

Abstract

Prosthesis is an artificial device, used to replace a disabled or defective body part, which can be of any reason like lost accidentally, birth physical disability, disease etc.

Current solutions for the control of active upper-limb prostheses are mostly based on EMG signals acquisition and processing and on electronic switches. Even though efficient for most clinical cases. These solutions can be unsatisfactorily for the control of prostheses with multiple joints, highly effort requirements to perform even simple activities, costly and takes long time for adaptation and training.

Voice is the most popular and easy tool for communication and simple tool for man machine interface, as it is user friendly.

In this study the hardware of voice controlled prosthetic arm was designed and implemented. For man machine interface through speech a voice recognition module was used.

The prosthetic arm responds to the voice command from its user to perform any movements functions. It integrates a microcontroller, microphone, voice recognition module and DC servo motors.

By using the system, the user is able to move the hand by simply speak to the arm microphone. This study presents Voice-control as a possible solution by designing in implementing a hardware of voice controlled prosthetic arm, which was initially trained for eight voice commands to control the movements of hand.

To accomplish this task, A mikroC language program is written and stored in the PIC controller's memory.

In order to recognize the spoken words, the voice recognition processor must be trained with the word spoken out by the user who is going to use the arm.

تحريد

الأطراف الصناعية هي أجهزة تستخدم لتحل محل الأجزاء المعتلة أو المفقودة من الجسم، والتي يمكن أن تكون لأي سبب من الأسباب مثل الامراض و الحوادث و التشوهات الخلقية.. الخ

الحلول الحالية للتحكم في الأطراف الصناعية تستند في معظمها على تقنية EMG (إشارات كهربائية يتم التقاطها من الأعصاب). على الرغم من فعاليتها لمعظم الحالات يمكن لهذه الحلول أن تكون غير مرضية للسيطرة على أطراف اصطناعية بها مفاصل متعددة إلى حد كبير ، ومكلفة و تستغرق وقتا طويلا للتكيف والتدريب . الأوامر الصوتية هي الأداة الأكثر سهولة للتواصل بين الآلة والانسان.

في هذه الدراسة تم تصميم نظام تحكم لزراع صناعية يعمل من خلال الأوامر الصوتية و التي تخزن في زاكرة مسبقا.

الذراع الاصطناعية يستجيب إلى الأوامر الصوتية من المستخدم لتنفيذ مهام الحركات. ونظام التحكم مكون من مايكروكونترولر ، وميكروفون، وحدة التعرف على الصوت وموتورات . باستخدام هذا النظام، يكون المستخدم قادرا على تحريك اليد بالتحدد ببساطة إلى للزراع واصدار اوامر صوتية .

تقدم هذه الدراسة التحكم بالأوامر الصوتية كحل ممكن من خلال تصميم أجهزة التحكم الصوتية للذراع الاصطناعية ، وتلقين نظام التحكم في البداية بثمانية أوامر صوتية للتحكم في حركات اليد. بالإضافة لبرنامج لغة mikroC وتخزينها في ذاكرة نظام التحكم من أجل التعرف على الكلمات المنطقية و تحويلها لإشارة تحكم لتحريك المоторات بالطريقة المقابلة للأمر المعين .