Rolewicz that every F-Space X  with trivial dual admits a 

non-constant curve : [0,1]g X  with zero derivative.  

Section (3.1):  -Spaces and Their Applications 

The aim of this section is to establish a conjecture of Shapiro [115] that an F-space 

(complete metric linear space) with the Hahn-Banach Extension Property is locally 

convex. This result was proved by Shapiro for F-Spaces with Schauder bases; other 

similar results have been obtained by Ribe [113]. The method used in this section is to 

establish the existence of basic sequences in most F-spaces. 

It was originally stated by Banach that every B-Space contains a basic sequence, and 

proofs have been given by Bessaga and Pelczynski [106], [107], Gelbaum [109] and Day 

[108]. In [106] Bessaga and Pelczynski give a general method of construction in locally 

convex F-Spaces, but we shall show in this Section that this construction can be 

modified to apply in any F-space ( , )X   on which there is a weaker vector topology   

such that   has a base of  -closed neighbourhoods. The basic result of the section is 

Theorem (3.1.6), and this is a natural generalization of a locally convex version due to 

Bessaga and Mazur and given (essentially) in Pelczynski [111], [112]. 

We study the problem of existence of a basic sequence in an arbitrary F-Space, and 

show that in fact repeated applications of Theorem (3.1.6) give a basic sequence in any 

F-Space with a non-minimal topology. Since the only example we know of a minimal F-

Space is the space   of all sequences (which has a basis) it seems likely that every F-

Space contains a basic sequence. 

We show that if ( , )X   is an F-Space and    is a topology defining the same 

closed linear subspaces as  , then   and   define the same bounded sets—a result 

familiar in locally convex theory. The Shapiro conjecture follows immediately. The final 

theorem is a generalisation of the Eberlein-Smulian theorem employing techniques 

developed by Pelczynski [112]. 

An F-semi-norm   on a vector space X  is a non-negative real-valued function 

defined on X  such that 

(i) ( ) ( ) ( )x y x y     . 

(ii) ( ) ( ) 1tx x t   , 

(iii) 
0

lim ( ) 0
t

tx x X


   

If in addition ( ) 0x   implies that 0x   then we call   an F-norm. Any vector 

topology on X  may be defined by a collection of F-semi-norms; any metrisable topology 

may be defined by one F-norm. From this point, unless specifically stated, all vector 

topologies are assumed to be Hausdorff. 

Now suppose ( , )X   is a topological vector space and   is a vector topology on X ; 

we shall say that   is  -polar if   has a base of neighbourhoods which are  -closed. 

Proposition (3.1.1)[105]: If   is  -polar then   may be defined by a collection of F-

semi- norms ( : A  ) of the form 

( ) sup{ ( ) : }x x      



 57 

where each   is a collection of  -continuous F-semi-norms. If   is metrisable then   

may be defined by one such F-norm. 

Proof. Let ( : A   ) be a collection of F-semi-norms defining   such that every  -

neighbourhood of 0 contains a set { : (x) }x    for some A  and 0  ; let   be the 

collection of all  -continuous F-semi-norms. We define   to be the collection of F-

semi-norms of the form 

( ) inf( ( ) ( ) : )x y z y z x

       . 

(Thus { : }

     .) As 

   each 

  is  -continuous and an F-semi-norm 

( 

   implies condition (iii) in particular). Now define 

( ) sup( ( ) : )x x

     . 

Clearly     and so is an F-semi-norm. Now if U  is a  -neighbourhood of 0 we may 

find 1  and 0   such that if  
10 : ( )x x x    (closure in  ) then 0x U . Suppose now 

10 { : ( ) }x x x   ; then it is easy to show that  
10 : ( )x x x    and so ( : A  ) 

defines  . 

If   is metrisable, A  may be taken to be a singleton and therefore   may be defined 

by a single F-norm of the required type. 

Proposition (3.1.2)[105]: Suppose ( , )X   is an F-Space (complete metric linear space) 

and suppose    is a vector topology on X . Then 

(i) If the net 0( )ax   but 0( )ax  , then there are vector topologies  ,   such             

that   

(a)       ; 

(b)   is metrisable and  -polar; 

(c) 0( )ax   but 0( )ax  . 

(ii) If U  is a  -neighbourhood of 0 but not a  -neighbourhood then there are vector 

topologies  ,   satisfying (a), (b) and (c)' U  is a  -neighbourhood of 0 but not an  -

neighbourhood of 0. 

(iii) If   is locally bounded then there is a topology   such that    but   is  -polar. 

Proof. (i) Let   be the largest vector topology such that      and 0( )ax   (it is 

easy to see that there is such a topology). Let   be the vector topology with a base of 

neighbourhoods consisting of the  -closures of  -neighbourhoods of 0. Since    it 

follows that     . If    then the identity map : ( , ) ( , )i X X   is almost 

continuous and so by the Closed Graph Theorem (cf. Kelley [110])    contrary to 

hypothesis on the net ( ax ). Therefore   ; clearly also since   is metrisable so is  , 

and 0( )ax  . 

(ii) By an application of Zorn's Lemma it may be shown that there is a maximal 

vector topology   such that      and U  is not an  -neighbourhood (we do not assert 

that   is the largest such topology). Then proceed as in (i). 

(iii) Follows from (ii) by considering a single bounded neighbourhood (  ). 

Two vector topologies on X  will be called compatible if they define the same closed 

subspaces. 

Proposition (3.1.3)[105]: Let   and   be compatible topologies on X ; they define the 

same continuous linear functionals. 
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Proof. f  is  - or  -continuous according as its null space is  - or  -closed. 

A sequence (
nx ) in a topological vector space X  is called a basis if every x X  has a 

unique expansion in the form 

1

i i

i

x t x




 . 

In this case we may define linear functionals nf  such that 

( )n nf x t  

and linear operators nS  by 

1 1

( ) ( )
n n

n i i i i

i i

S x t x f x x
 

   . 

If X  is an F-space then it is well known (cf. [115], [117]) that each nf , is necessarily 

continuous and the family { }nS  is equicontinuous. 

Suppose now that X  is metrisable but not necessarily complete; we shall call a 

sequence ( nx ) in X  a basic sequence if it is a basis for its closed linear span in the 

completion of X . We shall call ( nx ) a semi-basic sequence if we simply have 

1 2lin{ , , }n n nx x x   for every n . 

We now give a useful and elementary criterion for a sequence ( nx ) to be basic or 

semi-basic. Let ( nx ) be linearly independent and let E  be the linear span of ( nx ); then for 

x E  

1

i i

i

x t x




  

uniquely where ( it ) is finitely non-zero. Define 

( )n nf x t  

and 

1

( )
n

n i i

i

S x f x x


 , 

where :nS E E  is linear. 

Lemma (3.1.4)[105]: (i) ( nx ) is semi-basic if and only if each nS  is continuous or 

equivalently each nf  is continuous. 

(ii) ( nx ) is basic if and only if the family { }nS  is equicontinuous. 

Proof. (i) If { }nx  is semi-basic, let kN  be the null space of kf ; then kN  is a maximal 

linear subspace of E . Then 1 lin{ : i 2}iN x   and since 1 1x N , 1N  is closed and 1f  is 

continuous; while if 2k  , 

lin{ : i } lin{ : i } lin{ : i }k i i iN x k x k x k      . 

Hence 

lin{ : i } lin{ : i }k i iN x k x k    , 

since the former space is finite-dimensional. Suppose k kx N ; then 
1

1

k

k i i

i

x t x y




  , 

where lin{ : i }iy x k  . Since lin{ : i }k ix x k   we conclude that there is a first index l  

such that 0lt  . Then we obtain 1 2lin{ , , }l l lx x x   and a contradiction. Hence k kx N  

and by the maximality of kN , kN  is closed and kf  is continuous. 
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The converse is trivial. 

(ii) (Cf. Shapiro [117], Proposition C.) 

It follows from the definition of basic sequence that if ( nx ) is basic then the family 

{ }nS  is equicontinuous (consider ( nx ) as a basis of its closed linear span in the 

completion of X ). Conversely, ( )nS x x  for x E and if the family is equicontinuous 

( )nS x x  for x E  (closure in the completion of X ), and it easily follows that (
nx ) is a 

basis for E . 

Lemma (3.1.5)[105]: Let E  be a finite-dimensional space and suppose V  is a closed 

balanced subset of E . If V  intersects every one-dimensional subspace of E  in a bounded 

set then V  is bounded. 

Proof. We may suppose E  is normed; suppose nx V  and 
nx  . Then by selecting a 

subsequence we may suppose 
1

n nx x z


  where 1z  . Then for any N  there is an m  

such that for n m , nx N  and 
1 1 1

n n nx x x V N V
    . 

Therefore 1z N V  for all N  and hence lin{ }V z . 

Theorem (3.1.6)[105]: Suppose ( , )X   is a metric linear space and   is a vector topology 

on X  such that   is  -polar. Suppose ( ax ) is a net such that 0( )ax   but 0( )ax  ; 

suppose 1 0z X  . Then there is a sequence ( ( ) : 2a k k  ) such that 

( 1) a( )a k k   

for all 2k   and the sequence 1( )n nz 

  is a basic sequence where (n) 2n az x n  . 

Proof. We may suppose (Proposition (3.1.1)) that ( , )X   is normed by an F-norm .  

such that 

sup( ( ) : )x x   , 

where   is a collection of  -continuous F-norms. Let 0   be chosen such that 

(i) 1 4z  . 

(ii) For all a , a a   such that 4ax   . 

Let { : }V x x   ; then Knlin 1lin{ }V z  is compact (since 1 4z  ). We shall construct 

the sequence ( ( ) : 2a n n  ) by induction so that if 

1 (2) (n)lin( , , , )n a aE z x x  

then nE V  is compact. 

Suppose { (2), , ( )}a a n  have been chosen (this set can be empty at the first step, the 

selection of (2)a ) and let 1 (2) (n)lin( , , , )n a aE z x x . By the inductive hypothesis  nV E  is 

compact. 

For 31 2nk    let 
( 3){ : .2 }n n

k nW x x k E    . 

Each n

kW  is compact and so we may choose finite subsets n

kU  so that for n

kw W  there 

exists n

ku U  with 
( 3)2 nw u    . 

Let  
2 3

1

n
n n

k

k

U U




 , and for nu U  choose u   so that 
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( 3)( ) 2 n

u u u     .                (1) 

Then choose ( )b a n  so that if c b  then 
( 3)( ) 2 n

u cx                     (2) 

for nu U  (possible since nU  is finite and 0( )ax  ). 

Choose a subnet :dx d D  of ( :cx c b ) such that 4dx  , and suppose for every 

such 
dx  the set lin( , )n dV E x  is unbounded. By Lemma (3.1.5), for every d  there exists 

0d d dt x u   where d nu E  such that the linear span of ( d d dt x u ) is contained in V . 

Clearly 0du   and so we may normalize in such a way that 
du   (since nV E  is 

compact). Then 

d d d d d dt x t x u u   2  

so that 1dt  . Hence since 0( )dx  , 0d dt x   in ( ). By selection again of a subnet we 

may suppose du u  in nE  (since nV E  is compact) and u  . 

Then for any t R  

lim inf ( )d d d
d

tu t t x u 


    

so that lin{ } nu V E  , a contradiction. 

Hence we may choose ( 1)a n b   such that ( 1) 4a nx    and 1nV E   is compact. This 

completes the construction of ( )a n ; now let ( ) 2n a nz x n  . It remains to establish that by 

using (1) and (2) ( nz ) is a basic sequence. 

For convenience we shall replace .  by an equivalent F-norm .

 given by 

min( , )x x 

 . 

We next show that if 1 1, , nt t   is a scalar sequence 

1
( 1)

1 1

2
n n

n

i i i i

i i

t z t z 

 


 

 

                  (3) 

Choose the greatest integer k  such that 

( 3)

1

.2
n

n

i i

i

t z k 



 



 . 

Then ( 3)0 2 nk   ; if 0k   there is nothing to show. If 1k   then we may choose a 

scalar s  with 1s   such that 

( 3)

1

.2
n

n

i i

i

st z k  



 . 

Then choose n

ku U  so that 

( 3)

1

2
n

n

i i

i

u st z  



  . 

If 1 1nst    then 

1 1 1( ) ( )n n u u nu st z u z      ( 3)( 2).2 nk     

by (1) and (2). If 1 1nst    then 

1 1 1n n nu st z z u     ( 3)3 ( 2)2 nk     . 

Hence 
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1
( 3) ( 3)

1

( 2)2 2
n

n n

i i

i

s t z k  


   



    

( 3)( 3)2 nk     

       ( 1)

1

2
n

n

i i

i

t z 



 



  . 

Hence since 1s   

1
( 1)

1 1

2
n n

n

i i i i

i i

t z t z 




 

 

    

and (3) follows. 

From (3) it is clear that ( nz ) is linearly independent for if 
1

n

i i

i

t z 


  then 

1

1
2

1

n

i i

i

t z 




 ; thus if 
1

1

0
n

i i

i

t z




 , then for every s , 
1

n

i i

i

s t z 


  and so since nV E  is 

compact, 
1

0
n

i i

i

t z


 . Let E  be the linear span of { }nz  and define kS  by 

1 1

k

k i i i i

i i

S t z t z


 

 
 

 
   

where ( it ) is finitely non-zero. Then by (3) 

2 ( 0)n

n k nS x S x k
  

     

and therefore for x E  and 1n   

2 n

nx S x 
    . 

Suppose 0mx   but 0k mS x ; then since kV E  is compact we may, by selecting 

a subsequence and multiplying by a bounded sequence of scalars, suppose that k mS x 

. Thus 1
2

0mx   , and we have a contradiction. 

Thus each kS  is continuous. 

To establish equicontinuity of { : 1}mS m   we must show that if ( )p m  is any sequence 

and 0mx   then ( ) 0p m mS x  . Suppose not; then we may suppose 

( ) 0p m mS x 


   

for all m . Then 
( )2 p m

mx  
    

and as 0mx

  we conclude that ( )p m  is bounded. But then we may select a constant 

subsequence and this contradicts the continuity of each nS . Thus by Lemma 

 (3.1.4) we have established the theorem. 

Corollary (3.1.7)[105]: Under the assumptions of Theorem (3.1.6) suppose   is a 

pseudo-metrisable topology on X  such that   . Then ( nz ) may be chosen so that 

0( )nz  . 

An examination of the proof of Theorem (3.1.6) reveals that we can insist that 

( ) 0nz   for any single  -continuous F-semi-norms. 

Corollary (3.1.8)[105]:  Suppose  that  ( , )X    is  an  F-Space  and  that     is a vector 

topology on X  with   . Suppose 0( )ax   but 0( )ax  , and that 1z X . Then there 
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is a sequence ( )a k  so that ( 1) a( ) 2a k k k    and such that the sequence (
nz ) is a semi-

basic sequence where ( ) 2n a nz x n  . 

Proof. Proposition (3.1.2) combined with Theorem (3.1.6) establishes that we may 

choose ( nz ) to be a basic sequence in a weaker topology than  . This clearly implies that 

( nz ) is at least a semi-basic sequence in ( , )X  . 

We consider the question of whether an F-Space need possess a basic sequence. We 

shall call a topological vector space ( , )E   minimal if for every Hausdorff vector 

topology    we have   . It is well known that   is minimal if we restrict to locally 

convex topologies. 

Proposition (3.1.9)[105]:   is a minimal F-Space. 

Proof. Suppose   is a weaker vector topology on   and 0( )ax   but 
ax   (where .  

is an F-norm determining the topology of  ). Then there is a sequence ( nz ), with 
nz  , 

which is a basic sequence for some weaker Hausdorff vector topology on   (Proof of 

(3.1.8)). Let E  be the closed linear span of ( nz ) in the original topology, then E  . 

However, the dual functional of ( nz ) induce on E  a weaker Hausdorff locally convex 

topology. It follows that 0nz   contrary to assumption. 

We do not know any other examples of minimal F-spaces; their existence is crucial 

to the problem of basic sequences in view of the following theorem. 

We first show a stability theorem for basic sequences similar to a locally convex 

version given by Weill [118] (cf. also Shapiro [116]). A sequence in a topological vector 

space is regular if it is bounded away from zero. 

Lemma (3.1.10)[105]: Suppose X  is an F-space and ( nx ) is a regular basic sequence. 

Suppose nu   , and let n n ny x u  . If whenever 

1

0n n

n

t y




  

then 0nt  , then ( ny ) is also a basic sequence. 

Proof. Define a map :S l X  by 

1

( ) n n

n

S t t u




 . 

Since nu   , S  is well defined and S  is continuous by the Banach-Steinhaus 

Theorem. Now suppose ( ( )nt ) is a sequence in l  such that 
( )sup nt


   

and 
( )lim 0n

k
n

t


  for each k . 

Then it is easy to verify that ( )( ) 0nS t  . 

Let E  be the closed linear span of { }nx  and suppose nf E   is the bi-orthogonal 

sequence. For x E , lim ( ) 0n
n

f x


 , since ( nx ) is regular. We define 0:R E c  by 

( ) ( ( ))nR x f x ; R  is continuous by the Closed Graph Theorem. Hence the map :T E X  

defined by T I SR   is also continuous. Since T  takes the form 

1

( ) ( )n n

n

T x f x y




 . 
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T  is injective. Now suppose ( )nz E  is a sequence such that ( ) 0nT z  ; suppose 

0nz   . We suppose at first 

sup ( )n
n

R z

  . 

Then by selecting a subsequence we may suppose ( )nR z t  co-ordinatewise in l  and 

hence 

( ( )) ( )nS R z S t  in X . 

Now 

( ) ( ( )) ( )n n nz T z S R z S t   . 

Therefore ( )S t E  and 

( ) ( ) 0nR z RS t   in l . 

i.e. 
( ) 0t RS t   

    ( ) ( ) 0S t SRS t   

  ( ( )) 0T S t   

( ) 0S t   

and so 
lim 0n
n

z


  

contrary to assumption. It follows that no subsequence of ( nRz


) is bounded.  

If, on the contrary, nRz

 , then we may consider (

1

n nRz z



) and obtain a 

similar contradiction. We establish that for such a sequence 
1

0n nRz z



  and hence 

1
0n nRz Rz




  in l  which is a contradiction. Hence T  is an isomorphism on to its 

image, and as n nTx y , ( ny ) is a basic sequence. 

Theorem (3.1.11)[105]: Every non-minimal F-space contains a basic sequence. 

Proof. Let nU  be a base of neighbourhoods of 0 in ( , )X  ; We may assume, without loss 

of generality, that 1U  is not a neighbourhood of 0 in some weaker vector topology. By 

Proposition (3.1.2) there are vector topologies  ,   in X  such that     ,   is 

metrisable and  -polar and 1U  is a  -neighbourhood. Then by Theorem (3.1.6) there is a 

basic sequence (1)( )kw  in ( , )X  . Then let 1E  be the  -closed linear hull of the sequence 
(1)( )kw  and let 1F  be the linear span; let 1  . Then by induction we construct sequences 

( )( )n

kh , nE , nF , n  such that ( )lin{ : 1,2, }n

n kF w k  , nE  is the  -closure of nF  and n  is a 

metrisable vector topology on nE  such that ( )( : 1,2, )n

kw k   is a basis of ( , )n nE  . 

Furthermore 

(i) (n)( )kw  is block basic with respect to (n 1)( )kw   for 2n  , i.e. (n)

kw  takes the form 

1

( ) ( 1)

1

k

k

p
n n

k i i

p

w c w






  , 

where 0 1 20p p p    Thus 1n nF F   for 2n   and 1n nF F  2n  . 

(ii) The topology n  on nE  is finer than 1n   restricted to nE  for 2n  , and coarser 

than  . 

(iii) n nU E  is a n -neighbourhood of 0. 

We now describe the inductive construction; suppose (n)( )kw , nE , nF  and n  have 
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been chosen. If 1n nU E   is a n -neighbourhood of 0 then let 1n n    and (n 1) (n)

k kw w   for 

all k . Otherwise by Proposition (3.1.2) we may find topologies   and 
1n 
 on 

nE  such 

that 1n n      , 1n   is  -polar and metrisable and 1n nU E   is a 1n  -neighbourhood of 

0 but not an  -neighbourhood. 

Since nF  is  -dense in nE , nF  is also 1n  -dense and hence 1n    on nF . Thus by 

Corollary (3.1.7) we may determine a 1n  -regular basic sequence ( kz ) in nF  such that 

0( )k nz  . Thus 
( )

( )

,

1

q k
n

k k i i

i

z c w


  , 

where ,lim 0k i
k

c


  for each i  (since the co-ordinate functionals for ( )( )n

iw  are -continuousn

). It follows easily that we may find a subsequence ( ky ) and a block basic sequence 
( 1)( )n

kw   such that ( 1)

1

n

k k n
k

y w 


    where 

1
.

n
 is an F-norm determining 1n  . If 

( 1)

1

1

0 ( )n

k k n

k

t w 








  

then 

( 1)

1

0 ( )n

k k n

k

t w 






  

and thus since the co-ordinate functionals for ( )n

iw  are n -continuous 0kt   for all k . 

Thus ( 1)( )n

kw   is a 1n  -basic sequence, and we proceed by letting ( )

1 lin{ }n

n kF w  , 1 1n nE F   

(in  ). This completes the inductive construction. 

Finally take the " diagonal sequence " 
( )n

n nw  . 

Then for each n , ( : )k k n   is block basic with respect to (n)( )kw . In particular ( k ) is 

block basic with respect to (1)( )kw  and hence there are 1 -continuous linear functionals 

( )kf  defined on lin{ }k  such that ( )i j ijf   . These are then also  -continuous and extend 

to the closed linear span H  of { }k . Now suppose x H ; we show 

1

( )i i

i

f x x




 . 

For any n , ( : )k k n   is a basic sequence in ( , )n nE  ; let 
1

1

( ) ( )
n

n i i

i

R x x f x 




  . 

Then ( )nR x  is in the  -closure of lin{ : }k k n  , as this space is easily seen to be 
1

1

1

(0)
n

i

i

f






. Thus ( )nR x  is in nE  and in the n -closure of lin{ : }k k n  . 

Therefore 

( ) ( ) ( )n i i n

i n

R x f x  




  

and so for some N  and all m N , 

( ) ( )
m

n i i n

i n

R x f x U


  , 

and 
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1

( )
m

i i n

i

x f x U


  . 

Thus 
1

( )i i

i

x f x 




  for x H , and ( )i  is a basic sequence. 

If E  is a minimal F-space, then E  may still possess a basic sequence (see Proposition 

(3.1.9)).  

Theorem (3.1.12)[105]: Let ( , )X   be an F-space; the following are equivalent: 

(i) X  contains no basic sequence. 

(ii) Every closed subspace of X  with a separating dual is finite-dimensional. 

Proof. Clearly (ii) (i) so we have to show (i) (ii). If E  is a subspace of X  with a 

separating dual, then the weak topology   on E  is weaker than  . If E  is infinite-

dimensional, then by Theorem (3.1.11)   . But in this case E  , and so has a basis. 

Therefore, E  is finite-dimensional. 

We now can apply basic sequences or rather semi-basic sequences to derive many 

results familiar in locally convex theory. 

Theorem (3.1.13)[105]: 

(i) Let ( , )X   be an F-space and suppose    is a vector topology on X  compatible 

with  . Then every  -bounded set is  -bounded. 

(ii) Suppose X  is a vector space and    are two vector topologies on X  such that 

  and   are compatible and   is  -polar. Then any  -bounded set is  -bounded. 

Proof. (i) It is enough to show that if 0( )nx   and nc  is a sequence of scalars such that 

0nc   then 0( )n nc x  . Suppose 0( )nx  ; then choose 0 0x  . For 0nc  , 0nc  , 

0( ) 0( )n nc x x   . 

Suppose 0( ) 0( )n nc x x  ; then by Corollary (3.1.8), there is a semi-basic sequence ( nz ) 

with 1 0z x  and 

0( ) ( 2)
n nn m mz c x x n   , 

where ( )nm  is an increasing sequence of integers. Then 
1

0( )
nm nc z x  

 
and hence 0x  is in the  -closure of lin{ : 2}nz n  . Thus 0x  is also in the  -closure of 

lin{ : 2}nz n  , contradicting the fact that ( )nz  is a semi-basic sequence. Thus since 

0 0nc x  , 0( )n nc x  . 

The proof of (ii) is somewhat similar; let   be a  -lower-semi-continuous 

-continuous  F-semi-norm and let { : ( ) 0}N x x  . Then X N  metrisable under   and 

may be given the quotient topology ̂  of   (N  is  -closed). Every  -closed subspace of 

X N  is ̂ -closed and so an argument similar to (i) may be employed. 

Corollary (3.1.14)[105]: Suppose ( , )X   is an F-space and    is a metrisable vector 

topology compatible with  . Then   . 

Corollary (3.1.15)[105]: Let ( , )X   be an F-space with the Hahn-Banach Extension 

Property. Then X  is locally convex. 

Proof.  Let    be the weak topology on N ; then      and    and   are compatible by 

the HBEP. For suppose Y  is a  -closed subspace and x Y ; then by HBEP there is a 

continuous linear functional   such that ( ) 0Y   and (x) 1  . Let   be the associated 
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Mackey topology; then (see Shapiro [115])      and   is metrisable. Hence by 

Corollary (3.1.14)    and   is locally convex. 

Corollary (3.1.16)[105]: Suppose ( , )X  is an F-space and    is a vector topology 

compatible with  . Then   is  -polar. 

Proof. Let   be the topology induced by the  -closures of  -neighbourhoods of 0; then 

     and   is metrisable. Hence by (3.1.14),   . 

Theorem (3.1.17)[105]: Let ( , )X  be an F-space and let ( )nx  be a basis of X  in a 

compatible topology   . Then ( )nx  is a basis of X . 

Proof. By the previous corollary we may assume that   is defined by a  -lower-semi-

continuous F-norm ||.|| (see Proposition (3.1.1)). Each x X  may be expanded in the 

form 

1

( ) ( )i i

i

x f x x 




  

 (the linear functionals nf  are not necessarily  -continuous). Now for each x X , the 

sequence 
1

( )
n

i i

i

f x x


 
 
 
  is  - and therefore  -bounded (Theorem (3.1.13)) and so we may 

define  

1

sup ( )
n

i i
n i

x f x x




  . 

Then 
0

lim 0
t

tx



  since 

0
lim 0
t

ty


  uniformly for y  in a bounded set; hence .

 is an -normF  

on X . Clearly also x x

  by the  -lower-semicontinuity of . . 

It remains to establish that ( ), .X


 is complete and then by the Closed Graph 

Theorem it will follow that .

 and .  are equivalent. Let ( )ny  be a 

*
. -Cauchy sequence; 

then since n m n my y y y


    for all m , n , ( )ny  is  -convergent to y  say. Furthermore, 

it can be seen that the sequences 

1

( )
m

i n i

i

f y x


 
 
 
  

are  -convergent uniformly in m ; clearly lim ( )i n i
n

f y t


  exists and 

1 1

lim ( )
m m

i n i i i
n

i i

f y x t x


 

   

uniformly in m  for the topology  . Thus working in the weaker topology   

1 1

lim lim lim ( )
m m

i i i n i
m n m

i i

t x f y x y
  

 

   . 

(The limits are interchangeable by uniform convergence.) Therefore it follows that 

1 1

lim ( ) ( ) ( )
m m

i n i i i
n

i i

f y x f y x 


 

   

uniformly in m  and that 0ny y


  . Hence .  and .


 are equivalent, and by an 

application of Lemma (3.1.4), ( )nx  is a basic sequence in ( ), .X . By the compatibility of 

 , ( )nx  is a basis of X . 

Shapiro [117] proves that the Weak Basis Theorem fails in any non-locally convex 

locally bounded F-space. With regard to this theorem we show that a weaker version of 
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the Weak Basis Theorem holds always. 

Proposition (3.1.18)[105]: Let ( )nx  be a weak basis of ( , )X  , where ( , )X   is an F-

space with a separating dual. Then the associated linear functionals { }nf  are continuous. 

Proof. Let   be the weak topology and   the (metrisable) Mackey topology. Then 

( , )X   is barrelled, for if C  is a  -barrel then C  is  -closed and by the Baire Category 

Theorem we may show C  has  -interior. It follows easily that C  is a -neighbourhood  of 0 

and thus a  -neighbourhood [115]. 

Now let .
n
 be a sequence of semi-norms defining   and let 

1

sup ( )
m

i in
m i n

x f x x




   

(finite, since   and   have the same bounded sets). Let   be the topology induced by 

the sequence .
n


 and let X̂  be the  -completion of X . Consider the identity map

ˆ: ( , ) ( , )i X X  . Suppose nz X , ( )nz z   and ( )nz z  . Then 
1 1

( )
m

i n i

i n

f z x



 

 
 
 
  is 

uniformly  -Cauchy for 1,2,m  ; thus in the topology    

1 1

lim lim ( ) lim lim ( )
m m

i n i i n i
n m m n

i i

f z x f z x
   

 

   

and we conclude 

lim ( )i n i
n

f z t


  exists for each i  

and 

1

lim n i i
n

i

z z t x





   in  . 

Thus ( )i if z t  and therefore 

1

lim ( ) 0
m

i n i
n

i

f z z x




    -uniformly in m . 

Hence nz z  in ( , )X   and i  has Closed Graph. By the Closed Graph Theorem 

 [114], since ˆ( , )X   is complete and metric,    and it follows easily that each nf  is   

and hence  -continuous. 

The idea of the next theorem is due to Pelczynski [112]. 

Theorem (3.1.19)[105]: Let ( , )X   be an F-space and suppose    is a compatible 

vector topology. Let K  be a subset of X ; then the following are equivalent 

(i) K  is  -compact, 

(ii) K  is  -sequentially compact, 

(iii) K  is  -countably compact. 

Proof. (i)(iii) and (ii)(iii) are well known. Let .  be an F-norm determining  ; by 

Corollary (3.1.16) we may suppose .  is  -lower-semi-continuous. 

(iii)   (i). It is easy to see that K  is  -precompact; we show that K  is also  -

complete. Let ˆ ˆ( , )X   be the  -completion of X  and let ˆY X  be the vector space of all 

ˆy X  such that there is a  -bounded net x X   such that x y  . By Theorem (3.1.13) a 

 -bounded net is  -bounded. Let { : }B x X x    ; then for y Y  we define 

ˆinf{ : , closure in }y y B 

  . 
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Let y Y  and suppose x   is a  -bounded net converging to y  in ̂ ; then 

supy x 



    

and 

0 0
lim limsup 0
t t

ty tx 




 
   

since the net { }x   is bounded (cf. Theorem (3.1.17)). It follows without difficulty that .

 

is an F-semi-norm on Y , and that .


 is -lower-semi-contˆ inuous ; also from the 

definition, x x


  for x X , since each B  is  -closed. Next if y Y  and 0y

  then 

for each 0   and V  a neighbourhood of 0 in ˆ ˆ( , )X   we may find ,Vx X   such that 

,Vx y V    and ,Vx   . The ˆ{( , ) : 0, a -neighbourhood of 0}V V    is directed in 

the obvious way [ ( , ) ( , )V V    if and only if    and V V  ]; then the net ,Vx   

converges to 0 in ( , )X   and , 0Vx    in ( , )X  . However ,Vx y   in ˆ ˆ( , )X   and so 0y  . 

Thus Y  is a metrisable vector space under .

 and .


 is -lower-semi-contˆ inuous . 

Now suppose x K   is a  -Cauchy net; then x y   in ˆ ˆ( , )X   and y Y . Suppose at 

first 0x y


  ; then by the completeness of ( , )X y X  , and there is a sequence 

( ( ))n  such that ( ) ( )nx y  . Thus y  is the sole  -cluster point of ( ){ }nx   in X ; since K  

is countably compact, y K , and x y   in ( , )K  . 

Now suppose 0x y


  and that y X ; since 0y   we may suppose x V   for all 

, where V  is a  -neighbourhood of 0. Then by Theorem (3.1.6) there is a basic sequence 

( )nz  in ( ), .Y


 such that: 

(i) 1z y . 

(ii) n nz w y  , 2n   where ( )n nw x   for some increasing sequence. 

(iii) inf 0nz

 . 

Let Z  be the closed linear span of 1{ }n nz 

  and let W  be the closed linear span of 

2{ }n nw 

 . Since 1z X  and W X , W  is a closed subspace of co-dimension one in Z . Let 

  be the continuous linear functional on ( ), .Z


 such that 1( ) 1z   and ( ) 0W  ; we 

define :A Z Z  by 1( )Az z z z  . Then for 2n   

1n n nAz Aw Az w   . 

Similarly define :B Z Z  by 

1 2

i i i i

i i

B t z t z
 

 

 
 

 
  . 

Then 

1( )n n nBw B z z z   . 

It follows that n nBAz z , 2n   and hence that A  is an isomorphism of lin{ : 2}nz n   

on to its image. In particular ( : 2)nw n   is a basic sequence in ( ), .X . However nw K  

for   2n  , and so  ( )nw  possesses  a   -cluster point. Now suppose  0w  is  a   -cluster 

point; then 0w  is in the  -closed linear span of ( )nw  by compatibility. It follows that 

0 0

2

( )i i

i

w w w




 . 
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where 
i  is the dual sequence of  -continuous linear functionals on W . Each 

i  is also 

-continuous by compatibility and hence 

0( ) 0 2i w i   . 

Therefore 0 0w  . This contradicts the original choice of x V  , where V  is a 

-neighbourhood  of 0. Thus we have a contradiction. 

Finally suppose 0x y


  and y X ; determine the basic sequence ( : 2)nz n   

satisfying (ii)-(iii). In this case if 0w  is a  -cluster point of ( : 2)nw n   then 0w y  is a  -

cluster point of ( : 2)nz n  . Since 0w y X   and nz X  we conclude that 0w y  is in the 

 -closed linear span of { : 2}nz n   by compatibility and it follows as usual that 0 0w y  . 

Hence y K . We conclude that any  -Cauchy net converges in K  and so K  is complete 

and therefore compact. 

(iii)(ii). Let ( )nx  be a sequence in K  and let 0x  be a  -cluster point. Then there is a 

net ( )z   in K  such that each z   is some nx  and 0( )z x  . If 0z x   in   then there is 

nothing to show, as it will follow that some subsequence of ( )nx  converges to 0x . 

Otherwise we may find a basic sequence ( )nu  of the form ( ) 0n nu z x  . Let w  be a  -

cluster point of ( )( )nz   in K ; then clearly 
0 lin{ }nw x u   and since   and   are compatible 

it follows as in (iii)(i) that 0 0w x  . Hence 0x  is the sole cluster point of ( )( )nz   and 

so ( ) 0nz x  . However ( )nz   is simply a subsequence of ( )nx  ( ( )n   since the ( )nz   

are distinct). 

[Added In Proof: The problem of determining conditions under which the Hahn-Banach 

Extension Property is equivalent to local convexity was originally posed by Duren, 

Romberg and Shields [119] ]. 

Section (3.2): The Krein-Milman Theorem 

In [124] Roberts answered a long outstanding question by constructing an example of 

a compact convex subset of a non-locally convex F-space without extreme points; thus 

the Krein-Milman theorem fails in general without local convexity. Later in [123], 

Roberts showed that such examples can be constructed in the spaces pL  (0 1)p  (or 

more generally Orlicz spaces L  where   is sub-additive and 1 ( ) 0x x   as x  ). 

The basic ingredient of Roberts's construction is the notion of a needle point. If E  is 

an F-space with associated F-norm , then x E  is a needle point if given any 0  , 

there exist 1, , nu u E  such that iu   ( 1,2, , )i n  and 

(i) 1(1 )( )nx n u u   , 

(ii) if 1 1na a    and 0ia  ( 1,2, , )i n  then there exists t , 0 1t   such that 

1

n

i i

i

tx a u 


  . 

Roberts [123] showed that if E  contains a non-zero needle point then E  contains a 

compact convex subset which is not locally convex. Also if every element of E  is a 

needle point then E  contains a compact convex set with no extreme points; in this case E  

is called a needle-point space. 

Following the work of Roberts, the question was asked (Shapiro [127]) whether 

every F-space with trivial dual contains a compact convex set without extreme points. 

We shall show that this is not the case and that there exist F-spaces with trivial dual in 
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which every compact convex set is locally convex. In particular every compact convex 

set is affinely embeddable in a locally convex space [125] and obeys the Krein-Milman 

theorem. Our example is an Orlicz function space L . 

We start by defining an element x  of an F-space E  to be approachable if there is a 

bounded subset B  of E  such that whenever 0   there exist 1, , nu u E  with 
iu   

( 1,2, , )i n  and 

(i) 
1(1 )( )nx n u u      

(ii) if 
1 1na a    then 

1

n

i ii
a u B


 . 

Theorem (3.2.1)[120]: Suppose E  is an F-space in which 0 is the only approachable 

point. Then every compact convex subset of E  is affinely embeddable in a locally convex 

space. 

Proof. Suppose K E  is a compact convex set and let 
1 co( ( ))K K K   . Then 1K  is 

also compact. We show 10 K  has a base of convex neighborhoods in 1K . For 0  , let 

{ : }V x x   . Suppose 1x K  and 
1co( )x K V    for every 0  . Then x  is 

approachable (take 1B K  in the definition) and hence 0x  . Now by compactness for 

any 0   there exists 0   so that 

1co( )K V V   . 

Now the finest vector topology on the linear span F  of 1K  (i.e. 1( : )F nK n N  ), 

which agrees with the given topology on 1K  has a base of neighborhoods of  the form  

1

11

( )
m

n

mn

mK V 





  

where m  is a sequence of positive numbers [129]. By the above result this is locally 

convex, and the theorem is showed. 

We remark that the second half of this proof was used in [121] in the introduction; an 

alternative approach would be to show that every point of 1K  has a base of convex 

neighborhoods (this follows easily from the same fact for 0) and then use Roberts's 

deeper results in [125]. 

Lemma (3.2.2)[120]: Suppose E  and F  are F-spaces and :T E F  is a continuous 

linear operator. If x E  is approachable, then Tx  is approachable in F . 

The proof is immediate. 

We now recall that an Orlicz function   is an increasing function defined on [0, )  

which is continuous at 0, satisfies (0) 0   and ( ) 0x   for some 0x  . The function   is 

said to satisfy the 2 -condition if for some constant K , we have (2 ) ( )x K x 

(0 )x   . If   satisfies the 2 -condition then the Orlicz space (0,1)L  is defined to be 

the set of measurable functions f  such that 
1

0
( ( ) )f t dt   . 

L  is an F-space (after the usual identification of functions differing on a set of measure 

zero) with a base of neighborhoods ( )V   where ( )f V   if and only if 
1

0
( ( ) )f t dt  . 

Theorem (3.2.3)[120]: Suppose   is an Orlicz function satisfying the 2 -condition and 

     ( )x x  ,  0 1x  ,                (4) 
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   there exist 
nc ( )n N  such that 0nc   for all n , 

nc                 (5) 

and if 

1

( ) ,n

n

n x
G x c

x n






 
  

 
  (x 0)  

then ( )G x   as x  . 

Then 0 is the only approachable point in (0,1)L . 

Proof. Given any f L , with 0f  , there exists a continuous linear operator :T L L   

with 1Tf   (where (3.2.1) denotes the constantly one function). Hence it suffices to show 

that (3.2.1) is not approachable. 

Suppose on the contrary (3.2.1) is approachable. In this case there is a constant M  so 

that whenever 0   there exist ( )n n   and 1 2, , ,nu u h L  with 

     1 2

1
1 ( )

2
nu u h

n
    ,                 (6)

     
1

0
( ( ) )iu t dt  ,                            (7) 

     
1

0
( ( ) )h t dt  ,                 (8) 

      
21

0
1

( ( ) )
n

i i

i

a u t dt M


 ,                (9) 

whenever 
1 2 2 1na a a    . 

Now let 

0 2

( )
sup

x

x
B

x



 

 , 

1

n

n

C c




 , 

so that both B  and C  are finite. Now choose 1 10   so that if 1x    
2( ) (8 )G x C e M B  . 

Then we may choose 1 2, , ,nu u h  as above with 2  . Let 1 2, , ,nu u   be the pointwise 

decreasing re-arrangement of 1 2, , nu u . Clearly each iu   is measurable and belongs to L

. Next let 
2

( ) min ( ),i i

n
w t u t

i

 
  

 
, 1 2i n  . 

We shall show first that 

     
1( )

1

1 1
( )

2 2i

n

i
w t

i

w t dt
n  



 .            (10) 

Let   denote Lebesgue measure on (0,1)  and let ( )N t  for each t  be the largest k  so that 

( ) 1ku t   (and ( ) 0N t   if ( ) 1ku t   for all k ). Then 
21

0
1

( ) ( 1)
n

i

i

N t dt u


 
2 1

2

0
1

( ( ) ) 2
n

i

i

u t dt n 


  . 

Hence 2( : ( ) 2 )t N t n    . 

Similarly 
2( : ( ) )t h t    . 

Now let { : ( ) , ( ) 2 }A t h t N t n    ; then 2( ) 1 2A   . For t A  
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2

1

( ) 2 (1 )
n

i

i

u t n 


   

and hence 
2

1

( ) 2 (1 )
n

i

i

w t n 


  . 

Now 

1 1
i i i

i i i
u u u

u dt u dt u dt
       

     

      1 ( )iu       

      
1

2

0
( ) 2iu dt      . 

Hence 

1

2

1

1
( ) 2

2 i

n

i
u

i

u t dt
n 


 






 . 

If t A  and 1( )iw t    then 1( )iu t   . For otherwise 12n i    so that 2 ( )i n N t   and 

hence ( ) 1 2iu t n i   . Hence 

1

2

( )
1

1
( ) 2

2 i

n

i
A w

i

w t dt
n 


 



 . 

However 
2

1

1
( ) (1 ) ( ) 1 3

2

n

i
A

i

w t dt A
n

  


    . 

Thus 

1

2

( )
1

1 1
( ) 1 5

2 2i

n

i
A w

i

w t dt
n 


 



   . 

Since for t A , 1( ) 1iw t     for ( ( ))i n N t  , we see that (10) holds. 

We now fix r  with 1 r n  . We define two sets of random variables 2( , , )i nX X , 

1 2( , , )nY Y  on some probability space ( , )P  where   is a finite set. The random 

variables 1 2( , , )nY Y  are mutually independent and independent of 1 2( , , )nX X  with 

common distribution given by 1
2

( 1) ( 1)i iP Y P Y      . The random variables 

1 2( , , )nX X  are not mutually independent. Their distribution may be described as 

follows: select an r -subset   at random from the collection of r -subsets of {1,2, ,2 }n ; 

then let 1iX   if i   and 0iX   otherwise. 

Then for every  , 
2

1
( ) ( )

n

i ii
X Y r 


  and hence 

    
21

0
1

1
( ) ( ) ( )

n

i i i

i

X Y u t dt M
r

  


 
 

 
 .           (11) 

Let [2 ]s n r , and let   be any fixed s -subset of {1,2, ,2 }n . For j  , let 

{ : ( ) 1, ( ) 0 if \{ }}j j iE X X i j       . Then if 1r  , 

2 2
( )

1
j

n s n
P E

r r

   
    

   
 

2 2 1 2 2

2 2 1 2 2 2 1

r n s n s n r s

n n n n r

     
  

   
 

1 1 1
exp ( 1)

2 2 2 1 2 2

r
s

n n s n s n r s

  
              
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2
exp

2 2

r rs r

n n ne

 
   

 
 

and this also holds for 1r  . 

Now by symmetry for fixed (0,1)t   

  2

21
: ( ) ( ) ( ) ( )

4

n

j i i i ii

r
P E X Y u t u t

ne
  


  . 

Thus 
2

2
1

( )1
( ) ( ) ( ) ( )

4i

n
i

i i i
E

i

u tr
X Y u t dP

r ne r
    



   
   

  
 . 

As the events ( , )jE j   are disjoint, we conclude 

2

2
1

( )1
( ) ( )

4

n
j

i i i

i j

u tr
X Y u t dP

r ne r

  


 

  
        

  . 

Choosing   to maximize the right-hand side, we have 

2

2
1 1

( )1
( ) ( )

4

n s
j

i i i

i j

u tr
X Y u t dP

r ne r
  




 

  
   

   
  . 

Thus by (11) and Fubini's theorem, we have 

     
1

2

0
1

( )
2

2

s
j

j

u tr
dt e M

n r






 
 

 
 .            (12) 

Now summing over 1,2, ,r n  we have 
[2 ]

1
2

0
1 1

( )1
2

2

n rn
j

r

r j

u t
c r dt e CM

n r




 

 
 

 
  . 

Interchanging the order of summation and discarding terms with rj n  we have 

    
[ j]

1
2

0
1 1

( )1
2

2

nn
j

r

j r

u t
c r dt e CM

n r




 

 
 

 
 .            (13) 

If 2x n j , we have 
[ j]

1 [ ]

( )
n

r r

r r n j

x r x
c r x G x c

r x r
 

 

    
     

    
   

         ( )x G x BC  . 

Thus 

    
[ j]

1

( )
( ) ( ( ))

n
j

r j j

r

w t
c r w t G w t BC

r




 
     

 
 .           (14) 

From (13) since j jw u   we have 

1

[ j]
2

1 1

( )1
2

2 j

nn
j

r
w

j r

w t
c r dt e CM

n r



 

 
 

 
   

and hence, recalling the choice of   and (14), 

1

2 2

1

1
8 ( ) 2

2 j

n

j
w

j

e CMw t dt e CM
n  



  

or 

1

1

1 1
( )

2 4j

n

j
w

j

w t dt
n  



  

which contradicts (10) and completes the proof. 

We are now in a position to construct the example. 
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Example. There exists a locally bounded Orlicz space (0,1)L  with trivial dual in which 

the only approachable point is {0}. 

We shall construct   to satisfy (4), (5), the 2 -condition and  

     
( )

lim inf 0
x

x

x




 ,             (15) 

   for some 0  , ( )x x  is non-decreasing.           (16) 

Then (15) will imply that {0}L

   (Rolewicz [126], Turpin [128]) and (16) will imply 

that L  is locally bounded (Rolewicz [126], Turpin [128]). 

Let ( : 0,1,2, )nt n   be an increasing sequence of positive numbers such that 

1 4 2n nt t n     ( 0)n  . Define a function : R R   by 

( ) 0t  ,    
0t t ; 

( ) (1 )( ( ))nt n t t     ,  2n nt t t n   ; 

( ) (1 )( 3n))nt t t     ,  2 4 1n nt n t t n     ; 

( ) (1 )( 1)t n    ,   14 1n nt n t t     . 

Suppose 1
4

0 (1 )     and define 

0,1,2,
( ) max ( ( log2) log2)

n
t t n n  


   . 

Then if 4 1n nt t t n    , there exists m  with log2 4 2m n   and 

( log2) (1 )t m n    . 

Hence 

( ) (1 ) (4 2)t n n      . 

If 14 1n nt n t t     , ( ) ( ) (1 )( 1)t t n      , so that lim ( )t t   . 

Now we define 

( ) exp( (log ))x x x  , 0 x   , 

(0) 0  . 

Then ( )x x   for 0 1x  , and satisfies the 2-condition . Also 

log ( ) (log ) (1 )logx x x x      is non-decreasing, so that (16) holds. For (15) observe 

that log( ( ) ) (log )x x x   and ( 2 ) (1 )nt n n     . 

Finally we show that (5) holds: 

 
0 0

2
2 2 exp (log log2)

2

n
n n

n
n n

x
x n

x

  
 

 

 

 
  

 
   

     exp (log )x  as x  . 

Of course by Theorem (3.2.1) the space L  we have constructed has the property that 

every compact convex subset is locally convex. 

There are a number of obvious questions arising from this example. We do not know if 

a condition like (5) is necessary for the conclusion of Theorem (3.2.3). In particular if we 

simply have 
1lim inf ( ) 0

x
x x


  and 1limsup ( )

x
x x


  , 

then can L  contain a non-zero needle point? In [127] Shapiro asks whether the Krein-

Milman theorem holds in certain quotients of pH  (0 1)p  . This example perhaps 

suggests that the failure of the Krein-Milman theorem and the existence of needle points 

is a rarer phenomenon than previously suspected. 

Section (3.3): Zero Derivative in  -Spaces 
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Let X  be an F-space (complete metric linear space) and suppose : [0,1]g X is a 

continuous map. Suppose that g has zero derivative on [0,1] , i.e. 

0

1
( ) lim ( ( ) ( )) 0

h
g t g t h g t

h
      

for 0 1t   (we take the left and right derivatives at the end points). Then, if X  is locally 

convex or even if it merely possesses a separating family of continuous linear 

functionals, we can conclude that g  is constant by using the Mean Value Theorem. If 

however {0}X    then it may happen that g  is not constant; for example, let (0,1)pX L  

(0 1)p   and [0, ]( ) 1 tg t   (0 1)t   (the characteristic function of [0, ]t ). This example is 

due to Rolewicz [133], [134]. 

The aim of this section is to substantiate a conjecture of Rolewicz [134] that every F-

space X  with trivial dual admits a non-constant curve : [0,1]g X  with zero derivative. 

In fact we shall show, given any two points 0 1,x x X , there exists a map : [0,1]g X  

with 0(0)g x , 1(1)g x  and 

0

( ) ( )
lim 0

t s

g t g s

t s 





 uniformly for 0 s , 1t  . 

To establish this result we shall need to study X -valued martingales. Let B  be the  -

algebra of Borel subsets of [0,1)  and let nF  ( 0)n   be an increasing family of finite sub-

algebras of B . Then a sequence of functions : [0,1)nu X  is an X -valued nF -martingale 

if each nu  is nF -measurable and for n m  we have ( | )n m mu uE F . Here the definition of 

conditional expectation is the standard one with respect to Lebesgue measure   and there 

are no integration problems since each nu  is finitely-valued. 

It is easy to show that every F-space X  with trivial dual contains a non-constant 

martingale { | }n nu F  which converges to zero uniformly. However we shall need to 

consider dyadic martingales. Let , [( 1) 2 , 2 )n n

n kD k k  (1 2 ,0 )nk n     . Then, for 

0n  , let nB  be the sub-algebra of B  generated by the sets 
,{ :1 2 }n

n kD k  . A dyadic 

martingale is simply a nB -martingale. The main point of the argument will be to show 

that we can find non-zero dyadic martingales which converge uniformly to zero. 

We note here a connection with the recent work of Roberts [124], [123] on the 

existence of compact convex sets without extreme points. Indeed, in a needlepoint space 

(see [123]) it would be easy to show that there are non-zero dyadic martingales which 

converge uniformly to zero. However there are F-spaces with trivial dual which contain 

no needlepoints [120]. 

As usual an F-norm on a (real) vector space X  is a map x x  such that 

      0x   if 0x  ,             (17) 

x y x y    ( , )x y X ,             (18) 

tx x  ( 1)t  ,             (19) 

0
lim 0
t

tx


  ( )x X .             (20) 

The F-norm is said to be strictly concave if, for each x X  with 0x  , the map t tx  

is strictly concave on [0, ) , i.e. 

if 0 s t     and 0 a , 1b   with 1a b   then, if 0x  , 

( )as bt x a sx b tx   .              (21) 
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Every F-space can be equipped with an (equivalent) F-norm which is strictly 

concave. This follows from the results of Bessaga, Petczynski and Rolewicz [131]. We 

may give X  an F-norm 
0
  so that the map 

0
t tx  is concave and strictly increasing for 

each 0x  . Now define 
1 2

0
x x . 

Suppose N  is a positive integer. We consider the space N  with the natural co-

ordinatewise partial ordering (i.e. x y  if and only if 
i ix y  for 1 i N  ). We shall 

denote by ( :1 )ke k N   the natural basis elements of N . We shall use the idea of N -

valued submartingales and supermartingales; these have obvious meaning with respect to 

the ordering denned above. In addition, standard scalar convergence theorems can be 

applied co-ordinatewise to produce the same theorems for N . 

For 1 i N  , let 
iF  be a continuous map : [0, ) [0, )iF     which is strictly 

increasing, strictly concave and satisfies (0) 0iF  , (1) 1iF  . Then iF  is also subadditive 

since 

( ) ( )i i

s
F s F s t

s t
 


  ( , 0)s t  . 

Hence we may define an absolute F-norm on N  by 

1

( )
N

i i

i

x F x


  Nx  .             (22) 

Now, for Nx  , define 
1
2

( ) inf{max( , ) : ( )}x y z x y z    .             (23) 

We shall need the following properties of  . 

Lemma (3.3.1)[130]: (a) If Nx   and 0x   then there exist , Ny z   with 0y  , 0z   
,  1

2
( )x y z   and ( )y x , ( )z x . 

(b) For , Nx y  , 

( ) (y)x x y    ,             (24) 

( )x x  .              (25) 

(c) If 0x   and ( ) 1x x    then, for some k , we have kx e . 

Proof. (a) is an easy consequence of a compactness argument. For (b) (24), observe that 

if 1
2
( )x z z    then 

1
2
[( ) ( )]y z y x z y x      , 

so that (y) ( )x y x     and so (24) follows. (25) is an immediate consequence of the 

definition of  . 

Suppose 0x  , 1x  , 0ix   and 0jx   where i j . We show ( ) 1x  .  

Since iF  is concave, it has left and right derivatives at ix , 1  and 2 , say, with 

2 10    . Similiarly jF  has left and right derivatives at jx , 1  and 2  with 2 10     

For small 0t  , 

1 2( )i jx t e e x    , 

1 2 1 1 2 2( ) ( )i jx t e e x t            x . 

Hence ( ) 1x  . 

We conclude that if ( ) 1x   then kx e  for some k , 1 k N  . 

Now let   1( ) nx x x     ( )Nx  . 
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Theorem (3.3.2)[130]: Suppose Na , 0a   and ( ) 1a  . Then there are disjoint Borel 

subsets 1, , NE E  of [0,1)  with ( )i iE a   (1 )i N   and a  scalar valued dyadic 

supermartingale n  (0 )n    such that 

0 ( ) 1n t   (0 1,0 )t n     ,             (26) 

lim ( ) 0 . .n
n

t a e


               (27) 

and if 

1

1 |
i

N

En ni

i

eu



 
 
 
 BE   (0 )n                (28) 

then 

( ) ( )n nu t t a      (0 1,0 )t n     ,            (29) 

( ) ( ) 1n nu t t a    (0 1,0 )t n     .            (30) 

Proof. To start observe 

1

( ) ( ) 1
N

i i

i

a F a a


   . 

Define 0 0( )t   for 0 1t  , where 00 1   and 
0 1a  ; then let 0 0( )w t a , 0 1t  . 

We then define inductively sequences ( : 0)nw n  , ( : 1)nw n  , ( : 0)n n   of functions on 

[0,1) , where 

( 0)nw n   and ( 1)nw n   are N -valued and nB -measurable,          (31) 

( 0)n n   is -valued and nB -measurable,            (32) 

( ) 0nw t   (0 1, 0)t n   , 

      ( ) 0nw t         (0 1, 0)t n   ,              (33) 

( ) 0n t   (0 1, 0)t n   , 

      ( | )nn nww  E B          ( 0)n  ,            (34) 

( ) ( ) ( )n n nw t w t t a   (0 1, 0)t n   ,           (35) 

( ) 1nw t   (0 1, 0)t n   ,            (36) 

1( ) ( ( ))n nw t w t

    (0 1, 0)t n   .           (37) 

Indeed suppose jw , 
jw   and j  have been chosen for j n . Then 

,( )n n kw t b  1,( )n kt D  . 

where , 1n kb  , and , 0n kb  . Choose 2 1 2, 0k ky y   so that 2 1 2 ,max( , ) ( )k k n ky y b   and 

1
, 2 1 22

( )n k k kb y y   (see Lemma (3.3.1) (a)). Now define 

1( )n kw t y

   1,( )n kt D  . 

Then (34) and (37) are clear. Since 

1( ) 1nw t

   (0 1)t  , 

we can determine 1n   to be 1nB -measurable so that 1 0n    and 

1 1( ) ( ) 1n nw t t a

    (0 1)t  . 

Now define 

1 1 1( ) ( ) ( )n n nw t w t t a

     (0 1)t   

and clearly (36) holds. 

Observe that 

1 1 )|)( | (n nn n nw aw   E EB B  
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and if m n  

1

( | ( |) )
m

n k

k n

n n nw aw 
 

 
   

 
E EB B .            (38) 

Hence nw  is a submartingale and it is clearly bounded. Thus lim ( ) ( )n
n

w t w t


  exists 

almost everywhere, and ( ) 1w t   a.e. 

The real-valued submartingale ( : 0)nw n   is uniformly bounded and converges to 

w   a.e. Hence 
1 1

0 0
( ( )) lim ( ( ))n

n
w t dt w t dt 


   

         
1 1

0 0
1

( ( )) ( )n k

k

w t dt t dt 




    

by (38) since ( ) 1a  . Hence 

1

0
1

( )k

k

t dt




   

and so (a.e.) ( )k t   . Thus ( ) 0k t   a.e. and 1 1( ) ( ) 0n nw t w t

    a.e. Hence 

1( ) 1nw t

   and ( ( )) 1nw t   a.e. By Lemma (3.3.1)(b),   is continuous and so (a.e.) 

( ( )) ( ) 1w t w t    . 

As ( ) 0w t  , we conclude that 

1

( ) 1
i

N

E i

i

w t e



  a.e., 

where 1, , NE E  are disjoint Borel sets with 1 [0,1)NE E  . 

Now define ( | )n nu w = E B . Then, since { }nw  is uniformly bounded and nw w   a.e., 

( | )limn N
m

nu w


 E B  

        
1

( )|k

k n

n nw a


 

 
   

 
 E B n nw a  , 

where 0n   is measur le- abnB . Since ( )nw  is a submartingale, ( )n  is a supermartingale. As 

0n nu w   a.e., we have 0n   a.e. As ( ) 1w    a.e., ( ) 1nu   a.e. and so 0n   a.e. Also 

1n n nu a w   . Finally observe 

0 0 0( )u a  
1

( )
N

i i

i

E e


 . 

Hence 

0 0 0

1

( ) ( ) 1
N

i

i

u E   


     

Thus ( )i iE a  (1 )i N  , and the proof is complete. 

In fact we shall not use Theorem (3.3.2); instead we use its "finite" version. 

Theorem (3.3.3)[130]: Under the same hypotheses as Theorem (3.3.2), given 0  , 

there is a finite dyadic martingale 0 1( , , , )m    with 

0( )t a   (0 1)t  ,             (39) 

( ) 1m t     (0 1)t  .                (40) 

For 1 1n m   , there is a positive nB -measurable function n  with 1n   and 

( ) ( ) 1n nt t a      (0 1)t  .            (41) 
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Proof. Suppose 1
0 2

0    is chosen so that 1
0 2

2 a   and 1 1
0 2

(1 ) 1     whenever 

1x  . 

Let nu , n  be chosen as in Theorem (3.3.2) and select m  so that 
1

0
0

( )m t dt    . 

Define 
1(1 ) ( )m m mu a      

and 

( | )mn n  BE  (0 )n m  . 

Then ( ) 1m t    and 
1(1 ) ( )| )(m n m nu a     BE  

     1 1(1 ) ( ) (1 ) |( ))( mn n n nu a a          BE . 

Define 

( | )n n nm   BE  (0 )n m  . 

Then 0 1n n     and 
1 1(1 ) ( ) (1 )n n n n na u a a              

and so 
1 1
2 2

1 1n na          . 

We now turn to the general infinite-dimensional problem. 

Lemma (3.3.4)[130]: Suppose X  is an F-space with a strictly concave F-norm. Suppose 

0 0x   and that 0 co{ : }x x x   . Then there is a finite dyadic martingale nu (0 )n m   

with 0 0( )u t x , and 

( ) 2mu t   (0 1)t  ,             (42) 

0( ) 2nu t x    (0 1,0 )t n m    .           (43) 

Proof. There exist 1, , Ny y X  with 0iy  (1 )i N  , 
iy   and 0 1 1 N Nx a y a y   , 

where 0ia   and 1 2 1Na a a    . 

For 0 t   , define 

( )i i iF t ty y . 

Then iF  is strictly concave. Define the absolute norm on N  by 

1

( )
N

i i

i

b F b


 . 

Now, by Theorem (3.3.3), there is a finite N -valued dyadic martingale ( : 0 )n n m    

with (taking 1  ) 

0 1( , , )Na a a    (0 1)t  , 

( ) 2m t   (0 1)t   

and 

( ) ( ) 2n nt t a    (0 1,0 )t n m    , 

where 0 ( ) 1n t  . Define : NT X  by 

1

N

i i

i

Tb b y


 . 

Then 



 80 

 
1

N

i i

i

Tb b y



1

( )
N

i i i

i

y F b b


  . 

Now let 
n nu T . Then 

0 0( )u t x  and ( ) 2mu t  . Also 

0( ) ( ) 2n nu t t x   0 2x   . 

Theorem (3.3.5)[130]: Suppose X  is an F-space with trivial dual, and that 
0x X . Then 

there is a dyadic martingale ( : 0)nu n   with 0 0( )u t x  and 

0 1
max ( ) 0n

t
u t

 
  as n  .             (44) 

Proof. As explained in the introduction we may suppose that the F-norm on X  is strictly 

concave (passing to an equivalent F-norm does not affect (44)). The hypotheses 

guarantee that the convex hull of any neighborhood of zero is X . The construction is 

inductive, based on Lemma (3.3.4). To start the construction we may find a finite 

martingale 1( : 0 )nu n N   so that 0 0( )u t x , 
1

1
02

( )Nu t x  and 0( ) 2nu t x  1(1 )n N  , 

by applying Lemma (3.3.4) with 1
04

x   if 0 0x   (the case 0 0x   is trivial). 

Suppose now we have defined ( :1 )n ku n N   so that 

1
02

( ) ( )
j

j

Nu t x  (1 )j k  ,            (45) 

1
02

( ) 2( ) j

nu t x  1( ,1 )j jN n N j k    .           (46) 

We shall show how to extend to a finite dyadic martingale 1( :1 )n ku n N    so that (45) 

and (46) hold for 1j k   and j k  respectively. 

We have 

( )
kN lu t y  ,( )

kN lt D . 

For each ly , there is a finite martingale ( : 0 )l

n n M    with 

0 ( )l

lt y   (0 1)t  , 
11

02
( ) ( )t k

M t x   (0 1)t  , 

11
02

( ) ( )l k

n lt y x    

 11
02

( )k x  (0 1,0 )t n M    . 

Here M  may be taken independent of l  by simply extending the martingale where 

necessary by adding further terms equal to the last term of the sequence. 

Now let 1k kN N M    and define 

1 (2 1)k

k i

Nl

Nu t l

    ,( )

kN lt D . 

It is now easy to verify that conditions (45) and (46) hold where applicable. Continuing 

in this way we clearly have (44) for the (infinite) martingale ( )nu . 

The step from Theorem (3.3.5) is a very simple one if X  is a quasi-Banach space or 

more generally is exponentially galbed (see Turpin [135]). In such space there is a 

natural correspondence between curves with uniform zero derivative and dyadic 

martingales converging uniformly to 0. In a general F-space a little more sublety is 

required in the proof of the main theorem. 

Theorem (3.3.6)[130]: Suppose X  is an F-space with trivial dual and that 0 1,x x X . 

Then there is a curve : [0,1]g X  with 0(0)g x , 1(1)g x  and 

0

( ) ( )
lim 0

t s

g t g s

t s 





    uniformly for   0 s , 1t  .            (47) 

In particular ( ) 0g t   for 0 1t  . 
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Proof. It suffices to suppose 
0 0x  . Then there is a dyadic martingale ( : 0)nu n   with 

0 1( )u t x  (0 1)t  , 

0 1
max ( ) 0n n

t
u t 

 
  . 

Choose 0 0N  . Since each 
nu  has finite range it is possible to choose a strictly 

increasing sequence of positive integers ( : 1)kN k   so that 

12 ( ( ) ( )) 2j kN N j k

k k ju t u t 
 

               (48) 

for 0 1j k   , 0 1t  . Each [0,1)t   has a unique binary expansion 

1

2 j

j

j

t






 , 

where each j  is zero or one and 0j   infinitely often. Now define 

1

( ) 2
k

j

k k j

j

t u 



 
  

 
 . 

(Recall that ku  is constant on the interval 
1 1

2 2 2
j j

k k
j j k

N N

j j

t  

 

    .) Then we observe 

that k  is a 
kNB -martingale, with 

0 1
max ( )k k

t
t 

 
 , 

1 1

0 1
0 0

( ) ( ))| (k k kt dt u t xt d    BE . 

In fact we observe that 

11( )|
kNk k  BE .              (49) 

For 1k   and 0 1t  , we define 

0
( ) ( )

t

k kg t s ds   

(the integrand is simple). Then each kg  is continuous and from (49) we have 

1( ) g ( )k kg t t  if  12 kN t  . 

Now suppose that 0 1t   and that 2 2 2 1kNl t l   , where l  is an integer. Then 

1 1
2 2

( ) g ( ) ( ( ) ( ))
N K

T

k k k k
l

g t t s s ds      

1( 2 (2 ))( ( ) ( ))kN

k kt l t t 

   .           (50) 

Equally, if 2 1 2 2 2kNl t l    , 

1 1( ) g ( ) ((2 2)2 ))( ( ) ( ))kN

k k k kg t t l t t t 

      .           (51) 

Combining these results, we have 

1 1
0 1

( ) g ( ) max 2 ( ( ) ( ))kN

k k k k
t

g t t t t 

 
 

    

         1 0
0 1
max 2 ( ( ) ( )) 2kN k

k k
t

u t u t  


 

   . 

Hence ( )kg  converges uniformly to a continuous function g  on [0,1] , and (0) 0g  , 

1(1)g x . 

Now suppose 0 1s t   . Then there is a least integer n  so that for some integer l  

we have  2 1 2n ns l l t    .  Clearly   
1 12 2 2n nt s    and 2 2 1n nt s  . Hence 

2 4.2n nt s     and 2log 1 ( )n t s  . 

Now suppose 1k kN n N   , where 1 k   . Suppose 1l  is the least integer not less 

than 2n s  and 2l  is the greatest integer not greater than 2nt . Then 

1 1 2 2 1 22 ( ( ) g ( 2 )) (2 ) ( 2 )n n n n

k k kg t l t l l 

     , 
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1 1 1 1 1 12 ( ( 2 ) g ( )) ( 2 ) ( 2 )n n n n

k k kg l s l s l 

     , 

1 1 12 ( ( 2 ) g (( 1)2 )) (( 1)2 )n n n n

k k kg i i i  

      . 

Hence 

1 2 1 1 2 1 12 ( ( 2 ) g ( 2 )) ( )n n n

k k kg l l l l  

      

and 

1 1 2 1 12 ( ( ) g ( )) ( 2)n

k k kg t s l l       . 

However 2 1 2 ( ) 4nl l t s     so that 2 1 2 5l l   . Hence 

1 1 12 ( ( ) g ( )) 5n

k k kg t s     .           (52) 

Now 

1 12 ( ( ) g ( )) 2 ( ( ) ( ))kn Nn

k k k kg t t t t  

    , 

where 0 1  , by (50) and (51). Hence 

1 12 ( ( ) g ( ))n

k k k kg t t      .             (53) 

A similar inequality holds for s. 

If r k  

1 12 ( ( ) g ( )) 2 ( ( ) ( ))rn Nn

r r r rg t t t t  

    , 

where 0 1  , and so 

1 12 ( ( ) g ( )) 2 ( ( ) ( ))k rN Nn

r r r rg t t t t  

     

        
1

0 1
max 2 ( ( ) ( )) 2k rN N k r

r r k
t

u t u t  


 

    

by (48). Hence 

2 ( ( ) g ( )) 2n k r

k k k

r k

g t t  



 
   

 
 .            (54) 

A similar inequality holds for s . 

Combining (52), (53) and (54) and the similar results for s  we obtain 

12 ( ( ) g( )) 7 4n

k kg t s      

and hence 

1

( ) ( )
7 4k k

g t g s

t s
 


 


, 

Where 2log 1 ( )kN t s  . Hence g has the properties specified in the theorem. 

Every F-space X  has a unique maximal linear subspace with trivial dual; this 

subspace is closed. Let us call this maximal subspace the core of X . If core ( ) {0}X  , it 

does not necessarily follow that X  has a separating dual; for a detailed investigation of 

related ideas see Ribe [132]. We conclude with a simple corollary. 

Corollary (3.3.7)[130]: Suppose X  is an F-space and x X . In order that there exists a 

curve : [0,1]g X  with (0) 0g  , (1)g x  and ( ) 0g t   for 0 1t   if is necessary and 

sufficient that core( )x X . 

Proof.   If   core( )x X   the  existence  of  g   is  given  by  Theorem  (3.3.6). Suppose  

conversely such a g  exists and let Y  be the closed linear span of { ( ) : 0 1}g t t  . Suppose 

  is a continuous linear functional on Y . Then ( ) ( ) 0g t   (0 1)t   and hence by the 

Mean Value Theorem ( ( )) 0g t  (0 1)t  . Thus 0   and so core( )Y X ; in particular 

core( )x X . 
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Chapter 4 

Asymptotic Sharpness and Applications of Bernstein-Type Inequalities 

A Bernstein-Type inequality in the standard hardy space 2H  of the unit disc 

{ : 1}z z   , for rational functions in  having at most n  poles all outside of 1
r

, 

0 1r  , is considered. The asymptotic sharpness is shown as n  , for every [0,1)r  . 

We apply our Bernstein-Type inequality to an effective Nevanlinna-Pick interpolation 

problem in the standard Dirichlet space, constrained by the 2H -norm. We show that this 

result can not be extended to weighted Bergman spaces with “super-polynomially” 

decreasing weights. 

Section (4.1): A Bernstein-Type Inequality for Rational Functions in 2H  

First we recall the classical Bernstein inequality for polynomials: we denote by n  

the class of all polynomials with complex coefficients, of degree n : 
0

n k

kk
P a z


 . Let 

 
1

1 2
2 22

2
0

1
( )

2

n

k

k

P P d a 
 

 
   

 
 . 

The classical inequality 

     
2 2

P n P                      (1) 

is known as Bernstein’s inequality. A great number of refinements and generalizations of 

(1) have been obtained. See [148, Part III] for an extensive study of that subject. The 

constant n  in (1) is obviously sharp (take nP z ). 

Now let 1{ , , }n    be a sequence in the unit disc , the finite Blaschke product 

1 i

n

i
B b 

 , where 
1

z

z
b 
 




  is an elementary Blaschke factor for  . Let also BK


 be 

the n -dimensional space defined by 

( : 1, , )
iBK in k i n

   , 

where   is a family of distincts elements of , and where 1
1 z

k  
  is the Szegö kernel 

associated to  . An obvious modification allows to generalize the definition of BK

 in the 

case where the sequence   admits multiplicities. 

Notice that using the scalar product 2( , )
H

   on 2H , an equivalent description of this 

space is: 
2 2 2( )BK B H H B H

  

  , 

where 2H  stands for the standard Hardy space of the unit disc , 

2 22

2
0 10

ˆ( ) : sup ( ) ( )k

rk

H f f k z f f rz dm z
 

 
     
 

  , 

m  being the Lebesgue normalized measure on . We notice that the case 

1 2 0n       gives 1B nK
  . The issue of this section is to generalize classical 

Bernstein inequality (1) to the spaces BK

. Notice that every rational functions with poles 

outside of  lies in a space BK

. It has already been proved in [65] that if max j jr  , 

and Bf K


 , then 

     
2

2

5

2 1

n
f f

r
 


.                   (2) 

In   fact,  Bernstein-type   inequalities  for  rational  functions  were  the  subject  of  a 

number of references (see, for instance, [61], [140], [141], [136], [137], [138], [55] and 

[139]). Perhaps, the stronger and closer to ours of all known results are due to K. 
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Dyakonov [60]. In particular, it is proved in [60] that the norm 2
BK H

D


 of the 

differentiation operator Df f   on a space BK  satisfies the following double inequality 

2
BK H

a B D A B
  
   , 

where 1
36c

a  , 36
2

cA 
  and 2 3c   (as one can check easily (c  is not precised in [60])). 

It implies an inequality of type (2) (with a constant about 13
2
 instead of 5

2
). 

Our goal is to find an inequality for sup 2 ,
B

n rK H
D C


  (sup is over all B  with given 

degn B  and maxr    ), which is asymptotically sharp as n  . Our result is that 

there exists a limit , 1
1

lim
C

n r r
n n r


 

  for every r , 0 1r  . Our method is different from [60] 

and is based on an elementary Hilbert space construction for an orthonormal basis in BK . 

Theorem (4.1.1)[64]: Let 1n  , 1{ , , }n    be a sequence in the unit disc , and B  

the finite Blaschke product 
1 i

n

i
B b 

 , where 
1

z

z
b 
 




  is an elementary Blaschke factor 

for  . Let also BK


 be the n -dimensional subspace of 2H  defined by 

2 2 2( )BK B H H B H 

  . 

Let D  be the operator of differentiation on 
2

( , )BK

 : 

2

2 2
: ( , ) ( , )BD K H


    f f  , 

where  
1

2 2

2

1
( )

2
f f d 


  . For [0,1)r   and 1n  , we set 

 2, sup :1 card ,
B

n r K H
C D n r   


      . 

(i) If 1n   and { }  , we have 

2

1
2

2

1

1BK H
D 




 
  

  

. 

If 2n  , 

,( , ) ( , )
1 1

n r

n n
a n r C A n r

r r
 

 
, 

where 

  
1

4 24 31 4 2
1 4

( , ) 1 5 min ,r
r n n

a n r r


    , 

and 
1( , ) 1
n

a n r r   . 

(ii) Moreover, the sequence 

,

1

1
n r

n

C
n 

 
 
 

, 

is convergent and 

,

1 1
lim

1
n r

n

r
C

n r





, 

for all [0,1)r  . 

Proof. We first show (i). We suppose that 1n  . In this case, 1BK e , where 
1

2
2

1

(1 )
,

(1 )
e r

z







 


, 

( 1e  being of norm 1 in 2H ). Calculating, 



 85 

1
2

2

1 2

(1 )

(1 )
e

z

 




 


, 

and 
1

2
2

1 22

2

1
(1 )

(1 )
e

z
 


  


 

1
1

2
21 1

2 2 2
2 2

2 2

0

1 1
(1 ) ( 1) (1 )

(1 ) 1

k

k

k     
 

  
              

 , 

we get 
1
2

| 2

1

1
K B

D





 
  

  

. 

Now, we suppose that 1n  . First, we show the left-hand side inequality. Let 
1

2 2
1(1 )

1

n

n r

r
e b

rz





. 

Then n
r

n b
e K  and 

2
1ne  , (see [43], Malmquist-Walsh Lemma). Moreover, 

1 1
2 22 2

1 2

2

(1 ) (1 )
( 1)

(1 ) 1

n n

n r r r

r r r
e b n b b

rz rz

  
   

 
 

1
2 2

1 2

1
2 2

(1 )
( 1)

1(1 )

n n

r r r r

r r
b b n b b

rzr

 
    



, 

since 
2

2

1

(1 )
r

r
b

rz


 


. Then, 

1
2 2

1 2

1
2 2

(1 )
( 1)

1(1 )

n n

n r r r

r r
e b b n b

rzr

 
 


     

  

, 

and 
2

1
2 2

2 1 2

12
2 2

1 (1 )
( ) ( ) ( ( )) ( 1) ( ( )) ( )

2 1(1 )

n n

n r r r r

r r
e b w b w b w n b w dm w

rwr

 
     


  

2
1

2 2

1
2 2

1 (1 )
( ) ( ) ( ) ( 1) ( )

2 1(1 )
r r r

r r
b w b w b w n dm w

rwr


    


 , 

which gives, using the variables ( )ru b w , 
2

1
2 2

2

12
2 2

1 (1 )
( ( )) ( 1) ( )

2 1 ( )(1 )
n r r

r

r r
e b b w u n dm u

rb ur


    


 . 

But 
21 ( ) 1

1 1
1 rz r r z r

r rz rz
rb    

 
    and 

22 (1 )1
2 2(1 ) 1r

rzr
r r

rb r
b b 

 
    . This implies 

2
1

2 2 2
2

12 22
2 2

1 (1 ) (1 )
( 1) (1 ) ( )

2 1 1(1 )
n

ru r r
e u n ru dm u

r rr

 
     

 
  

2

2 2

1 1
(1 )( ( 1)(1 )) ( )

(1 ) 2
ru ru n ru dm u

r 
     

  . 

Without loss of generality we can replace r  by r , which gives 
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22 2

1

1
n ne

r
 


, 

where (1 )( ( 1)(1 ))n rz rz n rz      . Expanding, we get 
2 2(1 )( ( 1)) ( 1) ( 1)n rz nrz n nrz n nr z n rz            

        2 2( 1) ( ( 1) )n nr n r z nr z      , 

and 
2 2 2 2 2 4

2 22

1
(( 1) (2 1) )

(1 )
ne n n r n r

r
     


 

2 2 2
2 4

2 2 2 2

2 4 1
1 4

(1 )

n r r
r r

r n n n n

 
       

  

 

2 2 2 2
2 4

2

1 2 4 1
1 4

1 1

n r r
r r

r r n n n

    
          

      

 

2 2 4 4 2 2
2 4 4 4

2

1 4 4 4 2 1
1 4 5 5

1 1

n r r r r
r r r r

r r n n n n n

    
              

      

 

2 2 2 2 4
2 2 2 4

2

1 4 1 4 2
4 (1 ) (1 ) 1 5

1 1

n r r r
r r r r

r r n n n n

    
             

      

 

2 2 2 4
2 2 4

2

1 1 1 4 2
4 (1 )(1 ) 1 5

1 1

n r r
r r r

r r n n n n

    
            

      

 

42 2 4 4 2

441 4 2
4 2

1 5 if 01

1 1 1 5 if 0

r
n n

r
n

r nn

r r r n

       
    

         

 

2 2 4
41 4 3 2

1 5 min ,
1 1 4

n r
r

r r n n

      
         

       

, 

and 
1

4 2
41 4 3 2

( , ) 1 5 min ,
1 4

r
a n r r

r n n

  
      

   

, 

which completes the proof of the left hand side inequality . 

We show now the right hand side one. Let   be a sequence in  such that 1 card n  , 

r     . Using [65], Proposition 4.1, we have 

2

1 1 1
( 1) 2

1 1 1K HB

r
D n n

r r r



    

  
 

   1 1
1 (1 )( 1) 2 n(1 ) 2

1 1
r n n r r n

r r
          

 
 

2

1 2 1
1 1

1 1

n r n
r r

r n n n r n

   
          

    

, 

which gives the result. 

Now, we show (ii). Step 1. We first show the right-hand side inequality: 

,

1 1
limsup

1
n r

n

r
C

n r





, 

which becomes obvious since 

2

1
1

1K HB

n
D r

r n


 
   

  
. 

Step 2. We now show the left-hand side inequality: 

,

1 1
lim inf

1
n r

n

r
C

n r





. 
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More precisely, we show that 

2

1 1
lim inf

1K Hn nbr

r
D

n r





. 

Let n
rb

f K . Then, 

 
1 2 1 2 2

2 2

1
( , ) ( 1)( , ) ( , )

(1 ) (1 )

n n
r

k k k kH H H
k kr

r b
f f e e k f e e r f e e

rz b rz 


    

 
   

        
2

2 2

1 2

1 1
( , ) ( 1)( , )

(1 ) (1 )( )

n n

k k k kH H
k k

r
r f e e k f e e

rz rz z r 


  

  
   

31
2 22 2

1 1

2 22 2
1 2

(1 ) (1 )
( , ) ( 1)( , )

(1 ) (1 ) ( )

n n
k k

k r k rH H
k k

r r r
f e b k f e b

rz rz z r

 

 

 
  

  
  , 

which gives 

  

1
2 2

1 1

2 21
2 2 1 2

(1 )
( , ) ( 1)( , )

(1 )

n n
k k

r k r k rH H
k k

r r
f b f e b k f e b

z rr

 

 

 


     
  

  .                     (3) 

Now using the change of variables ( )rv b u , we get 
2

1
2 2

2 1 1

2 212
2 2 1 2

(1 )
( ) ( ) ( , ) ( 1)( , )

(1 )

n n
k k

r r k r k rH H
k k

r r
f b u b u f e b k f e b du

u rr

 

 


    


   

2
1

2 2
1 1

2 21
2 2 1 2

(1 )
( ( ) ( , ) ( 1)( , )

( )(1 )

n n
k k

r r k kH H
k kr

r r
b b u f e v k f e v dv

b v rr

 

 


  


  . 

But 
2(1 ) ( 1)

1 1
r

r z r rz z r
b r

rz rz

   
  

 
, 

and 
2 2

2 2

1 (1 )

(1 ) 1
r r

r

r rz
b b

rb r

 
   

 
, 

which gives 
2

1
2 2

2 2 1 1

2 212 22
2 2 1 2

1 (1 )
(1 ) ( , ) (1 ) ( 1)( , )

1 ( 1)(1 )

n n
k k

k kH H
k k

r r
f rv f e v rv k f e v dv

r v rr

 

 


     

 
   

2

2 1 2

2 22 2
1 2

1
(1 ) ( , ) (1 ) ( 1)( , )

(1 )

n n
k k

k kH H
k k

rv r f e v rv k f e v dv
r

 

 

    


  , 

and 

       
2

1 2
2 2

1 2 2 22 22
0 0

1
(1 ) ( , ) (1 ) ( 1)( , )

(1 )

n n
k k

k kH H
k k

f r rv f e v rv k f e v dv
r

 

 

 

     


  .                (4) 

In particular, 

  
22 1

2 2
2 2 1 2

0 02 22 2

1 1
(1 ) ( 1)( , ) (1 ) ( , )

n n
k k

k kH H
k k

fr
rv k f e v r rv f e v

n f n f

 

 

 

  
     

 
                 (5) 

2 1
2

2 2 1 2

0 02 22

1
(1 ) ( 1)( , ) (1 ) ( , )

n n
k k

k kH H
k k

rv k f e v r rv f e v
n f

 

 

 

 
     

 
  . 

Now, we notice that on one hand 
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1
1 1 22

1 2 1 2 2
0 02

(1 ) ( , ) (1 ) ( , ) (1 )
n n

k

k kH H
k k

r rv f e v r r f e r r f
 

 

 

 
     

 
  ,                (6) 

and on the other hand, 
2 2

2 2 2

2 2 2 2

0 0

(1 ) ( 1)( , ) (1 2 ) ( 1)( , )
n n

k k

k kH H
k k

rv k f e v rv r v k f e v
 

 

 

        

2 2 2
1 2 2

2 2 2 2 2 2

0 0 0

( 1)( , ) 2 ( 1)( , ) ( 1)( , )
n n n

k k k

k k kH H H
k k k

k f e v r k f e v r k f e v
  

 

  

  

         

2 1
2

2 2 1 2 2

0 0 0

( 1)( , ) 2 ( , ) ( 1)( , )
n n n

k k k

k k kH H H
k k k

k f e v r k f e v r k f e v
 

 

  

        

2
2

2 2 3 2 2 2 1 2 2

2

( , ) 2( , ) ( 1)( , ) 2 ( , ) ( 1)( , )
n

k

k k kH H H H H
k

f e f e v k f e rk f e r k f e v


 



       
   

1 2 1

2 2 2 1 2 22 ( , ) ( 1)( , ) ( 2)( , ) ( 1)( , )n n n

n n nH H H H
r f e v n f e v r n f e v n f e v 


         
   

, 

which gives 

 
2

2

2 2 2 2 3 2 2 2

0

(1 ) ( 1)( , ) ( , ) 2[( , ) ( , ) ]
n

k

k H H H H
k

rv k f e v f e f e r f e v






                      (7) 

2
2

2 2 1 2 2

2

( 1)( , ) 2 ( , ) ( 1)( , )
n

k

k k kH H H
k

k f e rk f e r k f e v


 



      
   

2 1 2

1 2 2 2[ ( 2)( , ) 2 ( 1)( , ) ] ( 1)( , )n n

n n nH H H
r n f e r n f e v r n f e v

      . 

Now, let ( )n ns s  be a sequence of even integers such that 

lim and ( ) asn n
n

s s o n n


    . 

Then we consider the following function f  in n
rb

K : 

2

1 2 3 1 2

0

( 1) ( 1)
s

k k

n n n n n k n s n s n s n k

k

f e e e e e e e e e


         



             . 

Using (6) on one hand, we get 

   
1

1 2

0 22

1
lim (1 ) ( , ) 0

n
k

k Hn
k

r rv f e v
n f








  ,                  (8) 

and applying (7) on the other hand, we obtain 
2

2 2 2
2

2 2 2 2 3 2 2 2

0 2

(1 ) ( 1)( , ) ( , ) 4 ( , ) ( , )
n

k

k H H H H
k

rv k f e v f e f e r f e






       

    
2 2

2 4 2

1 2 2 2( 2)( , ) 2 ( 1)( , ) ( 1) ( , )n n nH H H
r n f e r n f e r n f e        

    
2 2

2

2 2 1 2 2

2

( 1)( , ) 2 ( , ) ( 1)( , )
n

k k kH H H
k

k f e rk f e r k f e


 



     , 

which gives 
2

2
2

2 2 4 2

2 2

0 2

(1 ) ( 1)( , ) ( 2) 2 ( 1) ( 1)
n

k

k H
k

rv k f e v r n r n r n






          

      
2 2

2

2 2 1 2 2

2

(n l 1)( , ) 2 ( )( , ) ( 1)( , )
n

n l n l n lH H H
l

f e r n l f e r n l f e


    



        , 

setting the change of index l n k   in the last sum. This finally gives 
2

2
2

2 2 4 2

2 2

0 2

(1 ) ( 1)( , ) ( 2) 2 ( 1) ( 1)
n

k

k H
k

rv k f e v r n r n r n






          
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1
2 2 22

2

( 1) 2 ( ) ( 1) ( 1) 2 ( 2) 2
s

l

n l r n l r n l n s r n s n s




                 . 

And 
2

2
2

2 2 4 2

2 2

0 2

(1 ) ( 1)( , ) ( 2) 2 ( 1) ( 1)
n

k

k H
k

rv k f e v r n r n r n






          

2 2 22( ) 2 ( 1) ( 2) ( 1) 2 ( 2) 2s n s r n s r n s n s r n s n s                 . 

In particular, 

 
2

2
2

2 2

2 2

0 2

(1 ) ( 1)( , ) ( ) 2 ( 1) ( 2)
n

k

k H
k

rv k f e v s n s r n s r n s






          .               (9) 

Passing after to the limit as n   in (5), we obtain (using (8)) 

 
2

2 2
2 2

0 22 2

1 1 1
lim inf (1 ) ( 1)( , ) lim inf

1

n
k

k Hn n
k

fr
rv k f e v

r n f n f




 




  


             (10) 

2
2

2 2

0 22

1 1
lim inf (1 ) ( 1)( , )

1

n
k

k Hn
k

rv k f e v
r n f








  


 . 

This gives 

 
2

22
2 2

0 22 2

1 1 1
lim inf lim inf (1 ) ( 1)( , )

1

n
k

k Hn n
k

fr
rv k f e v

n f r n f




 




  


 .            (11) 

Now, since 
2

2
3nf s  , 

using (9) we obtain 
2

2
2

2 222
0 22

1
lim inf (1 ) ( 1)( , )

n
k

k Hn
k

rv k f e v
n f








    

22 2

2 22

2

1
lim inf ( 3) ( ) 2 ( 1) ( 2)
n

f n s r n s r n s
n f

         . 

Since 
2

2

2 2

3
lim ( ) 2 ( 1) ( 2) 0
n

n

n s r n s r n s
n s

        , 

we get 
2

2
2

2 222
0 22

1
lim inf (1 ) ( 1)( , )

n
k

k Hn
k

rv k f e v
n f








    

2
2 2

2 2

3
liminf ( ) 2 ( 1) ( 2)n n n n
n

n

s n s r n s r n s
n s

          

2 2
2 2 4

2 2

1 1
lim ( ) 2 ( 1) ( 2) lim 2 (1 )n n n
n n

n s r n s r n s n rn r n r
n n 

             . 

We can now conclude that 

2
2

2

1 1
lim inf lim inf

nbr
K Hn n

fr
D

n n f 


   

22
2

2 2

0 22

1 1 (1 )
lim inf (1 ) ( 1)( , ) 1

1 1

n
k

k Hn
k

r
rv k f e v r

r n f r









     

 
 . 

Step 3. Conclusion. Using both Step 1 and Step 2, we get 

, ,

1 1
limsup liminf 1n r n r
n n

r r
C C r

n n 

 
   , 
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which means that the sequence 1
, 1( )n r nn

C   is convergent and 

,

1 1
lim

1
n r

n

r
C

n r





. 

(a) Bernstein-type inequalities for BK  appeared as early as in 1991. There, the 

boundedness of : ( , ) ( , )p p

p

B H H
D K H    was covered for the full range 1 p   . In 

[60], the chief concern of K. Dyakonov was compactness (plus a new, simpler, proof of 

boundedness). Now, using both [140], (or equivalently M. Levin’s inequality [61]) and 

complex interpolation, we could recover the result of K. Dyakonov for pH  spaces, 

2 p    and our method could give a better numerical constant pc  in the inequality 

p ppH H
f c B f


  . 

The case 1 p 2   can be treated using the partial result of K. Dyakonov ( 1p  ) and still 

complex interpolation. 

(b) In the same spirit, it is also possible to generalize the above Bernstein-type 

inequality to the same class of rational functions f  in , replacing the Hardy space 2H  

by Besov spaces 2,2

sB , s  , of all holomorphic functions 
0

ˆ( ) k

k
f f k z


 in satisfying 

2,2

2
2

0

ˆ: ( 1) ( )s

s

B
k

f k f k


 
    
 
 . 

The same spaces are also known as Dirichlet-Bergman spaces. (In particular, the 

classical Bergman space corresponds to 1
2

p    and the classical Dirichlet space 

corresponds to 1
2

p  ). Using the above approach, one can show the sharpness of the 

growth order 
1
n
r
 in the corresponding Bernstein-type inequality 

    
2,2 2,21
s ssB B

n
f c f

r
 


,                  (12) 

(at least for integers values of s ). 

(c) One can also show an inequality 

    
2,2

2
1

s

s

sB H

n
f c f

r

 
  

 
,                 (13) 

for 0s   and the same class of functions (essentially, this inequality can be found in 

[142]), and show the sharpness of the growth order  1

s
n
r

 (at least for integers values of s

). An application of this inequality lies in constrained H  interpolation in weighted 

Hardy and Bergman spaces, see [65] and [63] for details. 

Notice that already E. M. Dyn’kin (in [144]), and A. A. Pekarskii (in [1], [146] and 

[147]), studied Bernstein-type inequalities for rational functions in Besov and Sobolev 

spaces. In particular, they applied such inequalities to inverse theorems of rational 

approximation. Our approach is different and more constructive. We are able to obtain 

uniform bounds depending on the geometry of poles of order n , which allows us to 

obtain estimates which are asymptotically sharp. 

Also, in [143] of K. Dyakonov, there are Bernstein-type inequalities involving Besov 

and Sobolev spaces that contain, as special cases, the earlier version from , Pekarskii’s 

inequalities for rational functions, and much more. K. Dyakonov used those Bernstein-

type inequalities to "interpolate", in a sense, between the polynomial and rational inverse 

approximation theorems (in response to a question raised by E. M. Dyn’kin). Finally, he 

has recently studied the "reverse Bernstein inequality" in BK ; this is done in [143]. 

(d) The above comments can lead to wonder what happens if we replace Besov 
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spaces 2,2

sB  by other Banach spaces, for example by W , the Wiener algebra of absolutely 

convergent Taylor series. In this case, we obtain 

    2( , )
W H

f c n r f                 (14) 

where  
1

2 2

1
( , ) n

r
c n r c


  and c  is a numerical constant. We suspect that  

1
2 2

1
n

r
is the right 

growth order of ( , )c n r . An application of this inequality to an estimate of the norm of the 

resolvent of an n n  power-bounded matrix T  on a Banach space is given in [67]. 

Inequality (14), above, is deeply linked with the inequality 

     1H H
f n f   ,               (15) 

through Hardy’s inequality : 

1 (0)
W H

f f f   , 

for all f W , (see [62]). 

Inequality (15) is (shown and) used by R. J. LeVeque and L. N. Trefethen in [145] with 

2  , and later by M. N. Spijker in [149] with 1   (an improvement) so as to apply it to 

the Kreiss Matrix Theorem in which the power boundedness of n n  matrices is related 

to a resolvent condition on these matrices. 

Section (4.2): A Bernstein Type Inequality to Rational Interpolation in the Dirichlet 

Space 

Let { :| | 1}z z    be the unit disc of the complex plane and let Hol ( )  be the 

space of holomorphic functions on . Let also X  and Y  be two Banach spaces of 

holomorphic functions on the unit disc , , Hol( )X Y  . Here and later on, H   stands for 

the space (algebra) of bounded holomorphic functions in the unit disc  endowed with 

the norm sup | ( ) |zf f z
 . We suppose that 1n   is an integer, [0,1)r   and we 

consider the two following problems. 

Problem 1. Let n  be the complex space of analytic polynomials of degree less or equal 

than n , and 

,

1
: , , ( ) 0n r n

p
q d p d q q

q r
 

 
      
 

, 

(where d p  means the degree of any np ) be the set of all rational functions in  of 

degree less or equal than 1n  , having at most n  poles all outside of 1
r

. Notice that for 

1n  , we get ,0 1n n . Our first problem is to search for the “best possible” constant 

, ( , )n r X Y  such that 

, ( , )n rX Y
f X Y f   

for all ,n rf  . 

Problem 2. Let 1{ , , }n    be a finite subset of . What is the best possible 

interpolation by functions of the space Y  for the traces |f   of functions of the space X , in 

the worst case? The case X Y  is of no interest, and so one can suppose that either 

Y X  or X  and Y  are incomparable. More precisely, our second problem is to compute 

or estimate the following interpolation constant 

 | |
,|| || 1

( , , ) sup inf :
X

Y
f X f

I X Y f 
 

 g g . 

We also define 

, ( , ) sup{ ( , , ) : card , , }n r X Y I X Y n r         . 

Bernstein-type inequalities for rational functions are applied 
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1.1. in matrix analysis and in operator theory (see “Kreiss Matrix Theorem” [145, 

149] or [152, 67] for resolvent estimates of power bounded matrices), 

1.2. to “inverse theorems of rational approximation” using the classical Bernstein 

decomposition (see [151, 14, 1]), 

1.3. to effective H   interpolation problems (see [65] and our Theorem (4.2.6) below 

in Subsection d), and more generally to our Problem 1. 

We can give three main motivations for Problem 2. 

2.1. It is explained in [65] (the case Y H  ) why the classical interpolation 

problems, those of Nevanlinna-Pick (1908) and Carathéodory-Schur (1916) (see [62] for 

these two problems), on the one hand and Carleson’s free interpolation problem (1958) 

(see [63]) on the other hand, are of the nature of our interpolation problem. 

2.2. It is also explained in [65] why this constrained interpolation is motivated by 

some applications in matrix analysis and in operator theory. 

2.3. It has already been proved in [65] that for 2X H  and Y H  , 

     2

,

1
( , ) 2

4 2 1 1
n r

n n
H H

r r

 
 

.             (16) 

The above estimate (16) answers a question of L. Baratchart (private communication), 

which is part of a more complicated question arising in an applied situation in [58] and 

[59]: given a set   , how to estimate 2( , , )I H H   in terms of card( )n   and 

max | | r     only? 

Now let us define some Banach spaces X  and Y  of holomorphic functions in  which 

we will consider throughout this section. From now on, if Hol( )f   and k  , ˆ( )f k  

stands for the thk  Taylor coefficient of f . 

1. The standard Hardy space 2 2( )H H , 

 2 22
2

0 1

Hol( ) : sup ( ) ( )
H

r

H f f f rz dm z
 

      

where m  stands for the normalized Lebesgue measure on { :| | 1}z z   . An 

equivalent description of the space 2H is 
1
22

2
2

0 0

ˆ ˆ( ) : ( )k

H
k k

H f f k z f f k
 

 
  

      
   

  . 

2. The standard Bergman space 2 2( )a aL L , 

2 22
2

1
Hol( ) : ( ) ( )a L

a
L f f f z dA z



 
     
 

 , 

where A  is the standard area measure, also defined by 
1
22

2
2

0 0

1ˆ ˆ( ) : ( )
1

k

a L
a

k k

L f f k z f f k
k 

 
  

         

  . 

3. The analytic Besov space 
1
2

2,2B  (also known as the standard Dirichlet space) defined 

by 

1
2 1

2
2,2

1
22

2,2

0 0

ˆ ˆ( ) : ( 1) ( )k

B
k k

B f f k z f k f k
 

 
  

       
   

  . 

Then if 
1
2

2,2f B , we have the following equality 

      1
2
2,2

2 2 2

2 2L H
aB

f f f  ,              (17) 
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which establishes a link between the spaces 
1
2

2,2B  and 2

aL . 

Here and later on, the letter c  denotes a positive constant that may change from one 

step to the next. For two positive functions a  and b , we say that a  is dominated by b , 

denoted by ( )a O b , if there is a constant 0c   such that a cb ; and we say that a  and b  

are comparable, denoted by a b , if both ( )a O b  and ( )b O a  hold. 

Problem 1. Our first result (Theorem (4.2.5), below) is a partial case ( 2p q  , 1
2

s  ) of 

the following K. Dyakonov’s result [142]: if [1, )p  , (0, )s   , [1, ]q   , then there 

exists a constant ,s 0pc   such that 

    1

, , ,s( , ) sup
ss q

n r p p p H
B H c B 

  ,              (18) 

where   is such that 1 1s
q p   , and the supremum is taken over all finite Blaschke 

products B  of order n  with n  zeros outside of 1
r

. Here ,

s

p pB  stands for the Hardy-Besov 

space which consists of analytic functions f  on  satisfying 

 
,

1
( ) 1( ) ( )

0

(0) 1 ( ) ( )s
p p

n
pn s pk n

B
k

f f w f w dA w


 



      . 

For the (tiny) partial case considered here, our proof is different and the constant 1
2

2,
c , is 

asymptotically sharp as r  tends to 1  and n  tends to  . 

Problem 2. Looking at 2.3, we replace the algebra H 
 by the Dirichlet space 

1
2

2,2B . We 

show that the “gap” between 2X H  and Y H   (see (16)) is asymptotically the same 

as the one which exists between 2X H  and 
1
2

2,2Y B . In other words, 

     
1
22 2

, 2,2 ,( , ) ( , )
1

n r n r

n
H B H H

r




.             (19) 

We first give some definitions introducing the main tools used in the proofs of Theorem 

(4.2.5) and Theorem (4.2.6). After that, we show these theorems. 

From now on, if 1{ , , }n     is a finite subset of the unit disc, then 

1

n

j
j

B b 



  

is the corresponding finite Blaschke product where 
1

z
z

b 
 




 ,  . In Definitions (4.2.1), 

(4.2.2), (4.2.3) and in Remark (4.2.4) below, 1{ , , }n    is a sequence in the unit disc 

 and B  is the corresponding Blaschke product. 

Definition (4.2.1)[150]: For [1, ]k n , we set 1

1 k
k z

f


 , and define the family 1( )k k ne   , 

(which is known as Malmquist basis, see [43]), by 

     1
1

1 2

f
e

f
  and 

1

1 2

k
k

k
j

j k

f
e b

f






 
  
 
 ,              (20) 

for [2, ]k n ; we have 
1

2 2

2
(1 | | )k kf 



  . 

Definition (4.2.2)[150]: The model space BK


. We define BK


to be the  -dimensional 

space: 

     2 2 2( )BK B H H B H
  

  .              (21) 

Definition (4.2.3)[150]: The orthogonal projection BP


 on BK


. We define BP


 to be the 

orthogonal projection of 2H  on its n -dimensional subspace BK


. 
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Remark (4.2.4)[150]: The Malmquist family 
1( )k k ne  

 corresponding to   is an 

orthonormal basis of 
BK


. In particular, 

      2

1

( ,e )
n

B k kH
k

P e




  ,               (22) 

Where 2( , )
H

   means the scalar product on 2H . 

Theorem (4.2.5)[150]: (i) Let 1n   and [0,1)r  . We have 

    2 2

,( , ) ( , ) ( , )
1 1

n r a

n n
a n r L H A n r

r r
 

 
,                (23) 

where 
1
21

( , ) 1
r

a n r
n

 
  
 

 and 
1
21

( , ) 1A n r r
n

 
   
 

.  

(ii) Moreover, the sequence 
2 2

,

1

( , )n r a

n

L H

n


 
 
 

 

is convergent and there exists a limit 

      
2 2

, ( , ) 1
lim

1

n r a

n

L H r

rn





.              (24) 

for all [0,1)r  . 

Notice that it has already been proved in [64] that there exists a limit 

      
2 2

, ( , ) 1
lim

1

n r

n

H H r

n r





,              (25) 

for every r , 0 1r  . 

Proof. (i). 1) We first show the the right-hand side inequality of (23). Using both 

Cauchy-Schwarz inequality and the fact that ( ) ( 1) ( 1)f k k f k     for all 0k  , we get 

2

2 2 2 22

0 0 1

| ( ) | (k 1) | ( 1) |
( )

1 1aL
k k k

f k f k
f k f k

k k  

  
   

 
    

1 1
2 22 2 22 2 2

2 2 2,

1 1

( ) ( ) ( , )n rH H H
k k

k f k f k f f H H f
 

   
     

   
  , 

and hence, 
2 2

2 2, ( , )n rL H
a

f H H f , 

which means 
2 2 2 2

, ,( , ) ( , )n r a n rL H H H . 

Then it remains to use [64]: 

2 2

,

1
( , ) 1

1
n r

n
H H r

rn

 
   

 
, 

for all 1n   and [0,1)r  . 

2) The proof of the left-hand side inequality of (23) repeates the one of [64, (i)] (for the 

left-hand side inequality) excepted that this time, we replace the Hardy norm 2H
  by the 

Bergman one 2
aL

 . Indeed, we use the same test function 
2

1
2(1 ) 1

1

r n

n rrz
e b 


 (the thn  vector of 

the Malmquist family associated with the one-point set , { , , , }n r

n

r r r   see Definition 
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(4.2.5)) and show by the same changing of variable 
rb (in the integral on the unit disc  

which defines the 2

aL −norm) that 

2

2

1
1

1
n L

a

n r
e

r n

 
   

  
, 

which gives 
1
2

2 2

,

1
( , ) 1

1
n r a

n r
L H

r n

 
  

  
. 

Here are the details of the proof. We have n nb
r

e K  and 2n H
e , (see [43], Malmquist-

Walsh Lemma). Moreover, 
1 1 1

2 2 22 2 2
1 2 1 2

12
2 2

(1 ) (1 ) (1 )
( 1) ( 1)

(1 ) 1 1(1 )

n n n n

n r r r r r r r

r r r r r
e b n b b b b n b b

rz rz rzr

     
         

  

, 

since 
2 1

2(1 )

r
r

rz
b 


  . Then, 

1
2 2

1 2

1
2 2

(1 )
( 1)

1(1 )

n n

n r r r

r r
e b b n b

rzr

 
 


     

  

, 

and 
2

1
2 2

2 2 1 2
2 1

2 2

1 (1 )
( ) ( ( )) ( 1) ( ( )) ( )

2 1(1 )

n n

n r r rL
a

r r
e b w b w n b w dm w

rwr

 
    


  

2
1

2 222 2

1
2 2

1 (1 )
( ) ( ( )) ( ) ( 1) ( )

2 1(1 )

n

r r r

r r
b w b w b w n dm w

rwr

 
   


  

which gives, using the variables ( )ru b w , 
2

1
2 222 2

2 1
2 2

1 (1 )
( 1) ( )

2 1 ( )(1 )

n

n L
a

r

r r
e u u n dm u

rb ur

 
    


 . 

But 
21 ( ) 1

1 1
1 rz r r z r

r rz rz
rb    

 
    and 

22 (1 )1
2 2(1 ) 1r

rzr
r r

rb r
b b 

 
    . This implies 

2
1

2 222 2
2 1 2

2 2

1 (1 )
( 1) (1 ) ( )

2 1(1 )

n

n L
a

r r
e u u n ru dm u

rr

 
     


  

2 22

2

1 1
( ( 1)(1 )) ( )

(1 ) 2

nu ru n ru dm u
r 

    
  , 

which gives 

2 1 2
2 2

1

(1 )
n nL

a
e

r

 



, 

where 2( ( 1)(1 ))n

n z rz n rz      . Expanding, we get 
2 2 2 1( 1 ) ( 1) (n 1)n n n n

n z rz n rz nrz z nrz n z nrz                 , 

and 
2 2

2 2
2 2 2

1 ( 1) 1
( (1 ) 1)

(1 ) 1 (1 )
n L

a

n n
e r n r

r n n r

 
      

   
 

    
1 1

(1 ) 1
(1 )(1 r) (1 )

n n r
r

r n r n

   
       

     
, 
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which gives 
1
2

2 2

,

1
( , ) 1

1
n r a

n r
L H

r n

 
  

  
. 

Proof of (ii). This is again the same proof as [64, (ii)] (the three steps). More precisely in 

Step 2, we use the same test function 
2

0

( 1)
s

k

n k

k

f e






  , 

(where ( )ns s  is defined in [64]), and the same changing of variable rb  in the integral 

on . Here are the details of the proof. 

Step 1. We first show the right-hand-side inequality: 

2 2

,

1 1
limsup ( , )

1
n r a

n

r
L H

rn





, 

which becomes obvious since 

2 2 2 2

, ,

1 1
( , ) ( , )n r a n rL H H H

n n
 . 

and 

2 2

,

1 1
( , )

1
n r

r
H H

rn





, 

as n  tends to infinity, see [152]. 

Step 2. We now show the left-hand-side inequality: 

2 2

,

1 1
lim inf ( , )

1
n r a

n

r
L H

rn





. 

More precisely, we show that 

2, 2

1 1
lim inf

1K Hn n Lb ar

r
D

rn
 
    
 





. 

Let nb
r

f K . Then, 

1 2 1 2 2

2 2

1
( , ) ( 1)( , ) ( , )

(1 ) (1 )

n n
r

k k k kH H H
k kr

r b
f f e e k f e e r f e e

rz b rz 


    

 
   

2

2 2

1 2

1 1
( , ) ( 1)( , )

(1 ) (1 )( )

n n

k k k kH H
k k

r
r f e e k f e e

rz rz z r 


  

  
   

       

31
2 22 2

1 1

2 22 2
1 2

(1 ) (1 )
( , ) ( 1)( , )

(1 ) (1 ) ( )

n n
k k

k r k rH H
k k

r r r
f e b k f e b

rz rz z r

 

 

 
  

  
   

     

1
2 2

1 1

2 21
2 2 1 2

(1 )
( , ) ( 1)( , )

( )(1 )

n n
k k

r k r k rH H
k k

r r
b f e b k f e b

z rr

 

 

 


    
  

  . 

Now using the change of variables ( )rv b u , we get 
2

1
2 2

2 2 1 1
2 2 21

2 2 1 2

(1 )
( ) ( , ) ( 1)( , )

(1 )

n n
k k

n r k r k rL H Ha
k k

r r
f b u f e b k f e b du

u rr

 

 


   


   

2
1

2 2
1 1

2 21
2 2 1 2

(1 )
( , ) ( 1)( , )

( )(1 )

n n
k k

k kH H
k kr

r r
f e v k f e v dv

b v rr

 

 


  


  . 

Now, 
2(1 ) ( 1)

1 1

r z r rz z r

r rz rz
b r    

 
   , which gives 
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2
1

2 2
2 1 1

2 2 21 2
2 2 1 2

(1 )
( , ) (1 ) ( 1)( , )

( 1)(1 )

n n
k k

n k kL H Ha
k k

r r
f f e v rv k f e v dv

v rr

 

 


    


   

2

1 2

2 22
1 2

1
( , ) (1 ) ( 1)( , )

1

n n
k k

k kH H
k k

r f e v rv k f e v dv
r

 

 

   


   

2
1 2

1 2 2 22
0 0

1
( , ) (1 ) ( 1)( , )

1

n n
k k

k kH H
k k

r f e v rv k f e v dv
r

 

 

 

   


  . 

Thus, 

 
2 1

2 2 1 2
2 20 02

1
(1 ) ( 1)( , ) ( , )

(1 )

n n
k k

k kH H
k kL LH a a

rv k f e v r f e v
f n r

 

 

 

 
   

   
             (26) 

2 12

2 2 1 2
2 22 0 02

1 1
(1 ) ( 1)( , ) ( , )

(1 )

n n
L k ka

k kH H
k kL LH H a a

fr
rv k f e v r f e v

n f f n r

 

 

 

  
     

   
  . 

Now, 
2 2 2

1

2 2 2 2 2 2

0 0 0

(1 ) ( 1)( , ) ( 1)( , ) ( 1)( , )
n n n

k k k

k k kH H H
k k k

rv k f e v k f e v r k f e v
  



  

  

         

   
2 1

2 2 1 2

0 0

( 1)( , ) ( , )
n n

k k

k kH H
k k

k f e v r k f e v
 

 

 

     

2

2 2 3 2 2 2 1 2

2

( , ) 2( , ) [( 1)( , ) ( , ) ]
n

k

k kH H H H
k

f e f e v k f e rk f e v


 



       

1

2 2 2[( , ) ( 1)( , ) ]n

nH H
r f e v n f e v     

2

2 2 3 2 2 2 2 2 1 2

2

( , ) [( , ) ( , ) ] [( 1)( , ) ( , ) ]
n

k

k kH H H H H
k

f e f e r f e v k f e rk f e v


 



        

1

2( 1)( , ) n

n H
r n f e v   , 

which gives 

 
2

2 2 2

2 2 2 2 3 2 2 2
20

1
(1 ) ( 1)( , ) ( , ) ( , ) ( , )

2

n
k

k H H H H
k L

a

rv k f e v f e f e r f e






                  (27) 

222
4 2

2 2 2 1 2

2

1
( 1) ( , ) ( , ) ( , )

1

n

n k kH H H
k

rk
r n f e f e f e

n k



 



   


 . 

On the other hand, 

   

1
1 1 22

21 2 1 2
20 0

1
( , ) ( , )

1

n n
k

k k HH H
k kL

a

r f e v r f e r f
k

 

 

 

 
   

   ,              (28) 

Now, let ( )ns s  be a sequence of even integers such that 

limn ns    and ( )ns o n  as n  . 

Then we consider the following function f  in nb
r

K : 

2

0

( 1)
s

k

n k

k

f e






  . 

Applying (27) with such an f , we get 
2 222 2

4

2 2 2 2 1 2
20 2

( 1) ( )
(1 ) ( 1)( , ) ( 1) ( , ) ( , )

1

n n
k

k n l n lH H H
k lL

a

n r n l
rv k f e v r n l f e f e

n n l

 

    

 

 
      

 
   

setting the change of index l n k   in the last sum. This finally gives 
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2 222 1
4

2 2
20 2

( 1) ( )
(1 ) ( 1)( , ) ( 1) 1

1

n s
k

k H
k lL

a

n r n l
rv k f e v r n l

n n l

 



 

 
       

 
   

22 1
4

2

( 1) 1
( 1) 1 1

1

s

l

n
r n l r

n n l





   
          

 , 

and 

2

2
2

2 2

0

(1 ) ( 1)( , )

a

n
k

k H
k L

rv k f e v






    

2
2

4 ( 1) 1
( 1 2 1)( ( 1) 1) 1 1

( 1) 1

n
r s n s r

n n s

  
           

    
 

22
4 ( 1) 1

( ) 1 1
n

r s n s r
n n s

   
        

. 

In particular, 
22

2

2 2
20

1
(1 ) ( 1)( , ) ( ) 1 1

n
k

k H
k L

a

rv k f e v s n s r
n s







  
         

 . 

Now, since 
2

2 3nH
f s  , we get 

2
2

2 22

02 2

1
lim inf (1 ) ( 1)( , )

n
k

k Hn
k

H

rv k f e v
n f








    

2

2 2

2 22

2

1 1
lim inf ( ) 1 1

H Hn

H

f n f r
n sn f

  
        

 

2

21
lim 1 1 1 (1 )n

n

s
r r

n n s

    
             

. 

On the other hand, applying (28) with this f , we obtain 
1

1 2
202

1
lim ( , ) 0

n
k

k Hn
k LH a

r f e v
n f








  

Thus, we can conclude passing after to the limit as n  tends to +∞ in (26), that 

22
1

2 22
22 0

1 1 1
lim inf lim inf (1 ) ( 1)( , ) 1

1 1H

n
L ka

kf n Hn n
k LH a

fr r
rv k f e v r

n f r r




 



 
     

 
 , 

and 

2

2

2

1 1
lim inf lim inf 1

L
a

K Hn nnbr H

fr r
D r

n n f 

 
   . 

Step 3. Conclusion. Using both Step 1 and Step 2, we get 

2 2 2 2

, ,

1 1
limsup ( , ) liminf ( , ) 1n r a n r a

nn

r r
L H L H r

n n

 
   , 

which means that the sequence  2 21
,2 1

( , )n r a
n

L H


 is convergent and 

2 2

,

1 1
lim ( , )

1
n r a

n

r
L H

n r





. 

Theorem (4.2.6)[150]: Let 1n  , and [0,1)r  . Then, 

     
11

2 2 2 2 22
, 2,2 ,( , ) ( ( , )) 1n r n r aH B L H    .             (29) 
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Let     and  the  corresponding  one-point  interpolation  set  
, { , , , }n

n

    . We  

have, 

    

1
2 2| | 221

2 2
, 2,2

(1 | |)
( , , )

1 | | 2(1 | |)

n n
n

n
I H B








 

   
  

  
.             (30) 

In particular, 

  

1 1
2 21

2 2
, 2,2

1 1 1 1
1 ( , ) 1

2 1 1
n r

r n r n
H B r

n r n rn

     
               

,               (31) 

   

1 1
2 22 21

, 2,2 , 2,22
( , ) ( , ) 1

liminf limsup
1 1

r
n r n r

n n

H B H B r

r rn n



 


  

 
,            (32) 

and 

 
1 1

2 22 2
, 2,2 , 2,2

1 1

2 1 1
lim inf lim inf ( , ) limsup limsup ( , ) 2

2
n r n r

n nr r

r r
H B H B

n n   

 
   .           (33) 

Proof. Proofs of inequality (29) and of the right-hand side inequality of (31). Let   be a 

sequence in , and B B  the finite Blaschke product corresponding to  . If 2f H , we 

use the same function g  as in [65] which satisfies | |f g . More precisely, let 

B BP f K g  (see Definitions (4.2.2), (4.2.3) and Remark (4.2.4) above for the 

definitions of BK  and BK ). Then 2f BH g  and using the definition of 2 2

, ( , )n r aL H  
2 22 2 2

2 2,( ( , ))n r aL H
a

L H g g . 

Now applying the identity (17) to g  we get 

1
2
2,2

2 22 2 2
2,( ( , )) 1n r a H

B

L H   g g . 

Using the fact that 2 2 2BH H H
P f f g , we finally get 

1
2
2,2

1
2 2 2 2

2,( ( , )) 1n r aB H
L H f   g , 

and as a result, 

 
1
2

1
2 2 2 2 2

2,2 ,, , ( ( , )) 1n r aI H B L H     . 

It remains to apply the right-hand side inequality of (23) in Theorem (4.2.5) to show the 

right-hand side one of (31). 

Proof of inequality (30). 1) We use the same test function 
1 1

12

0

(1 ) (1 )
n

k

k

f b z 






   , 

as the one used in the proof of [65] (the lower bound[65]). f  being the sum of n  elements 

of 2H which are an orthonormal family known as Malmquist’s basis (associated with 

, { , , , }n

n

    , see Remark (4.2.4) above or [43]) , we have 
2

2H
f n . 

  2) Since the spaces 2H  and 
1
2

2,2B are rotation invariant, we have 
1 1
2 22 2

, 2,2 , 2,2( , , ) ( , , )n nI H B I H B    for every  ,   with r   . Let r   . To get a 

lower estimate for 1 1
2 2
2,2 2,2/ nB b B

f


consider g  such that Hol( )nf b g , i.e. such that 

Hol( )nf b b z  g . 

3) First, we notice that 
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1
2
2,2

2 2 2 2 2

2 2 2 2( ) .( )
L H L H
a aB

b b b b b b     
     g g g g g  

        
2 2 2 2 2

2 2( ) ( ( )) ( )
H H

b u b u du b w dw b   
     g g g g , 

using the changing of variable ( )w b u . We get 

1 1
2 2
2,2 2,2

2 2 2 2 2 2

2 2 2 2L H H H
aB B

b b b  
    g g g g g g  

and 

1 1 1
2 2 2
2,2 2,2 2,2

2 2 2 2 2 2

2 2 2H H H
B B B

b b b b       g g g g g g . 

Now, we notice that 
1

2
1 12 1

2
2

0 1

(1 )
(1 ) 1 (1 )

1 ( )

n n
k k n

k k

f b z z z
b z






  



 


 

  
         
   

11
2 2

1

(1 ) 1 (1 )
n

k n

k

r r z rz






 
     

 
 . 

4) Next, 

1
2
2,2

1 12 2 22 2

2

1 1 1

( ) ( ) ( )
n n

H
B k k k

b b k b k k b k k f b k    

 

  

     g g g g , 

since ( ) ( )b k f b k g , [0, 1]k n   . This gives 

1
2
2,2

1
2 2 2

2 2
1

1
(1 )

1

n

H
B k

b b r k
r

 





 
      

g g  

2
2

22

(1 ) ( 1) 1 ( 1) 1 ( 1)

1 2 1 2 1 2 H

r n n r n n r n
f

r r r

     
  

  
, 

for all 2n   since 
2

2H
f n . Finally, 

1
2
2,2

2 2

2

1 1
1

1 2 H
B

n r
f

r n

  
  

  
g . 

In particular, 
1
21

2 2
, 2,2

1 1
( , ) 1

1 2
n r

n r
H B

r n

  
      

. 

Extension of Theorem (4.2.5) to spaces 2,2

sB , 0s  . Using the techniques developped 

in the proof of our Theorem (4.2.5) (combined with complex interpolation (between 

Banach spaces) and a reasoning by induction), it is possible both to precise the sharp 

numerical constant 2,sc  in K. Dyakonov’s result (18) (mentioned above in paragraph d. of 

the Introduction) and to show the asymptotic sharpness (at least for 1
2

s   ) of the 

right-hand side inequality of (18). In the same spirit, we would obtain that there exists a 

limit: 

    
1 2

, 2,2( , ) 1
lim

1

ss

n r

sn

B H r

n r





 
  

 
.              (34) 

Our Theorem (4.2.5) corresponds to the case 1
2

s  . 

Extension of Theorem (4.2.6) to spaces 2,2

sB , 0s  . The proof of the upper bound in 

our Theorem B can be extended so as to give an upper (asymptotic) estimate of the 

interpolation constant 2

, 2,2( , )s

n r H B , 0s  . More precisely, applying K . Dyakonov’s 

result (18) (mentioned above in paragraph d. of the Introduction) we get 
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   2

, 2,2( , )
1

s

s

n r s

n
H B c

r

 
  

 
, with 

2,s sc c ,              (35) 

where 2,sc  is defined in (18) and precised in (34). Looking at the above comment 1, 

(1 )s

sc r  for sufficiently large values of n . Our Theorem (4.2.6) corresponds again to 

the case 1
2

s  . In this Theorem B, we show the sharpness of the right-hand side 

inequality in (35) for 1
2

s  . However, for the general case 0s  , the asymptotic sharpness 

of 
1

( )sn
r

 as 1r   and n   is less obvious. Indeed, the key of the proof (for the 

sharpness) is based on the property that the Dirichlet norm (the one of 1 2

2,2B ) is “nearly” 

invariant composing by an elementary Blaschke factor b , as this is the case for the H   

norm. A conjecture given by N. K. Nikolski is the following: 

    
1
22 1

, 2,2
1

1 2

if s
( , )

( ) if s

sn
s r

n r
sn

r

H B 



 




,               (36) 

and is due to the position of the spaces 2,2

sB , 0s   with respect to the algebra H  . 

Section (4.3): Rational Functions in Weighted Bergman Spaces 

Estimates of the norms of derivatives for polynomials and rational functions (in 

different functional spaces) is a classical topic of complex analysis (see surveys by A.A. 

Gonchar [7], V.N. Rusak [8], and P. Borwein and T. Erd´elyi [140]). Such inequalities 

have applications in many domains of analysis; to mention just some of them: 1) matrix 

analysis and in operator theory (see “Kreiss Matrix Theorem” [145, 149] or [152, 67] for 

resolvent estimates of power bounded matrices), 2) inverse theorems of rational 

approximation (see [151, 14, 1]), 3) effective Nevanlinna–Pick interpolation problems 

(see [65, 53]). 

Here, we present Bernstein-type inequalities for rational functions f  of degree n  with 

poles in { : 1}z z  , involving Hardy norms and weighted Bergman norms. Let n  be the 

complex space of polynomials of degree less or equal to 1n  . Let { : 1}z z    be 

the unit disc of the complex plane and { : 1}z z    its closure. Given [0,1)r  , we 

define 

,

1
: , , d d , ( ) 0n r n

p
p q p q q

q r
 

 
     
 

, 

(where d p  denotes the degree of np ), the set of all rational functions in  of degree 

less or equal than 1n  , having at most n  poles all outside of 1
r

. Notice that for 0r  , 

we get ,0 1n n . 

We denote by Hol( )  the space of all holomorphic functions on . From now on, if 

Hol( )f   then for every (0,1)   we define 

( ): ff    , 
1




 . 

We consider the two following scales of Banach spaces Hol( )X . 

a. The Hardy spaces ( )p pH H , 1 p   : 

0 1

Hol( ) : sup ( ) ( )
ppp

p
H

H f f f dm


 
 

 
     
 

 , 

where m  stands for the normalized Lebesgue measure on { : 1}z z   . As usual,we 

denote by H   the space of all bounded analytic functions in . 
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b. The radial weighted Bergman spaces ( )p

aL w , 1 p    (where ”a ” means analytic), 

 
1

( ) 0
( ) Hol( ) : ( ) ( ) ( )d

ppp
pa L
a

L w f f w f dm         w
, 

where the weight w  satisfies 0w   and 
1

0
( )dw p   . For the classical power weights 

( ) ( ) (1 )w w 

     , 1   , we have  ( ) (1 ) d ( )p p

a aL w L z A z

   , A being the 

normalized area measure on . 

For general properties of these spaces we refer to [156, 157]. 

From now on, for two positive functions a  and b , we say that a  is dominated by b , 

denoted by a b , if there is a constant 0c   such that a cb ; and we say that a  and b  are 

comparable, denoted by a b , if both a b  and b a . 

By Bernstein-type inequalities for rational functions one usually understands the 

inequalities of the form 

     , ( )X YX Y
f n f  ,     nf  ,              (37) 

where n  is the set of all proper rational functions of degree at most n  with the poles 

in { 1}z  , X  and Y  are some normed spaces of functions analytic in the unit disc, and   

is some increasing (often polynomially growing) function. Thus, for a given pair of the 

function spaces X  and Y , the question is to determine the dependence on n  for the norm 

of the differentiation operator ( , )n X
  to Y . Bernstein-type inequalities of E.P. 

Dolzhenko [18] and A.A. Pekarskii [1] are of this form; e.g., it is shown in [18] that 

1 1
1

H
f c n f


 , 1 2

2,2

1
2

2B
f c n f


 , nf  , 

where 1

1H  is the Hardy–Sobolev space, and 1 2

2,2B  is the Besov (or Dirichlet) space. Let us 

also mention that this problem is a part of a more general one given by (see [155]). 

Looking at (37), we notice that for some choices of X  and Y , we have , ( )X Y n    

for every 1,2,n  . Indeed, it may happen for instance when the poles of our function f  

are allowed to be arbitrary close to the torus : we can observe this phenomenon for 

example in the special case pX Y H  , 1 p    but also when ( )p

aX Y L w  , 

1 p   . This observation leads us to come back on the problem in (37) and to state it 

more generally: that is replacing n  by ,n r  (for any fixed [0,1)r  ) and , ( )X Y n  by 

, ( , )X Y n r  so that to focus on this phenomenon of “natural dependence on the parameter r

”. For most of the classical cases already studied by others (for instance E. P. Dolzhenko 

[18], A. A. Pekarskii [1], V.V. Peller [14]) the spaces X  and Y  are such that 

(0,1) ,sup ( , )r X Y n r   : in this case we can set , (0,1) ,( ) sup ( , )X Y r X Yn n r  . As a 

consequence, if (0,1) ,sup ( , )r X Y n r   , it may be of interest to search (as a continuation of 

the investigations of the second author [64, 150]) for the “best possible” , ( , )X Y n r  in an 

asymptotically sense, that is to say as n   and 1r  . This question has already been 

answered for the case pX Y H  , 1 p    by K. M. Dyakonov [34] see (38) below. In 

this section, we answer the same question for the case ( )p

aX Y L w  , 1 p   . Let us 

give a general formulation of our problem for the special case X Y  for which we set 

, ,( ) ( , )n r X YX n r : given a Banach space X  of holomorphic functions in , we are 

searching for the best possible constant , ( )n r X  such that 

, ( )n rX X
f X f  ,    ,n rf  . 



 103 

For the case where pX H  is a Hardy space, an estimate which gives a correct order 

of growth for 
, ( )n r X  was obtained by K.M. Dyakonov [34] (as a very special case of 

more general results): for any [1, ]p   there exist positive constants 
pA  and 

pB  such that 

     
, ( )

1 1

p

p n r p

n n
A H B

r r
 

 
              (38) 

for all 1n   and [0,1)r  . More precisely, the upper estimate for (1, )p   is treated in 

[34], the case 1p  , in [34], and the case p    (known much earlier) is given in [140]. 

The below estimate follows trivially when applying the differentiation operator to the test 

function ( ) (1 ) nf z rz   . 

For the case 1p   an asymptotically sharp result was obtained later in [64]: for any 

(0,1)r   there exists the limit 
2

, ( ) 1
lim

1

n r

n

H r

n r





. 

Related results about Bernstein-type inequalities in a more general setting of the so-

called model or star invariant subspaces may be found in [142],[60], and [55, 154]. 

We obtain estimates for the derivatives of rational functions with respect to weighted 

Bergman norms. It turns out that there is an essential difference between slowly 

(polynomially) decreasing weights and fast (superpolynomially) decreasing weights. In 

the first case we have a two-sided estimate analogous to (38), while in the second case 

only the above estimate remains true. Let us give the precise definitions. Recall that w  is 

always an integrable nonnegative function on (0,1) . 

Definition (4.3.1)[153]: The weight w  is said to be  -polynomially decreasing if there 

exists 0   such that 

(1 ) ( )w   , 

is increasing on 0[ ,1)r  for some 00 1r  . We say that w  is polynomially decreasing if it is 

 -polynomially decreasing for some 0  . 

Definition (4.3.2)[153]: The weight w  is said to be super-polynomially decreasing if for 

any 0   there exists ( ) (0,1)r    such that the function 

(1 ) ( )w   , 

decreases on the interval [ ( ),1)r  . 

Typical example of the weights from the first class are given by ( ) (1 )w r r   , 1  

, or ( ) (1 ) ( log(1 ) 1)w r r r     , 1   ,   . The weights ( ) exp( (1 ) )w r c r    , 0c  , 

0   are super-polynomially decreasing. 

Our first result may be considered as an analogue of Dyakonov’s theorem for the 

radial weighted Bergman spaces. 

Theorem (4.3.3)[153]: Let 1 p    and let w  be an integrable nonnegative function on 

[0,1) . Then there exists a positive constant K  depending only on p  (but not on the weight 

w ) such that 

    , ( ( ))
1

p

n r a

n
L w K

r



               (39) 

for all [0,1)r   and 1n  . Moreover, if we fix (0,1)r   and let n  tend to infinity, then we 

have 

    , ,( ( )) ( ( ))
lim inf limsup

1 1

p p

n r a n r a

n n

L w L wKr K

r n n r 
  

 
,            (40) 
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where K  is, as K , a positive constant depending only on p . 

Proof. First, we notice that for any 0 1  , 

   
( )

( ) ( )d ( )dp
a

p p

L w u C
f f w m



    
                (41) 

for all ( )p

af L w , where { : 1}C z z    . Let ,n rf   with [0,1)r   and 1n  . Using 

(41) with 1
2

   we get 

 1
1 2 2

1

( )

1
( ) ( )d ( )d ( ) ( ) dp p

a

pp p

pL w HC
f f w m w f 


      


    . 

Now using the fact that , ,n r n rf     for every (0,1)  , we get 

   1 1
2 2

1 1

,

1
( ) ( ) d (2 ( )) ( ) d

p p

pp
p p

n rp H H
w f H w f      


    

    , ( )
( ( )) p

a

pp p

n r L w
H f . 

In particular, using the right-hand side inequality of (38), we get 

, ( ( ))
1

p

n r a p

n
L w K

r



 

for all [1, )p  , and ( 1, )    , where pK  is a constant depending on p  only. 

Now, let us show (40). Let 

,

1
( )

(1 )
n n rn

f z
rz

 


, 

and { : 1 2 1 }D z rz r     . We claim that 

( )
( ) ( )d ( )p

a

p p

n nL w D
f f z w z A z , n  , 

and, analogously, 

( )
( ) ( )d ( )p

a

p p

n nL w D
f f z w z A z  , n  . 

Indeed, by a very rough estimate 

1

\
( ) ( )d ( )

2 (1 )

p

n pn pnD

C
f z w z A z

r


 , 

where 1 0C   depends only on w . On the other hand, if we put 3
2

{ : 1 1 }D z rz r     , 

then 
1

( ) ( )d ( ) ( )d ( )
(3 2) (1 )

p

n pn pnD D
f z w z A z w z A z

r


  . 

Since r  (thus D  and D ) are fixed we see that 

1 1
( )d ( )

2 (1 ) (3 2) (1 )pn pn pn pn D
o w z A z

r r

 
  

  
 , n  . 

Thus, 

( )

( )

( ) ( )d ( ) ( ) ( )d ( )
p
a

p
a

p

n p pL w

n np D D
n L w

f
f z w z A z f z w z A z

f


  . 

Obviously, 

( ) ( )d ( ) ( )d ( )
1

p p
p

n pn pD D

n r
f z w z A z w z A z

rz


 


   

 
1

( )d ( ) ( ) ( )d ( )
2 (1 ) 2 (1 )1

p p p p
p

npnp p p pD D

n r n r
w z A z f z w z A z

r rrz
 

 
  . 

Thus, 
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( )

( )

lim inf
2(1 )

p
a

p
a

n L w

n
n L w

f r

f r





. 

Lemma (4.3.4)[153]: Let [0,1)r   and 1t  . We set 

( , ) 1 d ( )
t

I t r r m 


   and ( ) 1 d ( )
t

r t r m    . 

Then, 

2 1

1
( , ) ( 2)

(1 )
rt

I t r t
t




 


 

for every 2t  , and ( )rt t  is an increasing function on [0, )  for every [0,1)r  . 

Moreover, both 

( 2)rr t   and ( , )r I t r , 

are increasing on [0,1) , for all 0t  . 

Proof. Indeed, supposing that 2t  , we can write 

22

1 1
( , ) ( ) d ( )

1 1
r t

I t r b m
r r

 





 
 , 

(where 
1

( ) r z
r rz

b z 


 ). Using the fact that ( )r rb b z z  and changing the variable in the 

above integral we get 

 
22

1 1
( , ) ( ) d ( )

1 1 ( )
r t

r r

I t r b m
r rb b

 





 
  

22 2 1

1 1 1
( ) d ( ) ( 2)

1 (1 )1 ( )
r rt t

r

b m t
r trb

  


 
  

 
 , 

since 
21 ( ) 1

1 1
1 ( ) rz r r z r

r rz rz
rb z    

 
   . Now, 

2
2

0
( ) exp ln(1 2 cos ) d

2
r

t
t r r s s




 

   
 

 , 

2
2 2

0

1
( ) ln(1 2 cos )exp ln(1 2 cos ) d

4 2
r

t
t r r s r r s s




 

      
 

 , 

and 
2

2 2 2

0

1
( ) [ln(1 2 cos )] exp ln(1 2 cos ) d 0

4 2
r

t
t r r s r r s s




 

       
 

 , 

for every 0t  , [0,1)r  . Thus, r  is a convex function on [0, )  and r  is increasing on 

[0, )  for all [0,1)r  . Moreover, 
2

2

0

1
(0) ln(1 2 cos )d 0

4
r r r s s



     . 

Thus, 

( ) (0) 0r rt    ,  [0, )t   ,  [0,1)r  , 

and so r  is increasing on [0, ) . The fact that 

( , )r I t r , 

is increasing on [0,1)  for all 0t   is obvious since 

2

2

2 2

2
0

1
( , ) ( )

(1 )

k

kt
kH

I t r a t r
rz 

 


 , 

where ( )ka t  is the thk  Taylor coefficient of 2(1 ) tz  . The same reasoning gives that 

( )rr t  is increasing on [0,1) . 
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Lemma (4.3.5)[153]: If for some 
0 [0,1)r   and 0   the function 2

( )

(1 )

w





 is increasing on 

0[ ,1)r , then 

0

1 1

( ) ( , )d ( ) ( , )d
r r

w I t r w I t r         , 

for all t  such that 3t    and for all 0r r , with constants independent on t . 

Proof. Clearly, 

0

1 1

( ) ( , )d ( ) ( , )d
r r

w I t r w I t r         ,   0[ ,1)r r . 

Moreover, 

0 0

1 1

( ) ( , )d ( ) ( , )d ( ) ( , )d
r

r r r
w I t r w I t r w I t r               , 

and applying Lemma (4.3.4), 

0 0

2

2 2 1

( ) (1 )
( ) ( , )d ( )d

(1 ) (1 ( ) )

r r

rtr r

w
w I t r t

r





  
     

  




    

2

0 0

2 2
1

2 2 1 2 2 1

( ) (1 ) ( ) (1 )
( )d ( ) d

(1 ) (1 ( ) ) (1 ) (1 ( ) )

r

rt trr r

w r w r
t t

r r r r

 

 

   
   

  

 
 

     , 

because ( )uu t  is increasing for all 0t  . For the same reason, 
2

1 1

2 1 2 2 1

1 ( ) (1 )
( ) ( )d ( )d

(1 ( ) ) (1 ) (1 ( ) )
r rt tr r

w
w t t

r r



 

  
     

   




     

2

2
1

2 2 1

( ) (1 )
( ) d

(1 ) (1 ( ) )tr r

w r
t

r r





 
 

 




  . 

Now note that 

0

2 2
1

2 1 2 1

(1 ) (1 )
d d

(1 ( ) ) (1 ( ) )

r

t tr rr r

    
 

  

 


   ,      0[ ,1)r r , 

with constants independent on 3t   . Indeed, this estimate holds for 3t   , and, 

hence, by monotonicity of the function 2 1(1 ( ) )r   , for all 3t   . 

Thus, using Lemma (4.3.4) and the fact that the function (1 ) ( )w   is increasing 

on 0[ ,1)r , we obtain 

2

0 0

2

2 2 1

( ) (1 )
( ) ( , )d ( 2) d

(1 ) (1 ( ) )

r r

trr r

w r
w I t r t

r r





 
     

 


 

    

2

2
1 1

1 22 2 1 2 1

( ) (1 ) 1
( 2) d ( ) ( )d

(1 ) (1 ( ) ) (1 ( ) )
rt tr r r

w r
k t k w t

r r r





 
     

  


  

    , 

(where 1k , 2k  are positive constants which do not depend on t ), which completes the 

proof. 

The next theorem shows that for the polynomially decreasing weights the quantity 

, ( ( ))p

n r aL w  admits a below estimate of the same form. 

Theorem (4.3.6)[153]: If w  is  -polynomially decreasing, then there exists a positive 

constant K  depending only on w  and p  such that 

     , ( ( ))
1 1

p

n r a

n n
K L w K

r r
  
 

,           (42) 

where K  is defined in (39) and where the left-hand side inequality of (42) holds for all 

[0,1)r   and 3 1
p

n    . In particular, (42) holds for the classical weights 

( ) ( ) (1 )w w 

      , 1   . 

The polynomial decrease is essential and provides a sharp bound for the validity of the  
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uniform estimate (42) for all possible values of n  and r . Namely, if the weight is super-

polynomially decreasing, then (42) will fail along some sequence of radii. 

Proof. We need to show only the lower bound, the upper bound is already showed in 

Theorem (4.3.3). Let us show the minoration with the test function 1

(1 )
( ) nrz

f z


 . 

Using (41) with 0r  , we need to show that 

0

1( )
( ) ( , )d

p
a

p

L w

p p r

f
w I pn p r

n r
   


   

   
0

1

( )
( ) ( , )d

(1 ) (1 )
p
a

p

p p L wr

C C
w I pn r f

r r
    

  . 

Since 
0[ ,1)r r  and 3

p
n   , by Lemma (4.3.5) applied with t pn p   and t pn  this 

means that 
1 1

( ) ( , )d ( ) ( , )d
(1 )pr r

C
w I pn p r w I pn r

r
        

  . 

By Lemma (4.3.4), this is equivalent to the estimate 
1 1

2 1 2 1

( 2) ( 2)
( ) d ( ) d

(1 ( ) ) (1 ) (1 ( ) )

rp rp

pn p p pnr r

pn p pnC
w w

rp r rp

 
     

  

  


     

The last statement is obvious since 
1 1

2 1 2 2 1

( 2) ( 2)1
( ) d ( ) d

(1 ( ) ) (1 ) (1 ( ) )

rp rp

pn p p pnr r

pn p pn p
w w

rp r rp

 
     

  

   


     

1

2 2 1

( 2)1
( ) d

(1 ) (1 ( ) )

rp

p pnr

pn
w

r rp


  






  , 

where the last inequality is due to the fact that ( )uu t  is increasing for all 0 1u  . 

Lemma (4.3.7)[153]: Let 1n  , , [0,1)r s   and [1, ]p  . We set 

 , , ( )
( , ) sup ( ) : , , 1p

a
p s n r L s

M n r f f f     . 

Then 

    2
3

,
( , )

(1 )

n

n bp

c
M n r d

r 



,               (43) 

where 0d  , 0b  , 1c   are some absolute positive constants (may be, depending on p ). 

Remark (4.3.8)[153]: Lemma (4.3.7) is valid not only for 2
3

s  , but for every (0,1)s  , 

with constants 0d  , 0b  , 1c   depending both on s  and p . 

Proof. For every ,n rf   and   , we have 

 2 2 3
3 3 4

21 3
( ) ( ) d ( )

2 4
f f f u k u A u


 

   
    

   
 , 

where 1

1
( )

z
k z 

  is the standard Cauchy kernel associated with  , and A is the 

normalized area measure on . Applying Holder’s inequality we obtain 

   2 3 32
3 4 43

1
2 2

( )

1 3

2 2
p

p ap pa
a a

p

L
L

L L

f f k f k
 


 

   
    

   
,   , 

where p   is such that 1 1 1
p p 
  . Now, note that 

   3 3
4 4

2
2 2

3
4

1
16

1p
aL H

k k
 

 

 
   

 
. 

Finally, supposing 2
3

( )
1p

aL
f  , we obtain 
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2 1
3 2

1

( ) ( )

3
16 24

2
p
a

p

L H
f f 

 
   

 
, 

which gives 

    
 

2 1
3 2

, 2,
( , ) 24 ( , )

p
M n r M n r .               (44) 

It remains to obtain a suitable upper bound for 1
2

2,
( , )M n r . Let us show that 

    

1
2

1
2

2,

2
( , ) 2

1

n

M n r n
r



 
  

 
.               (45) 

For every ,n rf  , we have 1 1
2 2

,, n rn r
f   . If 1{1 , ,1 }n   is the set of the poles of f  

(thus, 
j r  , 1, ,j n ), then Bf K


  with 1{ , , }n r    , whereas the set 

1{2 , ,2 }n   is the set of the poles of the function 1
2

f  and 1
2

Bf K
 

  with 

1 1
12 2 2

{ , , } r
n     . Hence, there exist 1, , n    such that 

      1
2

1

n

k k

k

f e


 ,                (46) 

on , where 1( )n

k ke   is the Malmquist basis associated with the set   . Since both 1
2

f and 

1

n

k kk
e

  are meromorphic in  the equality (46) is in fact valid everywhere in . Thus, 

 
1
22

11
4

2

1 1

12
( )

1 1

jn k
k

k

k j j j

f

 
 

   



 

 
     
  ,   , 

and by the Cauchy–Schwarz inequality, 

    
 

1
2

1
21

2

2
2

11
42 2

1 1 1

12
( )

1 1

jn n k
k

k

k k j j j

f

 
 

   



  

 
   

            
 

   .            (47) 

for any   . Now, if r  and   , 

4

2 4 4

4

2 2( ) 1 3
2 ( ) 1

11 1 4(1 )
b

  



   


  

   
   

   
, 

which gives 

2 2 3 1 4 2
2 1

4 1 2(1 ) 11

r r

r r r

 



  
    

    
. 

We get 

  
 

1
2 2( 1) 2 1

2
2

11
4 2( 1)2

2
1 1 1

12 1 1 1 2
2

(1 ) 1 4 11 1

k n
jn k n

k k

k j kj j
r r r

 

   

 




  

     
                

   .           (48) 

Now we first notice that 

1
22

1 2

2

1

n

k
Hk

f


 
 

 
 . 

For any function 
0

( ) ( ) k

k
z k z 


  in 2H , one has 

1 22 2
2,2

2

0

( )
1 ( )

1 aH L B
k

k
k k

k


   



  


 , 

We now use the upper bound of [150, Theorem A, (4)]: for ,n   one has 
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1 2 2 2
2,2

2 2 2

aB L H
     

2 2 2

2 2 24
(2 )

1 1H H H

n n
r

r r
     

 
, 

which gives 

2 22
1 aH L

n
 





. 

In particular, with 1
2

f   we get 1
2

,n r
   and 

     1 1 1
2 2 22 2 2

2 2 2
1 2 a aH L L

n
f f n f

r
 


.             (49)  

We conclude from (47), (48) and (49) that for any   , 
1

12 1 2
2

1 12 1
2 22 2

1 2 1 2
( ) 2 2

4 2 1(1 )

n

n

a

n

H L

f f n f
rr







   
         

, 

that is, 
1
2

2 1
2

( )

2
( ) 2

1 a

n

L
f n f

r




 
  

 
,   . 

Taking the supremum over    and ,n rf 
 
we obtain (45). 

Combining (44) and (45) and choosing 48d  , 1
2

b   and 0c   such that 2n nn c for 

any 1n  , we complete the proof and obtain (43).  

Theorem (4.3.9)[153]: Suppose that w  is super-polynomially decreasing. Then there 

exists a sequence 1nr    such that for any p , 

, ( ( )) 1

1
n

p

r n a

n

L w
o

n r

 
  

 
,   n  . 

For the proof of Theorem (4.3.9) we will need a definition from the theory of model 

subspaces of the Hardy space. For a finite subset   of  with card n  , consider the 

finite Blaschke product 

B b 

 

 , 

where 
1

( ) z

z
b z 
 




 ,  . Define the model space BK


 by 

2 2 2( )BK B H H B H
  

  . 

Consider the family 1( )k k ne    in BK

 (known as Malmquist basis, see [43]), 

1 2

1

1

1

(1 )
( )

1
e z

z









 and 

1 21

1

(1 )
( ) ( )

1j

k
k

k

j k

e z b z
z











  
  

 
 ,    [2, ]k n , 

The family 1( )k k ne    associated with   is an orthonormal basis of the n-dimensional space 

BK

. 

In what follows we denote by ( , )p

aL w s  and by ( )pH s , 0s  , the weighted Bergman 

space and the Hardy space in the disc { : }s z z s  , respectively. If 1w  , we write 

simply ( )p

aL s  and we write p

aL  if 1s  . 

Proof. Take (0,1)r   and (0, )R r  and let us represent the norm 
( )p

a

p

L w
f   of a function 

,n rf   as 1 2I I , 

1
0

( ) ( )d
R p

p
I f w    , 

1

2 ( ) ( )d
p

pR
I f w    . 
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Here  and  everywhere  below  in  this  proof,  iC , 1, ,5i  ,  are  positive  constants,  

depending, may be, only on p  and w  (but not on n  and r ). By (38), we have for the first 

integral 

1 1 2 ( )0
( ) ( )d

1 1
p
a

p p
R p p

L wp

n n
I C f w C f

R R
  

   
    

    
 . 

Note that , ,n r n rf    , and, thus, 2 2
3 3

, ( )
( , )

p
a

p L
f M n r f 

 . Applying (38) once again 

together with an obvious inequality 
p

f f  
 , we get 

      
1

2 3 ( )d
1

p
p

R

n
I C f w

r
  



 
  

 
  

2
3

1

3 ,2 3( )
( , ) ( )d

1
p
a

p
p p

pL R

n
C f M n r w

r
 

 
  

 
  

2
3

3 ( )
( )

1 (1 )
p
a

p pn
p

pn pbL

n c
C f w R

r r 

 
  

  
, 

where the last inequality follows from Lemma (4.3.7). Note that 

2
3

1

( ) ( )
( (2 3))p p

a a

p p

L L w
f w f . 

Hence, 

2 4 ( )
( )

1 (1 )
p
a

p pn
p

pn pb L w

n c
I C w R f

r r 

 
  

  
. 

Now, choose a positive increasing sequence ( )n n   such that ( )nn o  , as n  . For 

any n  we fix 
nr  such that the function ( )(1 ) nw r r 

  decreases on [ ,1)nr . Now for a fixed 

n  take r , R  so that 1nr R r    and 
1 21 (1 )R r   , 1 41 (1 )nr r    

We have 

4(1 )
( ) ( ) ( )(1 )

(1 )

n

n

n
n n

n

R
w R w r w r r

r







  


. 

Hence, using the fact that w  is bounded on 1[ ,1)r , we obtain 
4

2 4 ( )

(1 )

1 (1 )

n

p
a

p
p pn

pn pbL w

n r
I C f c

r r





 
  

  
. 

Let us show that for sufficiently large n , 
4

(1 )
0

(1 )

n

pn

pn pb

r
c

r









, 1r   . 

Indeed, choosing r  so that 1(1 )c r   , we get 

4

4
(1 )

(1 ) 0
(1 )

n n pn pbpn

pn pb

r
c r

r




 




  


,     1r   . 

since ( )nn o  , n  . Hence, there exists a sequence ( )nr , 1nr   , such that 
1

2

( )

1

1p
a

p

nL w

I
o

n f r

 
  

 
, n  . 

The corresponding estimate for 1I  is obvious since 1 21 (1 )n nR r   . 

Corollary (4.3.10)[221]: Let 0  and let w  be an integrable nonnegative function on 

[0,1) . Then there exists a positive constant K  depending only on 1  (but not on the 

weight w ) such that 
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     1

1 ,1

1
( ( ))aL w K

 


               (50) 

for all 0 . Moreover, if we fix 0  and let 1  tend to infinity, then we have 

  
1 1

1 ,1 1 ,1( ( )) ( ( ))(1 )
liminf limsup

1 1

a aL w L wK K
 

   

 


  

 
,                    (51) 

where K  is, as K , a positive constant depending only on 1 . 

The next theorem (see [1]) shows that for the polynomially decreasing weights of 

quadratic factor the quantity 1

1 ,1 ( ( ))aL w

   admits a below estimate of the same form. 

Proof. First, we notice that for any 00 1r  , 

  1

0

1 1

( )
(1 ) ((1 ) ) (1 )d ( )d(1 )

aL w u Cr

f f w m 

 


                   (52) 

for all 1 ( )af L w , where 
0 0{ : 1}rC z r z   . Let 1 ,1f    with . Using (52) with 

1
0 2

r   we get 

1
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1 1
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aL w C
f f w m


 

 
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      

       1
1
2

1 1

1

1
(1 ) ( ) d(1 )

(1 ) H
w f 




  

 . 

Now using the fact that 21 1 ,11 ,(1 )
f    

   for every 0 , we get 

   1 1
1 1
2 2

1 1 11 1 1

1 1 ,1 1

1
(1 ) ( ) d(1 ) (2 ( )) (1 ) (1 ) d(1 )
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    1

11 1

1 ,1 ( )
( ( ))

aL w
H f 

 

  . 

In particular, using the right-hand side inequality of (38), we get 

1

1 ,1 1

1
( ( ))aL w K

  


  

for all 0 , where 1K   is a constant depending on 1  only. 

Now, let us show (51). Let 

1 1 ,11

1
( )

(1 (1 ) )
f z

z
  

 
 

, 

and { : 1 (1 ) 2 }D z z     . We claim that 

1

1 1
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f f z w z A z
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and, analogously, 

1
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1 1( )
( ) ( )d ( )
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f f z w z A z

 

 
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Indeed, by a very rough estimate 

2 2

1 1
1 (1 ) (1 )\

( ) ( )d ( )
2 ( )D

C
f z w z A z



  
 , 

where 1 0C   depends only on w . On the other hand, if we put 3
2

{ : 1 (1 ) }D z z    

, then 

2 2

1

1 (1 ) (1 )

1
( ) ( )d ( ) ( )d ( )

(3 2) ( )D D
f z w z A z w z A z



  
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Since 1  (thus D  and D ) are fixed we see that 

2 2 2 2(1 ) (1 ) (1 ) (1 )

1 1
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2 ( ) (3 2) ( ) D
o w z A z

   
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Thus, 
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Obviously, 
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Thus, 
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2
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Corollary (4.3.11)[221]. Let 0  and 1t  . We set 

( ,1 ) 1 (1 ) d ( )
t

I t m 


     and 1 ( ) 1 (1 ) d ( )
t

t m      . 

Then, 
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( ,1 ) ( 2)

((2 ) )t
I t t 

  


 

for every 2t  , and 1 ( )t t   is an increasing function on [0, )  for every 0 . 

Moreover, both 

1(1 ) ( 2)t    and (1 ) ( ,1 )I t  , 

are increasing on [0,1) , for all 0t  . 
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for every 0t  , 0 . Thus, 1   is a convex function on [0, )  and 1 
  is increasing on 

[0, )  for all 0 . Moreover, 
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Thus, 

1 1( ) (0) 0t  
   ,  [0, )t   ,  0 , 

and so 
1 

 is increasing on [0, ) . The fact that 
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where ( )ka t  is the thk  Taylor coefficient of 2(1 ) tz  . The same reasoning gives that 

1(1 ) ( )t   is increasing on [0,1) . 

Corollary (4.3.12)[221]. If for some 0 [0,1)r   and 2 1   the function (1 )
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for all t  such that 2 2t    and for all 01 r  , with constants independent on t . 
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with constants independent on 2 2t   . Indeed, this estimate holds for 2 2t   , and, 
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Thus, using Lemma (4.3.4) and the fact that the function 
21( ) (1 )w   is increasing 

on 0[ ,1)r , we obtain 
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(where 1k , 2k  are positive constants which do not depend on t ), which completes the 

proof. 

Corollary (4.3.13)[221]. If w  is 2( 1)  -polynomially decreasing, then there exists a 

positive constant K   depending only on w  and 1  such that 
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where K  is defined in (50) and where the left-hand side inequality of (53) holds for all 
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The polynomial decrease is essential and provides a sharp bound for the validity of the 

uniform estimate (53) for all possible values of 1  and 1 . Namely, if the weight is 

super-polynomially decreasing, then (53) will fail along some sequence of radii. 
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Since 0(1 ) [ ,1)r   and 2 2(1 ) 2   , by Lemma (4.3.5) applied with  this means 
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By Lemma (4.3.4), this is equivalent to the estimate 
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( ) (1 (1 ) )(1 (1 ) )

C
w w




   

 
      

  
   

The last statement is obvious since 

2

2

1
(1 )

4 (1 )1

((3 ) )
(1 ) (1 ) d(1 )

(1 (1 ) )
w




 


   

 
  

21
1

1 4 (2 )1

((3 ) )1
(1 ) (1 ) (1 )

((2 ) ) (1 (1 ) )
w d




 


   

    

2

2
1

(1 )

1 4 (2 )1

((1 ) 2)1
(1 ) (1 ) d(1 )

((2 ) ) (1 (1 ) )
w




 

 
   

   , 

where the last inequality is due to the fact that ( )uu t  is increasing for all 0 1u  . 
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Corollary (4.3.14)[221]. Suppose that w  is super-polynomially decreasing. Then there 

exists a sequence 1(1 ) 1    such that for any 1 , 
1

(1 ) ,1
1

1

( ( )) 1

1 1 (1 )

aL w
o



 




 
  

   
,    . 

Proof. Take 0  and (0,1 )R    and let us represent the norm 1

1

( )aL w
f 


  of a function  

1 ,1f    as 
1 2I I , 

1

1 1 10
( ) (1 )d(1 )

R

I f w


 
   , 

1 1

2 1 1
( ) (1 )d(1 )

R
I f w



 
   . 

Here and everywhere below in this proof, iC , 1, ,5i  , are positive constants, 

depending, may be, only on 1  and w  (but not on 1  and 1 ). By (38), we have for the 

first integral 

1

1 1
1 1

1 1 1 21 ( )0

1 1
( ) (1 )d(1 )

1 1 a

R

L w
I C f w C f

R R


 
 

 

    
      

    
 . 

Note that 21 1 ,11 ,(1 )
f    

  , and, thus, 12 2
3 3

1 11 , ( )
(1 ,1 )

aL
f M f  

   . Applying 

(38) once again together with an obvious inequality 1 11
f f  

 , we get 

      
1

1 1

2 3 1

1
(1 )d(1 )

R
I C f w




 

 
   

 
  

1
11

1 23 1 ,2 3( )
3

1
(1 ,1 ) (1 )d(1 )

L Ra
C f M w




 

 
     

 
  

21 (1 )
1

1 23 2( ) (1 ) (1 )3

1
( )

L ba

c
C f w R

 



  

 
  

 
, 

where the last inequality follows from Lemma (4.3.7). Note that 
1 11

1 12( ) ( )
3

( (2 3))
L L w
a a

f w f
 
  . 

Hence, 
21 (1 )

1

12 4 2 ( )(1 ) (1 )

1
( )

( )
L wb a

c
I C w R f

 



  

 
  

 
. 

Now, choose a positive increasing sequence 2

1 (1 )(( 1) )     such that 2

11 (( 1) )o     , 

as  . For any 1  we fix 1(1 )   such that the function 
2(1 )

1(1 )( )w


  decreases on 

1[(1 ) ,1) . Now for a fixed 1  take 1 , R  so that 1(1 ) 1 1R      and 
1
21 ( )R  , 

1
4

11 (1 ) ( )    

We have 
2( 1)

1 2( 1) 4
1

1 12( 1)
1

1

(1 )
( ) ((1 ) ) ((1 ) )( )

(1 (1 ) )

R
w R w w












 






   

 
. 

Hence, using the fact that w  is bounded on 1[(1 ) ,1) , we obtain 

1

21 ( 1) 4
121 (1 )

2 4 2( ) (1 ) (1 )

1 ( )

( )
aL w b

I C f c





 


 

  

 
  

 
. 

Let us show that for sufficiently large 1 , 
2( 1) 4

12(1 )

2(1 ) (1 )

( )
0

( ) b
c

 




  
 , 1 1   . 

Indeed, choosing 1  so that 1( )c  , we get 
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2 2( 1) 4 ( 1)1 212 2(1 ) (1 )(1 ) 4
2(1 ) (1 )

( )
( ) 0

( )

b

b
c

       

  
  ,     1 1   . 

since 2

11 (( 1) )o     ,  . Hence, there exists a sequence 1((1 ) ) , 1(1 ) 1   , 

such that 

1

1 1

2

1( )

1

(1 ) 1 (1 )
aL w

I
o

f 





 
  

   
,  . 

The corresponding estimate for 1I  is obvious since 1 2

1 11 (1 (1 ) )R      . 

Corollary (4.3.15)[221]. Lemma (4.3.7) is valid not only for 2
3

s  , but for every (0,1)s  , 

with constants 0d  , 0b  , 1c   depending both on s  and 1 . 

Proof. For every 1 ,1f    and   , we have 

 2 2 3
3 3 4

21 3
( ) ( ) d ( )

2 4
f f f u k u A u


 

   
    

   
 , 

where 1

1
( )

z
k z 

  is the standard Cauchy kernel associated with  , and A is the 

normalized area measure on . Applying Holder’s inequality we obtain 

   12 3 32
13 4 43(1 ) (1 )

1 (1 )
2 2

( )

1 3

2 2 a
a

a a

L
L

L L

f f k f k
 

 


  



   
    

   
,   , 

where  0 . Now, note that 

   3 3
4 4(1 )

2
2 2

3
4

1
16

1
aL H

k k
 

 

 
   

 
. 

Finally, supposing 1 2
3

( )
1

aL
f   , we obtain 

1 1 1
2 2

1 (1 )

( ) ( )

3
16 24

2aL H
f f 



 
   

 
, 

which gives 

    
 

2 1
3 2

1 , 2,
(1 ,1 ) 24 (1 ,1 )M M


     .            (54) 

It remains to obtain a suitable upper bound for 1
2

2,
(1 ,1 )M   . Let us show that 

     

3
2

1
2

2,

2
(1 ,1 ) 2 1M



 
     

 
.            (55) 

For every 1 ,1f   , we have 1 1
2 2

1 ,11 , (1 )
f   
  . If 1 1{1 , ,1 }    is the set of the poles 

of f  (thus, 1j   , 1, ,1j   ), then 
(1 )Bf K


  with 1 11 { , , } (1 )      , 

whereas the set 1 1{2 , ,2 }    is the set of the poles of the function 1
2

f  and 1
(1 )2

Bf K


  

with 1 1 1
1 12 2 2

(1 ) { , , }  


   . Hence, there exist 
1 10 0, ,r r


  such that 

       1
2

1

0

1
k k

k

f r e




 ,              (56) 

on , where 1

1( )k ke 

  is the Malmquist basis associated with the set (1 ) . Since both 1
2

f

and 
1

01 k kk
r e



  are meromorphic in  the equality (56) is in fact valid everywhere in . 

Thus, 

 
1 2

2
11 1
4

2
0

1 1

12
( )

1 1

j

k

k
k

k j j j

f r

 


   

 

 

 
     
  ,   , 

and by the Cauchy–Schwarz inequality, 
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 

1 2
2

1 2
21 2 11 1 1

2 4
2

0

1 1 1

12
( )

1 1

j

k

k
k

k k j j j

f r

 


   

  

  

 
   

           
 

   .           (57) 

for any   . Now, if (1 )   and   , 

4

2 4 4

4

2 2( ) 1 3
2 ( ) 1

11 1 4(1 )
b

  



   


  

   
   

   
, 

which gives 

2 2 3(1 ) 1 3 2
2 1

4 2( )1

 



   
    

  
. 

We get 

   
 

2
1 22 2( 1) 3 211 1 1

4 2( 1)2

2
1 1 1

12 1 1 1 2
2

41 1

j
k

k
k k

k j kj j

 

   

 
  



  

     
             

   .          (58) 

Now we first notice that 

1
22

1 2
1

2

0

1
k

Hk

r f




 
 

 
 . 

For any function 
0

( ) ( ) k

k
z k z 


  in 2H , one has 

1 22 2
2,2

2

0

( )
1 ( )

1 aH L B
k

k
k k

k


   



  


 , 

We now use the upper bound of [21]: for 1 ,1    one has 

1 2 2 2
2,2

2 2 2

aB L H
     

2 2 2

2 2 21 4(1 )
(3 )

H H H
  

 
    , 

which gives 

2 2

1
2

aH L
 


 . 

In particular, with 1
2

f   we get 1
2

1 , (1 )


 
  and 

     1 1 1
2 2 22 2 2

1
2 2 2

1 (1 ) 2 a aH L L

f f f


 
 

.             (59) 

We conclude from (57), (58) and (59) that for any   , 

1 1
2 22 2

1
33 2 2
2

3 2

1 2 1 2
( ) 2 2(1 )

4 2( ) aH L

f f f

 



   
         

, 

that is, 

2 1
2

3
2

( )

2
( ) 2(1 )

aL
f f



 
   

 
,   . 

Taking the supremum over    and 1 ,1f  
 
we obtain (55). 

Combining (54) and (55) and choosing 48d  , 1
2

b   and 0c   such that 1 12 1 c   for 

any 0 , we complete the proof and obtain (43) (see [1]). 
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Chapter 5 

Integration and Loci of Integrability with Lebesgue Classes 

The formalism is generalized to arbitrary first-order logic models and is illustrated by 

several examples on the  -adics, on the Presburger structure and on o-minimal 

expansions of groups. Furthermore, within this formalism, we define the Radon 

transform and show the corresponding inversion formula. We generalize the main result 

of the authors in Cluckers and Miller about the stability under integration of the class of 

constructible functions, by relaxing the conditions on integrability. Further, we give an 

interpolation result for constructible functions by constructible functions with maximal 

locus of integrability. For any 0q   and constructible functions f  and   on nE  , we 

show a theorem describing the structure of the set 

{( , ) (0, ] : ( , ) ( )}
qp

x
x p E f x L      , 

where 
q

x


 
is the positive measure on n  whose Radon–Nikodym derivative with respect 

to the Lebesgue measure is ( , ) : ( , )
q q

x y x y  . We also show a closely related 

preparation theorem for f  and  . These results relate analysis (the study of -spaces) 

with geometry (the study of zero loci). 

Section (5.1): Positive Constructible Functions against Euler Characteristic and 

Dimension 

By a subanalytic set we will always mean a globally subanalytic subset nX R , 

meaning that X  is subanalytic in the classical sense inside ( )n
P R  under the embedding 

( ( )n n n R A R) P R . By a subanalytic function we mean a function whose graph is a 

(globally) subanalytic set. 

By Sub we denote the category of subanalytic subsets nX R  for all 0n  , with 

subanalytic maps as morphisms. We work with the Euler characteristic : Sub Z  and 

the dimension dim:SubN  of subanalytic sets as defined for o-minimal structures in 

[82]. 

Note that if SubX  , then, by the o-minimal triangulation theorem in [82], the  -

minimal Euler characteristic ( )X  coincides with the Euler characteristic ( )BM X  of X  

with respect to the Borel–Moore homology. If SubX   is locally compact, the o-minimal 

Euler characteristic ( )X  coincides with the Euler characteristic ( )c X  of X  with 

respect to sheaf cohomology of X  with compact supports and constant coefficient sheaf. 

By [82], the Euler characteristic : Sub Z  satisfies the following: 

(0) 0  , 

( ) ( )X Y   if X  and Y  are isomorphic in Sub 

and 
( ) ( ) ( )X Y X Y     

whenever , SubX Y   are disjoint. The last equality for BM  and c  follows from the long 

exact (co)homology sequence. If we take X  to be the unit circle in the plane 2
R  and Y  a 

point in X , we see that this equality does not hold for the Euler characteristic associated 

with the topological singular (co)homology. 

Thus we can think of : Sub Z  as a measure with values in the Grothendieck ring 

0(Sub)K  of the category Sub and, for any SubX   and any function :f X Z  with finite 

range and the property that 1( ) Subf a   for all aZ  (constructible functions), one has an 

obvious definition for 

pL
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X
f   

such that ( ) 1X
X

X     (cf. [171]). 

This measure and integration against Euler characteristic is what is considered by 

Viro [171], Shapira [169,170] and Brocker [159]. However, for the measure : Sub Z  

it is not true that ( ) ( )X Y   if and only if X  and Y  are isomorphic in Sub. Following 

the recent work of the first author and Francois Loeser [160–162] on motivic integration, 

we construct the universal measure   for the category Sub with values in the 

Grothendieck semi-ring 0(Sub)SK  of Sub such that ( ) ( )X Y   if and only if X  and Y  are 

isomorphic in Sub. Furthemore, we develop a direct image formalism for positive 

constructible functions, i.e., functions 0: (Sub)f X SK  with finite range and the property 

that 1( ) Subf a   for all 0(Sub)a SK . This formalism is generalized to arbitrary first-order 

logic models and is illustrated by several examples on the p-adics, on the Presburger 

structure and on o-minimal expansions of groups. Moreover, within this formalism, we 

define the Radon transform and show the corresponding inversion formula. 

We start by pointing out that, instead of Sub, we can work in this section with any o-

minimal expansion of a field R  using the category Def whose objects are definable sets 

and whose morphisms are definable maps. 

By a semi-group we mean a commutative monoid with a unit element. Likewise, a 

semi-ring is a set equipped with two semi-group structures: addition and multiplication 

such that 0 is a unit element for the addition, 1 is the unit element for multiplication, and 

the two operations are connected by ( )x y z xy xz    and 0 0x  . A morphism of semi-

rings is a mapping compatible with the unit elements and the operations. 

Let :A  Z N  be the semi-ring where addition is given by 

( , ) ( , ) ( ,max( , ))a b a b a a b b      , the additive unit element is (0,0) , multiplication is given 

by ( , )( , ) ( , )a b a b aa b b      , and the multiplicative unit is (1,0) . Note that the ring 

generated by A by inverting additively any element of A is Z  with the usual ring 

structure. 

For SubZ  , we define ( )Z  as the semi-ring of functions Z A  with finite image 

and whose fibers are subanalytic sets. We call ( )Z  the semi-ring of positive 

constructible functions on Z . In particular, ({0}) A  . 

If SubZ  , then we denote by SubZ  the category of subanalytic maps X Z  for 

SubX   with morphisms subanalytic maps that make the obvious diagrams commute. 

We define the Grothendieck semi-group 0(Sub )ZSK  as the quotient of the free abelian 

semi-group over symbols [ ]Y Z  with Y Z  in SubZ  by relations 

[0 ] 0Z  ,                                  (1) 

[ ] [ ]Y Z Y Z                                    (2) 

if Y Z  is isomorphic to Y Z  in SubZ  and 

[( ) ] [( ) ] [ ] [ ]Y Y Z Y Y Z Y Z Y Z                                     (3) 

for Y  and Y   subsets of some X Z . There is a natural semi-ring structure on 0(Sub )ZSK  

where the multiplication is induced by taking fiber products over Z . 

We write 0(Sub)SK  for 0 {0}(Sub )SK  and [ ]X  for [ {0}]X  . Note that any element of 

0(Sub )ZSK  can be written as [ ]X Z  for some SubZX  , because we can take disjoint 

unions in Sub corresponding to finite sums in 0(Sub )ZSK . 
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Proposition (5.1.1)[158]: For SubZ  , there is a natural isomorphism of semi-rings 

0: (Sub ) ( )ZT SK Z  

induced by sending [ ]X Z  in SubZ  to : ( ( ),dim( ))z zZ A z X X , where zX is the 

fiber above z . By consequence, 0(Sub)=SK A . 

Proof. This follows immediately from the trivialisation property for definable maps in 

any o-minimal expansion of a field. See [82]. 

By means of this result, we may identify 0(Sub )ZSK  and ( )Z . 

A general notion of positive measures on a Boolean algebra  of sets is a map 

: G   with G  a semi-group satisfying 

( ) ( ) ( )X Y X Y     

and 
(0) 0   

whenever ,X Y   are disjoint. Often, one has a notion of isomorphisms between sets in 

 under which the measure should be invariant and which allows one to take disjoint 

unions of given sets in  (by taking disjoint isomorphic copies of the sets). 

We let : Sub A   be the positive measure which sends X  to ( ( ),dim( ))X X . This 

measure is a universal measure on Sub with the property that ( ) ( )X Y  whenever there 

exists a subanalytic bijection between X  and Y  and where universal means that any other 

positive measure with this property factorises through  . 

Note that   measures, in some sense, the topological size since, by the cell 

decomposition theorem from [82], ( ) ( )A B   will hold for two subanalytic sets A , B  if 

and only if, for any fixed 0n  , there exists a finite partition of A , resp. B , into 

subanalytic n-manifoldsC  1{ }m

i iA  , resp. 1{ }m

i iB  , and subanalytic maps i iA B which are 

isomorphisms of n-manifoldsC . 

Now we can define the integral of any positive function ( )f Z  as 

: ( )i i
Z

i

f f Z   

where { }iZ  is any finite partition of Z  into subanalytic sets such that f  is constant on 

each part iZ  with value if . 

To show that this is independent of the partition { }iZ , we just note that there is a 

unique [ ]X Z  in 0( )SK Z  which corresponds to f  under T  and that ( )i ii
f Z

corresponds to [ ] ( ( ),dim( ))X X X  in 0(Sub)A SK . This independence follows also from 

the cell decomposition theorem ([82]). 

For :f X Y , there is an immediate notion of pushforward ! : ( ) ( )f X Y  , 

! 0 0: (Sub ) (Sub )X Yf SK SK , which is given by 

11! | ( )( )
( )( )

f yf y
f g y g 

   

for ( )g X , resp. by 

!([ ]) [ ]f Z X Z Y   , 

for Z X  in SubX  and where Z Y  is given by composition with X Y . Note that 

these pushforwards are compatible with T . 

If  {0}Y  , then 0(Sub )YSK A  and we write ([ ])Z X   for  !([ ])f Z X  which is the 

integral of [ ]Z X . 
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Thus the functoriality condition 
! ! !( )f h h f  can be interpreted as Fubini’s 

Theorem, since 

    11 | ( )( ) f yX Y f y
g g  

    

for ( )g X  and : {0}h Y  . 

For :f X Y  a morphism in Sub, there is an immediate notion of pullback 

: ( ) ( )f Y X

  , resp. 
0 0: (Sub ) (Sub )Y Xf SK SK  , which is given by 

( )f g g f   

for ( )g X , resp. by 

([ ]) [ ]Yf Z Y Z X X     , 

for Z Y in SubY  and where YZ X X   is the projection and YZ X  is the set-

theoretical fiber product. Note that these pullbacks are also compatible with T  and satisfy 

the functoriality property ( )f h h f   . 

Proposition (5.1.2)[158]: Let :f X Y  be a morphism in Sub and let g  be in ( )X  and 

h  in ( )Y . Then 

   ! !( ( )) ( )f gf h f g h  . 

Proof. This is immediate at the level of 0SK , since both the multiplication in 0SK and the 

pullback are defined by the fiber product. 

Let S X Y  , X  , Y  be subanalytic sets and write :X X Y X    and :Y X Y Y  

for the projections and |X X Sq   and |Y Y Sq   . For ( )g X , we define the Radon 

transform ( ) ( )S g Y  by 

! !( ) ( ) ( ( )1 )S Y X Y X Sg q q g g     

where 1S  is the characteristic function on S . 

Example: 

Consider the case nX  R , Gr( )Y n  with {( , ) : }S p p   . Let nZ  R  be a 

subanalytic subset and : Gr( ) : ( ( ),dim( ))Z n A Z Z     . Then (1 )Z S Z  . 

Let S Y X    be another subanalytic set and put |X X Sq  
   and |Y Y Sq  

  . The 

following proposition is showed just as in [170]. 

Proposition (5.1.3)[158]: Let : Yr S S X X    be the projection and suppose that the 

following hypotheses hold: 

(*) there exists A  such that 1[ ( , )]r x x     for all x x  , ,x x X ; 

(**) there exists 0 A   such that 1[ ( , )]r x x      for all x X . 

If g  is in ( )Y , then 

  ( )S S
X

g g g                           (4) 

and this is independent of the choice of  . 

Proof. Let h  and h  be the projections from YS S   to S  and S  , respectively. Then, by 

definition of fiber product, Y Yq h q h  , and so, by functoriality of pullback and 

pushforward, we have ! !Y Yh h q q   . Thus ! !( ) ( ) ( )S S X Y Y Xg q q q q g 


 

! ! ( )X Xq h h q g   . 

The last formula is also equal to  2 ! ! 1( )p r r p g  ,  where  1 2, :p p X X X   are the 

projections onto the first and second coordinates respectively, since 1Xq h p r  and 
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2Xq h p r   . The hypothesis shows that !(1 ) 1 1
Y XS S X Xr      , moreover this 

expression is independent of the choice of  . By the projection formula, 

! 1 ! 1 ! 1 1( ( ( ))) (1 ( ( ))) (1 ) ( ) ( 1 1 ) ( )
Y Y XS S S S X Xr r p g r r p g r p g p g      

         holds, hence we obtain 

2! 1 2! 1 2! 1(( 1 1 ) ( )) (1 ( )) ( ( ))
X XΔ X X Δ

X
p p g p p g p p g g g        

      ,  as required. 

We now show that the inversion formula is independent of the choice of  . If 

       and   , then necessarily 2 2  , 2 2   and 
1 1   with 

1 2( , )   , 

1 2( , )    and 1 2( , )     . Hence, 
X X

g g g g         for all x X .  

Example: 

Consider the case nX  R , Gr( )Y n  with {( , ) : }S p p    and {( , ) : }S p p    . 

Then 1 1[ ( , )] [ ]nr x x  P  and 1 2[ ( , )] [ ]nr x x   P  for all , nx x R  with x x  . Since 
1 ( 1)

2
[ ] ( , )

nn n P , we have 

1 1 ( 1)
( ) (( 1) , 1) , 2

2

n
n

S S
X

g n g n g



  
     

 
 . 

In particular, we have 

   1 1 ( 1)
(1 ) (( 1) , 1)1 , 2 [ ]

2

n
n

S S Z Zn n Z



  
     

 
 

for every subanalytic subset Z  of n
R . 

Let  be a model of a theory in a language  with at least two constant symbols 1c , 

2c  satisfying 1 2c c . For Z  a definable set, we define the category Def ( )Z , also written 

DefZ  for short, whose objects are definable sets X  with a definable map X Z  and 

whose morphisms are definable maps that make the obvious diagram commute. We write 

Def ( )  or Def  for 
1{ }Def ( )c . In , one can pursue the usual operations of set theory 

like finite unions, intersections, Cartesian products, disjoint unions and fiber products. 

 We define the Grothendieck semi-group 0(Def )ZSK  as the quotient of the free 

abelian semi-group over symbols [ ]Y Z  with Y Z  in DefZ  by relations 

[ ] 0Z   ,               (5) 

[ ] [ ]Y Z Y Z                          (6) 

if Y Z  is isomorphic to Y Z  in DefZ  and 

[( ) ] [[( ) ] [ ] [ ]Y Y Z Y Y Z Y Z Y Z                            (7) 

for Y  and Y   subsets of some X Z . There is a natural semi-ring structure on 

0(Def )ZSK  where the multiplication is induced by taking fiber products over Z . Note that 

any element of 0(Def )ZSK  can be written as [ ]X Z  for some DefZX Z  , because 

we can take disjoint unions in  corresponding to finite sums in 0(Def )ZSK . 

The map 0Def (Def )SK  sending X  to its class [ ]X  is a universal positive measure 

with the property that two sets have the same measure if there exists a definable bijection 

between them. For :f X Y , there is an immediate notion of pushforward 

! 0 0: (Sub ) (Sub )X Yf SK SK  given by 

   !([ ]) [ ]f Z X Z Y   , 

for Z X  in DefX  and where Z Y  is given by composition with X Y . 

If 1{ }Y c , then we write ([ ])Z X   for !([ ])f Z X , which we call the integral of 

[ ]Z X ; note that ([ ])Z X   is just [ ]Z  in 0(Def )SK . Thus the functoriality condition 
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! ! !( )f h h f  can be interpreted as Fubini’s Theorem. 

There is also an immediate notion of pullback 
0 0: (Sub ) (Sub )Y Xf SK SK   given by 

   ([ ]) [ ]Yf Z Y Z X X     , 

for Z Y  in DefY  and where YZ X X   is the projection and YZ X  the set-

theoretical fiber product. The pullback is functorial, i.e., ( )f h h f   . 

Proposition (5.1.4)[158]: Let :f X Y  be a morphism in Def and let g  be in 0(Def )XSK  

and h  in 
0(Def )YSK . Then 

   ! !( ( )) ( )f gf h f g h  . 

Proof. Exactly the same proof as for the subanalytic sets above works.  

One can also define the Radon transform in this context in exactly the same way as in 

the subanalytic case. Furthermore, the same argument as in the subanalytic case gives the 

corresponding inversion formula. However, since, in general, there is no trivialisation 

theorem, the conditions (*) and (**) in Proposition (2.8.1) have to be replaced by global 

conditions. Using the embedding 0 0(Sub) (Sub )USK SK  sending [ ]W  to [ ]W U U   where 

W U U   is the projection, the statement becomes: 

Let : Yr S S X X   be the projection and suppose that the following hypotheses 

hold: 

(*) there exists 1Z  in Def such that in 
10(Def )XSK  we have 

    1 1 1[ ] [ ]B X Z  , 

 (**) there exists 2Z  in Def such that in 0(Def )
XΔ

SK  we have 

    2 1 2[ ] [ ] [ ]XB Δ Z Z    

where 1 \ XX X X Δ  , 1

1 \ ( )Y XB S S r Δ  , 1

2 ( )Y XB S S r Δ   and 1 1B X  and 

2 XB Δ  are the restrictions of the projection : Yr S S X X    . If Z X  is in DefX , 

then 

   2 1([ ]) [ ][ ] [ ][ ]S S Z X Z Z X Z Z             (8) 

and this is independent of the choice of 2Z . 

Example (5.1.5)[158]: For K  any finite field extension of the field pQ  of p-adic numbers, 

one can calculate explicitly the semi-ring of semialgebraic sets 0( ,Sem)SK K , resp. of 

globally subanalytic sets 0( ,Sub)SK K , using work of [70] for semialgebraic sets, resp. 

using work of [83] for the subanalytic sets. In both cases it is a subset of N N , and the 

class of a semialgebraic set X , resp. a subanalytic set X , is ( ,0)X  if X  is finite and 

(0,dim )X  if X  is infinite. This is because there exists a semialgebraic bijection between 

two infinite semialgebraic sets if and only if they have the same dimension, and similarly 

for subanalytic sets. However, no trivialisation theorem is known, hence the relative 

semi-Grothendieck rings 0( ,Sem )ZSK K , resp. 0( ,Sub )ZSK K , for Z  semialgebraic, resp. 

subanalytic, are expected to be much more complicated than maps Z  N N  with finite 

image. 

Example (5.1.6)[158]: Consider the Presburger structure on Z  by using the Presburger 

language 

   PR { , ,0,1, } { | , 1}n n n      N , 

with n  the equivalence relation modulo n . Again, one can calculate explicitly the semi- 
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ring 
0 PR( , )SK Z , using work of [68]. It is a subset of N N , and the class of a Presburger 

set X  is ( ,0)X  if X  is finite and (0,dim )X  if X  is infinite, where the dimension of [68] 

is used. Again, this is because there exists a Presburger bijection between two infinite 

Presburger sets if and only if they have the same dimension. Again, no trivialisation 

theorem is known, hence the relative semi-Grothendieck rings are expected to be more 

complicated. 

Example (5.1.7)[158]: Let ( ,0,1, , , )K K     be an ordered field and consider the 

structure ( ,0,1, ,( ) , )c c KK     , where c is the scalar multiplication by c K . The 

category Def in this case is the category of K-semilinear sets with K-semilinear maps. 

By [166], the Grothendieck ring 
0(Def)K  is isomorphic to [ ] ( ( 1))E x x x Z  and 

there is a universal Euler characteristic : Def E  (see also [164]). 

Let D  be the set whose elements are of the form 
1

[ , ]i i
n k l

i
y z y z


 N  with 

i ik l  and, 

for i j , ( ) ( ) ( )j j j j j ji i i i i i
k l k l k lk l k l k ly z y z y z y z y z y z    . Here, j ji i

k lk ly z y z  if 

and only if i jk k  and i jl l . 

The set D  can be equipped with a semi-ring structure in the following way: the zero 

element 0D  is 
0

1

i ik l

i
y z

 , the identity element 1D  is 0 0y z , the addition is given by 

1 1 1 1

max : a monomial ini i i i i i i i

n m n m
k l k l k l k lk l k l

i i i i

y z D y z y z y z y z y z
   

   

 
   

 
      

and multiplication is given by 

1 1 1 1

max : a monomial ini i i i i i i i

n m n m
k l k l k l k lk l k l

i i i i

y z D y z y z y z y z y z
   

   

 
   

 
      

where the symbol max S  mean that we sum up the -maximal elements of the finite 

set S . 

By [166], there is a universal abstract dimension : Def D   and two sets in Def are 

isomorphic in Def if and only if they have the same universal Euler characteristic and the 

same universal abstract dimension. Thus, if A  is the semi-ring E D , then the 

Grothendieck semi-ring 0(Def )SK  is isomorphic to A  and the map : Def A   given by 

( ) ( ( ), ( ))X X X   is the positive universal measure on Def. 

Note that the results that we used above from [166] were proved in the field of real 

numbers, but the same arguments hold in any arbitrary ordered field K . 

Example (5.1.8)[158]:Let ( ,0,1, , , )K K     be a real closed field and consider the 

structure ( ,0,1, ,( ) , , )c c KK B    , where c  is the scalar multiplication by c K  and B  

is the graph of multiplication on a bounded interval. The category Def in this case is the 

category of K-semibounded sets with K-semibounded maps. 

By [165], all bounded semialgebraic subsets are in Def and, by [168],  is, up to 

definability, the only o-minimal structure properly between ( ,0,1, ,( ) , )c c KK     and 

( ,0,1, , , )K    . 

By [166], the Grothendieck ring 0(Def)K  is isomorphic to [ ] ( ( 1))E x x x Z  and 

there is a universal Euler characteristic : Def E  (see also [164]). Furthermore, if D  is 

the semi-ring of Example (5.1.7), then there is a universal abstract dimension 

: Def D   and two sets in Def are isomorphic in Def if and only if they have the same 

universal Euler characteristic and the same universal abstract dimension. Thus, if A  is the 

semi-ring  E D , then the Grothendieck semi-ring  0(Def )SK  is isomorphic to  A   and the 
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map : Def A   given by ( ) ( ( ), ( ))X X X   is the positive universal measure on Def. 

The results that we used above from [166] were proved in the field of real numbers 

and are based on Peterzil’s [167] structure theorem for semibounded sets in the real 

numbers. However, the same arguments hold in any arbitrary real closed field K using 

the structure theorem from [163]. 

Section (5.2): Zero Loci and Stability under Integration for Constructible Functions 

on Euclidean Space with Lebesgue Measure 

We define and study loci of integrability of certain (families of) functions. A recent 

insight into parameterized integrals is that, for functions f  belonging to certain classes of 

functions on certain product measure spaces E T , a set of the form 

is measurable and i{ | : ntegrable over( ) },x E T t t Tf x  ,      (9) 

is in fact equal to the zero locus of a function on E  belonging to the same class of 

functions; see [176]. If we call the set in (9) the locus of integrability of f  in E , then we 

can rephrase the recent insight as a link between loci of integrability and zero loci for 

certain kinds of functions. 

We give such a link for the class of constructible functions on Euclidean spaces with 

the Lebesgue measure; see Theorem (5.2.8). We follow the terminology of [178]: a 

constructible function is by definition a sum of products of globally subanalytic functions 

and of logarithms of globally subanalytic functions; see below for more detailed 

definitions. The advantage of the class of constructible functions is that it is closed under 

integration. Indeed, in Cluckers and Miller [178] proved that if f  is constructible on 
n m  such that ( , )y f x y  is integrable over m  for each nx  ,then 

( , )d
m
f x y y  

is constructible on n , which generalizes results of [180]. We extend this stability result 

by relaxing the conditions on integrability; see Theorem (5.2.10). Further, we give an 

interpolation result, Theorem (5.2.9), of constructible functions by constructible 

functions with maximal locus of integrability. 

Recall that a function : nf X    is called globally subanalytic if its graph is a 

globally subanalytic set, and a set nA   is called globally subanalytic if its image under 

the natural embedding of n into n-dimensional real projective space, namely 

1 1( ) : ( , , ) (1: , , )n n

n nx x x x , is a subanalytic subset of ( )n  in the classical 

sense; see Definition (5.2.3) below for a self-contained definition. 

From now on in this section, we write “subanalytic” instead of “globally subanalytic” 

(see again Definition (5.2.3)). 

Definition (5.2.1)[172]: For each subanalytic set X , let ( )X  be the -algebra of real- 

valued functions on X  generated by all subanalytic functions on X  and all the functions 

log ( )x f x , where : (0, )f x    is subanalytic. Functions in ( )X  are called 

constructible functions on X  and ( )X  is called the algebra of constructible functions on 

X .  

In the whole section, we use the Lesbegue measure on n . We introduce the locus of 

integrability of a function, as follows. 

Definition (5.2.2)[172]: For E  a set, and for : nf E    a function, define the locus 

of integrability of f  in E  as the set 

is measurable and integrable ovInt er( , ) : { | }( , ) nf E x E f x   , 

where ( , )f x   is the function sending ny   to ( , )f x y , and where the Lebesgue measure 

is used on n .  
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The main results of this section are the following three theorems, for which we will 

give relatively short and simple proofs. 

Definition (5.2.3)[172]: Call a function :f X  l k
 analytic if it extends to an 

analytic function on an open neighborhood of X . A restricted analytic function is a 

function : nf   such that the restriction of f  to [ 1,1]n  is analytic and ( ) 0f x   on 

\ [ 1,1]n n . 

Call a set or a function subanalytic if and only if it is definable in the expansion of 

the real field by all restricted analytic functions. Thus in this section, “subanalytic” is an 

abbreviation of “globally subanalytic”, and in this meaning, the natural logarithm 

log : (0, )   is not subanalytic.  

For the rest of this section we fix an ordered list of variables 1 1, , nx x  , where 0n  , 

and we write x  for 1( , , )nx x  and write y  for 1nx  , since the variable 1nx   will play a 

special role. 

Definition (5.2.4)[172]: Consider subanalytic sets 1nA   and nB  and an analytic 

subanalytic function : B  .Then A  is called a 0-cell over n  with base B  if A  equals 

the graph of an analytic subanalytic function : : ( )c B x y c x  . 

Call A  a 1 -cell over n  with base B  and with center   if there are analytic 

subanalytic functions :a B   and :b B  , with a b  on B , such that A  is of the 

following form: 

1 2{( , ) : ( ) y ( )}A x y B a x b x   , 

with i  either   or no condition for each 1,2i  , and such that the graph ( )  of 

satisfies either 

( ) \A A  ,    or,    ( ) A   , 

where A  is the topological closure of A  inside 1n . In any case, A  is called a cell over 
n .  

Definition (5.2.5)[172]: Let A  be a 1-cell over n  with base B  and with center  . A 

basic function with center   is a function 2: NA  , for some 0N  , with bounded 

image and which is of the form 
1 1

1 1 2( , ) ( ( ), , ( ), ( ) ( ) , ( ) ( ) )
p p

Nx y a x a x b x y x b x y x  


   ,    (10) 

where 1 1 2, , , ,Na a b b  are analytic subanalytic functions from B  to  and p  is a positive 

integer. A strong function on A  with center   is a function A   of the form F  , 

where   is a basic function with center   and where the function F  is given by a single 

power series that converges on an open neighborhood of the image of  . Note that strong 

functions are automatically subanalytic functions.  

Theorem (5.2.6)[172]: (Preparation of subanalytic functions [184, 189]). Let  be a 

finite set of subanalytic functions on a subanalytic set 1nX  . Then there exists a finite 

partition of X  into cells over n  such that the following holds for any 1-cell A  over n  

in this partition: 

There exists a center   for A  such that each f   can be written in the form 

( ) ,, () ( )( )
r

x y xf xx S yy  g  

on A , where g  is an analytic subanalytic function on the base of A , r  is a rational number 

, and S  is a strong function on A  with center  , and such that, moreover, S   on A  for 

some 0 .  

The last part in the following corollary is new and simplifies the proofs concerning 

integration and integrability when compared with [178]. 
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Corollary (5.2.7)[172]: (Preparation of constructible functions). Let  be a finite set of 

constructible functions on a subanalytic set 1nX  . Then there exists a finite partition 

of X  into cells over n  such that for each 1-cell A  over n
 with base B  in this 

decomposition, there exists a center   such that, the following holds for each f   and 

all ( , )x y A , and with : ( )y y x  : 

1

( , ) d ( ) ( , ) (log )i i

M

i i

i

f x y x S x y y y





l ,               (11) 

for some 0M  , functions d ( )i B , rational numbers i , integers 0i l , and strong 

functions 
iS  on A  with center  . Moreover, one can ensure for each i  that at least one of 

the following two conditions holds: 

(1) ( , ) 1iS x y   on A ; 

(2) iy y


 is integrable over xA  for all x B .  

Proof. Let   be a finite collection of subanalytic functions such that each f   is a 

finite sum of products of functions in   and of logarithms of functions in  . Apply 

Theorem (5.2.6) to  . Note that log( )S  is a strong function with center   if S  is a strong 

function with center   satisfying S   for some 0 . Hence, we are done with the first 

part of the statement by writing logarithms of products as sums of logarithms, and since 

the product of strong functions with center   is a strong function with center  . Suppose 

now that, for some occurring term ( , ) ( ) i

i iS x y d x y


 on some cell A  with center   and 

base B , one has that iy y


is not integrable over xA  for some (and hence for all) x B

. Then, by the supposed presence of this nonintegrable term and by partitioning the cells 

slightly further, we may suppose that exactly one of the following two conditions holds: 

(i) The graph of the center   lies in A  and xA  is bounded in  for each value of x B . 

(ii) The graph of the center   is disjoint from A  and xA  is not contained in a compact 

subset of  for any value of x B . 

Since the argument is completely similar in both cases, let us suppose (i) holds. Then, 

writing the strong function iS  as iF   with   a basic function with center  , as in (10), 

and iF  a converging power series, and by recalling that the image of   is bounded, one 

sees that 2( ) 0b x   for all x B , with notation from (10). Moreover, y  is bounded on xA  

for each x , and thus, iq
y


 is integrable over xA for all x B  as soon as q   is 

sufficiently large. For any 0s   we can develop finitely many terms of iF  in 
1 p

y  plus 

the remaining series in 
1 p

y , as follows: 

1

0

( , ) ( ) ( )
s

j p j p

i j j

j j s

S x y c x y c x y


 

   
    
   
  .              (12) 

By pulling out the factor 
s p

y  from the last term, by writing out ( , ) ( ) i

i iS x y d x y


using 

distributivity and (12), and by taking s  large enough, the first s  such terms will be as in 

part (1) of the corollary, and the last term will be integrable as in (2). This completes the 

proof. 

Theorem (5.2.8)[172]: Let f  be in ( )E   for some subanalytic set E . Then there 

exists h  in ( )E  such that 

Int( , ) | ( }{ ) 0f E x E h x   .              (13) 

Conversely, for every h  in ( )E  there exists f  in ( )E   such that (13) holds.  
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Theorem (5.2.8) thus gives a correspondence between loci of integrability and zero 

loci of constructible functions, at least when integration is in dimension 1, that is, over . 

One should not misunderstand Theorem (5.2.8): zero loci of constructible functions are 

much more general than, say, Zariski closed sets, and for example, a zero locus of 

( )h E  can easily be dense in E . Indeed, the characteristic function of any subanalytic 

subset of E  lies in ( )E . Note that when f  in Theorem (5.2.8) is moreover subanalytic, 

then one can take h  to be a subanalytic function as well by the main result of [180]. 

Theorem (5.2.8) implies Theorem 1.4 of [178]. In Cluckers and Miller [179] we treat a 

higher dimensional variant of Theorem (5.2.8), also treating pL -integrability for various 

p. 

Constructible functions allow an interpolation by constructible functions with maximal 

locus of integrability, as follows. 

Theorem (5.2.9)[172]: Let f  be in ( )E   for some subanalytic set E . Then there 

exists ( )g E   with 

Int( , )E Eg  

and such that, for all Int( , )x f E  and all y  , one has 

( , ) ( , )x y f x yg . 

Finally, we can integrate in any dimension m  to find the following generalization of the 

principal result, Theorem 1.3, of [178]. 

Proofs of Theorems (5.2.8) and (5.2.9). Let f  be in ( )E  , with nE   for some n . 

Apply Corollary (5.2.7) to the collection of functions consisting only of f . Consider a 1-

cell A  over n  in the obtained partition, with center  , and write f  as in (11). By 

regrouping the terms and using the notation of (11), we may suppose, for each i , that 

either iy


 is integrable over xA , or that ( , )i i l  is different from the ( , )i i l  for all j i . 

Let I  be those indices i  such that iy


 is not integrable over xA . Now define QA  as the 

set { | ( ) 0 for }ix B d x i I    and define, for ( , )x y A , the constructible function 

( , ) : d ( ) ( , ) (log )i i

i i

i I

x y x S x y y y




 lg . 

Note that 

is integrable { : ov, ) Qe }( r x Ax B f x A  , 

because of condition (1) in Corollary (5.2.7), and because we have taken the exponent 

pairs ( , )i i l  mutually different for nonintegrable terms. Do the above construction for 

each occurring 1-cell A  over n . On any 0-cell A   over n  in our partition, define 

( , )x yg  as ( , )f x y . Then g  is as desired by Theorem (5.2.9). Now note that a finite 

union of zero loci of constructible functions ih  equals the zero locus of a single 

constructible function by taking the product of the ih . Similarly, a finite intersection of 

zero loci of constructible functions ih  equals the zero locus of a single constructible 

function by taking the sum of the squares of the ih . Now one is done for Int( , )f E . 

Indeed, Int( , )f E  equals the finite intersection 

QA A
 , 

where A  runs over all 1-cells over n  in the partition, and where, for any such 1-cell  A , 

AQ  equals the set Q ( \ )A E B . Note that \E B  is a subanalytic set and each of the AQ  

equals thus the zero locus of a constructible function on E . For the converse statement of 

Theorem (5.2.8), given h , it suffices to put ( , ) ( )f x y h x y  for all ( , )x y E  . 
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Theorem (5.2.10)[172]: Let f  be in ( )mE   for some subanalytic set E  and some 

0m  . Then there exists ( )Eg  such that, for each Int( , )x f E , one has 

( ) ( , )d
my

x f x y y


 g . 

The above theorem is proved in Cluckers and Miller [178] under the extra condition 

that Int( , )f E  equals E   (which in turn generalized main results from [180, 185]). Note 

that integrals of constructible functions are related to what one could call families of 

periods; see [181–183]. In several special cases, explicit formulas for parameterized 

integrals of constructible functions are given in [173, 188]. Parameterized integrals of 

constructible functions are often used for the study of singularities, as in [174, 186, 187]. 

For context on subanalytic functions we refer the reader to [175, 74]. 

[176] which contains several p-adic and motivic analogues of this section, where 

[178] was more closely inspired on p-adic and motivic results of [83, 177]. The results 

and proofs of this section can be used to replace some of the technical difficulties 

encountered in Cluckers and Miller [178]. 

In this section, we recall a basic form of the subanalytic preparation theorem from [184] 

(see also [189]), we fix some notation, and we give a new preparation result for 

constructible functions. 

Proof. Consider f  in ( )mE   for some 0m  . If 1m  , then apply Theorem (5.2.9) to f  

to find 0g  in ( )E   with 0Int( , )E Eg  and such that 0( , ) ( , )x y f x yg  for all 

Int( , )x f E  and all y  . Now Apply Theorem 1.3 of [178] to 0g , which states that, if 

one defines, for x E , 

0( ,) : )d( xx y y g g , 

then g  lies in ( )E . Then this g  is as desired. The result for general m  now follows 

from Fubini’s Theorem. 

Alternatively to deriving Theorem (5.2.10) for 1m   from Theorem 1.3 of [178], one 

can also derive the case 1m   from Corollary (5.2.7) by the integration procedure by 

Lion and Rolin of [185], which is also used and explained in Cluckers and Miller [178]. 

This self-contained approach for obtaining Theorem (5.2.10) is simpler than the 

approaches of [178, 180, 185], which moreover only yielded special forms of Theorem 

(5.2.10). 

Section (5.3): Preparation of Real Constructible Functions 

The Lebesgue spaces, ( )pL   for (0, ]p  , are ubiquitous in many areas of 

mathematical analysis and its applications. Much of the research about the Lebesgue 

spaces has been conducted in a very general measure-theoretic framework, with the 

focus being on discovering a host of relationships between the various pL  spaces. A 

number of the classical theorems are inequalities that explain how various function 

operations behave with respect to the Lebesgue spaces. For example, for addition there is 

Minkowski’s inequality; for multiplication there is Hölder’s inequality; for convolutions 

there is Young’s convolution inequality; for Fourier transforms of periodic functions 

there is the Hausdorff–Young inequality. Other classical theorems explain the structure 

of linear maps between the various pL  spaces, such as the duality of Lebesgue spaces 

with conjugate exponents and the Riesz–Thorin interpolation theorem. 

This section explores theorems about the Lebesgue spaces of a rather different sort. 

We use geometric techniques to study the structure of the Lebesgue classes of 

parameterized families of functions, along with a related preparation theorem. The 
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starting point of our investigation is the observation that, although much of the utility of 

the Lebesgue spaces – and more generally, of the theory of integration as a whole – 

stems from the generality of the measure-theoretic framework in which it has been 

developed, it is many times applied to study integrals of very special functions that arise 

naturally in real analytic geometry. And, if we focus our attention on studying the pL  

properties of these very special functions, we should be able to obtain rather strong 

theorems that cannot be shown, or even reasonably formulated, in a very general 

measure-theoretic framework. This is because by focusing on special functions, we can 

supplement the very general tools from mathematical analysis with much more 

specialized tools from real analytic geometry and o-minimal structures. Similar 

approaches have been followed in the context of  -adic and motivic integration; see 

e.g.[177]. 

The  -minimal framework is still a bit too general for our purposes, and we choose to 

focus on the constructible functions, by which we mean the real-valued functions that 

have globally subanalytic domains and that can be expressed as sums of products of 

globally subanalytic functions and logarithms of positively-valued globally subanalytic 

functions. The study of constructible functions largely originated in the work of Lion and 

Rolin, [196], where these functions naturally arose in their study of integration of 

globally subanalytic functions. (In the context of  -adic integration, analogues of 

constructible functions arose from the work by J. Denef [194].) The integration theory of 

globally subanalytic and constructible functions was then further developed by Comte, 

Lion and Rolin in [193] and also in [178] and [172]. Much of the utility of the 

constructible functions stems from the fact that they are stable under integration – from 

which it follows that they are the smallest class of functions that is stable under 

integration and contains the subanalytic functions – and that they have very simple 

asymptotic behavior (see [178]). In fact, these results have typically lagged behind the 

motivic and  -adic developments. In this section, the real situation takes the lead over the 

 -adic and motivic results. 

We obtain two main theorems about the constructible functions; see Theorems (5.3.44)  

and  (5.3.2). The first theorem considers a constant  0q    and constructible  

functions f  and   on nE  , and it describes the structure of the set 

LC( , , ) : {( , ) (0, ] : ( , ) ( )}
q qp

x
f E x p E f x L       ,     (14) 

where 
q

x
  is the positive measure on n  whose Radon–Nikodym derivative with respect 

to the Lebesgue measure is ( , ) : ( , )
q q

x y x y  . The theorem and its corollaries show 

that the set of all fibers of LC( , , )
q

f E  over E  is a finite set of open subintervals of 

(0, ] , and that the set of all fibers of LC( , , )
q

f E  over (0, ]  is a finite set of subsets of 

E , each of which is the zero locus of a constructible function on E . This theorem 

therefore relates analysis with geometry, in the sense that Lebesgue classes are an object 

of study in analysis, while zero loci of functions are widely studied in analytic geometry. 

A similar link between geometry and analysis ( but with 1   and with focus on 1L -

integrability ) is obtained in p-adic and motivic contexts in [191]. 

The second theorem is a closely related preparation result that expresses f  and   as 

finite sums of terms of a very simple form that naturally reflect the structure of 

LC( , , )
q

f E .This theorem can be most easily appreciated through the historical context 

in which it was developed, starting with the following simple preparation result for 
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constructible functions, which is a rather direct consequence of Lion and Rolin’s 

preparation theorem for globally subanalytic functions: 

       Let : nf E    be constructible, with mE  , and write 

1 1( , ) ( , , , , , )m nx y x x y y  for the standard coordinates on nE  . Then f can be 

piecewise written on subanalytic sets as finite sums ( , )kk K
T x y

 , where up to 

performing translations in y  by globally subanalytic functions of a triangular form, 

each term is of the form  , ,

1
( , ) ( ) (log ) ( , )

k j k j
rn s

k k j j kj
T x y x y y u x y


 g  for some 

constructible function kg , rational numbers ,k jr , natural numbers ,k js , and globally 

subanalytic unit ku  which is of the special form as given by the globally 

subanalytic preparation theorem. 

Lion and Rolin [195] used (15) when proving that any parameterized integral of a 

constructible function is piecewise given by constructible functions, but on pieces that 

need not be globally subanalytic sets. Comte, Lion and Rolin [193] also used (15) when 

proving that any parameterized integral of a globally subanalytic function is a 

constructible function. The authors then subsumed both of these results in [178] by 

showing that ( ) ( , )
n

F x f x y dy   is a constructible function on E  if : nf E    is a 

constructible function such that 1( , ) ( )nf x L   for all x E . The key to doing this was to 

improve (15) by showing that in the special case of 1n  , if 1( , ) ( )f x L   for every 

x E , then the sums can be constructed in such a way so that each term ( , )kT x y  is also 

integrable in y  for every x E . This alleviated various analytic considerations employed 

in [195] and [193] to get around the awkward fact that (15) allows the possibility of 

expressing integrable functions as sums of nonintegrable functions. In [172] improved 

upon (15) in the special case of 1n   by dropping the assumption that ( , )f x y  be 

integrable in y  for every x E , and then showing that the set 
1Int( , ) : { : ( , ) ( )}f E x E f x L     is the zero locus of a constructible function on E , and 

that the sums in (15) can be constructed so that each term ( , )kT x y  is integrable in y  for 

every x E , provided that we only require the equation ( , ) ( , )kk
f x y T x y  to hold for 

those values of ( , )x y  with Int( , )x f E . 

The preparation theorem of this section strengthens this line of results even further by 

considering an arbitrary positive integer n , not just 1n  , and by considering all pL  

classes simultaneously, not just 1L . In order to convey the main idea of the theorem 

without getting bogged down in technicalities, let us use the Lebesgue measure on n  

(thus 1  , where   is the function from (14)), and let us also only consider the pL  

classes for finite values of p . Under these simplifying assumptions, the preparation 

theorems states that the sums ( , )kk K
T x y

  in (15) can be constructed in such a way so 

that there is a partition { }i iK  of the finite index set K  such that for each x E  and 

(0, )p   with ( , ) ( )p nf x L  , and for each i , either ( , )kT x   is in pL for all ik K , or else 

( , ) 0
i

kk K
T x y


  for all y . So, for instance, if for some fixed value of p  the function 

( , )f x   happened to be in ( )p nL  for every x E , then the sums in (15) can be 

constructed so that each term ( , )kT x   is in pL  for every x E , for we may simply omit 

the remaining terms in the sum because they collectively sum to zero. 

Part  of  our  interest  in  developing  a  good  integration  theory  for  constructible  

(15) 
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functions comes from a desire to study various integral transforms in the constructible 

setting. And, to summarize, we now have three main tools at our disposal to conduct 

such studies: the constructible functions are stable under integration, they have simple 

asymptotic behavior, and they have a multivariate preparation theorem with good 

analytic properties. We apply these three tools to the field of harmonic analysis in [192] 

by showing a theorem that bounds the decay rates of parameterized families of 

oscillatory integrals. This is an adaptation of a classical theorem found in Stein [197] but 

with different assumptions. The classical theorem bounds a single oscillatory integral 

with an amplitude function that is smooth and compactly supported and a phase function 

that is smooth and of finite type. In contrast, we give a uniform bound on a 

parameterized family of oscillatory integrals with an amplitude function that is 

constructible and integrable and a phase function that is globally subanalytic and satisfies 

a certain “hyperplane condition” (which closely relates to the notion of “finite type” in 

our setting). Thus by restricting our attention to the special classes of constructible and 

globally subanalytic functions, we obtain a much more global, parameterized version of 

the classical theorem with significantly weaker analytic assumptions. This application of 

our preparation theorem was, in fact, the initial stimulus for our work in this section. 

This section formulates our main theorem on the structure of diagrams of Lebesgue 

classes and also a simple version of the related preparation theorem; see Theorems 

(5.3.44) and (5.3.2). It also gives two key supporting theorems used to show these 

results; see Theorems (5.3.22) and (5.3.32). The full version of the preparation theorem 

can be found as Theorem (5.3.48). We begin by fixing some notation to be used 

throughout the section. 

Notation (5.3.1)[190]:  Denote the set of natural numbers by  {0,1,2,3, } .  Denote the 

subset and proper subset relations by   and , respectively. Write 1( , , )mx x x and 

1( , , )ny y y  for the standard coordinates on m  and n , respectively. If 

1( , , ) : n

nf f f D   is a differentiable map with m nD  , write 

2( , ) {1, , }

( , ) ( , )i

j i j n

f f
x y x y

y y


  
     

 

for its Jacobian matrix in y . Define the coordinate projection : m n n

m

   by 

( , )m x y x  . 

For any m nD   and mx  , define the fiber of D over x  by 

{ : ( , ) }n

xD y x y D   . 

For any {0, , }d n  and { , , , }     , define ( )d i i dy y . For example, 1( , , )d dy y y  , 

and in accordance with our above notation for coordinate projections, the maps 

: n d

d   and : m n m d

m d

 

   are given by ( )d dy y    and ( , ) ( , )m d dx y x y   . 

More generally, if :{1, , } {1, }d n   is an increasing map, define , : m n m d

m 

    by 

, ( , ) ( , )m x y x y   , 

where (1) ( )( , , )dy y y   . 

For any set nD  , call a function : mf D   analytic if it extends to an analytic 

function on a neighborhood of D  in n . A restricted analytic function is a function 

: nf   such that the restriction of f  to [ 1,1]n  is analytic and ( ) 0f x   on [ 1,1]n n . 

We shall henceforth call a set or function subanalytic if, and only if, it is definable (in the 

sense of first-order logic) in the expansion of the real field by all restricted analytic 
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functions. Thus in this section, the word “subanalytic” is an abbreviation for the phrase 

“globally subanalytic”, and in this meaning, the natural logarithm log : (0, )   is not 

subanalytic. For any subanalytic set D , let ( )D  denote the -algebra of functions on D  

generated by the functions of the form ( )x f x  and log ( )x xg , where :f D   and 

: (0, )D  g  are subanalytic. A function that is a member of ( )D  for some subanalytic 

set D  is called a constructible function. 

Consider a Lebesgue measurable set m nD   and Lebesgue measurable functions 

:f D   and : [0, )v D   , and put ( )mE D  . Define the diagram of Lebesgue classes 

of f  over E  with respect to v  to be the set 

LC( , , ) {( , ) (0, ] : ( , ) ( )}p

xf v E x p E f x L v      , 

where xv  is the positive measure on xD  defined by setting 

                                         ( ) ( , )x
Y

v Y v x y dy                  (16) 

for each Lebesgue measurable set xY D , where the integration in (16) is with respect to 

the Lebesgue measure on n . Thus for each x E , when 0 p   , the function ( , )f x   is 

in ( )p

xL v  if and only if 

( , ) ( , )
x

p

D
f x y v x y dy   , 

and the function ( , )f x   is in ( )xL v  if and only if there exist a constant 0M   and a 

Lebesgue measurable set xY D  such that ( ) 0xv Y   and ( , )f x y M  for  all xy D Y . 

The fibers of LC( , , )f v E  over E  and over (0, ]  are both of interest, so we give them 

special names. For each x E , define the set of Lebesgue classes of f  at x  with respect 

to v  to be the set 

LC( , , ) { (0, ] : ( , ) ( )}p

xf v x p f x L v     . 

For each (0, ]p  , define the pL -locus of f  in E  with respect to v  to be the set 

Int ( , , ) { : ( , ) ( )}p p

xf v E x E f x L v    . 

When 1v   (which is the case of most interest because it means we are simply using the 

n-dimensional Lebesgue measure on xD ), it is convenient to simply write LC( , )f E , 

LC( , )f x  and Int ( , )p f E  and to drop the phrase “with respect to v ” in the names of theses 

sets. Also when 1v  , we shall write ( )p

xL D  rather than ( )p

xL v . The set 1Int ( , )f E  was 

studied by the authors in [172] (focusing on the case of 1n  ), where it was denoted by 

Int( , )f E  and called the “locus of integrability of f  in E .” 

We order the set [0, ]  in the natural way, and we topologize (0, ]  by letting 

{( , ) : 0 } {{ }}a b a b      

be a base for its topology. A convex subset of (0, ]  is called a subinterval of (0, ] . The 

endpoints of a subinterval of (0, ]  are its supremum and infimum in [0, ] . Note that the 

empty set is a subinterval of (0, ] , and that sup0 0  and inf 0   . 

It is elementary to see that LC( , , )f v x  is a subinterval of (0, ]  for each x E . Much 

more can be said when f  and v  are assumed to be constructible functions or their powers. 

Theorem (5.3.44) has been formulated in such a way so as to make it adaptable to a 

variety of situations. This section contains an extensive list of corollaries that further 

explain how the theorem elucidates the structure of LC( , , )
q

f E , and how it can be 

easily adapted to give analogous theorems about local pL  spaces, complex measures, and 
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measures defined from differential forms on subanalytic sets, all within the context of 

constructible functions. 

The proof of Theorem (5.3.44) is intimately linked to the proof of a preparation 

theorem for constructible functions that is stated in full strength in this section, where it 

is showed. Here we state only a simple version of the preparation theorem that is 

sufficient for our application to oscillatory integrals in [192]. But first, we need one more 

definition: a cell over m  is a subanalytic set m nA   such that for each {1, , }i n , the 

set ( )m i A  is either the graph of an analytic subanalytic function on 1( )m i A  , or 

1 2( ) {( , ) : ( , ) ( ), ( , ) ( , )}m i i i m i i i i i iA x y x y A a x y y b x y            (17) 

for some analytic subanalytic functions 1( )i i m ia b A   : for which 

( , ) ( , )i i i ia x y b x y   on 
1( )m i A  , where 

1
 and 2  denote either   or no condition. 

Theorem (5.3.2)[190]: Let (0, )p   and ( )f D  for some subanalytic set m nD  , 

and assume that Int ( , ( )) ( )p

m mf D D   . Then there exists a finite partition  of D  into 

cells over m  such that for each A   whose fibers over ( )m A  are open in n , we may 

write f  as a finite sum 

( , ) ( , )k

k

f x y T x y  

on A , with Int ( , ( )) ( )p

k m mT A A    for each k , as follows: there exists a bounded function 

: (0, )MA    of the form 

,

1 {1, , }

( , ) ( ) ( , )
i j

n

i j j j

j i M

x y c x y x y  

 

 
  
 

 , 

and for each k , 

, ,

1

( , ) ( ) ( , ) (log ( , ) ) ( , )k i k i

n
r s

k k i i i i i i k

i

T x y x y x y y x y U x y   



 
   

 
g ,           (18) 

where the : ( )k m A g  are constructible, the : ( ) (0, )i mc A    and 1: ( )i m i A     

are analytic subanalytic functions, the graph of each i  is disjoint from ( )m i A , the ,i j  

and .k ir  are rational numbers, the .k is  are natural numbers, and the kU  are positively-

valued analytic functions on the closure of the range of  . 

In addition, the fact that Int ( , ( )) ( )p

k m mT A A    only depends on the values of the 

.k ir , and not the values of .k is , in the following sense: we have Int( , ( )) ( )k m mT A A     for 

any function kT   on A  of the form 

, ,

1

( , ) ( , ) (log ( , ) )k i k i

n
r s

k i i i i i i

i

T x y y x y y x y 


 



    , 

where the .k ir  are as in (18) and the .k is   are arbitrary natural numbers. 

The key aspect of Theorem (5.3.2) that is of interest, and what makes its proof 

nontrivial, is that the piecewise sum representation of f  can be constructed so that each 

of its terms ( , )kT x   are in the same pL  class as ( , )f x  ; namely, Int ( , ( )) ( )p

k m mT A A    

for each A  and kT , provided that Int ( , ( )) ( )p

m mf D D   . There is an analog of Theorem 

(5.3.2) for p   , but then one must replace (18) with the more complicated form 
,

,,

1 1

( , ) ( ) ( , ) log ( , ) ( , )

k i

i jk i

s
n n

r

k k i i i j j j k

i j

T x y x y x y y x y U x y


   

 

  
    
   
 g ,    (19) 

where the  ,i j  are rational numbers and everything else is as before, and where the fact 
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that  Int ( , ( )) ( )k m mT A A     now depends on all the values of the  .k ir ,  .k is   and ,i j , not 

just the values of the 
.k ir  alone. 

We shall also show a theorem on the fiberwise vanishing of constructible functions 

and a theorem on parameterized rectilinearization of subanalytic functions, given below. 

This section formulates a version of the subanalytic preparation theorem of Lion and 

Rolin [195]. We begin with some multi-index notation. 

Notation (5.3.3)[190]: For any tuples 1( , , )ny y y  and 1( , , )n    in n , define 

1( , , )ny y y , 

       1log (log , ,log )ny y y , provided thaty 1, , 0ny y  , 
1

1
n

ny y y   , provided that this is defined, 

 1 n     , 

   supp( ) { {1, , }: 0}ii n    , which is called the support of  . 

There is a  conflict of  notation between this use of  y   and   ,  but the context will 

always distinguish the meaning: if   is a tuple of exponents of a tuple of real numbers, 

then   means 1 n   ; if y  is a tuple of real numbers not used as exponents, then y  

means 1( , , )ny y . These notations may be combined, such as with 1

1

n

ny y y
  
  

and      1

1log log , , log
n

ny y y
  
 . 

Definitions (5.3.4)[190]: Consider a subanalytic set m nA  . We say that A  is open 

over m  if xA  is open in n  for all ( )mx A . 

We call a function 1( , , ) : n

n A     a center for A  over m  if A  is open over m , 

and if for each {1, , }i n  the component i  is an analytic subanalytic function 

1: ( )i m i A     with the following two properties. 

1. The range of i  is contained in either ( ,0) , {0}  or (0, ) . And, when i  is 

nonzero, the closure of the set { ( , ) : ( , ) }i i iy x y x y A    is a compact subset of (0, ) . 

2. Let ( , )i i i iy y x y   . The set { : ( , ) }iy x y A  is a subset of either ( , 1)  , ( 1,0) , 

(0,1)  or (1, ) . 

We call 1( , ) : ( , , , )nx y x y y  the coordinates on A  with center  . 

A rational monomial map on A  over m  with center   is a bounded function 

: mA   of the form 

   1

1( , ) ( ( ) , , ( ) )M

Mx y c x y c x y ,             (20) 

where 1, , Mc c are positively-valued analytic subanalytic functions on ( )m A  and 

1, , M  are tuples in n . Note that ( ) (0, )MA  . If (0,1)m nA   and 0  , we say 

that  is basic. 

An analytic function is called a unit if its range is contained in either ( ,0)  or (0, ) . 

A function :f A   is called a -function if f F  for some analytic function F  

whose domain is the closure of the range of ; if F  is also a unit, then we call  f  a -

unit. 

A function :f A   is -prepared if 

( , ) ( ) ( , )f x y x y u x y


 g  

on A  for some analytic subanalytic function g , tuple n  and -unit u . 
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Definition (5.3.5)[190]: To any rational monomial map : MA   over m  with center 

 , we associate a basic rational monomial map over m , denoted by  , as follows. For 

each {1, , }i n , the set { : ( , ) }iy x y A  is contained in either ( , 1)  , ( 1,0) , (0,1)  or 

(1, ) , so there exist unique , { 1,1}i i    such that 0 1i

i iy   for all ( , )x y A . Define an 

analytic isomorphism :T A A   by 

 1

1 1( , ) , , , n

n nT x y x y y  . 

Define 1: : MT A  

  . 

Notation (5.3.6)[190]: Write 1

1( , ) ( ( ) , , ( ) )M

Mx y c x y c x y   for some 
1, , n

M  . 

For each {0, , }i n , define ,i  to be the function on ( )m i A  consisting of the 

components ( ) j

jc x y  of   such that supp( ) {1, , }j i , and when 0i  , such that 

supp( )ji  . Thus 

,0 ,1 1 , 1( , ) ( ( ), ( , ), , ( , , , ))n nx y x x y x y y     . 

For each {0, , }i n  and { , , , }     , define , , ,( )i j j i   on its appropriate domain. 

For example, i  is the function on ( )m i A  given by 

, ,0 ,1 1 ,( , ) ( ( ), ( , ), , ( , ))i i i ix y x x y x y      . 

Definition (5.3.7)[190]: If m nC   is a cell over m , then there exists a unique 

increasing map :{1, , } {1, , }d n   whose image consists of the set of all {1, , }i n  for 

which ( )m i C  is of the form (17). We call C  a λ-cell. 

Note that ,m   defines an analytic isomorphism from a λ-cell C  onto , ( )m C , and 

, ( )m C  is a cell over m  that is open over m . 

Definition (5.3.8)[190]: We say that  is prepared over m
 if A  is a cell over m  such 

that for each {1, , }i n , if we write 

1( ) {( , ) : ( , ) ( ), ( , ) ( , )}m i i i m i i i i i iA x y x y A a x y y b x y             , 

then the functions ia , ib  and i ib a  are , i  -prepared, and ia  is either identically zero or 

is strictly positively-valued. 

Proposition (5.3.9)[190]: Suppose that  is a finite set of subanalytic functions on a 

subanalytic set m nD  . Then there exists a finite partition  of D  into cells over m  

such that for each A  , if A  is a λ-cell over m  and we write ,: ( )m A A g for the 

inverse of the projection , ,: ( )m mA
A A   , then there exists a prepared rational 

monomial map ,: ( ) M

m A   over m  such that f g  is -prepared for each f  . 

Proof. This follows from the subanalytic preparation theorem (see [195] or [189]) by 

induction on n . 

Corollary (5.3.10)[190]: Suppose that  is a finite set of constructible functions on a 

subanalytic set m nD  . Then there exists a finite partition  of D  into cells over m  

such that for each A   and f  , the restriction of f  to A  is analytic. Moreover, if 

each function in  is subanalytic, then  can be chosen so that ( )f A  is contained in 

either ( ,0) , {0} or (0, )  for each A   and f  . 

Proof. When  consists entirely of subanalytic functions, this follows directly from 

Proposition (5.3.9). In the general constructible case, fix a finite set   of subanalytic 

functions such that each function in  is a sum of products of functions of the form 
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( , ) ( , )x y f x y  and ( , ) log ( , )x y x yg  with ,f g . Now apply the result of the 

subanalytic case to  . 

Definition (5.3.11)[190]: If  is a set of subsets of a set X , we say that a partition  of 

X  is compatible with  if for each A   and each S  , either A S  or \A X S . 

Note that in Proposition (5.3.9) and Corollary (5.3.10), the partition  can be made 

to be compatible with any prior given finite set of subanalytic subsets of D . 

Throughout this section we use the notation of Theorem (5.3.44). 

Corollary (5.3.12)[190]: For each I  , 

  { : LC( , , ) } : ( ( ) 0) ( ) 0
I

q

I J

J

x E f x I x E x x


   
        

   

g g ,           (21) 

where { : }I J I J  . 

Proof. This follows from (49) and from the fact that for each x E , LC( , , )f x I   if and 

only if LC( , , )I f x  and LC( , , )J f x  for all IJ  . 

The final sentence of Theorem (5.3.44) shows that when f  is subanalytic, so is the 

set (21). 

Remark (5.3.13)[190]: The set LC( , , )
q

f E  can be expressed as the disjoint union 

({ : LC( , , ) } )
q

I

x E f x I I


                 (22) 

and as the (not necessarily disjoint) union 

    ({ : LC( , , )} )
q

I

x E I f x I


  .             (23) 

Proof. The fact that LC( , , )
q

f E  equals (22), and that (22) is contained in (23), are both 

clear. To see that (23) is contained in (22), note that if ( , )x p  is such that LC( , , )
q

I f x  

and p I , then LC( , , )
q

J f x  and p J  for some J   with I J . 

Observe that (21) and (49) show how to use the functions { }I Ig  to define the sets 

occurring in (22) and (23). 

Corollary (5.3.14)[190]: For each (0, ]p   there exists ( )pG E  such that 

   { : LC( , , )} { : ( ) 0}
q

px E P f x x E G x    .             (24) 

Proof. Define pG  to be the product of the Ig  for all I   with p I . Then (24) follows 

from (49) and from the fact that for each x E , we have LC( , , )
q

P f x  if and only if 

LC( , , )
q

f x I   for some I   with p I . 

For each (0, ]p  , taking { }P p  in (24) shows that Int ( , , )
qp f E  is the zero locus 

of a constructible function. A very elementary proof of this fact is given in [172] for the 

special case when 1  , 1p   and 1n  . 

Corollary (5.3.15)[190]: The set {Int ( , , ) : (0, ]}
qp f E p    is finite. 

Proof.  Since  is finite by Theorem (5.3.44), we may fix a finite partition  of (0, ]  

compatible with . If J   and P J , then for each I  , p I  if and only if  J I ; 

so Int ( , , ) { : LC( , , )}
q qp f E x E J f x   . Therefore 

{Int ( , , ) : (0, ]} {{ : LC( , , )}: }
q qp f E p x E J f x J      , 

which is finite because  is finite. 

Corollary (5.3.16)[190]: There exists ( )Eg  such that 
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{ : ( , ) is bounded on } { : ( ) 0}xx E f x D x E x    g . 

Proof. Zero loci of constructible functions are closed under intersections and unions (by 

taking sums of squares and by taking products, respectively), so we may assume by 

Corollary (5.3.10) that D  is a cell over m
 and that f  is analytic. By projecting into a 

lower dimensional space, we may further assume that D  is open over m . Thus ( , )f x   is 

bounded on xD  if and only if it is in ( )xL D , so we are done by applying Corollary 

(5.3.14) with { }P   .  

Although we will use Theorem (5.3.22) to show Theorem (5.3.44), it is interesting to 

observe that, conversely, Theorem (5.3.22) also follows from Theorem (5.3.44), as 

follows. 

Corollary (5.3.17)[190]: There exist , ( )h Eg  such that 

{ : ( , ) 0 for all } { : ( ) 0}xx E f x y y D x E x     g  

and 

{ : ( , ) 0 for -almost all } { : ( ) 0}xx
x E f x y y D x E h x      . 

Proof. Define :F D    by ( , , ) ( , )F x y z zf x y . Note that for each x E , ( , ) 0f x y   

for all xy D  if and only if ( , ) ( , , )y z F x y z  is bounded on xD  , and that ( , ) 0f x y   

for 
x

 -almost all xy D  if and only if ( , ) ( , , )y z F x y z  is in ( )xL  , where 

: [0, )D     is defined by ( , , ) ( , )x y z x y  . So we are done by applying 

Corollaries (5.3.16) and (5.3.14) (with { }P   ) to F . 

The following result generalizes [178, Theorem 1.4]. 

Corollary (5.3.18)[190]: Let 0q  , (0, ]p  , and , ( )kF X Y     for some 

subanalytic sets X  and Y . Suppose that for each x X , the set 

{y : LC( , ,( , ))}
q

Y P F x y  is dense in Y . Then there exists a subanalytic set C X Y  

such that LC( , , )
q

C P F X Y   and xC  is dense in Y  for each x X . 

Proof. Assume that mX . We may assume that nY   because the case of a general 

subanalytic set Y  follows from this special case by arguing as in the second paragraph of 

the proof of [178, Theorem 1.4]. By Corollary (5.3.14) we may fix ( )nX g  such 

that 

 {( , ) : LC( , ,( , ))} {( , ) : ( , ) 0}
qn nx y X P F x y x y X x y     g .           (25) 

By Corollary (5.3.10) we may fix a partition  of nX   into subanalytic cells over m  

such that g  restricts to an analytic function on each A  . Let C  be the union of the 

members of  that are open over m . Then C  is subanalytic, ( )m C X  , and xC  is 

open and dense in n  for each x X . If there exists ( , )a b C  such that ( , ) 0a b g , then 

{ : ( , ) 0}ay C a y g  would be a proper analytic subset of the open set aC , so 

{ : ( , ) 0}ny a y g  would not be dense in n , contradicting (25) and our assumption on 

F  and 
q

 . Therefore ( , ) 0x y g  for all ( , )x y C , which by (25) shows the corollary. 

We now show how Theorem (5.3.44) adapts easily to the study of local integrability, 

complex measures, and measures defined from constructible differential forms on 

subanalytic sets. We only discuss the analogs of Theorem (5.3.44) itself, but it follows 

that analogs of the previous list of corollaries of this theorem hold as well, via the same 

proofs. 

Suppose that nY  and :f Y   are Lebesgue measurable, that   is a positive 

measure on Y  that is absolutely continuous with respect to the n-dimensional Lebesgue 



 139 

measure, and that (0, ]p  . We say that f  is locally in ( )pL  , written as 
loc( )pf L  , if for 

each y Y  there exists a neighborhood U  of y  in Y  such that |Uf  is in )|( U

pL  . Similarly, 

we say that f  is locally bounded on Y  if for each y Y  there exists a neighborhood U  of 

y  in Y  such that ( )f U  is bounded. 

For measurable functions :f D   and : [0, )D   , where m nD   and 

( )mE E  , define the sets locLC ( , , )f E , locLC ( , , )f x  and 
locInt ( , , )p f E  analogously to 

how LC( , , )f E , LC( , , )f x  and Int ( , , )p f E  were defined in this Section, but replacing 

the condition ( , ) ( )p

xf x L    with loc( , ) ( )p

xf x L   . 

Proposition (5.3.19)[190]: The local analog of Theorem (5.3.44) holds, which describes 

the structure of locLC ( , , )
q

f E  rather than LC( , , )
q

f E . 

Proof. By extending f  and   by 0  on ( ) \nE D , we may assume that nD E  . 

Define functions F  and   on [ 1,1]n nE     by ( , , ) ( , )F x y z f x y z   and 

( , , ) ( , )
q

x y z x y z   . The compactness of [ 1,1]n  implies that for each x E  and 

(0, ]p  , loc( , ) ( )p q

x
f x L    if and only if ( , )( , , ) ( )x y

pF x y L    for all ny  . Therefore 

locLC ( , , ) LC( , ,( , ))
n

q

y

f x F x y


 . 

Theorem (5.3.44) shows that {LC( , ,( , )) : ( , ) }nF x y x y E    is a finite set of subintervals 

of (0, ]  with endpoints in (span {1, } [0, )) { }q   , so the set 

loc loc: {LC ( , , ) : }
q

f x x E   

is of this form as well. Let locI  . By Corollary (5.3.14) we may fix ( )nE g  such 

that 

{( , ) : LC( , ,( , ))} {( , ) : ( , ) 0}n nx y E I F x y x y E x y     g . 

Thus 

loc{ : LC ( , , )} { : ( , ) 0 for all }
q nx E I f x x E x y y    g , 

and this set is the zero locus of a constructible function by Theorem (5.3.22) (or 

Corollary (5.3.17)). 

Suppose that f  and   are complex-valued Lebesgue measurable functions on a 

measurable set m nD 

 such that ( ,·)x  is Lebesgue integrable on xD  for all x E , 

where ( )mE D  . For each x E , define a complex measure x  on xD  by setting 

( ) ( , )x
Y

Y x y dy    

for each Lebesgue measurable set xY D . The notion of an -classpL  with respect to a 

complex measure is defined using the absolute variation of the measure, so we define 

LC( , , ) : LC( , , )f E f E  , LC( , , ) : LC( , , )f x f x   for each x E , and 

Int ( , , ) : Int ( , , )p pf E f E   for each (0, ]p  . 

Proposition (5.3.20)[190]: The complex analog of Theorem (5.3.44) holds with 1q  , 

which describes the structure of LC( , , )f E  for complex-valued functions f  and   on a 

subanalytic set m nD   whose real and imaginary parts are constructible, where ( ,·)x  

is Lebesgue integrable on xD  for all x  in ( )mE D  . 

Proof. Apply Theorem (5.3.44) to the constructible functions 2| |f  and 2| |  with 1 2q  . 

Then note that for any (0, ]p  , | | (| | )p

xf L   if and only if 22| | (| )|p

xf L  . 

For the last result of this section, consider a subanalytic set m nD   such that for 
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each x  in ( )mE D  , the fiber 
xD  is a smooth k-dimensional submanifold of n . For 

each x E , consider a smooth k-form x  on xD , such that moreover there exist 

constructible functions 
1 , , ( , )

ki i x y  on D  with 11 ki i n     such that 

1 1

1

, ,

1

( ) ( , )
k k

k

x i i i i

i i n

y x y dy dy
   

   . 

For each x E , write x  for the measure on xD  associated to the smooth k-form x . 

For ( )f D , consider 

LC( , , ) { (0, ] : ( , ) (| |)}p

x xf x p f x L     , 

and 

LC( , , ) {( , ) (0, ] : ( , ) (| |)}p

xf E x p E f x L      , 

where  stands for the family ( )x x E . 

Proposition (5.3.21)[190]: With the above notation for D ,  and E , and with ( )f D , 

the analog of Theorem (5.3.44) holds for LC( , , )f E . To adapt the last sentence of 

Theorem (5.3.44) to LC( , , )f E , the extra assumption that   be subanalytic should be 

replaced by the condition that the 
1 , , ki i  be subanalytic. 

Proof. Because D  is subanalytic, basic o-minimality implies that there exists a finite 

family of subanalytic subsets of D  which covers D  and is such that the following hold 

for each U  : 

1. for every ( )mx U , the fiber xU  is open in xD ; 

2. there exists an increasing function :{1, , } {1, , }U k n   such that for each    

( )mx U , the projection U
  is injective on xU  and has constant rank k. 

For each U  , let ( , ) ( , ( , ))U UG x y x x z g  be the inverse of 
, ,

: ( )U Um m
U U

 
  , where 

1( , , )kz z z . Then for each U  , the functions Uf G  and 

1

1

1

, ,

1 1

( , , )
( , ) : ( , ( , )) ( , )

( , , )
k

k

k

U U

i iU U

i i

i i n k

x z x x z x z
z z   







g g
g  

are both constructible functions on U , and in the case that f  and all the 
1 , , ki i  are 

subanalytic, the U  and Uf G  also are. Hence, Theorem (5.3.44) applies 

LC( ,| |, ( ))U U

mf G U . The proposition now follows relatively easily from this and from 

the fact that 

LC( | , | , ( )) LC( ,| |, ( ))U U

U U m mf U f G U    

for each U  . 

Theorem (5.3.22)[190]: If ( )f D  for a subanalytic set m nD   and ( )mE D  , then 

there exists ( )Eg  such that 

{ : ( , ) 0 for all } { : ( ) 0}xx E f x y y D x E x     g . 

The parameterized rectilinearization theorem requires some additional terminology to 

state. For any sets m nA   and m dB  , we call a map 1( , , ) :m nf f f B A   

ananalytic isomorphism over m if f  is a bijection, f  and 1f   are both analytic, and 

1 1( , ) , , ( , )m mf x z x f x z x  , where 1( , , )dz z z . 

For {0, , }l d , we say that a set m dB   is l-rectilinear over m
 if B  is a cell over 

m such that for each ( )mx B , the fiber xB  is an open subset of (0,1)d  of the form 

( ) (0,1)d l

x l xB B    , 

where the closure of ( )l xB  is a compact subset of (0,1]l . When m dB 

 is l-rectilinear 
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over m , we call a function u  on B  an l-rectilinear unit if it may written in the form 

u U , where : (0, )N d lB     is a bounded function of the form 

1, ,

1 1

1 1

( , ) ( ) , , ( ) , , ,j N j

l l

j N j l d

j j

x z c x z c x z z z

 

 
  
 

              (26) 

for some positively-valued analytic subanalytic functions ic  and rational numbers ,i j , 

and where U  is a positively-valued analytic function on the closure of the range of . 

Proof. Let ( )f D  for a subanalytic set m nD  , and put ( )mE D  . Write 

: ( , ) 0 for all { }xV x E f x y y D    . We proceed by induction on n . 

First suppose that 1n  . By Corollary (5.3.10) we may fix a finite partition  of D  

into cells over m  such that the restriction of f  to A  is analytic for each A  . We claim 

that for each A   there exists ( ( ))A m A g  such that 

: ( , ) 0 for all{ ( ) } { ( ) ( ) 0} :m m Axx f x y xxA A Ay     g . 

The theorem (with 1n  ) follows from the claim, for then 

2: ( ( )) 0A

A

V x E x


 
   

 
 g , 

where :A E g  is the extension of Ag  by 0 on \ ( )mE A . To show the claim, fix A 

. We may assume that A  is open over m , else the claim is trivial. Since ( , )f x   is 

analytic on xA  for each ( )mx A , and since |Af  is definable in the expansion of the real 

field by all restricted analytic functions and the exponential function, which is o-minimal 

(see [198], or [195]), it follows that we may fix a positive integer N  such that for each 

( )mx A , ( , ) 0f x y   for all xy A  if and only if there exist distinct 1,..., N xy y A  such 

that 1( , ) ( , ) 0Nf x y f x y   . So fix subanalytic functions 1,..., : ( )N m A     whose 

graphs are disjoint subsets of A . Then the claim holds for the function 

2

1

( ) ( ( , ( )))
N

A i

i

x f x x


g . 

This establishes the theorem when 1n  . 

Now suppose that 1n  , and inductively assume the theorem holds with k in place of n  

for each k n . The set V  is defined by the formula 

( (( , ) ( , ) 0)) nx E y x y D f x y      . 

Applying the induction hypothesis twice shows that this formula is equivalent to 

1 1 1 1( (( , )) ( ) ( , ) 0)mx E y x y D h x y       

for some 1( ( ))mh D  , which in turn is equivalent to 

(( ( 0) ) )x E x  g  

for some ( )Eg . Thus { : ( ) 0}V x E x  g . 

Definition (5.3.23)[190]: Consider {0, , }l n  and a rational monomial map  on B  

over m , where m nB  . We say that  is l-rectilinear over m  if B  is l-rectilinear over 
m  (as defined prior to Theorem (5.3.32)) and if  is of the form 

 1

1 1( , ) ( ) , , ( ) , , ,N

l N l l nx y c x y c x y y y    

for some positively-valued analytic subanalytic functions 1, , Nc c  on ( )m B  and tuples 

1, , N  in l . We say that set B , or a rational monomial map  on B  over m , is 

rectilinear over m  to mean that it is l-rectilinear over m  for some l. 

Definition (5.3.24)[190]: For a subanalytic set m nD  , an open partition of D  over m  

is a finite family  of disjoint subanalytic subsets of D  that are open over m  and are 
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such that dim( \ )xD n  for all ( )mx D . 

The following lemma of one-variable calculus, and its corollary, are apparent. 

Lemma (5.3.25)[190]: Let   and 0  . Then the function (log )t t t   is 

1. integrable on (0,1)  if and only if 1   ; 

2. bounded on (0,1)  if and only if 0   or 0   . 

Corollary (5.3.26)[190]: Suppose that nA  is l-rectilinear over 0 , and let 

1( , , ) n

n     and 
1( , , ) [0, )n

n     . Then the function logy y y
  is 

1. integrable on A  if and only if for all { 1, , }i l n  , 1i   ; 

2. bounded on A  if and only if for all { 1, , }i l n  , 0i   or 0i i   . 

Note that if m nA   is l-rectilinear over m , then by applying Corollary (5.3.26) to each 

of the fibers xA , we see that logy y y
  is integrable on xA  either for all ( )mx A  or 

for no ( )mx A , according to whether the condition given in clause 1 of the corollary 

holds; and likewise for boundedness and clause 2. 

Lemma (5.3.27)[190]: Let nA  be l-rectilinear over 0 , and let 1( , , ) n

n    . 

1. If { : }y y A   is bounded, then 1, , 0l n   . 

2. Let    and {( , ) : ( ) 1}B y z A a y z     , where 0 ( ) 1a y   for all y A . If 

{ : ( , ) }y z y z B    is bounded, then 1, , 0l n   . 

Proof. Statement 1 is clear. Statement 2 follows from Statement 1 because { : }y y A   is 

in the closure of the set { : ( , ) }y z y z B   , so { : }y y A   is bounded if { : ( , ) }y z y z B    

is bounded. 

The following lemma is apparent. 

Lemma (5.3.28)[190]: Let : A   be a basic rational monomial map over m , where 
m nA   and ( , ) ( )x y c x y  . 

1. If A  is l-rectilinear over m  and l n l   , then ( ) l

lc x y 

  is bounded on 

( )m l A , and  is a ( ( ) , , , )l

l l nc x y y y

 -function. 

2. Let {1, , }j n , and put ( , )j jy y y 
   and ( , )j j   

  . If the closure of 

{y : ( , ) }j x y A  is contained in (0,1] , then ( )( )c x y   is bounded on A , and  is a 

( ( )( ) , )jc x y y -function. 

The proof of Proposition (5.3.31) will use two types of constructions, called pullback 

and pushforward constructions, to achieve the desired pullback and pushforward 

properties. 

Definition (5.3.29)[190]: Suppose we are given a basic rational monomial map 

: MA  over m , where m nA   is a cell over m . A pullback construction for  

consists of a subanalytic map :F A B  and a basic rational monomial map : NB   

over m , diagrammed as follows, 

, 

where m nB 

 is a cell over m , : ( )F B F B  is an analytic isomorphism over m , 

det F
y

  and the components of F  are -prepared, and F  is a -function. 

Observe that these properties ensure that if h  is any -prepared function, then h F  is 

-prepared. 
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We will use the six types of pullback constructions listed below, where 

 1( ) {( , ) : ( , ) ( ), ( , ) ( , )}m j j j m j i j j j jA x y x y A a x y y b x y                       (27) 

for each {1, , }j n . When defining F  below, we only specify its action on coordinates 

on which it acts nontrivially. 

1. Adjustment: This means that F  is the identity map (but  may be different from ). 

2. Restriction: This means that F  is an inclusion map and |B . 

3. Power Substitution in jy : This means that F  sends p

j jy y  for some positive integer 

p , and F . 

4. Blowup in jy : This means that we are assuming that j  is prepared over 1m j  , that F  

sends ( , )j j j jy y b x y  , and that  is the pullback of  by the transformation sending 

( )j j jy y b x y 

 , where ( , ) ( ) ( , )j j j jb x y b x y u x y

   is the j -prepared form of jb  and  is 

the natural extension of  to ( ) (0, )n

m A   . 

5. Flip in jy : This means we are assuming that  is prepared over 1m j  , that the closure 

of {y : ( , ) }j x y A  is contained in (0,1] , that 1jb  , and that  is of the form 

   ( , ) ( ( , ), , ( , , ))j j j j j jx y x y y x y y     ;             (28) 

F  is the transformation sending 1j jy y , and  is defined by the formula on the right 

side of (28), but on B  rather than on A . 

6. Swap in iy  and jy : This means that F  is the transformation sending ( , ) ( , )i j j iy y y y  

and F , provided that the resulting set B  is still a cell over m . 

Definition (5.3.30)[190]: Suppose that we are given a basic rational monomial map 

: NB   over m  and a subanalytic analytic isomorphism :F B A  over m , where 

, m nA B  . A pushforward construction for  and F  is a basic rational monomial map 

: MA   over m , diagrammed as follows, 

, 

where the components of 1F   are -prepared and 1F 

 is a -function. 

Observe that these properties ensure that if h  is any -prepared function, then 1h F   

is -prepared. 

If :F B A  is a map from any one of the six types of pullback constructions described 

above, : NB
   is a basic rational monomial map over m  with B B , and 

( )A F B  , then the maps | :BF B A
   and   have an obvious pushforward construction 

: MA
  , provided that when F  is a flip in jy , the map   is of the form 

( , ) ( ( , ), , ( , , ))j j j j j jx y x y y x y y    
   . 

The main purpose of this section is to show the following proposition. 

Proposition (5.3.31)[190]: Let  be a finite set of subanalytic functions on a 

subanalytic set m nD  . Then there exists an open partition  of D  over m  such that 

for each A   there exists a subanalytic analytic isomorphism :F B A  over m  with 
m nB  , and there exist rational monomial maps  on A  and  on B  over m  with the 

following properties. 

1. Pullback property: Each function in } {d{ et }F
f F y

f F 
   is -prepared, and  is 

rectilinear over m . 
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2. Pushforward property: The components of 1F   are -prepared, and 1F   is a -

function. 

The purpose of the pushforward property is that it ensures that for each subanalytic 

function :h B   that is -prepared, 1h F   is -prepared. This proposition is 

essentially Theorem (5.3.32), the only differences being that the theorem does not 

mention the pushforward property and that the theorem deals with an actual partition of 

D  rather than just an open partition of D  over m . In the proposition we use open 

partitions over n , rather than actual partitions, because it allows the proof of the 

proposition to be stated somewhat more simply since we may ignore subsets of D  whose 

fibers over m  have dimension less than n , and doing so is of no loss to the study of pL -

spaces on 
xD . 

Proof. Let  be a finite set of subanalytic functions on m nD  . Apply Proposition 

(5.3.9) to , and focus on one rational monomial map : MA   over m
 that this gives 

for which A  is open over m . Thus  is prepared, and each function in  restricts to a -

prepared function on A . Let   be the center of . We will first construct finitely many 

sequences of maps diagrammed as follows, 

       

 

             (29) 

 

 

where for each {1, , }i k  the maps iF  and [ ]i  are a pullback construction for [ 1]i   of 

one of the six types listed above, the map  is rectilinear over m , and the ranges of the 

maps :F B A  given by 1

1 kF T F F

  for all such sequences (29) constructed form 

an open partition of A  over m . Doing this shows the pullback property. We will 

construct (29) to also have the following property. 

 For each {1, , }j n , at most one map iF  in (29) is a flip in jy .            (30) 

Assuming we can construct (29) as such, to show the pushforward property it 

suffices to define ( )A F B  , to inductively define kB B  and 1 ( )i i iB F B   for each 

{1, , }i k , and to show that we can construct maps diagrammed as follows, 

   

 

                                   (31)  

 

 

where for each {1, , }i k , [ 1]i   is a pushforward construction for 1| :
ii B i iF B B  and [ ]i

. (Thus the map : MA   in the statement of the theorem is being denoted by 

: MA
   here in the proof.) These pushforward constructions will be possible 

because if a map iF  in (29) is aflip in jy , we can ensure that [ ]i  is of the form (28). 

Indeed, from among the six types of pullback and pushforward constructions we use, 

only blowups in one of the variables , ,j ny y  can possibly destroy the form (28). So (30) 

imply that, in fact, all the maps [ ] [ ], ,i k  and [ ] [ ]k i  are of the form (28). 

So it remains to construct the sequences (29). This is done by an induction, and to 

simplify   notation  we   will   write      instead  of  the   more   cumber   some : MA 
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[ ] : iMi

iA  . (So we are now assuming that  is basic.) Let {1, , }d n , and inductively 

assume that 
d

 is l-rectilinear over m for some {0, , 1}l d   and that  is prepared 

over 1m d  . Thus A  is a cell over m , so we use the notation (27). To complete the 

construction, it suffices to show that after taking an open partition of A  over m
 and 

pulling back , we may reduce to the case that 
d

 is rectilinear and  is prepared over 
m d . 

By pulling back by a blowup in 
dy  and then by power substitutions in 

1, ,l dy y
, and 

using Lemma (5.3.27), we may assume that 1db   and that all the powers of 
1, ,l dy y

 

occurring in the components of  are natural numbers, and when 0da  , that all the 

powers of 
1 1, ,l dy y 

 in the monomials occurring outside the units in the 
d

-prepared 

forms of 
da  and 1 da  are also natural numbers. There are two cases that can be handled 

very easily. 

Case 1: 0da  . 

In this case, ( )m d A  is l-rectilinear, so we are done after using Lemma (5.3.31.1) to 

adjust . 

Case 2: The closure of { : ( , ) }dy x y A  is contained in (0,1] . 

In this case, use Lemma (5.3.31.2) to adjust  to assume that  is of the form (28), 

and then apply a flip in dy  to reduce to Case 1. 

(Note that if we reduce to either of these two cases, we need not require that 1db   or that 

the requisite powers of 1, ,l dy y  are natural numbers, because the blowup and power 

substitutions mentioned just prior to these cases can be applied if needed.) So assume 

that 0da  , and write 

ˆ( , ) ( ) ( , )d d d da x y a x y u x y

    

for some analytic subanalytic function â , tuple of rational numbers 1 1( , , )d    , and 

d -unit u . We proceed by induction on supp( )l , the cardinality of the set supp ( )l . 

Suppose that supp ( )l  is empty, and write ly 

  instead of dy 

 . Fix a constant C  that 

is greater than the supremum of the range of u . Construct a partition of ( )m l A  into cells 

over m  compatible with the condition ˆ( ) 1la x y C

  . By considering the restriction of  

to ( )n lA B   for each cell B  from this partition that is open over m , we may assume 

that either ˆ( ) 1la x y C

   on A  or ˆ( ) 1la x y C

   on A . If ˆ( ) 1la x y C

   on A , then da  is 

bounded below by a positive constant, and we are in Case 2. So assume that ˆ( ) 1la x y C

   

on A . Consider the two sets 
ˆ{( , ) : ( , ) ( ) }d d d lx y A a x y y a x y C     and ˆ{( , ) : ( ) 1}l dx y A a x y C y

   . 

By restricting  to the first set and then pulling back by a blowup in dy , we reduce to 

Case 2. By restricting  to the second set and then swapping the coordinates 1ly   and dy , 

we reduce to the case that d  is (l+1)-rectilinear and  is prepared over m d , and we 

are done. This completes the proof when supp ( )l  is empty. 

Now suppose that supp ( )l  is nonempty. By pulling back by a swap, we may 

assume that 1 supp( )ll   . By pulling back by the power substitution 1l

d dy y   , we 

may also assume that 1 1l   . Let y   and   be the tuples indexed by {1, , 1}\{ 1}d l   

that are respectively obtained from dy   and   by omitting their (l+1)-th components, and 
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write 
1( , )d ly y y 

 ; thus 
1(1, )l l     and 

1l l   
  . Fix a constant 1C   that is greater 

than the supremum of the range of 
1

ˆ( )( ) ( , , )la x y u x y y


  ; this may be done because 

1
ˆ( )( ) la x y y


  is bounded (since it equals ( , ) ( , )d d da x y u x y 

) and 
1ly 

 may freely 

approach 1 independently of the other variables. Thus 

1 1 1 1
ˆ( , , ) ( )( ) ( , , )d l l l la x y y a x y y u x y y Cy

   
     

on A . Consider the three sets, 
1

1{( , ) : 1}lx y A C y

    
1

1 1 1{( , ) : 0  and ( , , ) }l l d lx y A y C a x y y y Cy

  
      

and 
1

1 1{( , ) : 0  and 1}l l dx y A y C Cy y

      . 

By restricting  to the first set, we reduce to the case that 
d

 is (l+1)-rectilinear, and we 

are done by the induction hypothesis since 1supp( ) supp( )l l    . If we restrict  to 

either the second or third set, we may pull back by a blowup in 
1ly 
 to assume that 1C  . 

On the second set, we may then pull back by a blowup in dy , and we are done by the 

induction hypothesis since supp( ) supp( )l l  
  . The third set can also be written as 

1{( , ) : 0 1,0 }d l dx y A y y y     , so we may reduce to Case 1 by swapping the 

coordinates 1ly   and dy . 

We use the proposition above to show Theorem (5.3.32) and also Theorem (5.3.44) 

when f  and   are assumed to be subanalytic. 

Theorem (5.3.32)[190]: Let  be a finite set of subanalytic functions on a subanalytic 

set m nD  . Then there exists a finite partition  of D  into subanalytic sets such that 

for each A   there exist {0, , }d n , {0, , }l d  and a subanalytic map :F B A  such 

that F  is an analytic isomorphism over m ,the set m dB   is l-rectilinear over m , and 

each function g  in the set  defined by 

{ } , if ,

{ } {det }, if ,

f

F
f y

f F d n

f F d n




 


 


 

may be written in the form 

1

( , ) ( ) ( , )j

d
r

j

j

x z h x z u x z


 
  

 
g               (32) 

on B  for some analytic subanalytic function h , rational numbers jr , and l-rectilinear unit 

u . 

Note that if one desires, one can take the ,i j  in (26) and the jr  in (32) to all be integers. 

To do this, simply pull back each map F  in Theorem (5.3.32) by a map, 
1

1( , ) ( , , , )dkk

dx z x z z  for a suitable choice of positive integers 1, dk k . 

Proof. Let  be a finite set of subanalytic functions on a subanalytic set m nD  . We 

proceed by induction on n . The base case of 0n   is trivial, so assume that 0n   and that 

the theorem holds with k  in place of n  for all k n . Let  be the open partition of D  

over m  given by applying Proposition (5.3.31) to , and let D   . Thus the theorem 

holds for |D  . It follows from the induction hypothesis that the theorem also holds for 

\|D D  , since \D D   may be partitioned into cells over m , and each of these cells 

projects via an analytic isomorphism into m d  for some d n . 

Notation (5.3.33)[190]: For any set , let  denote the ring of all analytic germs mE E
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on E , and let [ ]E y  denote the ring of all polynomials in 
1( , , )ny y y  with coefficients 

in 
E

. Each member of [ ]E y is an equivalence class of functions defined on 

neighborhoods of nE   in m n , and hence defines a function on nE  . For each 

[ ]E y , define the variety of  by 

( ) {( , ) : ( , ) 0 for all }nx y E f x y f     . 

For each mx  , the ring { }x  is Noetherian, so { }[ ]x y  is as well. This implies that 

when E  is compact, the varieties of [ ]E y  form the collection of closed subsets of a 

Noetherian topological space on nE  ; in other words, for any [ ]E y  there exists a 

finite   such that ( ) ( )  . 

Notation (5.3.34)[190]: We partially order k  by defining    if and only if j j   

for all {1, , }j k , where 
1( , , )k    and 

1( , , )k   . For any k  write 

[ ] { : }k      , and for any kA  write [ ] [ ]
A

A





  for the upward closure of A . 

If kA  is nonempty, define min A  to be the set of minimal members of A , and define 

min0 0  . 

Dickson’s lemma states that min A  is finite for every kA . The following is a 

parameterized version of Dickson’s lemma. 

Lemma (5.3.35)[190]: Let mE  be compact and { } [ ]k Ef y 
. Then the set 

( , )

min{ : ( , ) 0}
n

k

x y E

f x y
 

                 (33) 

is finite. 

Proof. The proof is by induction on k , with the base case of 0k   being trivial. For the 

inductive step, use topological Noetherianity to fix k   such that 

({ } ) ({ } )kf f     
 . Then (33) is finite because it is contained in 

   
1 0 ( , )

min{ : ( , ) 0, }
i

n

k
n

j

i j x y E

f x y j


 
   

 
    

 

,           (34) 

and each of the sets in parenthesis in (34) is finite by the induction hypothesis. 

Lemma (5.3.36)[190]: Let kM  be finite. Then there exists a finite partition of 

[ ] MM  that is compatible with {[ ]} M   and is such that each member of the partition 

has a unique minimal member. 

Proof. Define 1( , , )k  by max{ : }i i M    for each {1, , }i k . Let the partition 

of [ ]M M  consist of all the singletons { }  with  1
[0, ] [ ] M

k

ii
M


   and all sets of 

the form 

    
{1, , }

:k

i i j j
i N j k N

   
 

   , 

for each nonempty {1, , }N k  and 1( , , )k    in  1
[0, ] [ ]

k

ii
M

 . 

Lemma (5.3.37)[190]: Let mE   be compact, and suppose that f  is represented by a 

convergent power series 

( , , ) ( , )
k

f x y z f x y z 





   

on [0,1]n kE   , where [ ]Ef y   for each k . Then we may write 

( , , ) ( , ) ( , , )
cr ncM M

f x y z z f x y z f x y z 

 

  

                (35) 

on  ,  where  the sets    are finite  and  disjoint, each    with [0,1]n kE   ,cr nc kM M f 
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38)) 

crM   is represented by a subseries of ( , )f x y z  

 



 , and for each ( , ) nx y E   

and each ncM  , if ( , , ) 0f x y z   for some [0,1]kz  , then ( , ) 0f x y   for some crM  

with   . 

Proof. Let crM  be the set defined in (33), let  be the partition of [ ]cr crM M  given by 

Lemma (5.3.36), and let ncM  be the set of minimal members of the sets in . For each 
ncM  , write S   for the unique member of  whose minimal member is  , and define 

( , , ) ( , )
S

f x y z f x y z


 

 




 . Then (35) holds. Consider ncM   and ( , ) nx y E   

such that ( , , ) 0f x y z   for some [0,1]kz  . Then ( , ) 0f x y   for some S  . Fix crM  

such that ( , ) 0f x y   and   . Thus [ ]S    is nonempty, so [ ]S    by the 

compatibility property of , and hence   . 

This section shows the following proposition, which is a preparation result for 

constructible functions in transformed coordinates on rectilinear sets. 

Proposition (5.3.38)[190]: Let  be a finite set of constructible functions on a 

subanalytic set m nD  . There exists an open partition  of D  over m  such that for 

each A   there exist a subanalytic analytic isomorphism 1( , , ) :m nF F F B A   over 
m , rational monomial maps  on A  and  on B  over m , and {1, , }l n  with the 

following properties. 

1. Pullback property: The map  is l-rectilinear over m , det F
y



 is -prepared, and 

for every f   we may write f F  in the form 

, ,( , ) (log ) ( , ) ( , )
cr nc
s s

s r r

l l r s l l r s

s S r R r R

f F x y y y f x y y f x y   

  

 
   

 
       (36) 

on B , where the sets 1nS   and 1,cr nc n

s sR R   are finite with 0cr nc

s sR R    for each s , 

and each function ,r sf  may be written as a finite sum 

  
,

,

( , ) ( ) (log ) ( , ),    if ,

( , ) ( ) (log ) ( , ),         if ,

j j

j j

cr

r s l j l l j l s

j

cr

r s j l l j s

j

f x y x y y h x y r R

f x y x y y h x y r R

 

 

   

 

  



 






g

g
                           (37) 

where ( ( ))j m A g , l

j  , l

j  , jh  is either a l -function or a -function 

according to whether r  is in cr

sR  or nc

sR , and the following holds: 

For each s S , nc

sr R  and ( , ) ( )l m lx y B  , if , ( , , ) 0r s l lf x y y      

for some (0,1)n l

ly 

  , then , ( , ) 0r s lf x y    for some cr

sr R  with r r  . 

2. Pushforward property: The components of 1F   are -prepared, and 1F   is 

   a -function. 

The superscripts “cr” and “nc” in the notation cr

sR  and nc

sR  stand for critical and 

noncritical. We will use (38) to see that the pL -classes of ( , )f x   are determined by which 

of the terms , ( , )r sf x   with cr

sr R  are identically zero, so in this sense these are the 

“critical” terms. 

In the degenerate case of l n , (36) and (37) simply mean that 

( , ) ( ) (log ) ( , )j j

j j

j

f F x y x y y h x y
 

g

 
for some constructible functions , tuples  and , and -functions . To 

see this, note that if  is nonzero and , then  and 
 

jg n

j  n

j  jh

f F l n 0 {0}S  
0

0 0, {0}cr ncR R 
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with 
0 0 0cr ncR R   , so 

0 0crR    and 
0 0ncR    by (38). 

Proof. For each f   write ,( , ) ( , ) log ( , )i i ji j
f x y f x y f x y   for finitely many 

subanalytic functions 
if D   and , : (0, )i jf D   . Apply Proposition (5.3.31) to 

, ,{ , }i i j i jf
f f


, and focus on one set A  in the open partition of D  over m  that this gives, 

along with its associated maps :F B A ,  on A , and  on B , where  is l-rectilinear 

over m . Thus det F
y



 is -prepared, and we may write 

,

, ,( , ) ( ) ( , ) log ( ) ( , )i ji

i i i j i j

i j

f F x y a x y u x y a x y u x y
   

on B  for some analytic subanalytic functions 
ia  and ,i ja , tuples 

i  and ,i j  in n , and -

units 
iu  and ,i ju . By expanding the logarithms and distributing, we may rewrite this in 

the form 

( , ) ( ) (log ) ( , )i i

i i

i

f F x y x y y h x y g               (39) 

 for some constructible functions ig , tuples n

i   and n

i  , and -functions ih . By 

pulling back by power substitutions in y , we may assume that n

i   for each 
i  in (39). 

Write ( , ) ( ( , ), )i i l l lh x y H x y y    for some analytic function ( , )i lH X y   on the closure of 

the image of . 

We are done if l n , so assume that l n  and work by induction on n l . Since the 

closure of the range of l  is compact, we may fix 0  such that each function iH  is 

given by a single convergent power series in ly 
 with analytic coefficients in ( , )lX y 

, 

say 

    ,( , ) ( )
n l

i l i lH X y H X y


 



  ,              (40) 

for all X  in the closure of the range of l  and all ly   in [0, ]n l . For each { 1, , }j l n  , 

by restricting  to {( , ) : }jx y B y   and swapping the coordinates 1ly   and jy , we may 

reduce to the case that  is (l+1)-rectilinear, in which case we are done by our induction 

on n l . So it suffices to restrict  to ( (0, ) )m l n lB   . After pulling back by the maps 

sending j jy y  for each { 1, , }j l n  , and again expanding the logarithms 

log log logj jy y   and distributing, we may assume that 1 . We are now done 

pulling back . The pushforward property of the proposition we are showing follows 

from the fact that  satisfies the pushforward property of Proposition (5.3.31), because 

we have only applied some very simple pullback constructions to the map  originally 

given by Proposition (5.3.31). It remains to show that we can express f F  as a sum in 

the desired form. 

By grouping terms in (39) according to like powers of log ly  , factoring out suitable 

monomials in y , and absorbing any remaining monomials in ly   with nonnegative 

powers inside of -functions, we may rewrite (39) in the form 

( , ) (log ) ( ) (log ) ( , )j js

s

s

l j l l j

s S j J

f F x y y y x y y h x y
 

  

 

  g         (41) 

for some finite n lS   and finite index sets sJ , constructible functions jg , tuples n

s   

and , l

j j   , and -functions jh , which we still write as j jh H  with jH  written as 

a power series (40). For each s S  write 
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( , ) ( ) (log ) ( , )j j

s

s s j l l j

j J

G x y x y y h x y
 

 



  g , 

where 

( , ) ( ( , ),log ,( ( )) , )
ss l l l j j Jx y x y y x y    g , 

        

( , , , ) ( , )j j

s

s s j l j l

j J

G X Y Z y Z y Y H X y
 

 



  , 

with ( )
ss j j JZ Z   and 

1( , , )lY Y Y . By computing 

 

 
, ,( ) ( )j j j j

n l n l
s s

j l j l j l j l

j J j J

Z y Y H X y Z y Y H X y
   

 

   

  

   
    

  
    ,    (42) 

we may write 

,( , , , ) ( , , , )
n l

s s l s s l lG X Y Z y G X Y Z y y


  



   

with each 

, ,( , , , ) ( )j j

s

s s l j l j

j J

G X Y Z y Z y Y H X
 

 



  . 

Note that each ,sG  is a polynomial in ( , , )s lY Z y 
 with analytic coefficients in X , and 

X  ranges over a compact set. So we may apply Lemma (5.3.40) to get 

, ,( , , , ) ( , , , ) ( , , , )
cr nc
s s

nc

s s l s s l l s s

R R

G X Y Z y y G X Y Z y y G X Y Z y  

 

   , 

where cr

sR  and nc

sR  are disjoint subsets of n l , each ,

nc

sG  is an analytic function 

represented by a subseries of , ( , , , )l s s ly G X Y Z y





  , and for each choice of 

( , , , )s lX Y Z y   and nc

sR , if , ( , , , , ) 0nc

s s l lG X Y Z y y     for some [0,1]n l

ly 

  , then there 

exists  such that  and . Write 

      ,       (43) 

where  is the map obtained from  by omitting its components . By distributing 

each  and expressing each function  as a sum of terms indexed by , via a 

computation analogous to what was done in (42) for  (but going from right to left 

rather than from left to right), we see that (43) expresses  in the desired form. 

We begin by fixing some notation to describe a situation that will be encountered 

throughout the section. 

Notation (5.3.39)[190]: Consider a finite set  of constructible functions on a 

subanalytic set , and let  be an open partition of  over  obtained by 

applying Proposition 6.1 to . Focus on one , along with its associated maps  

,  on , and  on , where  is l-rectilinear over , as in the 

statement of the proposition. Write  for the coordinates on  with center , where 

 is the center of . Write 

 

on  for some analytic subanalytic function , tuple  in , and -unit U. 

For each  write Eq. (36) as 

 

on , where 

cr

sR , ( , , , ) 0s s lG X Y Z y   

, , ,( , ) (log ) ( , ) ( , )s

cr nc
s s

s nc

l l s s l l l s s

s S R R

f F x y y y y G x y y G x y


    

  

 
   

 
  

,s l s ly 

sy


,

nc

sG sj J
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, 

, 

, 

 

for the sets ,  and  and the functions  defined from  and  in Proposition 

(5.3.38). For each  and , define 

, 

, 

, 

. 

For each  and , define 

, 

, 

under the convention that  and  when  is empty. 

Remarks (5.3.40)[190]. Consider the situation described in Notation (5.3.39), and let 

. 

i. For each , the set  is dense and open in . 

ii. For each , the  is empty if and only if  for all 

. 

Proof. i. This follows from the fact that for each  and , 

 is a nonzero analytic function on , and  is connected and open in 

. 

ii. If  is empty, then (38) implies that  is identically zero on . If 

 is nonempty, then the following lemma implies that  is not identically 

zero on . 

Lemma (5.3.41)[190]: Consider the situation described in Notation (5.3.39). Fix , 

,  with , and . For any tuple 

, write  and . Then the limit 

               (44) 

exists for all , and the set 

{ :(44) is nonzero}               (45) 

is dense and open in . 

Proof. Define 

  , 

  , 

  . 

It follows from (38) that for each , either , or  

and . Therefore the limit (44) exists and equals , where  
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 is the analytic function defined by 

. 

So to show that (45) is dense and open in , it suffices to show that  is not 

identically zero. To do that we will show that  is not identically zero, where 

 is defined by 

 

for some suitably chosen open set . 

Note that 

  

   . 

We may choose  so that there exist  and  such that for 

all  with , 

      for all .              (46) 

By (38), for each  there exists  such that  and  
(and necessarily ), so  for all . Therefore by shrinking and , we 

can ensure that (46) also holds for all . So by defining 

, 

, 

we see that as  tends to 0,  is asymptotic with 

, 

which is not identically zero because the sum in parentheses is a nonzero polynomial in 

. 

To show the next lemma, we need the following inequality: 

   if  and .            (47) 

The inequality (47) can be verified when  by considering  and 

, where  and , and then showing that  and 

 for all . The general case then follows by induction on . 

Lemma (5.3.42)[190]: Let  be a positive measure on a set , let  and  be 

finite families of real-valued -measurable functions on , and let . Put 

. Then 

 

Proof. By symmetry we may assume that . Then 
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  by (7.4), 

, 

 

with the last inequality following from (47) when  and from the triangle inequality 

for  when . 

Lemma (5.3.43)[190]: Consider the situation described in Notation (5.3.39), and 

suppose that ,  and . Then 

. 

And,  if and only if either  is empty or else for each 

,  or . 

Proof. Let . The conclusion is clear from Remark (5.3.42.2) when either 

 or  is empty, for then and either  

for all  (when is empty), or  for all  

(when  is empty). So we assume that  and  are both 

nonempty. Let . 

Suppose that 

             (48) 

for all . Then 

 

for all ,  and . By applying Lemma 

(5.3.42) to the sums  and  using the measure defined 

from the Jacobian of  in , and then by applying Corollary (5.3.26), we see that 

. 

Conversely, suppose that , and let . Fubini’s theorem 

and Remark (5.3.42.1) imply that there exist  and  in the set 

(45) such that 

 

is integrable on (0,1). So (48) holds by Lemmas (5.3.25) and (5.3.41). 

The  case is similar. Indeed, suppose that  or 

 for all . Then  or  for all 

 and . So applying Corollary (5.3.26) to each term of the 

sum  shows that  is bounded on , and hence 

. 
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Conversely, suppose that . Then  is bounded on . So 

for each  we may choose  and  in the set (45), and thereby 

conclude that  or  by Lemmas (5.3.25) and (5.3.41). 

Theorem (5.3.44)[190]: Let 0q   and , ( )f D  for some subanalytic set m nD  , 

and put ( )mE D   and {LC( , , ) : }
q

f x x E  . Then  is a finite set of open 

subintervals of (0, ]  with endpoints in (span {1, } [0, )) { }q   , and for each I   there 

exists ( )I Eg  such that 

{ : LC( , , )} { : ( ) 0}
q

Ix E I f x x E x   g .             (49) 

Moreover, if f  and   are subanalytic, then each of the functions 
Ig  can be taken to be 

subanalytic. 

Proof. in the subanalytic case. Suppose that 0q   and that f  and   are real-valued 

subanalytic functions on m nD  . Put ( )mE D   and {LC( ,| | , ) : }qf x x E  . Apply 

Proposition (5.3.31) to { , }f  . This constructs an open partition  of D  over m  

such that for each A  , there exist a subanalytic analytic isomorphism :F B A  over 
m  and a rectilinear rational monomial map  on B  over m  such that f F , F  and 

det F
y



 are -prepared. 

Focus on one A  , along with its associated maps :F B A  and  on B , where  

is l-rectilinear over m . Define : B   by 

( , ) ( , ) det ( , )
q F

x y F x y x y
y

 





. 

On B  write 

( , ) ( ) ( , )f F x y a x y u x y , 

( , ) ( ) ( , )x y b x y x y  , 

for some analytic subanalytic functions a  and b , tuples 1( , , ) n

n     and 

1( , , ) (span {1,q})n

n    , and -units u  and . We may assume that a  and b  have 

constant sign. If 0a   or 0b  , let (0, ]AI   . Otherwise, let AI  be the set consisting of all 

(0, )p   such that 1i ip     for all { 1, , }i l n  , and also consisting of   if 0i   

for all { 1, , }i l n  . Note that AI  is a subinterval of (0, ]  with endpoints in

(span {1,q} [0, )) { }  . Also note that by Corollary (5.3.26), 

LC( | , , ( )) LC( , , ( )) ( )
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A m m m A
A
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( )mx A . This, and the fact that  is finite, also implies that  is finite. To finish, let 

I  , and note that { : LC( , , )}x E I f x  equals 

{ :  for all  with ( )}A mx E I I A x A   , 

which is a subanalytic set, and hence is the zero locus of a subanalytic function. 

In the constructible case. Let  for a subanalytic set , fix , 

and write . Apply Proposition (5.3.38) to , and use Notation 

(5.3.39). We claim that for each , the set 
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is a finite set of open subintervals of  with endpoints in , and 

that for each  there exists  such that 

. 

The claim implies the theorem because for each , 

, 

so the claim shows that  is a finite set of open subintervals of  with endpoints in 

, and that for each , 

 

    , 

where each  is defined by extending  by  on . 

To show the claim, focus on one . Lemma (5.3.43) shows that each member of 

 is an open subinterval of  with endpoints in , and that  

is finite because 

 

for all  such that  and . Fix 

. We may define  if  is empty, so assume that  is nonempty. Let  

and . Lemma (5.3.43) implies that for any , when the infimum of 

 is finite, this infimum is determined by the inequalities (48) for all 

 for which  is positive; and similarly, when the supremum of 

 is finite, this supremum is determined by the inequalities (48) for all 

 for which  is negative. Therefore  if and only 

if each of the following two conditions hold. 

1.  If  is nonempty, then 

 and  for all , 

for every  and  such that for all , 

 

with the understanding that we are allowing computations in the extended real number 

system since  or  could be . 

2. If , then at least one of the following two conditions hold. 

(a) We have 

 for all , 
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Therefore  can be constructed using Theorem (5.3.4). 

We now turn our attention to stating and showing the preparation theorem. 

Notation (5.3.45)[190]: When considering the situation described in Notation (5.3.39), 

we shall now also write  for the inverse of , and for each 

 write 

 

on , where  is an analytic subanalytic function, , and  is a -unit. 

Lemma (5.3.46)[190]: Consider the situation described in Notations (5.3.39) and 

(5.3.45). Let  and , where  and . We may 

express  in the form 

              (50) 

on , where  is a finite index set and for each , 

               (51) 

for some , tuples  and  

satisfying  and  for all , and -units . 

Proof. By (37) we may write  as a finite sum of terms of the form 

                   (52) 

on , where , the tuples  and  satisfy 

 and  for all , and  is a -function. Pulling back (52) by  

gives 

 

on . In the above equation, by writing 

 

for each , and then distributing, we obtain the desired form given in (50) and 

(51), except that each  is only a -function, not necessarily a -unit. But then by 

writing  for some sufficiently large constant  so that  and  are 

both units, and then separating each term in (50) into two terms, we may further assume 

that each  in (50) is a -unit. 

Lemma (5.3.47)[190]: Consider a single term  given in (51). We may express  

as a finite sum 

                (53) 

on  for some , tuples  satisfying  for each 

, and bounded functions . 

Proof. Since 
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on . In the above equation, write 

 

for each , and then distribute. 

Theorem (5.3.48)[190]: Let  be a finite subset of  for some 

subanalytic set . For each  let 

, 

and let . Then there exists an open partition  of  over  into 

subanalytic cells over  such that for each  there exist a rational monomial map 

 on  over  and rational numbers , where , for which we may 

express each  in the form 

               (54) 

on , where  is a finite index set and for each , 

               (55) 

for someg , rational numbers , natural numbers , and -units , 

where we are writing  for the coordinates on  with center , with  being the 

center for . Moreover, for each  and  there exists a partition  of 

 described as follows. 

For each , , , , and , at least one 

of the following two statements holds: 

1. for all , we have ; 

2. for all  such that , either  for all  

or  for all ; 

and if Statement 2 does not hold, then 

              (56) 

for all  and all functions  and  of the form 

, 

 

where the  and  are arbitrary and the ,  are as in (55). 

Proof. Apply Proposition (5.3.38) to . Fix , and use the notation found in 

Notations (5.3.39) and (5.3.45) and in Lemmas (5.3.46) and (5.3.47). Lemma (5.3.46) 
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is defined as in (51) and 
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For each , define 

. 

Now also fix , ,  and . Write 

 and  for some  and . We are 

done if Statement 2 in the last sentence of the theorem holds, so assume otherwise. 

Therefore we may fix  such that ,  and 

. Lemma (5.3.43) gives the following. 

  For all  and all , 

   .  

  If , then for all , 

     or .  

Let  and . Write  and  as in (7.7) with  and , respectively, 

and write 

   ,            (59) 

   ,            (60) 

as in (53). Note that for each , 

    and .           (61) 

So (57) holds with  and  in place of  and , respectively. 

Therefore by Corollary (5.3.26), Lemma (5.3.42), (59) and (60), it follows that 

. 

Note that the proof of this fact depends only on the values of  and , being 

independent of the values ,  and , so (56) follows. 

Now suppose that . Note that for each  and , we have 

. Combining this with (61) shows that for each , either  

or else  for all . Therefore Corollary (5.3.26) and (59) show that  

is bounded on  for each . So . 

This completes the proof of the theorem, except for the fact that  need not be a cell 

over . To remedy this, simply construct an open partition of  over  consisting of 

cells over  (for instance, using Proposition (5.3.9)), and then restrict to each of these 

cells. 

Theorem (5.3.48) was formulated in such a way so as to be as strong and general as 

possible, but at the cost of having a technical formulation that may obscure the fact that it 

implies the simpler Theorem (5.3.2). The corollary of Theorem (5.3.48) given below 

directly implies Theorem (5.3.2) and its analog for  described in (19), and it 

generalizes the interpolation theorem [172, Theorem 2.4]. 

The proof of the corollary makes use of the following observation: for the set  

from Theorem (5.3.48), if  is subanalytic, then the restriction of  to  is -

prepared (as opposed to being in the more general form allowed by (54) and (55)). This 

observation follows from the way the proof of Theorem (5.3.48) uses Proposition 

(5.3.38), and from the way the proof of Proposition (5.3.38) uses Proposition (5.3.31). 

Corollary (5.3.49)[190]: Suppose that , that  is subanalytic, and that 
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subanalytic, and . Define  and . Then to each  

we may associate a function  in such a way so that the following statements 

hold. 

1. There exists an open partition  of  over  such that for each  there 

exists a rational monomial map  on  over  such that for every , 

the function  is -prepared and we may express  as a finite sum 

( , ) ( , )k

k

f x y T x y                 (62) 

on , where each function  is of the form (55). 

2. The following hold for all . 

(a) We have  on . 

(b) For all  and all terms  in the sum (62), we have 

. (Hence ). 

3. If , then we may take each function  to be of the simpler form 

  ,              (63) 

and the fact that  only depends on the values of 

the , and not the values of the , in the following sense: we have 

 for any function  on  of the form 

 

where the  are as in (63) and the  are arbitrary natural numbers. 

Proof. Let  be the open partition of  obtained by applying Theorem (5.3.48) to ; 

we use the notation of the theorem. Because  is subanalytic for every , it 

follows that we may partition the members of  further in the x-variables to assume that 

for each  and each , either  for all , or else for each 

 there exists  such that . Therefore for all , 

,  and , at least one of the following two statements holds. 

1. For every  we have . 

2. We have  on . 

For each  and , define  to be the union of all  for 

which there exists  such that  and the above Statement 1 holds. For 

each , define  by 

 

Observe that Statements 1 and 2 of the corollary hold. 

To show Statement 3, suppose that . By writing 

 

in (55) and then distributing, we may write each term  as a finite sum of terms of the 

form (63) with the same values of the  but possibly different values of the . But 

only the values of the  are relevant by (56) since . 
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The analog of Theorem (5.3.2) for  mentioned in the Introduction can be stated 

as follows: if  is subanalytic and  is such that , 

then there exists an open partition  of  over  into cells over  such that for 

every  we may express  as a finite sum  on  for terms  

with  that are of the form 

   ,            (64) 

as denoted in the previous section. This statement was shown in Corollary (5.3.49). A 

more literal analog of Theorem (5.3.2) for  would require the terms  to be of the 

simpler form 

   ;            (65) 

however, this more literal analog is false, and the purpose of this section is to show this 

by giving a counterexample. It follows that in Statement 3 of Corollary (5.3.49), one may 

not drop the assumption that ; and in Theorem (5.3.48), one may not replace (56) 

with the statement . 

For the rest of the section, write  for coordinates on , and define 

 by 

    ,                   (66) 

where 

     .           (67) 

Note that the function  is bounded on  for every , and that the function 

 is already a single term of the form given in (64) on . The obvious way to express  

as a sum of terms of the form (65) is to write 
 

on ; however, the terms  and  now become unbounded on each fiber . It 

should therefore seem feasible that  is a counterexample for the more literal analog of 

Theorem (5.3.2) for . To show that this is in fact the case, we show the following 

assertion. 

Lemma (5.3.50)[190]: Let 

, 

and define an analytic isomorphism  by 
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Suppose that  is a function of the form 

              (68) 

where  is finite and nonempty, the  and  are integers, and each  is a 

function on  that is not identically zero and is of the form 

 

for an analytic function  on  represented by a single convergent power series, say 
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Then there exist , a nonzero real number , a natural number , and integers  

and  such that for all , 

     .             (69) 

Proof. By factoring out the lowest powers of  and  in (68), we may assume that the  

and  are all natural numbers. But then each monomial  can be incorporated into 

the function , so we may in fact assume that the numbers  and  are all zero. For 

each , 

, 

where 

. 

So 

  .           (70) 

Note that for each , the function  is not identically zero and  is a bijection, so 

 is not identically zero, which implies that  for some  and . 

Let  be the lexicographically minimum member of the set 

   ,             (71) 

and define , , and . We claim that for all 

 in the set (71) and all , 

     .              (72) 

The claim and (70) together imply (69). To show the claim, consider  in 

(71). If , then , in which case (72) holds for all . So suppose that 

. Simplifying the inequality  shows that it is equivalent to the 

inequality . So for all , 

, 

which shows the claim. 

In the following proof, we shall say that two functions  are equivalent 

on  if the range of  is contained in a compact subset of . 
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. 
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that for each ,  may be written as a finite sum  on  for 

terms  of the form (65) with each  bounded on  for all ; note that 

we associate to  a certain rational monomial map  on  over  that is used to 
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rational monomial map  on  over  such that for each function  occurring in (65), 

say of the form 

              (73) 

for subanalytic functions  and , the functions  and  are all -prepared 

on . 

The functions  and  are not equivalent for  near , so we may fix  of 

the form 
 

with  and  not equivalent on . Let  be the rational monomial map on  over 

 associated with . Note that  is not equivalent on  to a constant, that  is 

not equivalent on  to a function of , and that  is not equivalent on  to a 

function of , so  must have center . For the same reason, if  is the unique 

member of  containing , and if  is the rational monomial map over  associated 

with , then  must also have center . We are only interested in the restriction of  

to , so we may therefore simply assume that  and . So we may write 

            (74) 

on  for the constructible functions  given in (73), rational numbers  and , 

natural numbers  and , and -units ; and we may write 

   and    

on  for some rational numbers  and  satisfying  and some -

units  and . 

Fix positive constants  and  satisfying  and  on . Since 

, by shrinking  we may assume that 

. 

Pulling back Eq. (74) by the map  gives 

           (75) 

on the set 

. 

By assumption, each term of (75) is bounded for each fixed value of , so letting  tend 

to  for each fixed value of  shows that for each , either  or 

 (and  means that ). So letting  tend to  

in (75) gives 

              (76) 

on 

, 

where each  is a -unit with  defined by . 

By pulling back (76) by the map  and expanding logarithms 
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using (73), we may write 

              (77) 

on 

              (78) 

for some , rational numbers  and , and -functions  (for an appropriately 

modified ), where  ranges over some finite set of natural numbers. By pulling back by 

 for a suitable positive integer , we may further assume that all the  

and  are integers, and that the components of  are also all monomial in  

with integer powers. Thus each component of  is either of the form  for some 

positive integer , is of the form  for some positive integer , or is of the form 

 for some positive integers  and  with . So we may assume 

that , and therefore write  for some analytic 

function  defined on the closure of . Fix  sufficiently 

small so that 

             (79) 

is contained in (78) and that  is represented by a single convergent power series on 

. Thus restricting to (79) and then pulling back by 

 gives an equation of the form 

              (80) 

on 

, 

with each  represented by a single convergent power series on  centered at the 

origin. 

Applying Lemma (5.3.50) to the right side of (80) shows that there exist  , a 

nonzero real number , a natural number , and integers  and  such that for all 

, 

. 

Considering this limit for any fixed value of  shows that  and that , so 

in fact  since  is arbitrary. But then  for all , which is a 

contradiction that completes the proof. 
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Chapter 6 

Existence of Primitives Lipschitz Maps and Integration 

We show that if  is a quasi-Banach space with trivial dual then every continuous 

function  has a primitive, answering a question of M.M. Popov. We construct 

the first known examples of functions in                 that fail to be Lipschitz. On the 

positive side, we obtain a criterion for Riemann integrability of quasi-Banach valued 

maps based on an approximation method by polynomial functions. Finally, with an eye 

to finding a class of functions whose integral interacts well with differentiation, we give 

sufficient conditions that guarantee the fulfillment of the fundamental theorem of 

calculus, and show the Lebesgue differentiation theorem for the integral in the sense of 

Vogt. 

Section (6.1): Continuous Functions in a Quasi-Banach Space 

Let X  be a quasi-Banach space and let : [0,1]f X  be a continuous function. We say 

that f  has a primitive if there is a differentiable function F: [0,1] X  so that ( ) ( )F t f t   

for 0 1t  . M.M. Popov has asked where every continuous Function  : [0,1] pf L  

where 0 1p   has a primitive; more generally, he asks the same question for any space 

with trivial dual [202]. We show here that the answer to this question is positive. We 

remark that by an old result of Mazur and Orlicz [201],[134], every continuous f  is 

Riemann-integrable if and only if  X   is a Banach space. 

Let us suppose for convenience that X  is  -normed where 0 1p  , and let [0,1]I  . 

Let ( ; )C I X  be the usual quasi-Banach space of continuous functions :f I X  with the 

quasi-norm 0 1max ( )tf f t 
 . We also introduce the space 1( : )C I X  of all functions 

( ; )f C I X  which are differentiable at each t  and such that the function 2g : I X  is 

continuous where ( , ) ( )g t t f t  for 0 1t   and 

( ) ( )
(s, )

f s f t
g t

s t





 

when s t  It is easily verified that 1( ; )C I X  is a quasi-Banach space under the quasi-norm 

1

0 1

(t) (s)
(0) sup

C
s t

f f
f f

s t  


 


. 

Let 1

0 ( ; )C I X  be the closed subspace of 1( ; )C I X  of all f  such that (0) 0f  . We consider 

the map 1

0: ( ; ) ( ; )D C I X C I X  given by Df f  . The following result is proved in [130]. 

Theorem (6.1.1)[199]: If X  has trivial dual then for every x X  there exists 1

0 ( ; )f C I X  

such that 0Df   and  (1)f x . 

From this we deduce the answer to the question of Popov. 

Theorem (6.1.2)[199]: If X  has trivial dual then the map 1

0: ( ; ) ( ; )D C I X C I X  is 

surjective. In particular every continuous :f I X  has a primitive. 

Proof. From Theorem (6.1.1) and the Open Mapping Theorem we deduce the existence 

of a constant 1M   so that if x X there exists  1

0 ( ; )f C I X  so that 0Df  , (1)f x  and 

1C
f M x . 

Now suppose ( ; )g C I X  with 1g

 . For any 0  we show the existence of 

1

0 ( ; )f C I X  with Df g


   and 1

14 p

C
f M . Once this is achieved the Theorem 

follows again from a well-known variant of the Open Mapping Theorem. 

 Since  g  is uniformly continuous, there is a piecewise linear function  h  so that 

X

: [0,1]f X
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g h


   and 1h

  Since h  has finite-dimensional range there exists 1

0 ( ; )H C I X

with DH h . Now let n  be a natural number, and let ( ) (( 1) )knx H k n H k n    . For 

1,2, ,nk   define 1

, 0 ( ; )k nf C I X  so that 0Df  , 
1
0

,k n knC
f M x  and , (1)k n knf x . Then 

we define 1

0 ( ; )nf C I X  by  

1
( ) ( ) ( ) ( 1)n kn

k
F t H t H f nt k

n


      

For ( 1)k n t k n   . Clearly nDF DH h  . It remains to estimate 1
0

n C
F . 

Let 

( ) (
)(

)
sup
t s

H t H s

t s


 





 

It is easy to see that 
0

lim ( ) 1h


  . Now suppose 1k k
n n

s t     for some 1 k n  . Then 

1

11
( ) ( ) ( ( ) ) ( )

pp p p

n n kn C
F t F s n f t s

n
     

        11
( ( ) ) ( )

pp p p p

knM n x t s
n

    

1 1
( 1) ( )( )p pM t s

n
   . 

Since ( ) 0k
n n

F   for 0 k n   we obtain that for any 0 1s t   , 
1 1 1 1( ) ( ) 2 ( 1) ( )min( , )p p p

n n n n
F t F s M t s    . 

By taking n  large enough we have 1
0

14 p

n C
F M . Thus the theorem follows. 

We close with a few remarks on the general problem of classifying those quasi-

Banach spaces X  so that the map 1

0: ( ; ) ( ; )D C I X C I X  is surjective; let us say that such 

a space is a  -space. The following facts are clear: 

Proposition (6.1.3)[199]: (i) Any quotient of a  -space is a  -space. 

(ii) If X  and Y  are  -spaces then X Y  is a  -space. 

Proof. (i) Let E  be a closed subspace of X  and let : X X E   be the quotient map. Let 

: C(I : X) C(I; )X E   be the induced map f f  . We start with the observation that 

  is surjective. If ( ; )g C I X E  with 1g

  then we can find ( ; )f C I X  with 

1 12 pf 


  and 1f g


  . To do this suppose N  is an integer and let Nf  be a function 

which is linear on each interval [( 1) , ]k N k N  for 1 k N   and such that 

( ) ( )Nf k N g k N   with ( ) 1Nf k N   for 0 k N  . For large enough N  we have 

1Ng f


   and our claim is substantiated. 

Now if X  is a D-space and ( ; )g C I X E  then there exists ( ; )f C I X  with f g  . 

Let 1

0 ( ; )F C I X  with DF f . Then if G F  we have DG g . 

(ii) is trivial. 

In [130] the notion of the core is defined: if X  is a quasi-Banach space then coreX  is 

the maximal subspace with trivial dual. 

Theorem (6.1.4)[199]: If core {0}X   then X  is a  -space if and only if X  is a Banach 

space (i.e. is locally convex). 

Proof. Suppose core {0}X  and X  is a  -space. Suppose 0DF   where 1

0 ( ; )F C I X . Let 

Y  be the closed subspace generated by { (s) : 0 s 1}F   . We show {0}Y  ; if not there 

exists a nontrivial continuous linear functional y   on Y . Then ( ) 0D y F   so that 
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( ( )) 0y F s   for 0 1s  . But then 0y    on Y . We conclude that {0}Y   and so 0F  . 

Hence D  is one-one and surjective and by the Closed Graph Theorem D  is an 

isomorphism. 

Let M  be a constant so that 1DF

  implies 1C

F M for 1

0 ( ; )F C I X . Let  be any 

C  -real function on R  with ( ) 0t   for 0t   and ( ) 1t   for 1t  . Let '

0 1max ( )tK t  . 

For any N  and any 1, , Nx x X  with max 1kx  , we define 
1

( ) ( 1)
N

kk
F t Nt k x


   . 

Then 1

0 ( ; )F C I X and DF NK

 . Hence (1)F NMK , i.e. 

1

1
( )Nx x MK

N
   . 

This implies X  is locally convex. 

Combining Proposition (6.1.3) and Theorem (6.1.4) gives that if X  is a  -space then 

X core X  is a Banach space. It is, however, possible to construct an example to show that 

the converse to this statement is false, and there does not seem, therefore to be any nice 

classification of  -spaces in general. 

To construct the example we observe the following theorem. First for any quasi-

Banach space X  let 1( ) sup{ : 1}N N ia X x x x     (so that ( ) NNa X  ). 

Theorem (6.1.5)[199]: Suppose X  is a  -space; then for some constant C  we have 

( ) C ( )N Na X a core X . 

Proof. Let ( )N Nb a core X  Suppose 1, , Nx x X  with 1ix   and define as in Theorem 

(6.1.4), 
1

( ) ( 1)
N

kk
F t Nt k x


   . Then DF NK


  and so by the Open Mapping 

Theorem, for some constant ( )M M x , there exists 1

0 ( ; )G C I X  with DG DF  and 

1C
G MNK . Then ( ) G(( 1) )G k N k N MK    for 1 k N  . 

Let ( ) ( ) ( )H t F t G t  . Since 0DH   and X core X  is a Banach space H  has range in 

core X . Now for 1 k N  , ( ) H(( 1) ) x ( ) (( 1) )kH k N k N G k N G k N       so that 
1H( ) (( 1) ) ( 1)p p pk N H k N M K    . Hence if 1p p pC M K  , we have (1) NH Cb  or 

1 n nx x Cb   . 

To construct our example we start with the Ribe space Z  ([200],[203]) which is a 

space with a one-dimensional subspace L  so that Z L  is isomorphic to 1 . A routine 

calculation shows ( ) logNa Z cN N  for some 0c  . Then let Y  be any quasi-Banach space 

with trivial dual so that (Y) ( log )Na o N N  (for example a Lorentz space (1, )L p  where 

1 p   ). Let :j L Y  be an isometry and let X  be the quotient of Y Z  by the subspace 

of all ( , )jz z  for z L . Then Z  embeds into X  so that (X) logna cN N  but core X Y  so 

that X  cannot be a  -space. However X core X  is isomorphic to Z L  which is a Banach 

space. 

Corollary (6.1.6)[221]: If X  has trivial dual then the map 1

0: ( ; ) ( ; )j j jD C I X C I X  are 

surjective. In particular every series of continuous :j jf I X   has a primitive. 

Proof. From Theorem (6.1.1) and the Open Mapping Theorem we deduce the existence 

of a constant 1M   so that if x X there exists  1

0 ( ; )j jf C I X  so that 0j j
D f  , 

(1)jf x  and 
1j C

f M x . 

Now suppose ( ; )j jg C I X  with 1jg

 . For any 0  we show the existence of 
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1

0 ( ; )j jf C I X  with j j jD f g


    and 
1

14 p

j C
f M . Once this is achieved the 

Theorem follows again from a well-known variant of the Open Mapping Theorem. 

Since jg  is uniformly series of continuous, there is a piecewise linear function 

jh  so that j jg h


    and 1jh

  Since jh  has finite-dimensional range 

there exists 1

0 ( ; )j jH C I X with j j jD H h  . Now let n  be a natural number, and let 

( ) (( 1) )kn j jx H k n H k n     . For 1,2, ,nk   define   1

0,
( ; )j jk n

f C I X  so that 

0j jD f  ,  
1
0

,j knk n C

f M x  and  
,

(1)j knk n
f x . Then we define   1

0 ( ; )j n
f C I X  

by  

   
1

( ) ( ) ( ) ( 1)j j j jn kn

k
F t H t H f nt k

n


         

For ( 1)k n t k n   . Clearly  j j j j jn
D F D H h     . It remains to estimate 

 
1
0

j n C
F . 

Let 

( ) ( )
) sup(

j j

t s

H t H s

t s


 






 
 

It is easy to see that 
0

l )im ( 1jh


  . Now suppose 1k k
n n

s t     for some 1 k n  . 

Then 

     
1

11
( ) ( ) ( ( ) ) ( )

p
p p p

j j jn n kn C
F t F s n f t s

n
       

        
11

( ( ) ) ( )
pp p p p

knM n x t s
n

    

1 1
( 1) ( )( )p pM t s

n
   . 

Since   ( ) 0k
j nn

F   for 0 k n   we obtain that for any 0 1s t   , 

    1 1 1 1( ) ( ) 2 ( 1) ( )min( , )p p p

j j n nn n
F t F s M t s     . 

By taking n  large enough we have  
1
0

14 p

n C
jF M . Thus the theorem follows.  

Corollary (6.1.7)[221]: (i) quotient of a  -space are  -space. 

(ii) If jX  and jY  are  -spaces then j jX Y  are  -space. 

Proof. (i) Let E  be a closed subspace of jX  and let : j jX X E   be the quotient map. 

Let : ( : ) ( ; )j jC I X C I X E   be the induced map f f  . We start with the 

observation that   is surjective. If ( ; )jg C I X E  with 1g

  then we can find 

( ; )jf C I X  with 1 12 pf 


  and 1f g


  . To do this suppose N  is an integer and let 

Nf  be a function which is linear on each interval [( 1) , ]k N k N  for 1 k N   and such 

that ( ) ( )Nf k N g k N   with ( ) 1Nf k N   for 0 k N  . For large enough N  we have 

1Ng f


   and our claim is substantiated. 

Now if jX  is a  -space and ( ; )jg C I X E  then there exists ( ; )jf C I X  with f g 

. Let 1

0 ( ; )jF C I X  with DF f . Then if G F  we have DG g . 

(ii) is trivial. 
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Corollary (6.1.8)[221]: Suppose X  is a  -space; then for some constant C  we have 

1 1

( ) C
j j

m m

N N

j j

a X a
 

  . 

Proof. Let ( )
j jN Nb a core X  Suppose  

jNx X  with 1ix   and define as in Theorem 

(6.1.4), 
1 1

( ) ( 1)
jm N

j j kj k
F t N t k x

 
     . Then j jDF N K


   and so by the Open 

Mapping Theorem, for some constant ( )M M x , there exists 1

0 ( ; )G C I X  with 

j jDG DF  and 
1j jC

G MN K . Then ( ) (( 1) )j j j jG k N G k N MK    for 1 jk N  . 

Let ( ) ( ) ( )j jH t F t G t  . Since 0DH   and X core X  is a Banach space H  has range in 

core X . Now for 1 jk N  , ( ) (( 1) ) ( ) (( 1) )j j k j j j jH k N H k N x G k N G k N       so 

that 1( ) (( 1) ) ( 1)p p p

j jH k N H k N M K    . Hence if 1p p pC M K  , we have 

(1)
jNH Cb  or 1 n nx x Cb   . 

Section (6.2): Primitives for Continuous Functions in Quasi-Banach Spaces 

If X  is a Banach space, every continuous map   Xbaf ,:  is Riemann-integrable and 

the corresponding integral function, 
t

a
duuftF )()(  is differentiable at every  bat ,  with 

derivative ( ) ( )F t f t  , that is, F  is a primitive of f . However, when X  is a non-locally 

convex F-space, a classical theorem of Mazur and Orlicz [201] informs us about the 

existence of continuous X -valued functions on  ba,  failing to be integrable. Popov 

investigated in [202] the properties of the Riemann integral for functions   Xbaf ,:  
where X  is an F-space and showed that while some usual properties of this integral 

remain true in the non-locally convex setting, other properties and techniques, like the 

usual way of getting primitives for integrable functions, may be false. His work naturally 

led to the question whether every continuous function   Xbaf ,:  has a primitive. Kalton 

provided an affirmative answer for the quasi-Banach spaces X  which, like the pL  spaces 

for 1p , have trivial dual [199], but the main question remained unsolved. In the first 

part of this section we solve Popov’s problem by showing that if the space pl  with 

1 po  embeds isomorphically in a quasi-Banach space X  with separating dual, then 

there exists an integrable continuous function   Xf 1,0:  failing to have a primitive. 

This will follow as a consequence of our main theorem. 

Proposition (6.2.1)[204]: Let X  be a quasi-Banach space. For a given pair ( ), x  we have 

the following. 

(i) The function ( , ) : [0,1]f f X x  is continuous at 1, hence continuous on [0,1] , if 

and only if 0kx  . 

(ii) Suppose that X  is p-convex for some 0 1p  . If ( )kx  is bounded and the 

sequence ( )k  verifies 
1

,p

kk





   then f  is Riemann-integrable on [0,1] . 

(iii)  ,F F  x  can be extended continuously to [0,1]  by putting 
1

(1) k kk
F x




  if 

and only if the series 
1 k kk

x


 converges in X . 

(iv) Suppose ( )kx  is bounded. Then : [0,1)F X  is Lipschitz if and only if there is 

0K   so that for all integers ,m n  with m n , 
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k
tt

xx

mn

nkm

kk

nkm

k

nkm

kk















 1

1

1







.                       (1) 

In this case F  extends to a Lipschitz function on the whole interval [0,1] . 

(v) Suppose 0kx . Then   XF 1,0:  is differentiable with zero left-derivative at 1t  
if and only if 

0
1

limlim
1

1

1



















n

nk

kk

n

nk

k

nk

kk

n t

xx 





.                   (2) 

Proof. The proof of statement (i) is straightforward and so we skip it. 

(ii) By the Aoki–Rolewicz theorem we can assume that the quasi-norm on X  is  -

subadditive for some 0 1p  .  We will make use of this throughout the remainder of the 

proof. Put supk kB x  so that ( ) 2f t B  for all [0,1]t  . Since 

,

1 1 1

0

p
n n n

p m np p p

k k k k k

k m k m k m

x x B   

     

      

the series k kk
x is Cauchy, so it converges. We will show that k kk

x  is the Riemann 

integral of f  in the interval [0,1] . 

Fix 0  and pick N   such that 1

1
(3(1 2 3 ) )p p p p p

kk N
B

 

 
  . 

Now, since f  is Riemann-integrable in [0, ]Nt , there exists 0   such that for all 

Riemann sums, ( , )f  , of f  associated with a partition   of [0, ]Nt  with diameter at 

most  , 
1

( , ) 3
p

N

k kk

pf x  


  . 

Associated with a partition of [0,1] , 

1 0 1{0 1}l l La a a a         , 

of diameter at most 1

1 min{ , (2 3 )}p B   , we consider a Riemann sum 

1 1 1
( , ) ( )

L

l ll
f f b  


 , where 1 1l l la a     and 1[ , )l l lb a a . Using the p-subadditivity 

of the quasi-norm we estimate 1 11
( , )

p

k kk
x f  




  by splitting it into four chunks: 

1

1 1 1 1

( ) ( ) ( )

p p p
N L

p

k k k k l l l l

k N k l l

x x f b f b f b    
 

     

       , 

where L  is such that 1 Na t a   . 

Clearly, 

1 1

p

p p

k k k

k N k N

x B 
   

  . 

To find a bound for the second summand we observe that, since ( ) 0Nf t  , 
1

1
( )l ll

f b 


  is a Riemann sum of f  also in [0, ]Nt , with diameter at most 1  . Hence, 

1

1 1

( )
3

p
N

k k l l

k l

p

x f b 


 

    

For the third term, simply note that 

1( ) (2 )
3

p p p
p

f b B   . 
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The fourth term requires some more work. The underlying idea behind the technicalities 

is to transform an expression involving the lengths of the intervals of the partition 1  into 

another expression involving the lengths of the intervals kI . To that end, let 

1{l : n such that a }l n lt a     . 

Let M  be the first element of . Notice that L   so that maxL  . If { }i L , we 

denote by ( )m i  and ( )n i , respectively, the smallest and the largest of the indices n  with 

the property that 1i n ia t a   . We have 
( )

( ) 1 ( )

( ) 1

( ) (2 ) ( ) ( )
n i

p p p p p

i i m i i i n i k

k m i

f b B t a a t 

 

 
     

 
 , 

where the last term is null if ( ) ( )m i n i . 

Analogously, if ( )m L  denotes be the first index n  with 1i n ia t a   , 

(L) 1

(L) 1

( ) (2 ) ( )
p p p p

L L m L k

k m

f b B t a 




 

 
   

 
 . 

Let i  and j  be consecutive terms in  and denote ( )i i j . From the definition of  we 

infer that there is no n  such that 1i n ja t a   . Hence ( ) ( ) 1n i m j   and  1 ( )[ , )i j m ja a I  . 

Then, 

( )

1 1 1

( ) 1

1 1 1

( ) ( ) (2 ) (2 ) ( ) .
m j

p p p
j j j

p
p p p

l l m j I l l l j i

l i l i l i

f b x f b B B a a  
  



     

   
      

   
  

 
In the same fashion, for the indices to the left of M , we have ( ) 1m M N  , 

1 (M)[ , )M ma a I   and 

1

1

1

( ) (2 ) ( )

p
M

p p

l l M

l

f b B a a




 

  . 

Notice that ( ( )) (j) 1n i j m   and 13 ( )p p p p px y z x y z     . Adding the four 

inequalities above, 

 1 ( ) 1

1 1
( )

( ) (2 ) (a ) ( )

p
L

p p p p

l l k M m M M

l k N
k m j

f b B a t a   

   


 
     
 
 
 

   

 ( ) ( ( )) 1 ( ) ( ) 1(2 ) ( ) ( ) ( )p p p p

i j n i j j i j m j j

j
j M

B a t a a t a



 



       

 1 ( ) 1

1
( )

(2 ) (a ) ( ) ( )p p p p p

k N M m M M

k N
k m j

B a t a t a  

 


 
       
 
 
 

  

 ( ) ( ) 1 1 ( ) ( ) 1(2 ) ( ) ( ) ( )p p p p

i j m j j i j m j j

j
j

M

B a t a a t a  




       

1 1

( )

1 1
( )

(2 ) 3 3 (2 )p p p p p p p

k m j k

k N j k N
k m j

B B   

    


 
   
 
 
 

   . 

Gathering all the inequalities, 

1

1

1

1

1

3 3 (1 3 2 ) .( , ) p p

p

k k

k

p p p p p

k

k N

Bx f   







 

      

(iii) If (1)F  can be defined continuously, then the sequence 
1

(t )
n

n k kk
F x


  must 
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converge to (1)F  , i.e., 
1

(1)k kk
x F




 . To show the converse, suppose that 

1 k kk
x



  

converges and put 
1

(1) k kk
F x




 . We will show that 

1
lim ( ) (1)
t

F t F


 . Since 0k kx   due 

to the convergence of 
1 k kk

x


 , given 0 , there exists  N   such that 12 p

n nx   and 

1

1
2 p

k kk n
x 

 
  for all n N . 

Then if Nt t and n N  is such that nt I , from (7) we get 

 
1

(1) ( ) ( )
n

n

p
ptp p

n I k k
t

k n

F F t x f u du x


 

     

  .( )
2 2 2 2n

n

p pp
p p p

n I n n
I

p p
px f u du x         

(iv) If : [0,1)F X  is Lipschitz, then whenever m n , 

1

( ) ( ) ( ).k k n m n mLip
k m n

x F t F t F t t
 

     

For the reverse implication, given any 0 1s t    find integers m n  such that ms I  and 

nt I . Then, knowing that for nt I  we can estimate 

1
1( )du

n
n

t

I n
t

f u t t


  ,                     (3) 

and 

( )du
n

n

t

I n
t

f u t t  ,                       (4) 

with the help of inequality (1) we obtain the following Lipschitz condition, 

       
1

m

m n

n

p
n

k

pp
t t

p p p

m I nk

ms tk

IF t F s x f u du x f u dux
 

  
        





  
   

                  
p p pp p p

m n m nB t s K t t B t t       

              max ,
p p pp p

m n m nK B t s t t t t       

   
       13 max ,

pp p pK B t s  . 

Finally, we note that (1) implies that k kk
x  is a Cauchy series, so it converges. 

Using (iii), F  can be extended continuously to [0,1] . 

A clarification might be in order here. If the space X  is locally convex and the 

sequence ( )kxx  is bounded, then the series 
k kk
x  converges and condition (1) is 

fulfilled. But in this case there is a simpler way to look at the function F  which allows us 

to write 
0

( ) ( )
t

F t f u du   even for 1t   without using the series as a bypass. The reason is 

that in Banach spaces we have the tool of the Bochner integral, and the function f  is 

Bochner-integrable. If X  is not locally convex, the tool of the Bochner integral is no 

longer available and we should be more careful when writing the identity 
1

0
(1) ( )k kk

F x f u du   . However, with an additional condition on ( )k  we can 

interpret (1)F  as a Riemann-integral, which as we know can be defined in quasi-Banach 

spaces. 

(v) Suppose ( 1) 0F    . We have 
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1 (1) ( )
( 1) 0

1 1

k k

nk n

n n

x
F F t

F
t t




  
   

 


 

Conversely, suppose that (2) holds. Implicitly we are assuming that the series k kk
x

converges, so we define (1) k kk
F x . We will show that  

1
lim (1) ( ) 1 0
t

F F t t


   . 

For any 0  there exists  N   such that for all n N , 

1

1 11 2

k k

k n

p

n

x

t


 







 and 

1 12 (2 2)
n p

x





 

Given 1Nt t   we have that nt I  for some n N . Then, 

     
11

1

( ( ) )
(1) F(t) 2

(1 t) (1 t) (1

(t t) 2 ( )

)

t

t

1

n

n

p
tp p

p n I k k p p p p p
pn n

pt
k n

p p p

x f u du x
F





 

 



  

  




 

Corollary (6.2.2)[204]: Let X  be a quasi-Banach space with separating dual. Suppose 

the pair ( , ) x  is such that: 

  (i) 0kx  , 

 (ii) condition (1) holds, and 

(iii) condition (2) does not hold. 

Then we have the following. 

(a) The function    , : 0,1F X x is Lipschitz and differentiable at every [0,1)t  but fails 

to be differentiable at 1t  . 

(b) The composition of F  with the natural inclusion of X  into its Banach envelope X̂ is 

(Lipschitz and) differentiable at every [0,1)t  . 

Theorem (6.2.3)[204]: Suppose 1 po . Then there exists a continuous Riemann-

integrable function   plf 1,0:  whose integral function   plF 1,0: , 
t

dssft
0

)(  verifies: 

(a) F  is Lipschitz, i.e., there is 0C so that tsCtFsF
p

 )()(  for all  1,0, ts ; 

(b) F  is differentiable at every )1,0[t  with derivative ( ) ( )F t f t  ; 

(c) F  Fails to have left derivative at 1t . 

we exploit the construction used below in the proof of Theorem (6.2.3) to show that, 

unlike for Banach spaces, every non-locally convex quasi Banach space X  with 

separating dual admits a continuously differentiable function   Xbaf ,:  which is not 

Lipschitz. Finally, gather remarks on the general problem of classifying those quasi-

Banach spaces X  for which every continuous function   Xbaf ,:  has a primitive. We 

refer the reader to [202, 199] for background and to [200, 134] for the needed 

terminology and notation on quasi-Banach spaces. 

Proof. The proof of Theorem (6.2.3) relies on the following construction inspired by 

[202]. Let 

 1)( kkt be an increasing sequence of scalars contained in )1,0(  tending to 1. 

With 00 t , let us denote the interval ),[ 1 kk tt   by kI  and its length by k , i.e., 

1 kkkk ttI . This way we can write 





1
)1,0[

k kI  (disjoint union). For each Nk  let 

  Rf
kI 1,0:  be the nonnegative piecewise linear function supported on the interval kI  

having a node at the midpoint of the interval 2)( 1 kkk ttc  with 2)( kI cf
k

 and

0)()( 1  kIkI tftf
kk

, i.e., 



 173 

1 1

1

1

4
( ) [ , )

4
( ) ( ) [ , )

0 .

k

k k k

k k

I k k k

k k

t t if t t c
t t

f t t t if t c t
t t

otherwise

 






  




  






 

Let  
1n n

x



x  be a sequence of vectors in a quasi-Banach space X . We define the 

function    , : 0,1f f x X  as 

   
   ,

0  1.
kI k kf t x if t I

f t
if t

 
 


                           (5) 

Note that f  is continuous and Riemann-integrable on  0,1  since for each 1s   the set 

  0,f s  is a finite-dimensional subspace of X . Let  ,F F  x  be the corresponding 

integral function on  0,1 , 

   
0

( ) .

t

F t f u du                               (6) 

The additivity of the Riemann-integral with respect to the interval gives that for nt I

  
1

1

1 1

( ) ( )d .
n

n

n n
t t

k k k k

k
t

k
t

F t x f u du x f u u 




 

                        (7) 

Again, since ([0,s])F  maps into a finite-dimensional subspace of X  for each 1s  , F  is 

differentiable with derivative '( ) ( )F t f t  at every [0,1)t  . The next proposition deals 

mainly with the behavior of the functions f  and F  at the point 1t   depending on the 

choice of ( ), x . 

 For 0 1p   fixed, pick 1 1
p

b    and any 1 1
p

a   . Consider the pair ( , ) x , where 

1(t )k k 

  is the sequence 

1
1 , k 1,2,

( 1)
k a

t
k

  


 

and 1(x )k k



x  is the sequence in p  obtained by scaling down its unitary basis vectors 

1(e )k k



  according to the formula 

1
e , k 1,2,

( 1)
k kb

x
k

 


 

Next define ( , ) : [0,1] pf f  x  and ( , ) : [0,1) pF F  x  as in Eqs. (5) and (6) 

respectively. 

Proposition (6.2.1)(i) gives that F  is continuous on [0,1] . 

Note that the series 
1 k kk

x


  converges in X  if and only if 
  1 ( 1)11

( )k k

b bk k pkkk
e

 

 
 

. Now, 

1

1 1 1

1 1 1

( 1) (k 1) ( 1) ( 1)

pp p

k k k
k kb b a a b

k k kp p

t t
e e

k k k k

  


  

 
   

    
   . 

Since the sequences 1 1
1(1 )

( )a a kk k




 and 

1

1
1( )a kk

a 




 are equivalent infinitesimals as k  , the 

last series has the same character as ( 1)

1
( 1) a b p

k
k

   


 , which converges because 

( 1) 1a b p   . Using Proposition (6.2.1)(iii), we extend : [0,1) pF   to a continuous 
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function on [0,1]  by putting 
1

(1) k kk
F x




 . In fact, Proposition (6.2.1)(ii) yields that f  

is Riemann-integrable on [0,1]  and so 
1

0
(1) ( )F f u du  . 

To see that F  is Lipschitz on [0,1]  we use the simple inequality 1( )p p pt s t s    for 

all 0 s t  . Thus, 
1

( 1) 1 ( 1) 1
1 1

1 1

( 1)

p
n n

k k a b p a b p
k m k mp

x
k k


     

   

 
  

 
   

        
1

( 1)p 1 ( 1) 1

1 1

( 1) (n 1)

p

a b a b pm      

 
  

  
 

                  
1 1 1 1

1 1 1 1
,

( 1) (n 1) ( 1) (n 1)
n ma b p a b p a a

t t
m m     

     
   

 

whence condition (1) is fulfilled. As we argued above, F  is differentiable at every 

[0,1)t  . Since p  has separating dual, if F  has a left derivative at 1t   it must be 
'( 1) 0F   . However, this fact fails by appealing to Proposition 6.2.2(v) since   

(
1

1)
1

1

( 1)
k k

k n

p

a b p

pk n k
x







 




     

                
( 1) 1 ( 1) 1( 1) 1

1

1 1 1
( ) ,

( 1) (n 1)
a b p a b pa

k n
b pk k

     










  

 
  

so that  
1

1 1

1
1,

1

k

p

k

pn

b

k

nt

x

n



 

 
 




 

hence 
1

lim
1

k kk n p

n
n

x

t


 

 


 cannot be 0. 

We are now ready to show that for a wide class of quasi-Banach spaces, including 

those with separating dual that contain a copy of p  for some 0 1p  , there exists a 

function : [0,1]f X as in the title of the section. This will follow combining Theorem 

(6.2.3) with our next lemma. In [130], Kalton introduced the notion of core of a quasi-

Banach space X  as the biggest subspace of X  with trivial dual. Note that if *X  separates 

the points of X  then ( ) {0}core X  , so the lemma applies to quasi-Banach spaces with 

separating dual. 

Lemma (6.2.4)[204]: Let X  be a quasi-Banach space with ( ) {0}core X  . Let J  be an 

interval of the real line. Suppose that F  is differentiable with ( ) 0F t   for all t J . Then 

there is C   so that ( )F t C  for all t J . 

Proof. Assume (a) 0F   for some a J  and that (u) 0F   for some u J . Let Y  be the 

closed linear subspace of X  generated by { ( ) : }F t t J . Since 0Y  , by hypothesis there 

exists a nontrivial bounded linear functional * :y Y  . The composition * F : Jy   is 

nonzero and differentiable at every s J  with derivative 
* *

*

0

( )(s h) ( )( )
( ) ( ) lim

h

y F y F s
y F s

h

 
   

            

* *

0

(s h) ( )
lim ( ( )) 0
h

F F s
y y F s

h

  
   

 
 

By the fundamental theorem of calculus, 
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* * *( )(t) ( )( ) ( ) ( ) 0
t

a
y F y F a y F s ds    

for all t J , a contradiction. 

Theorem (6.2.5)[204]: Suppose the space p  with 0 1p   embeds in a quasi-Banach 

space X  with trivial core. Then there exists a  continuous Riemann integrable function

: [0,1]f X  failing to have a primitive. 

Proof. Let 0 1p   and assume, without loss of generality, that p  is a subspace of X . Let 

f  and F  be the functions in Theorem 6.2.1. Suppose there exists a differentiable function 

G :[0,1] X  so that 'G ( ) (t)t f  for all [0,1]t  . Then '( ) ( ) 0F G t   for all [0,1)t  . By 

Lemma 6.2.5 it must be ( ) ( )F t G t C   for all [0,1)t  , where C  is some real number. 

Using continuity, we extend this identity to [0,1] . But then F  would be differentiable at 

every t I , which contradicts our previous construction. 

Let ( , . )X  be an infinite-dimensional real quasi-Banach space. Let I  be the unit 

interval [0,1]  and ( , )e I X  be the usual quasi-Banach space of continuous functions 

:f I X  with the quasi-norm 0 1: max ( )sf f s  . We will denote by (1)( , )e I X  the space 

of all X -valued functions f  having a derivative at every point of I , and such that 

( , )f e I X . The closed subspace of (1)( , )e I X  consisting of the functions that vanish at 

zero will be denoted by 1

0( , )e I X . 

When X  is a Banach space, a function (1)( , )f e I X  is Lipschitz in I  thanks to the 

mean value theorem. This result breaks down for non-locally convex spaces [205], 

allowing thus the possibility of having functions in the class (1)( , )e I X  that are not 

Lipschitz! 

Theorem (6.2.6)[204]: Let X  be a non-locally convex quasi-Banach space. Then there 

exists :F I X  such that 

(a) F  is differentiable on I ; 

(b) F   is continuous and Riemann-integrable on I  and 
0

( ) ( )
t

F t F u du   for all t I ; 

(c) F  is not Lipschitz on I . 

Proof. As above, by the Aoki–Rolewicz theorem we can assume that X  is a  -Banach 

space for some 0 1p  . Hence for any 1( )k

j j   in (0, )  and 1(y )k

j j   in X  such that

1
y 1

k

jj 
  and 1jy  , we have 

1

1 1

1 1

p
k k

p p

j j j

j j

y k  

 

 
  
 

  . 

For every k   we set 

1 1

sup : 0, 1, , 1
k k

k j j j j j j

j j

C y y X y  
 

  
     

  
  . 

Clearly 1(C )k k



 is an increasing sequence and, since X  is not locally convex, Ck  . 

Moreover 1 1C p

k k  . 

Pick out a sequence 1(D )k k



 such that 0 k kD C   and 0k kC D  . This yields 

k kC D , i.e., lim 1k k
k

C D


 . From our choice of kC , for each k  there exist positive scalars 

, 1( )k

k j j   and vectors , 1(y )k

k j j   in X  such that ,1
1

k

k jj



 , , 1k jy 

 
and 

, ,1

k

k j k j kj
y D


 . 

Every natural number n  can be written in a unique way in the form 
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22 1 2 1

2 2

k j
n

 
  ,                      (8) 

for some k   and 1 j k  . In fact, for a fixed k  we have 

  • the set  2 2 12 1
2 2

:1 j kjk      covers all the integers between ( 1) 1k k    and 2k ; 

  • the set  2 2 12 1
2 2

:1 j kjk      covers all the integers between 2 1k   and ( 1)k k  , 

so that the numbers  2 2 12 1
2 2

:1 j kjk     run over all the integers between ( 1) 1k k    and 

( 1)k k  . 

For each n , let ( )k k n , ( )j j n , and ( ) { 1,1}n     uniquely determined by 

the representation (8). 

First, for 2(1 )b p p  fixed, we define 

,

1 1 1

2 (1 )
n k j b bk k
 

 
  

 
. 

Note that 

 , ,

1 1 1 1 1 1

1 1 1 1 1

2 (1 ) (1 )

k k

n k j k jb b b b
n k j k jk k k k

  
  

     

   
      

    
    

       
  1

1 1 1
1 lim 1.

(1 ) (1 )b b bk
k k k k





 
     

  
  

Let 
1

n

n mm
t 


  and 1( )n nt 

  so that 1n n nt t   . 

Pick any 0 min{1, (1 )}a p p   . Let 1( )n nx 

x  in X  be given by ,n k k jx A y , where 
1a

k kA C  . 

With this pair ( , ) x  we construct maps f f( , ) x  and ( , )F F  x  from [0,1]  into X . 

Since 0kA   and , 1k jy  , applying Proposition (6.2.1)(i) we obtain that f  is 

continuous on [0,1] . The function f  is also Riemann integrable on [0,1]  from Proposition 

(6.2.1)(ii) since 

1

, ,

1 1 1 1 1 1

1 1 1 1 1
2

2 (1 ) (1 )

p p
k k

p p p p

n k j k jp b b b b
n k j k jk k k k

  
  



     

   
      

    
    

                 1 1 1

( 1) 2 1
1 1 1

1 1 1 1
2 ,

(1 )

p

p p p

b b b p bp p
k k k

k k
k k k k

  
  

  
  

 
    

 
    

and this last series converges because 2 1 2(1 ) 2 1 1bp p p p       . In particular, F  is 

well defined and continuous on the closed interval [0,1] . 

To compute (1)F , observe that for fixed k , 
( 1)

, ,

( 1) 1 1 1 1

1 1 1
0 0

2 (1 )

k k k k

n n k k j k jb b
n k k j j

x A y
k k

  


     

 
    

 
   . 

Hence 
( 1)

1
0

k k

n nn
x




 , which yields 

1
(1) 0n nn

F x



  . 

That F  is not Lipschitz in [0,1]  follows from Proposition (6.2.1)(iv). Indeed, 

2

2

( 1)

, , , ,

1 11

, ,( 1)

1
,,

11 1

1 1 1

2 (1 )

1 1 1

2 (1 )

k kk k

k k j k j k k j k jb bn n k
j jn k

k k j k jk k kk
j

k jn k jb b
jn k j

A y A yx
k k

A y

k k

 



 



  





  

 
 

 
  

 
 

 

 


 
 

 

              a

k k k k kA D A C C   . 
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As we argued above, F  is differentiable in [0,1)  with derivative ( ) (t)F t f   for all 

t [0,1) . To conclude we show that (1) 0F    aided by Proposition (6.2.1)(v). Let n . 

Suppose that 21 (2 1) 2 (2 1) 2n k j      with k   and 1 j k  . Taking into account 

that the functions of the form ( , 0)t
a bt

t a b


  are increasing in (0, )t    and that 

, 1
k

k ii j



 , 

,i ,i 1 ,i

1

,i ,i1

1 1 1 1 1 1

2 (1 ) 2 (1 )

1 1 1 1 1 1 1 1

(1 ) 2 (1 ) (1 ) 2 (1 )

k k

k k kb b k k j km m b b
i j i jm n

k k
m

k kb b b b b bm n
i j i j

A y A Cx
k k k k

k k k k k k

 


 

 
  

 
 

   
         

   
      

      

 

  

 

 

          
1

1 1 1 1 1 1

2 (1 ) 2 (1 )
.

1 1 1 1 1 1 1 1

(1 ) 2 (1 ) (1 ) 2 (1 )

k k j k kb b b b

b b b b b b

A C A C
k k k k

k k k k k k

 

   
    

     
   

      
      

 

 

If 21 (2 1) 2 2 1 2n k j     ,with k   and 1 j  , 

,i ,i

11

,i1
1

1 1 1

2 (1 )

1 1 1 1
1

(1 ) 2 (1 )

k

k k kb bm m
i jm n

j
m

km n b b b
i

A yx
k k

k k k






  

 


 
 

 


  
    

   



 

  

 

               
,i

1

,i

1

1 1 1

2 (1 )

1 1 1 1
1

(1 ) 2 (1 )

k

k k j kb b
i j

j

kb b b
i

A C
k k

k k k







 



 
 

 
  

    
   





 

 

       

         

1 1 1 1 1 1

2 (1 ) 2 (1 )
.

1 1 1 1 1 1 1 1

(1 ) 2 (1 ) (1 ) 2 (1 )

k k j k kb b b b

b b b b b b

A C A C
k k k k

k k k k k k



   
    

     
   

      
      

 

In both cases, 

11

1

1 1 1

2 (1 )

1 1 2

2 2(1 )

k km m b b
m n

k k

m
b bm n

A Cx
k k b

A C k

k k





 

 

 
 

 







. 

But 
1 1 (1 1) 1a a p

k k kA C k C k k     , 

and (1 1) 1 0a pk     since (1 1) 1a p   . 

Corollary (6.2.7)[204]: Let X  be a quasi-Banach space. We have that 
(1)( , ) ( , )e I X Lip I X if and only if X  is locally convex. 

Based on the results in the previous section it makes sense to define the space 
(1) ( , )Lipe I X  of all (1)

0 ( , )f e I X  which are Lipschitz, equipped with the quasi-norm 

0 1

( ) ( )
sup

Lip
s t

f t f s
f

t s  





.                     (9) 

We will also consider the space (1) ( , )Kale I X  of all (1) ( , )Lipf e I X  with (0) 0f   such that the 
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function 2:g I X  given by 

'

( ) ( )

( , )

( )

f s f t
s t

g s t s t

f t s t




 
 

 

is continuous. Of course, when X  is a Banach space, (1) (1) (1)

0( , ) ( , ) ( , )Kal Lipe I X e I X e I X  . 

Kalton introduced the space (1) ( , )Kale I X  in [199] (with a different notation) to provide 

the only affirmative answer known as of today to the question of Popov. He showed that 

if X  has trivial dual then the map 
(1) , , ): ( ) (Kale I X e I X , ( )f ff   

is surjective and so every continuous function :f I X has a primitive (that belongs to 
(1) ( , )Kale I X ). His proof relied heavily on a pathology that we find in quasi-Banach spaces 

X  with trivial dual, namely, they admit nonconstant functions (1) ( , )Kalf e I X  with zero 

derivative at every point [130]. Kalton’s result opened the problem of classifying those 

quasi-Banach spaces X , which he named D-spaces, for which the operator 
(1) , , ): ( ) (Kale I X e I X is surjective. 

Our first goal in this section is to show that if a non-locally convex quasi-Banach 

space X  has separating dual then X  is not a D-space. In fact, with the help of the next 

preparatory result we will obtain something stronger, that the operator  cannot be onto 

even when it is defined on the bigger space (1) ( , )Lipe I X . 

Lemma (6.2.8)[204]: Let X  be a quasi-Banach space. 

  (i) The linear map (1) , , ): ( ) (Lipe I X e I X given by ( )f f  is bounded. 

 (ii) The space (1) ( , )Lipe I X  is closed in Lip ( , )I X . 

(iii) The space (1) ( , )Kale I X  is closed in (1) ( , )Lipe I X . 

(iv) The space (1) ( , )Lipe I X is complete with the quasi-norm 
Lip
 . 

Theorem (6.2.9)[204]: Suppose X  is a non-locally convex quasi-Banach space with 

( ) {0}core X  . Then the map (1) , , ): ( ) (Lipe I X e I X is not surjective. In particular, there 

exists a continuous function :f I X  that fails to have a primitive in (1) ( , )Lipe I X . 

Proof. The operator  is bounded, and one-to-one thanks to Lemma (6.2.4). If  were 

surjective, from the open mapping theorem we deduce the existence of a constant 1K   

so that 
(1), ( , )LipLip

f K f f e I X   . 

In particular, for every Lipschitz function (1)( , )f e I X  we would have 

( ) ( ) , ,f t f s K f t s s t I     . 

By the mean value formula for quasi-Banach spaces [205] the space X  should be locally 

convex, a contradiction.  

We close with some remarks and open problems. To simplify our discussion let us 

make a definition. 

Definition (6.2.10)[204]: A quasi-Banach space X  will be said to have property (P) (or 

that X  is a P-space) if every continuous function :f I X  has a primitive. 

Trivially, Banach spaces are  -spaces. Quasi-Banach spaces with trivial dual are  -

spaces [199] hence they are  -spaces too. On the other hand, Theorem (6.2.3) tells us 

that no space with separating dual containing a copy of p  for 1p   is a  -space. 

Problem. Does there exist a non-locally convex quasi-Banach space with separating dual 
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having property (P)?  

The answer to this question will determine the way in which some of the topics in 

this section are related. We can entertain some digression. 

When X  is a Banach space, the vector space (1)

0 ( , )e I X  is complete both with the norm 

(1)
0e

f f   

and the norm (9). In fact, it is well-known that these two norms are equivalent in 
(1)

0 ( , )e I X . However, when X  is not locally convex and has separating dual the space 
(1)

0 ( , )e I X  is complete under the quasi-norm 
Lip
 but could fail to be complete under the 

natural norm of the space, (1)
0e

 . 

Theorem (6.2.11)[204]: A quasi-Banach space X  with separating dual is a P-space if 

and only if (1)

0 ( , )e I X  is complete with the quasi-norm (1)
0e

 . 

Proof. The operator 

(1)
0

(1) ( , ), ) ( ( , ) ),: ( ( )Lip e
e I X e I X f ff


   , 

is a linear isometry of dense rank in ( , )e I X . If (1)
0

(1)

0( ( , ), )
e

e I X   were complete, the image 

of  would be closed and so  would be onto, i.e., X  would be a P-space. Conversely, 

if X  is a P-space then  is onto and we deduce that (1)
0

(1)

0( ( , ), )
e

e I X  is complete. 

Corollary (6.2.12)[221]: Suppose X  is a non-locally convex quasi-Banach space with 

( ) {0}core X  . Then the map (1) ( , ) ( , ): Lip j jj e I X e I X  are not surjective. In particular, 

there exists series of continuous function 
1

:
m

j j

j

f I X


  that fails to have a primitives in 

(1) ( , )Lip je I X . 

Proof. The operator j  is bounded, and one-to-one as in (6.2.4). If j  were surjective, 

from the open mapping theorem we deduce the existence of a constant 1K   so that 

(1)

1 1 1

, ( , )
m m m

j j j Lip j

j j jLip

f K f f e I X
  

     . 

In particular, for every Lipschitz function (1)

1

( , )
m

j j

j

f e I X


  we would have 

1 1 1

( ) ( ) , ,
m m m

j j j j

j j j

f t f s K f t s s t I
  

       . 

By the mean value formula for quasi-Banach spaces [205] the space X  should be locally 

convex, a contradiction. 

Section (6.3): Quasi-Banach Spaces and the Fundamental Theorem of Calculus 

 It is a part of the mathematical folklore that continuous functions from a compact 

interval  of  the  real line  into a  Banach  space  are  Riemann  integrable  and  that  the  

fundamental theorem of calculus holds.  

Theorem (6.3.1)[206]: Suppose X  is a Banach space and that   : ,f a b X  is a 

continuous function. Then:  

(i) The integral function     
t

a
F t f   is differentiable at every [ , ]t a b  and ( ) ( )F t f t  .  

(ii) (Barrow’s rule) the element 
b

a
f  of X  can be computed as ( ) ( )F b F a , where F  is any 

primitive of f . 

The definition of the Riemann integral extends verbatim for functions : [ , ]f a b X  



 180 

where X  is a quasi-Banach space, i.e., a locally bounded topological vector space that is 

complete for the metric induced by its quasi-norm. We recall the construction to render 

our exposition self-contained. For a partition 1{ }n

k kt   of the interval [ , ]a b  with 

0 1 na t t t b     , and a collection of points 1{ }n

k k  with 1[ , ]k k kt t  , the Riemann 

sum of f  associated to  and   is the vector 

1

1

( , ) ( )( )
n

f k k k

k

f t t  



   . 

Then, f  is said to be Riemann integrable on [ , ]a b  if there exists an element 
b

a
f  in X  

such that 

0
lim ( , )

b

f

a

f


   . 

That is, for any 0  there exists 0   such that for each partition  of [ , ]a b  with 

1max ( )k k kt t     and each  , we have ( , )

b

f

a

f    . The linear space of 

Riemann integrable functions on the interval [ , ]I a b  will be denoted by ( , )I X . 

The well-intentioned attempt to generalize the fundamental theorem of calculus to 

non-locally convex spaces faces major obstructions from a very early stage since by a 

result of Mazur and Orlicz such spaces admit continuous functions failing to be Riemann 

integrable [201]. This initial drawback may be overcome by choosing to study for the 

sake of it the differentiability properties of the functions     
t

a
F t f  whenever f  is 

Riemann integrable on an interval [ , ]a b  and t [ , ]a b .  

The first mover in this direction was Popov. He investigated in [202] the properties 

of the Riemann integral for functions : [ , ]f a b X  where X  is an  -space and showed 

that while some usual properties of this integral remain true in the non-locally convex 

setting, other properties and techniques, like the usual way of getting primitives for 

integrable functions, may be false. His work also contains an example of a continuous 

Riemann integrable function : [0,1] pg   for 0 1p   whose integral function  
0

   
t

G t g   

does not possess a right derivative at 0t  . 

Which means that part (i) of Theorem (6.3.1) breaks down for 
pX   when 0 1p  ! To 

the best of our knowledge this connection, however trivial, had not been made explicit 

before.  

Bayoumi [209] claimed to have extended the fundamental theorem of calculus to 

locally bounded topological vector spaces via the notion of quasi-differentiability (or 

Bayoumi-differentiability, according to himself). These appeared shortly afterwards in 

[210], a book rightfully devoted to the study of the theory of functions in the lack of local 

convexity. Unfortunately, Bayoumi’s quasi-differential is nothing other than the Fréchet 

derivative in disguise [207] and so, in view of Popov’s example, his extension of 

Theorem (6.3.1)(i) to quasi-Banach spaces contained in [209] and [210] cannot hold. A 

close look at the proofs reveals two important errors. The first one is an approach to the 

Riemann integral for functions with values in a quasi-Banach space that mimics the 

construction for normed spaces based on the boundedness of the integral operator on the 

step functions. The other glitch has been recently noticed in [211] and consists of taking 

for granted that the Riemann integral of a continuous function : [ , ]f a b X  fulfills the 

familiar estimate,  
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( )

b b

a a

f f s ds  ,                (10) 

which is expected of any integral worth defining. This assumption permits one to write 

for each fixed [ , ]t a b , 

( ) ( ) 1
( ) ( ) ( ) ( ) ( )

t h

t

F t h F t
f t f s f t ds f u f t

h h


 

     , 

with u  between t  and t h . From here, an appeal to the continuity of f  at t  yields the 

differentiability of F  at this point. Of course, this is true when X  is a Banach space. But 

unfortunately we do not have an inequality like (10) in the lack of local convexity 

because a quasi-norm does not satisfy the triangle law in the usual sense. The very same 

reason hinders the construction of the Bochner integral in quasi-Banach spaces.  

Aside from fixing the above misconception, this section is motivated by the work on 

the subject of Maurey [214], Kalton [199], and Popov [202], and, continuing in the spirit 

of [204, 208], aims at making headway in the theory of integration for quasi-Banach 

spaces and its applications. To that end, we get started with the analysis of the 

shortcomings that frustrate the efforts to define a satisfactory integral in quasi-Banach 

spaces. We show that local convexity is not only a sufficient condition for the integral 

operator to be bounded but it is also necessary. For that we introduce a new class of 

spaces, namely Orlicz spaces of functions taking values in a quasi-Banach space, 

modeled on a standard Orlicz function.  

One of the earliest applications of integration as a tool in geometric functional 

analysis has been the fundamental role it played in determining which Banach spaces X  

have the property that Lipschitz maps f  from the unit interval [0,1]  into X  are 

differentiable almost everywhere. This problem, known in full generality as Tamarkin’s 

question and which led to the forging of the Radon–Nikodym property, remains 

unexplored for quasi-Banach spaces due to the absence of one of the most important 

tools for the analyst, the Hahn–Banach theorem. Thus, with the intention to find a class 

of Lipschitz functions from [0,1]  into X  with good differentiability properties, we 

investigate which additional conditions guarantee the Riemann integrability and the 

fulfillment of the fundamental theorem of calculus for a continuous function with values 

on a quasi-Banach space. We provide a criterion in terms of approximation by 

polynomials, which leads to the introduction of the new class of functions called analytic 

of order r.  

We discusses the validity of the second part of the fundamental theorem of calculus 

for the Riemann integral. The conclusion is that, while Barrow’s rule breaks down in 

spaces with trivial dual like the spaces [0,1]pL  for 1p  , a slightly weaker version of 

Theorem (6.3.1)(ii) still works as long as *X  has enough linear functionals to separate 

the points of X , like in p  for 1p  .  

Finally, we revisit the notion of integral specifically designed for  -normed spaces 

with 1p   by Vogt in 1967 [220] and use it to show the first “Lebesgue differentiation 

theorem” for functions mapping in a non-locally convex space.  

The unfamiliar reader with quasi-Banach spaces and  -spaces will find the few 

required prerequisites in the books [200, 134]. 

Given a quasi-Banach space X  and ( , , )   a measure space, we will denote by 

0( , )L X  the topological linear space of all  -measurable functions :f X  of 
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separable range mapping into the quasi-Banach space X , equipped with its standard 

topology that gives the convergence in measure, with the usual convention about 

identifying functions equal almost everywhere. We will also consider the linear subspace 

( , )S X  of the simple functions in 0( , )L X ,i.e., the  -measurable functions s : X  of 

the form 

1
i

n

i A

i

s x 


 , 

where 1{ }n

i ix X  , 1{A }n

i i    with ( )iA   , and n  is an arbitrary integer. The following 

is the main theorem of this section.  

Theorem (6.3.2)[206]: Suppose X  is a quasi-Banach space and let ( , , )   be a non-

purely atomic measure space. Suppose that for some  -space E  which embeds 

continuously in 0( , )L X , with ( , ) ES X   we have:  

(a) There exists a  continuous linear operator : E X  so that for every

1
( , )

i

n

i Ai
x S X 


 , 

1 1

( )
i

n n

i A i i

i i

x x A 
 

 
 

 
  . 

(b) Whenever a   function 0( , )L X   satisfies ( ) ( )     almost everywhere for 

some E  , it implies that E .  

Then X  is locally convex (and so isomorphic to a Banach space). 

Proof. Let 0x  be any norm-one vector in X , and define the sets 

0 0{ ( , ) : }F f L x f E   , 

and  

0 0{ : ( ) . . }E E x a e w       , 

which are in bijective correspondence through the natural mapping  

0 0,F E f x f  . 

Note that 0E  is a closed subspace of E , so that F  equipped with the topology it inherits 

via the above bijection is an F-space that embeds continuously in 0( , )L  . Of course, 

neither of them is trivial since F  contains the real-valued simple functions S( , ) . 

Suppose ( , )g L X , i.e., 0( , )g L X  with 

( ) 0
inf sup ( )

A A

g f
 


  

   . 

Then, for any f F  we have 

0( ) ( ) ( ) ( ) , .e.g f g f g x f a    
 

   . 

Since the function 0 ( )g x f 


 belongs to 0E , the hypothesis (b) yields that gf E . 

Combining the closed graph theorem with the uniform boundedness principle gives that 

the bilinear operator  
: ( , ) , ( , )T L X F E g f gf    , 

is continuous.  

Pick an atomless set A   with 0 (A)   . Using the continuity of T  we deduce 

that the set  

( , )( { }) { : 1}L X A AT B g g  
 

    

is bounded in E . Therefore its image under the operator  will be bounded in X . In 

other words, there exists a positive constant C  so that 
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,( ( , )) 1A C gg L X with g  
    .             (11) 

For n  arbitrary, let 
1{ }n

i ix 
 be any norm-one vectors in X , and let 

1{ }n

i i 
 be 

nonnegative scalars with 
1

1
n

ii



 . Using Sierpi´nski’s theorem on the range of a real 

nonatomic measure (see [216]), we pick recursively a partition 
1{ , , }nA A  of A such that 

( ) ( )i iA A    for 1, ,i n . Thus, the simple function 
1 i

n

i Ai
g x 


  verifies 1g


 , 

and so, by (2.1), ( ( )) Agg C  . That is, 
1

( )
n

i ii
x A C


 , which implies 

1
( )

n

i ii
x C A 


 . We have showed that the origin of X  has a convex neighborhood, 

i.e., X  is locally convex as claimed. 

Let   be an Orlicz function, that is, a right-continuous, increasing function on [0, )  

such that (0) 0  . Define 

0

( )
( , ) ( , ) : ( ) 0

f x
L X f L X d x for some     




   
      
   

 . 

The properties of   yield that if for ( , )f L X   we put  

( )
inf 0 : ( )

f x
f d x


   




   
    

   
 , 

Then 

  satisfies the axioms of a  -norm in ( , )L X    (see [11]): 

 0f

  if 0f  . 

 f f
 

   whenever 1   and ( , )f L X  ; 

 0lim 0f 
   for any ( , )f L X  ; 

 ( )f g f g
  

    for all f  and g  in ( , )L X  , where 1   is the modulus of 

concavity of the quasi-norm in X .   

Moreover, 

  is equivalent to an F-norm under which ( , )L X   is complete, whence 

( ( , ), )L X 
   is an F-space. We will put ( , )M X   for the closure of ( , )S X  in ( , )L X  , 

and note that if the Orlicz function   satisfies the   -condition,  

(2 ) ( ), 0t C t t    ,               (12)  

for some constant C , then ( , ) ( , )M X L X   . The rigorous proof of these facts is 

similar in spirit to the case of Orlicz spaces of scalar valued functions. The details are left 

to the reader, who can look up the classical work [215] on the subject. 

The following theorem gains in interest if we realize that it evinces that the Bochner 

integral cannot be defined in non-locally convex spaces like the spaces ( , )pL X  for 

0 p    when X  is quasi-Banach.  

Theorem (6.3.3)[206]: Let X  be a quasi-Banach space. Suppose there exist a non-purely 

atomic measure space ( , , )   and an Orlicz function   so that the integral operator : 

): ( ,M X X    given by 

1 1

( )
i

n n

i A i i

i i

x x A 
 

 
 

 
  ,  

1

( , )
i

n

i A

i

x S Xs  


 , 

is continuous. Then X  is locally convex.  

Proof. It suffices to apply Theorem (6.3.2) to ( , )E M X  . 

Now we will delve deeper into the matter and show that the Riemann integral 
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operator also cannot be extended when mapping into a quasi-Banach space X . To that 

end, let [ ,b]I a  be a fixed compact interval of the real line and ( , )C I X  be the usual 

quasi-Banach space of continuous functions :f I X  with the quasi-norm 

max ( )t If f t
 . We will denote by ( , )S I X the linear space of all step 

functions :s I X  and by ( , )S I X  its closure in ( , )L I X . Recall that an X -valued 

function s  defined on [ , ]a b  is called a step function if there is a partition 

0 1 na t t t b      such that for each k  the function s  assumes only one value on the 

interval 1[ , )k kt t .  

If ( , )f C I X  then f  is uniformly continuous on I  hence ( , ) ( , ) ( , )C I X S I X L I X  . 

Each s in ( , )S I X  can be written in the form 

1 1

1

[ , ) [ , ]

1
k k n n

n

k t t n t t

k

s x x 
 





  ,              (13) 

where  
0

n

k k
t


  is a partition of I with 0 1 na t t t b      and kx X  for 1, ,k n . For 

such an s put 

1

1

( ) ( )

b n

k k k

ka

s s x t t X



    .              (14) 

When X  is a Banach space, 

 1 1

1 1

( ) ( ) ( ) ( )
n n

k k k k k k

k k

s x t t x t t b a s  
 

       ,                     (15)  

and so  defines a bounded linear map from ( , )S I X  into X . Thus  extends uniquely 

to a continuous linear operator : ( , )S I X X  satisfying 

( ) ( ) , ( , )f b a f f S I X


    .               (16)  

A tedious but straightforward argument shows that ( )f  may be computed as 

1
0

1

( ) lim ( )( )
n

k k k

k

f f c t t 




  , 

where, for each partition  
0

n

k k
t


  of I, the point kc  may be chosen arbitrarily inside 

1[ ]k kt t   for 1 k n  . It follows that a function ( , )f S I X  if and only if ( , )f I X , 

and ( )
b

a
f f  . 

However, if as it is done in [209, 210], we try to reproduce this operator approach 

to the Riemann integral when X  is a quasi-Banach space, we get in trouble. Indeed, 

assuming that the quasi-norm on X  is p-subadditive for some 1p  , the inequality path 

that we must follow to bound the quasi-norm ( )s  of a step function :s I X  becomes 

1 1
1

1 1

( ) ( ) max ( )
n n

p pp p

k k k k k k
k n

k

p

k

s x t t x t t 
 

 

     ,             (17) 

But now the amount 11
( )

n p

k kk
t t 
  depends on the partition of the interval and, unlike 

for Banach spaces, tends to infinity as n increases. Consequently from (17) we cannot 

infer an estimate of the form 

, ( , )

b

a

s C s s S I X


  ,               (18) 

for some constant 0C   as stated in [209] and incorrectly proved in [210].  

Actually, the following theorem prevents such an inequality from being true at all, 
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unless the space is already locally convex.  

Theorem (6.3.4)[206]: Let X  be a quasi-Banach space. Suppose the Riemann integral 

operator : ( , )S I X X  defined by (14) satisfies (18). Then X  is locally convex.  

Proof. The argument runs as the last part of the proof of Theorem (6.3.2), but we include 

it nevertheless for completeness. For n  arbitrary, let 1{ }n

i ix   be any vectors contained in 

the closed unit ball xB  of X , and let 1{ }n

i i   be nonnegative scalars with 
1

1
n

ii



 . Pick a 

partition  
0

n

k k
t


  of I with 0 1 na t t t b      and 1i i it t    for 1 i n  . Then, the 

hypothesis yields 

1 11

1

[ , ) [ , )

1 11

( ) ,
i i i i

n n

i t t

n n

i i i i i

i i

i t t

i i

x t t C Cxx x 
 

 



  

 
 
 

        

which implies that the origin has a convex neighborhood.  

Alternative proof. Since 
1

( )f b a f


   for all ( , )f I X  and ( , )I X  is dense in 

1( , )L I X  we deduce from (18) that there exists a linear bounded operator: 1( , )L I X X:  

such that [ , ]( ) ( )c dx d - c x   whenever a c d b    and x X . We infer that ( )Ex E x   

for every measurable set [ , ]E a b  and x X . Using Theorem (6.3.3) we obtain that X  is 

locally convex.  

Another alternative proof. Since ( , ) ( , )I X S I X  we can extend to a bounded linear 

operator: ( , )C I X X: . It is straightforward to check that ( )f  is the Riemann integral 

of the continuous function f . By Mazur–Orlicz theorem, X  is locally convex. 

Throughout the section, X  will denote a quasi-Banach space, unless otherwise 

specified. Recall that a p-Banach space, 0 1p  , is a quasi-Banach space ( , )X   whose 

quasi-norm is p-subadditive, that is, 

, ,
p p p

x y x y x y X     . 

In [213] Gramsch proved that the X -valued analytic functions are Riemann-

integrable on a compact interval [ , ]I a b  of the real line. His proof is based on the 

following sufficient condition for Riemann integrability.  

Theorem (6.3.5)[206]: Let X  be a p-Banach space (0 1p  ) and :f I X . Suppose that 

 1

( ) ( ),n n

n

f t x f t t I




   ,               (19)  

Where 1( )n nx X

  , 1( ) ( , )n nf I

   and 
1

p p

n nn
x f




  . Then, ( , )f I X  with 

integral 

1

b b

n n

na a

f x f




  . 

Since the class of analytic functions is very restrictive, it makes sense to study 

weaker conditions that guarantee Riemann integrability. We will attain such a criterion 

through a concept that originated in [130].  

Definition (6.3.6)[206]. Let 0 r   . A function :f I X  will be called analytic of 

order r  on I  if for every integer k  with 0 k r  , there exist functions ( ) :kf I X  and 

:k I I X   , such that the following Taylor expansions hold 
( )

( )

0

( )
( ) ( ) ( ) ( , )

!

r k k j
k j r k

k

j

f s
f t t s t s t s

j


   




    . 

Moreover, the functions ( )kf  (the derivatives of (0)f f ) and the Taylor remainders k  
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must be continuous, and ( , ) 0k t t   for all t I . The class of all analytic functions of 

order r  will be denoted by ( )( , )r I X .  

In ( )( , )r I X  we consider the topology of uniform convergence of the functions, 

their derivatives and their Taylor remainders in the above expansion. We will denote by 
( )( , )I X  the intersection of all spaces ( )( , )r I X  for 0r  .  

Theorem (6.3.7)[206]: Let 0 r   , dU   open, and V U  relatively compact. There 

exist a continuous linear operator ( )

1 0( ) : ( , ) ( )r

n nT T U X c X

   and a sequence of 

functions 
1( )n n 


 in ( )(V, )  with r

n Cn 


  for some constant C independent of n  

so that every ( )g ( , )r U X  can be expanded in the form 

1

( ) ( ) ( ),n n

n

g t T g t t V




   .              (20)  

The convergence of this series is understood in the sense of ( )( , )r V X .  

Turpin and Waelbroeck made good use of this approximation to prove in [219] that a 

function in ( )( , )r U X  is integrable in the sense of Vogt with respect to a finite measure 

with compact support (cf. Section 5). Let us explain how their ideas can be adapted to 

imply Riemann integrability. The key ingredient is the following lemma.  

Lemma (6.3.8)[206]: Suppose ( )

1g ([a,b], )r X  and ( )

2g ([b,c], )r X  are such that 
( ) ( )

1 2( ) g ( )k kg b b   for all 0,1, ,k r    . We define functions : [ , ]kh a c X  for 0 k r      

by  
( )

1

( )

2

( ) [ , ],
( )

( ) [ , ].

k

k k

g t if t a b
h t

g t if t b c

 
 


 

Then, ( )

0 ([a,c], )rh X  and ( )

0

k

kh h  for all 0,1, ,k r    . 

Proof. We must show that the functions kh  have a suitable Taylor expansion. We will do 

this for 0h , and the same argument will be valid for kh , with 1 k r     .  

To that end, define for , [ , ]s t a c , 

0 0

( )
( ) ( ( ) ( ) ) ,

( , ) !

0 .

r jr j

j

h s
t s h t t s if s t

s t j

if s t



  




   

 
 

  

Our goal is to show that ρ is continuous. Since f  and g  are ( )rC -functions, we need only 

see that 
,

lim ( , ) 0
s b t b

s t  
 . For a s b t c     put  

0

(b)
( , ) ( )

!

r
j j

j

h
s t t s

j


  



  , 

and 

0

(s)
( , ) ( )

!

r
j j

j

h
s t t s

j


  



  ,  

so that  

 0( , ) ( ) [ ( ) ( , )] [ ( , ) ( , )]rs t t s h t s t s t s t        . 

Now, on the one hand,  

 0

0

(b)
( ) ( , ) ( ) ( ) ( )

!

r
jr j j

j

h
h t s t o t b t b t s

j


  



         , 

and, on the other hand, 
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0

( ) ( )
( , ) ( , ) ( )

!

r
j j j

j

h s h b
s t s t t s

j
 

  




     

 
0 1

(b) 1
(b ) (s ) ( )

( )! !

r r

r k j jk

j k j

h
o s b t s

k j j

      


  

    


   

 
1

0 0

(b)
(b ) (s ) ( )

!

r k
r k j jk

k j

kh
o s b t s

jk

   


 

 
     

 
  

 
0

(b)
(b ) (s ) ( )

!

r

r k kk

k

h
o s b t s

k

  



        . 

Subtracting the two equations, 

   ( , ) ( ) ( ) ( )r r rs t t s o t b o b s       
 

. 

We conclude by noting that ( ) ( )r rt s t b     and ( ) (b )r rt s s    . 

As a consequence, we obtain the following extension lemma.  

Lemma (6.3.9)[206]: There exists a continuous linear operator ( ) ( ): ( , ) ( , )r rE I X X  

such that ( ) ( )( ) [ ( )] ( )k kf t E f t  for all ( )( , )rf I X , t I  and 0 k r     . Moreover, if we 

fix a compact neighborhood of I ,say J, we can get supp ( )E f J  for all f .  

Proof. Let [ , ]I a b . Wepick 1 1a a b b        such that 1 1[ , ]a b J . Let 
( )([ , ], )rf a b X . Using a standard polynomial interpolation technique we construct 

functions ( )([ , ], )r

l 1f a a X , ( )([ , ], )r

r 1f b b X  such that ( ) ( )( ) ( )k k

lf a f a , ( ) ( )( ) ( )k k

rf b f b

and ( ) ( )

1( ) ( ) 0k k

l r lf a f b  .Define  

1

1

( ) [ , ],

( ) [ , ],
( )( )

( ) [ , ],

0 .

l

r

f t if t a b

f t if t a a
E f t

f t if t b b

otherwise


 

 




 

By Lemma (6.3.8), ( )( ) ( , )rE f X . Finally, we observe that the assignment of an 

interpolating polynomial through the mapping ( , )l rf f f  is linear and continuous.  

Now we are able to give an analogous of Turpin and Waelbroeck’s theorem for 

analytic functions of order r on I.  

Theorem (6.3.10)[206]: Let 0 r   . There exist a bounded linear operator  
( )

1 0( ) : ( , ) ( )r

n nS S I X c X

   and a sequence of functions 1( )n n 

  in ( )( , )I  with 
( )k k r

n kC n 


  for all {0}k    and n , where the constants kC  are independent of 

n , so that whenever ( )( , )r Xg I ,  

1

(t) ( ) ( ),n n

n

g S g t t I




   .               (21) 

The convergence of this series is understood in the sense of ( )( , )r I X .  

Proof. Let V  be a bounded open set such that I V . By appealing to Theorem (6.3.7), 

there are ( )

0( ) : ( , ) ( )r

nT T X c X    and ( )( , )( )n V   such that  

( )

1

(t) ( ) ( ), ( , )r

n n

n

f T f t in V X




 . 

But, a careful reading of the proof of [218] evinces that ( )k k r

n kC n 


  for all n  and 

{0}k   . Appealing to Lemma (6.3.9), we simply need to consider S T E . 

Theorem (6.3.11)[206]: Let X  be a  -Banach space (0 1)p  . Suppose that :f I X  is 



 188 

analytic of order r on I. If 1r p , then ( , )f I X . Moreover, if we define ( ) ( )
t

a
F t f u du  , 

the (1)( , )f C I X  and F f  .  

Proof. We use Theorem (6.3.10) to write 
1 n nn

f x 



 , where 

1( ) ( )n nx S f

  . Then,  

0

1 1

( )
P P P P rp

n n

n n

x S f C n
 



 
 

    . 

By Theorem (6.3.5), ( , )f I X  and 
1

( ) ( )
t

n nn a
F t x u du




  .  

For s t  define  

1
( , ) ( )

t

n n

s

s t u du
t s

 
  , 

and 

   
( ) ( )

( , )
F t F s

g s t
t s




 .
 

Put ( , ) ( )n t t t   and ( , ) ( )g t t f t . We have  

2

1

( , ) ( , ), , [ , ]n n

n

g s t x s t s t a b




   . 

Since n n 
 
  and 

1

p p

n nn
x 




  , the above series converges uniformly on 2I . 

Hence, since 
n  are continuous functions, g is continuous, i.e., (1)( , )f C I X . Moreover 

( ) ( , ) ( )F t g t t f t   . 

As usual, we can apply this result to pseudo-convex spaces, noting that such spaces 

are projective limits of locally  -convex spaces.  

Corollary (6.3.12)[206]: Suppose that X  is a pseudo-convex F-space and that 
( )( , )f C I X . Then ( , )f I X . Moreover, if we define ( ) ( )

t

a
F t f u du  , then F f  . 

When dealing with a quasi-Banach space X  we run the risk of having no bounded 

linear functionals on X  besides the zero map. If this is the case, a beautiful theorem of 

Kalton informs us that for every x X  there exists a continuously differentiable function 

F  from [ , ]I a b  into X  such that ( ) 0F a  , ( )F b x , and 0F    (see [130]). This prevents 

the second part of the fundamental theorem of calculus from holding for these particular 

spaces since, by another result of Kalton [199], when * {0}X   every continuous function 

:f I X  has primitives. The validity of Theorem (6.3.1)(ii) is also biased for quasi-

Banach spaces X  with separating dual from the moment we know that not every 

continuous function :f I X  has a primitive [208]. However, in this case the following 

version of Barrow’s rule does hold.  

Theorem (6.3.13)[206]: Let X  be a quasi-Banach space with separating dual. Let F  be 

differentiable on I  so that ( , )F I X . Then, 

( ) ( )

b

a

F F b F a   .                         (22)  

Proof. Given any * *x X , the composite function * :x F I   is differentiable with 

derivative * *( ) (t) ( )x F x F t   for all t I . Using the (real) fundamental theorem of 

calculus and the fact that the Riemann integral commutes with linear functionals we have 

     * * *( ) ( ) ( ) ( )x F b F a x F b x F a    

           * *( ) ( )

b b

a a

x F t dt x F t dt
 

    
 

  . 
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Since *X  separates points, we deduce Eq. (22). 

Theorem (6.3.14)[206]: Let X  be a p-Banach space (0 1p  ). Suppose that f  is 

analytic of order r  on I . If ( 1)r p p  , then ( , )f I X  and  

( ) ( ) ( )

b

a

f b f a f u du   .              (23)  

Proof. We use Theorem (6.3.10) to write 
1 n nn

f x 



 , where  

1
( )n n

x S f



 . We have 

1 n nn
f x 




   uniformly. From 1

1

r

n C n 


   and ( 1) 1p r   , we obtain 

1

p p

n nn
x 




   . 

Applying Theorem (6.3.5) we get that ( , )f I X  and 

 
1 1

( ) ( ) ( ) (a) ( ) ( )

b b

n n n n n

n na a

f u du x u du x b f b f a  
 

 

        . 

In [220] Vogt introduced a concept of integrability quite different from that of 

Riemann. Let ( , , )   be a measure space and let X  be a p-Banach space. A function 

:f X  is said to be integrable in the sense of Vogt, and we write 1 ( , )Vf L X  (also, 
1 ( , )Vf L I X  when   is the Lebesgue measure on a subset dI  ) if f  admits an 

expression of the following guise 

1

( ) ( ) . .n n

n

f t x f t a e t I




  ,               (24)  

where 
1( )n nx 

x  in X  and 
1( )n nf 

f  in 1( , )L   verify the condition 

1
1

( , )
p p

n n

n

N x f




  x f .               (25) 

The space 1 ( , )VL X  equipped with the gauge 

 1

1,
inf ( , ) : (24) and (25) holdp

V
f N x f  

is a  -Banach space. Moreover, for E   the expression 

1

n n

n E

x f d 




   

does not depend on the decomposition (24) chosen for f , and so it is consistent to define 

the Vogt integral of  f  on E  as 

1

n n

nE E

fd x f d 




   

The crucial fact in the work of Vogt is the possibility to identify isometrically 
1 ( , )VL X  with the completion of the tensor product 1( , )X L   endowed with the quasi-

norm 
1

1
1 1

inf : ,

p
N N

p p

n n n n

n n

x f x f N
 

   
       

   
  . 

Simple functions are dense in 1 ( , )VL X . In general 1

1( , ) ( , )VL X L X   and, as a 

consequence of the next proposition, the two spaces coincide for all measure spaces if 

and only if X  is a Banach space.  

Proposition (6.3.15)[206]: Let X  be a  -Banach space for some 0 1p  . Suppose that 

there exist a non-purely atomic measure space ( , , )   and an Orlicz function   such 

that 1( , ) ( , )VM X L X   . Then 1p   (i.e., X  is a Banach space). 

Proof.  Define  : ( , )M X X    by ( )f fd 


    (integral in the sense of Vogt). For 



 190 

1
( , )

i

n

i Ai
s x X 


  S  we obtain 

1
( ) ( )

n

i ii
s x A


 . By Theorem (6.3.2), X  is locally 

convex.  

The corresponding statement to the fundamental theorem of calculus for functions in 

1( , )L   is the Lebesgue differentiation theorem. It is well-known that Lebesgue 

differentiation theorem works for a Banach space X  and for functions in 1( , )dL X . It 

seems natural to ask if this theorem will remain valid for a p-Banach space X  and for 

functions in 1 ( , )d

VL X .  

We begin our discussion with some ideas from harmonic analysis (see e.g. [212]). 

Let 0 s   .The Lorentz function space , ( , )s wL   consists of all measurable functions f  

verifying 

({ : ( ) })
s

s

C
f t

t
     ,               (26)  

for some constant C  that does not depend on t  . Denote by 
,s w

f  the best constant C  

such that (26) holds. Then, , ,
( ( , ), )s w s w
L    is a quasi-Banach space. If 1s  , the space 

, ( , )s wL   is locally convex, i.e., there exists a constant ( )D s  such that for all N  , 

,
1 1,

( )
N N

n n s w
n ns w

f D s f
 

  .              (27)  

The space 1, ( , )d

wL  appears in a natural way when studying the Lebesgue 

differentiation theorem since the Hardy–Littlewood maximal operator HL  is bounded 

from 1( , )dL  into 1, ( , )d

wL . Explicitly, there exists a constant L  such that for every 

measurable function : [0, )dg   , 

1, 1
( )HL w
g L g , 

where ( )HL g  is defined for dt   as 

1
( )( ) sup ( ) : ,HL g t g u du is a cube t

  
  

  

Q

Q Q
Q

. 

Now we define a maximal operator for vector-valued functions. If X  is a p-Banach 

space, : df X  is locally Vogt integrable ( 1 ( , )Vf L K X  for every compact set dK  , 

for short 1

, ( , )d

V locf L X ), and dt  , 

,

1
( ) sup ( )

t cube

Mf t f u du


 
Q Q

Q
Q

. 

In what follows, tQ  means the directed set of cubes containing t as interior point. 

Theorem (6.3.16)[206]: Let X  be a  -Banach space (0 1p  ). If 1

, ( , )d

V locf L X , then 

1
lim ( ) ( )

t
f u du f t


Q

Q
Q

, 

almost everywhere t  in d .  

Proof. The result is true for ( , )f X , and ( , )X  is dense in 1 ( , )d

VL X . Moreover, 

the maximal operator M  satisfies the following p-subadditivity condition 

 
1

( ) ( ) ( )
p

p pM f g Mf Mg   . 

Thus it suffices to show that M  maps 1 ( , )d

VL X  into 1, ( , )d

wL . 

Let 1 ( , )Vf L X , 1(x )n n



x  in X  and 1( )n nf 

f  in 1( , )L   such that (24) and (25) hold.      
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Using  -convexity of the space we get 

 
1

1

(t) [ ( )]

p

p p

n HL n

n

Mf x f t




 
  
 
 .: 

Hence, denoting 1s p ,  

 
1,

1 ,

[ ]

s

p p

n HL nw
n s w

Mf x f




   

     
,

1

[ ( )] [ ]

s

ps p

n HL n
s w

n

D s x f




 
  

 
  

  

  
 

1,
1

[ ( )]

s
pps

n HL n
w

n

D s x f




 
  

 
  

  

  

1 1

1
1

[ ( )] [ (1 )] ( , ) .

s

p ps p p

n n

n

L D s x f L D p N




 
  

 
 x f  

Taking the infimum we obtain 1

1, 1,V
[ (1 )] p

w
Mf L D p f  as desired. 

Corollary (6.3.17)[221]: Suppose X  is a quasi-Banach space and let ( , , )   be a non-

purely atomic measure space. Suppose that for some  -space E  which embeds 

continuously in 0( , )L X , with ( , ) ES X   we have:  

(a) There exists a continuous linear operator : E X  so that for every

   1 1,1 11 1
( , )

i i i

n i

i ji j
x S X  

 
   
   , 

       
1 1

1 1 1 1 1 1,1 1
1 1

,
i i i

n n
i i

i j i j i i ij j
i i

x x   
 

     
 

 

 
    

 
    . 

(b) Whenever a function 0( , )L X   satisfies ( ) ( )     almost everywhere for 

some E  , it implies that E .  

Then X  is locally convex (and so isomorphic to a Banach space). 

Proof. Let 0x  be any norm-one vector in X , and define the sets 

0 0{ ( , ) : }F f L x f E   , 

and  

0 0{ : ( ) . . }E E x a e w       , 

which are in bijective correspondence through the natural mapping  

0 0,F E f x f  . 

Note that 0E  is a closed subspace of E , so that F  equipped with the topology it inherits 

via the above bijection is an F-space that embeds continuously in 0( , )L  . Of course, 

neither of them is trivial since F  contains the real-valued simple functions S( , ) . 

Suppose ( , )g L X , i.e., 0( , )g L X  with 

( ) 0
inf sup ( )g f
 


  

   . 

Then, for any f F  we have 

0( ) ( ) ( ) ( ) , .e.g f g f g x f a    
 

   . 

Since the function 0 ( )g x f 


 belongs to 0E , the hypothesis (b) yields that gf E . 

Combining the closed graph theorem with the uniform boundedness principle gives that 

the bilinear operator  

: ( , ) , ( , )T L X F E g f gf    , 

is continuous. 



 192 

Pick an atomless set   with 0 ( )   . Using the continuity of T  we deduce that 

the set  

( , )( { }) { : 1}L XT B g g  
 

    

is bounded in E . Therefore its image under the operator  will be bounded in X . In 

other words, there exists a positive constant C  so that 

, ( , ) with 1( ) C g L X gg  
    .           

For n  arbitrary, let 1 111
{ }

i

i jj

n

ix     be any norm-one vectors in X , and let 

1{ }n

i i 
 be nonnegative scalars with 

1
1

n

ii



 . Using Sierpi´nski’s theorem on the range 

of a real nonatomic measure (see [18]), we pick recursively a partition 

0 0 1 1 1{[ , ], ,[ , ]}n n n    of  such that  1 1, ( )i i i i       for 1, ,i n . Thus, the 

simple function    1 1
1 11 1 ,i i i

n i

i ji j
g x  

 
   

    verifies 1g

 , and so, by (11), 

( ( )) gg C  . That is,    1 1 1 111
,

i

ij

n

i j i ii
Cx     

   , which implies 

 1 111
( )

i

i j

n

i ji
Cx 

    . We have showed that the origin of X  has a convex 

neighborhood, i.e., X  is locally convex as claimed. 

Corollary (6.3.18)[221]: Let X  be a quasi-Banach space. Suppose there exist a non-

purely atomic measure space ( , , )   and an Orlicz function   so that the integral 

operator: ): ( ,M X X    given by 

       
1 1

1 1 1 1 1 1,1 1
1 1

,
i i i

n n
i i

i j i j i i ij j
i i

x x   
 

     
 

 

 
    

 
    , 

    1 1,1 11 1
( , )

i i i

n i

i ji j
x S Xs   

 
  

    , 

is continuous. Then X  is locally convex. 

Proof. It suffices to apply Theorem (6.3.2) to ( , )E M X  . 

Corollary (6.3.19)[221]: Let X  be a quasi-Banach space. Suppose the Riemann integral 

operator  : ( , )S I X X  defined by (14) satisfies (18). Then X  is locally convex.  

Proof. The argument runs as the last part of the proof of Theorem (6.3.2), but we include 

it nevertheless for completeness. For n  arbitrary, let  1 11
1

n
i

i jj
i

x  


  be any vectors 

contained in the closed unit ball xB  of X , and let 1{ }n

i i   be nonnegative scalars with 

1
1

n

ii



 . Pick a partition 

1 00{ }
k

ii

n

k
    of I with 

2

0 0 0 1 0 0 01 1

n

i ii i
  

 
           and i i   for 1 i n  . Then, the 

hypothesis yields 

    1

0 01 1

1 1 1 11 1 ,
1 11

( ) i i

i ii i

n
i i

n n

i i i

i

i j i j

ii
j j

x xx
 

    

 

       
  

 
  

 
  


       

  1

0 01 1

1 11 ,
1

i i

i ii i

n
i

i jj
i

xC C
 

  

 

   
 




 





  , 

which implies that the origin has a convex neighborhood.  

Alternative proof. Since 
1

( )f f


  for all ( , )f I X  and ( , )I X  is dense in 1( , )L I X  

we deduce from (18) that there exists a linear bounded operator: 1( , )L I X X:  such that 

[ , ]( ) ( )c dx d - c x   whenever 0 0c d     and x X . We infer that ( )Ex E x   for 
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every measurable set 
0 0[ , ]E    and x X . Using Theorem (6.3.3) we obtain that X  is 

locally convex.  

Another alternative proof. Since ( , ) ( , )I X S I X  we can extend  to a bounded linear 

operator: ( , )C I X X: . It is straightforward to check that ( )f  is the Riemann integral 

of the continuous function f . By Mazur–Orlicz theorem, X  is locally convex.  

Corollary (6.3.20)[221]: Suppose ( )

1 0 0g ([ , ], )r X   and ( )

2 0 0g ([ , ,2 ] )r X   are 

such that ( ) ( )

1 0 2 0(( ) ) g (( ) )k kg      for all 0,1, ,k r    . We define functions 

0 0: [ , ]2kh X  for 0 k r      by  
( )

1 0 0 0 0

0 ( )

2 0 0 0 0

( ) ( ) [ , ]

2

,
( )

( ) ( ) [ , ].

k

k k

g if
h

g if

 


 

    
  

   
 

Then, ( )

0 0 0([ , ] )2 ,rh X   and ( )

0

k

kh h  for all 0,1, ,k r    . 

Proof. We must prove that the functions kh  have a suitable Taylor expansion. We will do 

this for 0h , and the same argument will be valid for kh , with 1 k r     .  

To that end, define for 0 1 0 0 0( ),( ) [ , 2 ]h      , 

0 1

1 0 0 1 0 1 00
0 1 0

0 1 0

( )
( ) ( ( ) ( ) ) ( ) ( ),

( , ) !

0 ( ) ( )

r jr j

j

h h
h h h if h

h j

if h


  

  

 

  



 
     

    
    

  

Our goal is to show that ρ is continuous. Since f  and g  are ( )rC -functions, we need only 

see that 
0 1 0 0 0

0 1 0( ) ( ) ,( ) ( )
lim ( , ) 0

h
h

 
         

    . For 10 2h       put  

0

0 1 0 1

0

( )
( , ) ( )

!

r
j j

j

h
h h

j
  

  



 


  , 

and 

0 1

0 1 0 1

0

( )
( , ) ( )

!

r
j j

j

h h
h h

j


  

  



 
    , 

so that  

0 1 0( , )h       

     1 0 0 0 1 0 0 1 0 0 1 0( ) [ ( ) ( , )] [ ( , ) ( , )]rh h h h h                       . 

Now, on the one hand,  

  0

0 0 0 1 0 1

0

( )
( ) ( , ) ( ) ( ) ( )

!

r
jr j j

j

h
h h o h

j
     

  



           


 , 

and, on the other hand, 

0 1 0

0 1 0 0 1 0 1

0

( ) ( )
( , ) ( , ) ( )

!

r
j j j

j

h h h
h h h

j


     

  



   
          

  0
1 1 1

0 1

( ) 1
( ) ( ) ( )

( )! !

r r

r k j jk

j k j

h
o h h h

k j j
 

      


  


     


   

 
1

0
1 1 1

0 0

( )
( ) ( ) ( )

!

r k
r k j jk

k j

kh
o h h h

jk
 

   


 

 
      

 
  

  0
1 1 1

0

( )
( ) ( ) ( )

!

r

r k kk

k

h
o h h h

k
 

  




         . 

Subtracting the two equations, 

   0 1 0 1 1( , ) ( ) ( ) ( )r r rh h o o h             
 

. 
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We conclude by noting that 
1( ) ( )r rh     and 

1 1( ) ( )r rh h    . 

Corollary (6.3.21)[221]: There exists a continuous linear operator 
( ) ( ): ( , ) ( , )r rE I X X  such that ( ) ( )

0 0( ) [ ( )] ( )k kf E f     for all ( )( , )rf I X , 

0( ) I   and 0 k r     . Moreover, if we fix a compact neighborhood of I , say J, we 

can get supp ( )E f J  for all f .  

Proof. Let 
0 0[ , ]I   . Wepick 0 1 0 0 0 1) ( )(          such that 

0 1 0 1[( ) ,( ]) J  . Let ( )

0 0([ , ], )rf X  . Using a standard polynomial interpolation 

technique we construct functions ( )

0 0([( ) , ], )r

l 1f X , ( )

0 0([ ,( ], ))r

r 1f X    such that 
( ) ( )

0 0( ) ( )k k

lf f , ( ) ( )

0 0( ) ( )k k

rf f    and ( ) ( )

0 1 0(( ) ) (( ) 0)k k

l r lf f   .Define  

0 0 0 0

0 0 0 1 0

0

0 0 0 0 1

( )            ( ) [ , ],

( )                ( ) [( ) , ],
( )( )

( )  ( ) [ ,( ],

0                  

)

 .

l

r

f if

f if
E f

f if

otherwise

 

 


 

   
   

  
    



 

By Lemma (6.3.8), ( )( ) ( , )rE f X . Finally, we observe that the assignment of an 

interpolating polynomial through the mapping ( , )l rf f f  is linear and continuous. 

Corollary (6.3.22)[221]: Let 0 r   . There exist a bounded linear operator  
( )

1 0( ) : ( , ) ( )r

n nS S I X c X

   and a sequence of functions 1( )n n 

  in ( )( , )I  with 
( )k k r

n kC n 


  for all {0}k    and n , where the constants kC  are independent of 

n , so that whenever ( )( , )r Xg I ,  

0 0 0

1

( ) ( ) ( ), ( )n n

n

g S g I   




      .            

The convergence of this series is understood in the sense of ( )( , )r I X .  

Proof. Let V  be a bounded open set such that I V . By appealing to Theorem (6.3.7), 

there are ( )

0( ) : ( , ) ( )r

nT T X c X    and ( )( , )( )n V   such that  

( )

0 0

1

( ) ( ) ( ), ( , )r

n n

n

f T f in V X  




   . 

But, a careful reading of the proof of [20] evinces that ( )k k r

n kC n 


  for all n  and 

{0}k   . Appealing to Lemma (6.3.9), we simply need to consider S T E . 

Corollary (6.3.23)[221]: Let X  be a      -Banach space 0 . Suppose that :f I X

 is analytic of order r on I. If 1
1

r


 , then ( , )f I X . Moreover, if we define 
0

0
0( ) ( )F f u du






   , then (1)( , )f C I X  and F f  .  

Proof. We use Theorem (6.3.10) to write  11 1 1

n

n jj nn
xf 



   , where 

 1 11
1

( )
n

n
n jj

fx S



 

 . Then,  

 
1

1 1 1

1 1

(1 )

0

1
1

1

( ) r

n

n n

n

n jj
S f Cx n


  

 

 
 

 
 

    . 

By Theorem (6.3.5), ( , )f I X  and   0

0
10 1 11

( ) ( )
n

j nn jn
F u dux



 


  
    .  

For 0 1 0h      define  
0

0 1

0 1 0

1

1
( , ) ( )n n

h

h u du
h





   



 

     , 
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and 

0 0 1
0 1 0

1

( ) ( )
( , )

F F h
g h

h

 
 

   
    . 

Put 0 0 0( , ) ( )n         and 0 0 0( , ) ( )g f      . We have  

  2

0 1 0 0 1 0 0 1 0 01

1

1 1 0( , ) ( , ), ( ),( ) [ , ] .
n

n j n

n
j

g h h hx       






             

Since n n 
 
  and  

1
1

1 111

n

n jj nn
x 




  



    , the above series converges 

uniformly on 2I . Hence, since 
n  are continuous functions, g is continuous, i.e., 

(1)( , )f C I X . Moreover 0 0 0 0( ) ( , ) ( )F g f          . 

Corollary (6.3.24)[221]: Let X  be a quasi-Banach space with separating dual. Let F  be 

differentiable on I  so that ( , )F I X . Then, 
0

0

0 0( ) ( )F F F



    .                       (28)  

Proof. Given any * *x X , the composite function * :x F I   is differentiable with 

derivative * *

0 0( ) ( ) ( )x F x F      for all 0( ) I  . Using the (real) fundamental 

theorem of calculus and the fact that the Riemann integral commutes with linear 

functionals we have 

     * * *

0 0 0 0( ) ( ) ( ) ( )x F F x F x F      

    
0 0

0 0

* *

0 0 0 0( ) ( ) ( ) ( )x F d x F d   

  
       

 
 

  . 

Since *X  separates points, we deduce Eq. (28). 

Corollary (6.3.25)[221]: Let X  be a      -Banach space 0 . Suppose that f  is 

analytic of order r  on I . If 2
1

r 


 , then  ( , )f I X  and  
0

0

0 0( ) ( ) ( )f f f u du



    .              

Proof. We use Theorem (6.3.10) to write  11 1 1

n

n jj nn
xf 



   , where 

 1 11
1

( )
n

n
n jj

fx S



 

 . We have  11 11

n

n jj nn
xf  





  
    uniformly. From 1

1

r

n C n 


   

and 11( )( ) 1r   , we obtain  
1

1

1 111

n

n jj nn
x 




  
    . Applying Theorem (6.3.5) 

we get that ( , )f I X  and 

 
0 0

0 0

1 11
1

( ) ( )n

n

n

n jj
xf u du u du 

 



     

  1 1

1

0 0 0 01
( ) ( ) ( ) ( ).n n

n

n

n jj
f fx  





 
        

Corollary (6.3.26)[221]: Let X  be a      -Banach space for some 0 . Suppose that 

there exist a non-purely atomic measure space ( , , )   and an Orlicz function   such 

that 1( , ) ( , )VM X L X   . Then 0  (i.e., X  is a Banach space). 

Proof. Define : ( , )M X X    by ( )f fd 


   (integral in the sense of Vogt). For 

   1 1,1 11 1
( , )

i i i

n i

i ji j
x S Xs   

 
  

     we obtain 
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    1 11 1 1 1( ,)
n i

ii jj ii is x          .  

By Theorem (6.3.2), X  is locally convex. 

Corollary (6.3.27)[221]: Let X  be a      -Banach space  0 . If  1

, ( , )d

V locf L X , 

then 

0( )
0

1
lim ( ) ( )f u du f




 
 Q

Q
Q

, 

almost everywhere 0( )  in d .  

Proof. The result is true for ( , )f X , and ( , )X  is dense in 1 ( , )d

VL X . Moreover, 

the maximal operator M  satisfies the following      -subadditivity condition 

 1 1 1
1

( ) ( ) ( )M f g Mf Mg     . 

Thus it suffices to show that M  maps 1 ( , )d

VL X  into 1, ( , )d

wL . 

     Let 1 ( , )Vf L X ,  1 11
1

n

n jj
n

x  



 


 x  in X  and 1( )n nf 

f  in 1( , )L   such that (24) 

and (25) hold. Using      -convexity of the space we get 

   
1

0 0

1

1 1
1

1 11
( ) [ ( )]HLj

n

n

n j nxMf f 
 



 





 
   





  .:  

Hence, denoting 1
1

s


 ,  

   
1

1,
1 1

1

,

1
1

1 1
[ ]

n

n j n

n
j HLw

w

xMf f












 

    

  
  

   
1

1

1 ,

1
1

1 11
1

[ ( )] [ ]
n

Hn j L n
w

n
j

D s fx 












 
 

 


 
   

  
  

   
1

1

1,

1

1 11
1

1

[ ( )]
n

n jj HL n
w

n

D s fx 
 

 









 
 

 
  

  
  

 
1

1

1

1

1

1
1

11
[ ( )]

n

n njj
n

L D s fx 




 








 
 





  

    
1

1 1
1

1
1

[ ( )] ( , )L D N 


 x f . 

Taking the infimum we obtain 1

1, 1,V

1
1

1
[ ( )]

w
Mf L D f


  as desired. 
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