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Abstract 

 

 
The Constrained Application Protocol (CoAP) is used with TinyOS 

which called TinyCoAP to give the same features of HTTP while 

keeping a simple design and low overhead. TinyOS already have another 

implementation of CoAP in its distribution called CoapBlip.However, 

it’s a library doesn't meet the requirements ofTinyOS.TinyCoAP and 

CoapBlip are evaluated using Avrora and TOSSIM simulations, as well 

as implementations based on HTTP. The evaluation is performed in 

terms of latency, memory occupation, and energy consumption. It shows 

that TinyCoAPhas the best performance in most parameters comparing it 

with other implementations.  

TinyCoAP shows important development in performance compared with 

CoapBlip which is limited by the implementation of dynamic RAM 

memory allocation and the use of an external C library. HTTP/TCP has 

the worst performance than that obtained by TinyCoAP. The 

performance of TinyCoAP is same as HTTP/UDP but with high 

reliability. 
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 مستخلص
 

 

ویسمى  TinyOSنظام التشغیل قد استخدم مع ) CoAP( بروتوكول التطبیقات المقیدة 

وقلة مع الاحتفاظ مع ببساطةالتصمیم HTTPخصائص لاعطاء نفس TinyCoAPببرتوكول 

ومع ذلك، فان   CoapBlipیدعى  CoAPلدیھ تطبیق آخر لبرتوكول  TinyOS. الحمولھ

 بالإضافة إلى تطبیقات CoapBlipوTinyCoAPتقییم تم. TinyOSمكتبتھ لا تلبي احتیاجات 

HTTP  باستخدام برامج المحاكاةAVRORA  وTOSSIM . من التطبیقات من  كل تمتقییم

 لدیھ TinyCoAPولقد اظھر التقییم ان . حیث زمن التاخیر واستقلال الذاكرة واستھلاك القدرة

  .خرىالمعاملات مقارنة مع التطبیقات الا أفضل أداء في معظم

التي تحد من تنفیذه دینامیكیة  CoapBlipتطورا ھاما في الأداء مقارنة مع  TinyCoAPأظھر 

فلدیھ أسوأ أداء من  HTTP /TCPأما.الخارجیةCواستخدام مكتبة  RAMتخصیص الذاكرة 

تقریبا لكن HTTP/ UDP ھو نفس أداء  TinyCoAPان أداء .TinyCoAPالتي حصل علیھا

 .بوثوقیة عالیة 
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Chapter One: Introduction 

1.1 Overview 

The importance of industries and researchers in the application of the 

Internet communication model in constrained networks and devices has 

developed to become one of the most hopeful developments in the 

Internet of the future. Most of works are being achieved to enable the 

using of standard and well-known protocols for interaction with WSNs. 

In most applications using web services on the Internethas been 

ubiquitous, and depends on the fundamental Representational State 

Transfer (REST) architecture of the web [1].  

In particular, a great deal of effort has been focused on the integration of 

Wireless Sensor Networks (WSNs) and the Internet. The main interest in 

making WSNs part of the Internet is to allow both to interact with each 

other using the existing Web technologies. From this point of view, 

WSNs would no longer be stand-alone networks but part of ubiquitous 

networks. That refers to this new approach as the Web of Things 

(WoT)[2]. 

There are hard works in the Internet of Things (IoT) to reuse Internet 

technologies to integrate WSNs into existing Internet infrastructure. 

Wireless Sensor Networks used to communicate via their own tools and 

technologies, often with proprietary protocols for separated applications. 

The necessary componentto enable efficient using of IP protocol in the 

constrained nodes and networks in the area of WSN isthe IPv6 over Low 

power Personal Area Networks (6LoWPANs), the adaptation layer[3] . 

Using IP in WSNs is the first step towards the achievement of the 

WoT.it holds many opportunities for reasons of direct communication 

with WSNs. But the standard IP-Stack implementations cannot be directly 

adapted for the use in WSNs.In this sense, the  6LoWPANs protocol is a 
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IP-like but with a lighter weight which can be deployed in WSNs. 

6LoWPAN enables the transmission of IPv6 packets in networks 

adopting the IEEE 802.15.4 standard [4]. The Internet Engineering Task 

Force (IETF)specific work group has detailed its definition in RFC 6282. 

6LoWPAN has accelerated the integration of Wireless Sensor Networks 

(WSNs) and smart objects with the Internet. 

In traditional Internet Web services using HTTP have demonstrated to be 

essential in enabling interoperable communications between computers. 

Although RESTful paradigm is suitable for low power embedded 

networks, the protocols and payload formats used to realize them are not 

completely usable (too  much overhead of HTTP, TCP performance over 

lossy links, pull model inappropriate for sleeping nodes, complexity of 

XML)[3]. 

REST architectures allow IoT and Machine-to-Machine (M2M) 

applications to be developed on top ofshareable and reusable web 

services. The sensors become abstract resources identified by 

URIs,represented with arbitrary formats and manipulated with the same 

methods as HTTP[5]. As a consequence, RESTful WSNs drastically 

reduce the application development complexity. The functionalities and 

consequently of RESTful web service makes the integration of WSNs 

and smart objects with the Web is possible [3]. The use of Web services 

on top of IP based WSNs facilitates the software reusability and reduces 

the complexity of the application development [6]. 

The Internet Engineering Task Force (IETF) Constrained RESTful 

environment (CoRE) Working Group has done major standardization 

work for introducing the web service paradigm into networks of smart 

objects. The CoRE group has defined a REST based web transfer 

protocol called Constrained Application Protocol (CoAP). CoAP is 

designed to present simplicity, low overhead and M2M communication 

which is necessary to enable interaction with embedded objects in the 
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IoT[3].CoAP includes several HTTP functionalities re-designed for 

small embedded devices such as sensor nodes. In order to make the 

protocol suitable to IoTand M2M applications, various new 

functionalities have been added [7]. 

The CoAP protocol recent research mainly concentrate on evaluating the 

performance presents by the multiple features of protocol, comparing 

CoAP with HTTP and REST based approaches, discussing the network 

auto-configurationcapabilities offered by CoAP, analyzing the scalability 

and implementation possibilities in the Internet of Things concept. There 

are already number of CoAP implementations and applications for 

investigating and development purposes available. These are present on 

different platforms and languages (as CoAP standardization is still not 

complete, their development is also in progress): generic Libcoap for C 

language, TinyOSand Contiki OS implementations, jCoAP and 

Californium for Java, CoAPy for Python, Copper CoAP browser plug-in 

for Firefox or HTTP-CoAP Bridge and browser for Android[3]. 

1.2 Problem Statement: 
The Internet protocol (IP) protocol is heavy for tiny devices, the 

communications between WSNs and the Internet became possible due to 

the standardization of IPv6 over Low-power Personal Area Networks 

(6LoWPANs). The definition of 6LoWPAN protocol has provided the 

necessary IP capabilities to WSN allowing interoperability with external 

IP networks. However, 6LoWPAN does not enable integration at upper 

layers. The commonly used HTTP fails to meet WSN requirements due 

to its high complexity and over-head, as a result. Therefore, this works 

focus in how the integration will be in upper layers. 

 

1.3 Proposed Solution: 
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To solve compatibility problems, the CoAP application protocol is 

presented and evaluated in order to provide a solution for upper layers in 

WSNs, which takes into account the main characteristics of these 

networks. So, to make complete integration the 6LoWPAN protocol is 

used in lower layers and CoAP application protocol will be in upper 

layer. Then CoAP application protocol will be evaluated in terms of 

power consumption, latency, memory occupation and compared to 

HTTP. 

1.4 Objectives 

 Provide a comprehensive analysis of the functioning of CoAP 

including an evaluation of the reliability mechanism. 

 Propose and develop a CoAP implementation for the TinyOS 

operating system . 

 Test and evaluate CoAP and HTTP ,the evaluation is performed in 

terms of latency, memory occupation, response time and energy 

consumption 

1.5 Methodology: 
In the first phase of this research, describe the major functionalities of 

CoAP highlighting the differences with HTTP.  In Second phase all 

features of CoAP application protocol for constrained devices has 

beendiscussed. It also shows how this protocol works. 

In the last phase of this research, test and evaluate CoAP 

implementationon TinyOS operating system in term of latency, memory 

occupation and energy consumption and compare the result with HTTP. 
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1.6 Thesis outlines : 
The rest of the research is organized as follows: 

Chapter Two: Background and Literature review 

This chapter analyses current state of art of fundamental concepts of 

WSNs, its application classes followedby an overview of related work. 

Chapter Three: Constrained application protocols 

This chapter gives the basic concepts and background for integrating 

WSN with other networks using web services .Web service integration 

WSNs nodes uses CoAP protocols in the application layer and UDP in 

the transport layer. In order to make them compatible, some kind of 

translation must be made.So this chapter presents the CoAP application 

protocol and explains how this protocol works and all its features. Then it 

shows the detailed operations and scenarios for both HTTP and CoAP.  

Chapter Four: Results and Discussion 

This chapter provides the implementation details of a CoAP protocol.It 

discusses the possible simulators to implement this technique and why 

the Avrora and TOSSIM simulators are selected. Then, it gives details of 

possible operating system to implement this protocol and why the 

TinyOS operating system is selected.  

Chapter Five: Conclusion and Recommendation 

 This chapter summarizes the conclusions of the conducted research and 

presents directions for future work. In the appendix, details for installing 

TinyOS and its extensions are presented.  
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Chapter Two: Background and Literature Review 

2.1 Background: 

In some applications, using wired networks for controlling the 

environment is usually unpractical and costly. For this reason, it is 

interesting to create low-cost network architectures that give mobility to 

its terminals. In this sense, the deployment of Wireless Sensor Networks 

(WSNs) is a good solution. 

 A WSN consists of distributed autonomous sensors able to monitor 

physical or environmental conditions and to cooperatively send their data 

through the network to a main location .These networks are composed of 

hundreds of low-power and low-cost devices that are characterized by 

having constrained resources, limited operational capabilities and a short 

communication range [8]. These constraints are the critical aspects that 

influence the choice of a protocol stack. A widely-used protocol for the 

physical and link layers is IEEE 802.15.4. When a WSN uses this 

standard, it is called a Low Power Wireless Personal Area Network 

(LoWPAN).  

In low layers of WSNs, IEEE 802.15.4 is being a standard. However, 

many problems arise when interconnecting different WSNs or sensor 

nodes from different manufacturers. As a result of growing interest of 

these networks, many solutions that restricted the possibility to 

interconnect and integrate various WSNs are developed. An existing and 

well-known protocol such as IP is using as a solution to solve this 

problem. But because of the highly constrained requirements, it was 

considered impractical 

New developments show that it is possible to use efficient IPv6 

communications over IEEE 802.15.4 links presenting an adaptation 



7 
 

layer. The out coming protocol stack Known as IPv6 over Low Power 

Wireless Personal Area Networks (6LoWPAN) [9]. 

Enabling IP on constrained devices has several advantages; WSNs can 

be connected to external IP networks without needing intermediate 

gateways. Furthermore, all knowledge from IP-based networks can be 

reused, avoiding the conception of new tools for managing, configuring 

or diagnosing these networks. IP connectivity would also allow a crucial 

creation in the Internet field. In this perspective, Internet would be a 

network with embedded objects that would be able to dealing with 

information and interact with their environment. This new concept is 

referred as the so-called Internet of Things. A key aspect to completely 

integrate these networks is to extend the actual Web architecture to 

WSNs. Furthermore, sensor nodes can be treated as any other Web 

resource that would be accessed using standard Web mechanisms. This 

new approach is known as Web of Things [10] . 

The implementation of Web services in these networks must be 

supported on an architectural style adapted to WSNs requirements. Also, 

the implementation should reuse and adapt existing protocols and avoid 

the innovation of new ones in order to avoid interoperability problems. 

An IETF work group called Constrained RESTful Environments (CoRE) 

has been established with the goal of participating to the development 

and standardization of RESTful Web services for constrained networks. 

With this sense, the work group defined a new Web transfer protocol 

called Constrained Application Protocol (CoAP) [11] . 

CoAP try to apply the same application transfer paradigm and basic 

features of HTTP to constrained networks, while keeping a simple 

design and low overhead. Unlike HTTP, CoAP uses UDP as transport 

protocol. This choice would enable CoAP to have a low impact on the 

limited bandwidth of the 802.15.4 wireless links. However, since UDP is 
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an unreliable protocol, CoAP has to implement its own mechanisms in 

order to guarantee reliability to those applications that use it [6]. 

2.1.1 Wireless Sensor Network (WSN) 

Wireless sensor networks (WSN) are concentrated wireless networks of 

small, low-cost sensor nodes, which gather and spread out environmental 

data. WSNs make possible monitoring and controlling of physical 

environments from remote locations with better precisionthan other 

known monitoring systems such as remote sensing. These tiny sensor 

nodes leverage the idea of sensor networks based on cooperative effort 

of a large number of nodes [6]. 

Sensor networks represent an important development over conventional 

sensors. As they have the ability to route data back by a multi-hop 

infrastructure-less architecture to the base station or sink, which is the 

entity where information is required.  

The most important constraints on sensor networks is the low power 

consumption requirement. Sensor nodes carry limited, generally 

irreplaceable, power sources. Therefore, while traditional networks want 

to get high quality of service (QoS) requirements, sensor network 

protocols focus firstly on energy conservation [6]. 

 In addition to energy-aware techniques, WSN design often employs 

some approaches such as, in-network processing, multi-hop 

communication, and density control techniques to increase the network 

lifetime. Moreover, WSNs should be flexible to failures due to different 

reasons such as physical devastationof nodes or energy depletion. 

Several challenges still need to be overcome to have ubiquitous 

deployment of sensor networks. These challenges include dynamic 

topology, devices, heterogeneity, lack of quality of service, application 

support, manufacturing quality and ecological issues. These design 
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challenges make sensor networks different from other wireless ad-hoc or 

mesh networks. Therefore, the protocols and algorithms have been 

proposed for traditional wireless ad hoc networks are not well suited for 

WSN [12]. 

 

Figure 2.1: Example of a Wireless Sensor Network (WSN). 

2.1.2 WSN Protocols: 

The sensor nodes can communicate through the wireless medium but 

protocols and algorithms offered for traditional wireless ad hoc networks 

may not be well fitting for sensor networks. Sensor networks are 

application particular, and the sensor nodes work cooperatively together. 

In addition, the sensor nodes are energy constrained compared to 

traditional wireless ad hoc devices. Thus, the differences between sensor 

networks and ad hoc networks should be Knownto provide a general 

thought how the WSN protocols will be. The differences between both 

networks [13] can be summarized in the following main points: 

•The number of sensor nodes in a sensor network can be several orders 

of magnitude higher than the nodes in an ad hoc network.  

•Sensor nodes are densely deployed.  

•Sensor nodes are prone to failures.  
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•The topology of a sensor network changes very frequently due to failure 

and duty cycles of nodes.  

•sensor nodes mainly use a broadcast communication paradigm whereas 

most ad hoc networks are based on point-to-point communications.  

•Sensor nodes are limited in power, computational capacities, and 

memory.  

•Sensor nodes may not have global identification (ID) because of the 

large amount of overhead and large number of sensor nodes.  

•Sensor networks are deployed with a specific sensing application in 

mind; ad hoc networks are mostly constructed for communication 

purposes. 

A sensor network does not work in separation in functional deployment. 

For many considerable applications, however, it is necessary to integrate 

these sensor networks to the presented Internet Protocol (IP) networks. 

The protocol stack used by sensor nodes is given in Figure 2.2 This 

protocol stack combines power and routing realization, integrates data 

with networking protocols, connects power-efficiently using the wireless 

medium, and supports collaborative efforts of sensor nodes. The protocol 

stack consists of the application layer, transport layer, network layer, 

data link layer, physical layer, power  management plane, mobility 

management plane, and task management plane [6]. 
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Figure 2.2: The wireless sensor network protocol stack 

Application layer: 

Various types of application software can be built and used on the 

application layer, depending on the sensing tasks. Sensor nodes can be 

used for continuous sensing, event detection, event identification and 

location sensing. The aim of micro-sensing and wireless communication 

of these nodes pledge many new application areas. This results in a wide 

range of application layer protocols. 

Transport layer: 

It helps to take care of the flow of data if the sensor networks application 

needs it. In common, the most important objectives of the transport layer 

are: 

 To bridge application and network layers by application 

multiplexing and de-multiplexing. 

 To provide data delivery service between the source and the sink 

with an error control mechanism. 

 To regulate the amount of traffic injected into the network via 

flow and congestion control mechanisms. 
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On the other hand, the required transport layer functionalities to 

complete these objectives in the sensor networks are due to significant 

modifications in order to fitwith unique characteristics of the sensor 

network paradigm. For example, classic end-to-end, retransmission-

based error control mechanisms adopted by transport control protocol 

(TCP) may not be practical for the sensor network area and for that 

reason may lead to loss of limited resources. On the other hand, the 

particularobjective of the sensor network also influences the design 

requirements of the transport layer protocols. For example, the sensor 

networks deployed for different applications may require different 

reliability levels as well as different congestion control approaches. As a 

result, improvement transport layer protocols is a challenge because the 

restrictions of the sensor nodes and the particular application 

requirements mostlydecide design principles of transport layer protocols 

[14]. 

Network layer: 

The main function of this layer is routing the data given by the transport 

layer. Sensor nodes may be spreaddensely in an area to monitor a 

phenomenon. Therefore, they may be very close to each other. In such a 

situation, multi-hop communication may be a good selection for sensor 

networks with strict requirements on power consumption and 

transmission power levels. As the sensor nodes missing not much energy 

when transmitting a message because the distances between sensor nodes 

are shorter. As mentioned before, ad hoc routing techniques already 

suggested in the literature do not usually suitablerequirements of the 

sensor networks. Therefore, the network layer of the sensor networks is 

usually designed according to the following standards: 

• Energy efficiency is always an important consideration. 
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• Sensor networks are mostly data centric. 

• An ideal sensor network has attribute-based addressing and location 

awareness. 

•Data aggregation is useful only when it does not hinder the 

collaborative effort of the sensor nodes. 

•The routing protocol is easily integrated with other networks, e.g., 

Internet. 

One of the design principles for the network layer is to allow easy 

integration with other networks such as the satellite network and the 

Internet. As shown in Figure 2.1, the sinks are the basis of a 

communication backbone that serves as a gateway to other networks. 

The users may query the sensor networks through the Internet or the 

satellite network, depending on the purpose of the query or the type of 

application the users are running. 

Data link layer: 

It is mainly responsible for multiplexing data streams, data frame 

detection, medium access, and error control; it make sure a reliable 

point-to-point and point-to-multipoint connections in a communication 

network. However, the collaborative and application-oriented nature of 

the sensor networks and the physical constraints of the sensor nodes, 

such as energy and processing limitations, decide the way in which these 

responsibilities are achieved[14]. 

Physical layer: 

It is regularlyresponsible for modulation and demodulation of digital 

data; this work is executed by transceivers. In sensor networks, the 

challenge is to find modulation schemes and transceiver architectures 

that are easy, low cost, but still strong enough to introduce the required 

service.  
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2.2 Literature review: 

A various studies have discussed the application of CoAP in WSNs. In 

this section we give details about these works. 

Previous work by the authors of [14] offered a CoAP implementation for 

Contiki. The aim of this implementation was to obtain high-energy 

efficiency by leveraging a radio duty cycling mechanism. The 

implementation has been tested in a multi-hop network. The obtained 

results have shown that when using a radio duty cycle, energy 

consumption is lower but the latency performance is getting worse. 

The authors [6] motivated the choice of the REST architecture and the 

taking up of the CoAP protocol. We also suggest modifications to an 

early format of the protocol and seek possible problems of its 

implementation. 

In [5], the authors statements a simple comparison of CoAP and HTTP 

in terms of energy consumption. This work also presented the design of a 

gateway used to communicate a CoAP based WSN to an external IP 

network that uses HTTP. In [15], the authors of [5] compared the 

performance of CoAP to that of HTTP. The evaluation was done on the 

basis of energy consumption and response time. In particular, energy 

consumption was evaluated by means of simulation. The response time 

was measured in a real WSN. Both experiments were conducted 

considering a client querying an embedded server to obtain temperature 

and humidity values. The energy consumed was measured according to 

the variance of the inter-arrival packet time. The response time was 

calculated for the case where the server was at a distance of 1-hop and 2-

hop from the client. The results show that CoAP returns a better 

performance in both the evaluation parameters considered by the 

authors. 
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A study used CoAP and HTTP on network sensor deployment [16] as 

data transport protocol for sensor network reprogramming. The Results 

were gained from measuring both protocols over a duty cycled radio 

layer through simulation view that CoAP and HTTP present similar 

results. In [17], the authors present a framework for M2M 

communications using CoAP. They also present an improved 

publish/subscribe mechanism also based in CoAP. Both solutions are 

evaluated showing the advantage of using CoAP instead of HTTP. 

The authors of [18] give an overview of the current CoAP 

implementations and present the results of compatibility meeting 

organized by the European Telecommunications Standards Institute 

(ETSI). In [19], the authors present a CoAP implementation for TinyOS 

and the implementation of a compression mechanism of the XML 

format. A performance evaluation was carried out considering the CoAP 

request success probability as a function of the request rate of the client 

node. Furthermore, the authors report results from an evaluation of the 

memory occupation of the TinyOS components used in their 

implementation. Finally, the authors proved the ability of the XML 

compression scheme by studying its processing-time. As previously 

commented, this CoAP implementation was developed on top of an 

unsupported and limited 6LoWPAN implementation named 6lowpancli 

[20]. In particular, as pointed out in [21],[22]6lowpancli provides only 

basic work of 6LoWPAN. 6Lowpancli doesn’t support any type of 

neighbor discovery mechanism, it is completely static and requires 

manual configuration. As reported in [21],[22] the support for mesh 

network is not provided and when a packet with different destination 

address is received, it is just dropped. The results of a performance 

evaluation done in [21] show that 6lowpancli does not perform well in 



 

16 
 

terms of energy consumption and latency. Thereby, its limitation would 

affect any implementation build on top of it. 

As previously mentioned, CoapBlip is currently included in the latest 

distribution of TinyOS. The authors of CoapBlip present its design in 

[23]. They evaluated their implementation and compared it to HTTP. 

The performance evaluation considers the ROM occupation and the 

average response time of CoAP and HTTP. The results of an evaluation 

show that CoAP shows better performance than HTTP. In [24], 

CoapBlip has been used to evaluate the CoAP protocol in integrations 

with other low layer protocols. In this sense, it has been evaluated along 

with the Routing Protocol for Low-power and Lossy Networks (RPL) 

and the Low Power Listening (LPL) protocol.  
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Chapter Three: Constrained Application protocol 

3.1 Constrained RESTful Environments (CoRE) 

IETF formed this WG with the main objective of presenting the 

Constrained Application Protocol (CoAP), a RESTful protocol 

appropriate for constrained environments. The Representational State 

Transfer (REST) paradigm donates to designing APIs so that every data 

exchange can be done with the GET, POST, DELETE and UPDATE 

operations of the HTTP protocol [25]. 

The work of the CoRE WG has been chartered because of introducing a 

web-oriented binary protocol, unsophisticated enough to be handled by 

severely restricteddevices, yet simple to map onto HTTP. The reason 

behind this approach is driven by the Widespread of HTTP in the Web, 

allowing HTTP connection over constrained environments will further 

expand its applicability and become ubiquitous. The recently proposed 

protocol is attemptingtoobtain this objective defining a binary 

representation of REST, which contain the most important and useful 

features of HTTP [26]. 

Next-generation M2M environments are estimated to be the destroyer 

application for this protocol: for instance, a lot of consideration has been 

devoted to the design of publish/subscribe mechanisms, since this 

approach is considered to be key for connecting constrained devices and 

evading network congestion. As many spread content-generating 

networks, Smart Grids would experience different benefits from a web-

like communication model: in fact, web services are well-known in the 

traditional Internet for their applicability to al-most every kind of 

application. Following this guideline, the WG is driving the Constrained 
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Application Protocol (CoAP) to be employed for M2M communication, 

resulting in a web-compatible standard for M2M applicability [19]. 

By designCoAP is directly mappable to the current HTTP realization: by 

forcing its intrinsic Compatibility, the SG system design can be heavily 

simplified, by directly allowing each network device to deal with 

standard Internet languages and, at the same time, keeping the energy 

and traffic load on the constrained environment low. 

3.2 Application Protocols and Formats: 

Constrained Application Protocol (CoAP) [10] is at this time being 

standard within the CoRE working group of the IETF, which is 

introducing a REST–based framework for resource–oriented applications 

optimized for constrained IP networks and devices. by enabling this 

protocol set, restricted packet sizes, low-energy devices and unreliable 

channels are simple to be manage[26]. 

CoAPis based on the REST architectural style participating the 

objectives and the intrinsic limitation listed above. It is designed for 

simple stateless mapping with HTTP, and for providing M2M 

interaction. HTTP compatibility is obtained by maintaining the same 

interaction model, using a subset of the HTTP methods. Nodes 

supporting CoAPoffering flexible services over any IP network using 

UDP, and they also a strong communication framework to communicate 

sensor nodes to the Internet. Any HTTP client or server can deal with 

CoAP-Ready endpoints by easy installing a translation proxy between 

the two devices. This will not be a load for the proxy, since these 

translation processes have been designed not to be time and 

computationallyrequirements. Also, CoAPmake as a message layer 

between the application protocol and UDP. 
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3.3 Constrained Application Protocol (CoAP) 

Although HTTP is widely used with Web Services, it is by no means the 

only protocol for M2M communication. The Internet Engineering Task 

Force (IETF) Constrained RESTful Environments (CoRE) [27] working 

group published the first draft of a RESTful web transfer protocol called 

Constrained Application Protocol (CoAP) [28]. CoAP includes several 

HTTP functionalities which have been re-designed for M2M 

applications over constrained environments on the IoT, meaning it takes 

into account the low processing power and constraints of small 

embedded devices, such as sensors. 

In addition, CoAP provide a number of characteristic that HTTP lacks, 

such as built-in resource discovery, IP multicast support, and 

asynchronous message exchange. There are many implementations of 

CoAP in various languages, such as libcoap1 (an open source C-

implementation) and Sensinode’sNanoService.The summary of the main 

features addressed by CoAP are [28]: 

• Constrained web protocol fulfilling M2M requirements. 

• UDP binding with optional reliability, supporting unicast and multicast 

requests. 

• Asynchronous message exchanges. 

•Native push model 

• Small header overhead and parsing complexity. 

• URI and Content-type support. 

• Simple proxy and caching capabilities. 

• Ability to operate with cyclic sleeping nodes, asynchronous message 
exchanges [29]. 
• A stateless HTTP mapping, allowing proxies to be built providing 

access to CoAP resources via HTTP in a uniform way or for HTTP 

simple interfaces to be realized alternatively over CoAP. 
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• security binding to Datagram Transport Layer Security (DTLS). 

3.3.1 CoAP Structure Model 

The interaction model of CoAP in figure 3.1is similar to the client/server 

model of HTTP. However, machine-to-machine interactions typically 

result in a CoAP implementation acting in both client and server roles. 

 

Figure 3.1: The CoAP Interaction model 
A CoAP request is comparable to that of HTTP, and is sent by a client to 

request an action (using a method code) on a resource (known by a URI) 

on a server. The server then sends a response with a response code; this 

response may contain a resource representation. 

Unlike HTTP, CoAP deals with these interchanges asynchronously over 

a datagram-oriented transport such as UDP. 

 This is done logically using a layer of messages that supports optional 

reliability (with exponential back-off). CoAP is organized in two layers  

as shown in figure 3.2 ,the transaction layer handles asynchronous nature 

of a single message  exchange between two points and used to deal with 

UDP. The Request/Response layer is responsible for the 

requests/response transmission using Method and Response codes and 

for the resource manipulation. CoAP is however a single protocol, with 

messaging and request/response just features of the CoAPheader. 

The dual layer approach allow CoAP to provide reliability mechanisms  

even without TCP as transport protocol [30],[7].CoAP defines four types 

of messages: Confirmable, Non-confirmable, Acknowledgement, Reset; 

method codes and response codes included in some of these messages 
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make them carry requests or responses[11]. The basic exchanges of the 

four types of messages are somewhat orthogonal to the request/response 

interactions; requests can be carried in Confirmable and Non-

confirmable messages, and responses can be carried in these as well as 

piggy-backed in Acknowledgement messages.  

 

 

 

 

 

 

 

 

Figure 3.2: Abstract Layering of CoAP 

3.3.1.1. REQUEST/RESPONSE LAYER MODEL 

The CoAP client/server interaction model, depicted in Figure 3.1, 

assesses that CoAP requests are sent by clients in order to request an 

action on a resource of the server. After the request elaboration, the 

server sends back a CoAP response containing an appropriate response 

code and optionally a resource representation. 

After receiving a request, a server responds with a CoAP response. There 

are three types of responses:  

• Piggy-backed: The response is carried directly in the acknowledgment 

message. The response is returned in the acknowledgment message 

independently of whether the response indicates success or failure as in 

figure 3.3.  
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         Client              Server       Client              Server 
           |                  |             |                  | 
           |   CON [0xbc90]   |             |   CON [0xbc91]   | 
           | GET /temperature |             | GET /temperature | 
           |   (Token 0x71)   |             |   (Token 0x72)   | 
           +----------------->|             +----------------->| 
 
           |                  |             |                  | 
           |   ACK [0xbc90]   |             |   ACK [0xbc91]   | 
           |   2.05 Content   |             |  4.04 Not Found | 
           |   (Token 0x71)   |             |   (Token 0x72)   | 
           |     "22.5 C"     |             |   "Not found"    | 
           |<-----------------+             |<-----------------+ 
           |                  |             |                  | 

Figure 3.3: The successful and failure response results of GET method 

• Separate: In some cases, it may not be possible to return a response 

immediately. In order to avoid packet retransmission, the server sends an 

ACK to promise the client it will process the request. When the server 

finally processes it, then a CON message is sent as in figure 3.4.  

 

Client             Server 
|                  | 
|   CON [0x7a10]   | 
| GET /temperature | 
|   (Token 0x73)   | 
+----------------->| 
|                  | 
|   ACK [0x7a10]   | 
|<-----------------+ 
|                  | 
... Time Passes  ... 
|                  | 
|   CON [0x23bb]   | 
|   2.05 Content   | 
|   (Token 0x73)   | 
|     "22.5 C"     | 
|<-----------------+ 
|                  | 
|   ACK [0x23bb]   | 
+----------------->| 
|                  | 

Figure 3.4: GET request with a separate response 
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• Non-confirmable: If the request is not confirmable, then the response 

is also not confirmable as shown in fig 3.5. A response is identified by 

the Code field in the CoAP message header. There are three code 

classes:  

• Success (2.x). The request was successfully received, understood, and 

accepted 

• Client Error (4.x). The request has bad syntax or cannot be fulfilled.  

• Server Error (5.x). The server failed to fulfill an apparently valid 
request.  

Response codes are designed to be extensible. If one of them is not 

recognized, then it must be treated as a being equivalent to the generic 

Response Code of that class.  

Client              Server 
|                  | 
|   NON [0x7a11]   | 
| GET /temperature | 
|   (Token 0x74)   | 
+----------------->| 
|                  | 
|   NON [0x23bc]   | 
|   2.05 Content   | 
|   (Token 0x74)   | 
|     "22.5 C"     | 
|<-----------------+ 
|                  | 

Figure 3.5: A Request and a Response Carried in Non-confirmableMessages 

CoAP Methods: 

The client request contains a method that specifies the action requested, 

an unique identifier of the server resource called Uniform Resource 

Identifier (URI) and optionally a payload containing meta-data about the 

request. The CoAP standard defines four different methods: 

• GET: retrieves an information representation of the resource. 
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• POST: carries an information representation and asks the receiver to 

process it. The output depends on the target resource, usually involving 

resource creation or update. 

• PUT: requests an update operation of the resource identified by the 

request URI with the carried information representation. 

• DELETE: causes the deletion of the resource identified by the request 

URI. 

Upon reception of the request, the server elaborates it and, if no errors 

occur, sends back to the client its response containing a response code 

that indicates the result of the request process. Response codes are 

divided into three classes 2.xx (Success),4.xx (Client Error) and 5.xx 

(Server Error) as it had mentioned before. 

The fraction of the response code just denoted with xx does not have any 

categorization role: it gives instead additional details of the output of the 

request process. For example, the most common HTTP response code is 

the 404 or not found error, which indicates that the client request was 

correct but the server was not able to find the resource pointed by the 

URI field. The matching between requests and responses is achieved by 

means of a token, that is an unique identifier of any request/response 

couple between two specific endpoints. This field is included on every 

CoAP request as well as in every CoAP response. 

3.3.1.2. MESSAGE LAYER MODEL 

As CoAP is bound to the non-reliable protocol UDP, it implements a 

lightweight reliability mechanism trying to recreate TCP. The main 

characteristics are:  

• Simple stop-and-wait retransmission reliability with exponential back-
off.  
• Duplicate message detection.  
• Multicast support.  
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CoAP defines four types of messages: Confirmable, Non-Confirmable, 

Acknowledgement, Reset. The exchange of messages is orthogonal to 

the request/response interactions [31]. Requests can be carried both in 

Confirmable and Non-Confirmable messages. Responses can be carried 

equally in Confirmable and Non-Confirmable messages, but also piggy-

backed in Acknowledgement messages, CoAP type messages are: 

• Confirmable (CON): This message is sent when a reliable 

transmission is needed. The protocol guarantees that the message will 

not be lost within certain conditions. Because messages are transported 

over UDP, the reliability is accomplished with packet retransmission if a 

response is not received in a given time out[11]. It increases 

exponentially with every new retransmission and, thus, provides a simple 

congestion mechanism. The packet will be lost if the maximum number 

of retransmissions is reached.  

• NON-Confirmable (NON): This message is sent if a reliable 

transmission is not needed. It is useful for requests that are sent 

regularly. This message may carry a response for a NON request.  

• Acknowledge (ACK):This message carries a response to acknowledge 

a CON request. This type of messages may carry response data or not. In 

the first case, the response is called piggy- backed response and in the 

second case separate response. The second one is used when the server 

cannot process the request immediately but promises that it will be 

processed.  

• Reset (RST): This message indicates that a CON messages has arrived 
but there is no context to process it.  
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CoAP message reliability  

A reliable transmission is started marking a packet as confirmable.A 

recipient must acknowledge such message with an acknowledge message 

or reject it with a reset message. The sender transmits the CON message 

at exponential increasing intervals until receives an ACK, RESET or it 

runs out of attempts. For each time out expired, the time out is doubled, 

as shown in figure 3.6 [12] . 

Client              Server 
|                  | 
|   NON [0x01a0]   | 
+----------------->| 
|                  | 

Figure 3.6: CoAP reliable message transmission 

The recipient should acknowledge each duplicate copy of the CON 

message using the same ACK but it should process any request or 

response only once. It should ignore any duplicates and process the 

message only once. 

Figure 3.7shows an example of unreliable CoAP transmission message. 

A message is not acknowledged or rejected. If recipient lacks the context 

to process the message, the message must be simply ignored. The 

recipient must be prepared to receive the same message multiple times.  
Client              Server 

|                  | 
|   NON [0x01a0]   | 
+----------------->| 
|                  | 

Figure 3.7: Unreliable message Transport 

3.3.1.3. CoAP Message Format: 
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The figure 3.8 shows how a CoAP message. It has three different parts 

which are transported over an UDP packet:  

• CoAP header: Provides basic information to recognize the CoAP 

version, the type of message, a message code and a message identifier. It 

also provides information to parse the message.  

• CoAP options: Are used to provide parameters needed to fulfill 
requests.  
• CoAPpayload : Contains the message body. 

The CoAP header has the following fields:  

• Version (Ver): Indicates the CoAP version number. Implementations 

of this specification MUST set this field to 1.  

• Type (T). Indicates the message type: CON, NON, ACK or RST.  

• Option Count (OC): Indicates the number of options after the header. 

If OC set to 0,  there are no options and the payload (if any) immediately 

follows the header.  

• Code: Indicates if the message carries a request (code values from 1 to 

31) or a response (code values from 64 to 191), or is empty (0). (All 

other code values are reserved.) In case of a request, the Code field 

indicates the Request Method; in case of a response a Response Code.  

• Message ID: Used for the detection of message duplication, and to 

match messages of type ACK/RST and messages of type CON. 
0                   1                   2                   3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|Ver| T | TKL | Code | Message ID | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
| Token (if any, TKL bytes) ... 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
| Options (if any) ... 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|1 1 1 1 1 1 1 1| Payload (if any) ... 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 3.8:CoAP Message Format 
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3.3.1.4. Options: 

Options are identified by an option number. Odd numbers indicate 

critical options and even numbers elective options. Figure 3.9 shows the 

option format. Options fields are: 

 

Figure 3.9: Option format fields in CoAP message format. 

• Option Delta: 4-bit unsigned integer. It indicates the difference 

between the option Number of the current option and the option number 

of the previous option. 

• Length: 4-bit unsigned integer. It indicates the length of the option 

Value. When this field is set to 15 an 8-bit unsigned integer is added 

allowing lengths ranging from 15 to 270 bytes. Options can be critical or 

elective. The difference is how an unrecognized option is handled in an 

end-point:  

• Elective: Must ignore messages with unrecognized options.  

• Critical: That occur in a CON message request must cause the return 

of 4.02 response code.  

• Critical: That occur in a CON message response and in a NON 

message must silently ignore the message. There are several types of 

options:  
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• Token: It is used to match a response with a request. Every request has 

a client-generated token which the server must echo in any response.  

• Uri-Host: It specifies the Internet host of the resource being requested. 

The default value is the IP literal representing the destination IP address.  

• Uri-Port: It specifies the port number of the resource. The default 

value is the destination port.  

• Uri-Path: It specifies one segment of the absolute path to the resource.  

• Uri-Query: It specifies a query string.  

• Proxy-Uri: It is used to make a request to a proxy. The proxy is 

requested to forward the request or service it from a valid cache and 

return the response.  

• Content-Type: It indicates the representation format of the message 

payload given as a numeric value.  

• Accept: It indicates when included one or more times in a request, one 

or more media types, each of which is an acceptable media type for the 

client, in the order of preference.  

• Max-Age: The maximum time a response may be cached before it 

must be considered not fresh. When included in a request, it indicates the 

minimum value for the maximum age of cache response the client will 

accept.  

• E-Tag: In a response, provides the current value of the entity-tag for 

the enclosed representation of the target resource. An entity-tag is 

intended for use as a resource-local identifier for differentiating between 

representations of the same resource that vary over time.  

• Location-Path and Location-Query: It indicates the location of a 

resource as an absolute path URI. It can be included in a response to 

indicate the location of a new resource created with POST. 
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• If-Match: It may be used to make a request conditional on the current 

existence or value of an ETag for one or more representations of the 

target resource.  

• If-None-Match: It may be used to make a request conditional on the 

non-existence of the target resource. If-None-Match is useful for 

resource creation requests, such as PUT requests, as a means for 

protecting against accidental overwrites when multiple clients are 

reacting in parallel on the same resource.  
 

Table 3.1 :CoAP message Options 

 
C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable 

3.4 CoAP URIs Scheme 

CoAP uses the “coap” and “coaps” URI schemes (compared to the “http” 

and “https” URI schemes respectively) for identifying CoAP resources 

and to provide a means of locating the resources. The URI support in a 

CoAP server is simplified as the client already parses the URI and splits 

it into host, port, path and query options (uri-host, uri-port, uri-path, uri-

query), making use of default values for efficiency. The options encode 

the different components of the request URI in a way that no percent-
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encoding is visible in the option values and that the full URI can be 

reconstructed in any involved endpoint [3].Here's an example of a 

CoAPURI: 

coap://[fe80::c30c:0000:0000:0002]:5683/HelloWorld . 

Here, “[fe80::c30c:0000:0000:0002]” is the host IPv6 address, “5683” 

the default UDP port number used for CoAP resources and 

“HelloWorld” the resource representation asked by client to obtain. 

3.5 Caching 

Nodes can cache their responses in order to reduce the response time and 

network bandwidth consumption on future. Unlike HTTP [21], caching 

of the CoAP responses does not depend on the request method, but on 

the particular response code [31] equivalent requests. The goal of 

caching is to reuse a prior response message to satisfy a current request. 

Table 3.1 shows which response codes can be cached and the relation 

between caching and the response codes. A node must not use a stored 

response unless:  

• The request method and the one used to obtain the stored response 

must match.  

• All options match between those in the presented request and those of 

the request used to obtain the stored response.  

• The stored response is either fresh or successfully validated. There are 

two ways to decide if a cache can be used to satisfy a request: 

•Freshness model: The mechanism for determining freshness is for an 

origin server to provide an explicit time in the future using Max-Age. In 

this way, If an origin server wants to prevent caching it must explicitly 

include a Max-Age option with a value of zero seconds. If the client has 
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certain influence in the freshness calculation it can include a Max-Age 

option in a request [32].  

• Validation model: When an end-point has one or more stored 

responses for a GET request but it cannot use any of them, it can use the 

E-tag option in the GET request to give the origin server an opportunity 

to both select a stored response to be used and to update its freshness. 

Each stored response has an entity-tag that should be sent to the server 

via an E-tag option. The server response 2.03 (Valid) indicates that the 

stored response identified by its E-tag option can be reused. For any 

other response, it should be used to satisfy the request. 
Table 3.2: Relation between CoAP response codes and caching. 

 

3.6 Implementation: 

TinyOS is an OS for WSNs designed to meet the requirements of 

constrained networks and devices. It is composed by a set of reusable 

components that can be used to build specific applications. TinyOS is 

implemented in the NesC language [31]. NesC is a C dialect designed to 

improve code efficiency and robustness in embedded software 

applications [33]. Through its simplicity, NesC is able to reduce RAM 

occupation, code size, and prevents low-level bugs. The programming 

model of TinyOSis also based on this language. Besides NesC, TinyOS 

allows using more complex languages such as Java, Python or C. In 

particular, C code can be embedded in NesC programs or can be used to 

build libraries for TinyOS. As we will explain later in this section, a 
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TinyOS based WSN can achieve better performance and be more 

reliable when using exclusively NesC. The design philosophy of 

TinyCoAP follows the principles of the TinyOS programming model. 

The code is structured in TinyOS components and the use of external 

libraries is avoided. TinyCoAPis completely written in NesC. The rest of 

this section focuses on the memory allocation system, library and the 

data structures of TinyCoAP. 

3.6.1 Structure of the Library 

TinyCoAPis designed behind the aim that better performance and 

reliable run-time execution are both executed integrating it with the OS 

core libraries. It presents a CoAP library native for TinyOS. Using these 

design characteristics, the core functionalities of CoAPare offered as 

TinyOS components. These components are improved as part of the 

TinyOS network library.Not like TinyCoAP, CoapBlipis thought as an 

adaptation of a C library for generic embedded systems. A TinyOS 

component is employed as an adapter between this library and the 

TinyOS application. TinyCoAP bases completely on code developed in 

the NesC language and evade using external C libraries. This allows 

obtaining a high code optimization and having less effect on the WSN 

node memory. These benefits derive mainly from the different 

organization and functioning of C and NesC programs. Typical C 

programs are composed by functions that are specified in separated files. 

These are compiled separately and then linked together by matching 

global name of functions. The interaction between them is achieved 

dynamically during run-time by using function pointers. Pointers are 

stored in the RAM memory and therefore cause a growth of its 

occupancy. In contrast with C, TinyOS programs are considered as a set 

of components connected together to carry out a specific task. These 
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interact between each other using the interfaces that they offer. 

Applications occur at compile-time which components they use and 

then, they apparently wire the interfaces they will use at run-time. 

Thanks to this static wiring, TinyOS programs keeps away from using 

function pointers and therefore they are capable to decrease the RAM 

memory footprint. The TinyCoAP library is consistsof five components. 

Its design follows the CoAP principals layering. The message layer is 

implemented by three components. CoapPDU, where PDU set for 

Protocol Data Unit, is the important component of this sub-layer. It 

introduces the interface used to create, read and write CoAP packets. The 

interface require to create or delete options is offered by the CoapOption 

component. The creation, use and organization of the linked lists 

areachieved by the interface offered by the CoapList component. Linked 

lists are useful for repeating the packets that are in the memory pool 

waiting for being processed. CoapList is also used to laying up and 

repeat the options that contain a packet and to control retransmissions. 

CoapPDUis wired to CoapList and CoapOption. This enables CoapPDU 

to deal with the options composed in a CoAP packet. additionally, each 

element of the message layer is wired to the TinyOSPoolC component. 

This is used to assign the memory required to complete their operation. 

PoolC specifies memory corresponding to the data structure that is 

identified by each component. The wiring of the message layer 

components. The request/response matching layer of CoAPis carried out 

by the CoapServer and CoapClient components. CoapClient introduces 

the interface used to send CoAP requests. The interface introduced by 

CoapServer enables initializing and connecting the server to a particular 

UDP port. The retransmission technique and the CoAP packet 

development are also achieved by these components. CoapServer 

executed the discovery of CoAP resources [34] and the observe option of 
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CoAP. The management of the resources presented by the server is 

performed in anindividual interface. The resources are generated through 

a parameterized interface. This is calledCoapResource and gives 

commands and events to keep resources and the separate response 

mechanism of CoAP. 

3.6.2 RAM Memory Allocation 

The most significant concept to take into account when embedding 

software applications in WSN nodes is managing the allocation of RAM 

memory. The management of memory allocation has to handle with the 

limited size of RAM memory and the short of hardware memory 

protection that describe constrained nodes. From that point of view, 

managing the RAM memory dynamically could raise the chanceof 

having failure nodes or could consume the existing memory. In fact, the 

shortage of hardware memory protection does not avoid the risks of 

containing a collision between the heap and stack or a memory leak [35]. 

Moreover, the size of the allocated RAM memory would be complicated 

to mange with this allocation system. TinyCoAP evades these threats by 

allocating RAM memory statically. The size of the allocated memory is 

known at execute time and the possibility of memory exhaustion is 

therefore evaded. in addition, static allocation would reduced the risks of 

failures consequentto collision of the heap and the stack. for that reason 

it would improve the network reliability. A more enhancement is 

obtained enabling TinyCoAP to make CoAP responses without 

allocating new memory. TinyCoAP creates responses using the memory 

already specified to store the related CoAP requests. Furthermore, the 

decreasing of the RAM memory footprint this allowing a lighter packet 

processing with less influence on the CPU. As a result, the decreasing of 

the CPU use would minimize the energy consumption. As reported in 
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[35], the CPU expend 4.6 mA when active and 2.4 mA when idle while 

the radio consume 3.9 mA when receiving. Therefore, the TinyCoAP 

management of buffers would save CPU cycles and improve the battery 

life of nodes. The static allocation of memory made by TinyCoAP is 

compliant with the RAM memory management specified in NesC. 

Actually, NesC does not maintain dynamic memory allocation. This 

propertiesenables avoiding memory fragmentation and run-time 

allocation failures [36]. on the other hand, a position may arise in which 

applications might require dynamic allocation. To avoiding this problem, 

TinyOS introduces a component calledPoolC that reproduce the dynamic 

memory allocation. Should PoolC be enabled, the most pool memory 

size would be specified statically at compile time. Through the execution 

time, the applications will get the amount of RAM memory they require 

from that presented in the pool. An concluding memory leak would 

make the pool to empty, but the heap and stack would not collide. As 

mentioned above, TinyCoAP uses PoolC to assign the buffers required to 

keep the CoAP packets and the linked lists. In a different way from 

TinyCoAP, CoapBlip implements a dynamic memory allocation 

management. It uses the malloc memory management library to allocate 

memory for buffers and linked lists.  

3.6.3 Data Structure 

 As declared above, TinyCoAP components are structured following the 

conceptual layering of CoAP. The message layer is being on top of Blip. 

CoapBlip also implements this 6LoWPAN stack. Should Blip receive a 

UDP packet, it verifies the existence of the CoAP header. If it is exist, 

the interface introduced by CoapPDU keeps it in a CoAP PDU. This 

PDU is stored in the memory already allocated through PoolC. The use 

of PoolC enables TinyCoAP to begin at compile time the maximum size 
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a packet can get and the maximum number of packets it can handle. The 

maximum length of options and the maximum number of packets that 

can be queued by a node can also be specified. These characteristics 

make TinyCoAP powerful against possible memory leaks and always 

present it with room in the memory for the received packets. Moreover, 

TinyCoAP is easily flexible to different applications. The TinyCoAP 

PDU data structure is designed to be used with PoolC. It prevents the use 

of pointers for reaching to the various components of the PDU. Table 

4.1explain the CoAP PDU used in CoapBlip and TinyCoAP. In 

TinyCoAP, the received CoAP message is firstlykept in the UDP buffer 

as an invalid element. This element is then transformed into a 

coap_pdu_t structure and stored in the memory pool. Once the PDU 

structure has been made, the UDP buffer is ready to accept a new 

incoming packet. In TinyCoAP the maximum payload allowed for 

requests and responses can be defined at compile time. Thus, the 

memory usage can be accommodated to the application requirements and 

to the features of the sensor. CoapBlip uses pointers to reach to various 

parts of the PDU. Should a CoAP packet be received, CoapBlip stores it 

in a buffer allocated through malloc and initializes the pointers defined 

in coap_pdu_t. This buffer is placed at UDP level and its size is always 

equivalent to the maximum packet size enabled by CoapBlip. Therefore, 

although CoapBlip uses malloc, the memory is always allocated with the 

same size. 
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Table 3.3: CoAP PDU structures 

 
CoapBlip stores the PDU in the UDP buffer and uses a pointer to provide 

access. TinyCoAP saves it in the memory allocated with PoolC. 

3.6.4 Tools: 
 A software solution to integrate RESTful Web services in WSNs based 

on the CoAP protocol is presented. This software is a library for the 

TinyOS operating system that has been developed in order to easily 

create new applications that can use and other Web-based services using 

the CoAP protocol. The Figure below is architecture of a CoAP-based 

Wireless Sensor Network (WSN). 

TinyOS is an "operating system" designed for low-power wireless 

embedded systems. Fundamentally, it is a work scheduler and a 

collection of drivers for microcontrollers and other ICs commonly used 

in wireless embedded platforms. TinyOS[33] is an embedded OS for 

WSNs designed to meet the requirements of constrained networks and 

devices. It is composed by a set of reusable components that can be used 

to build specific applications. TinyOS is implemented in the NesC 

language [31]. NesC is a C dialect designed to improve code efficiency 

and robustness in embedded software applications [33]. 

 Through its simplicity, NesC is able to reduce RAM occupation, code 

size, and prevents low-level bugs. The programming model of TinyOSis 



 

39 
 

also based on this language. Besides NesC, TinyOS allows using more 

complex languages such as Java, Python or C. In particular, C code can 

be embedded in NesC programs or it can be used to build libraries that 

TinyOS components can use. TinyOS based WSN can achieve better 

performance and be more reliable when using exclusively NesC.  

In this work TOSSIM and Avrora simulations will be used. TOSSIM is 

the TinyOS mote simulator which has been developed, to ease the 

development of sensor network applications. TOSSIM scales to 

thousands of nodes, and compiles directly from TinyOS code; 

developers can test not only their algorithms, but also their 

implementations. TOSSIM simulates the TinyOS network stack at the bit 

level, allowing experimentation with low-level protocols in addition to 

top-level application systems. Users can connect to TOSSIM and interact 

with it using the same tools as one would for a real-world networking, 

making the transition between the two easy. TOSSIM also has a GUI 

tool, TinyViz, which can visualize and interact with running simulations. 

Using an simple plug-in model, users can develop new visualizations and 

interfaces for TinyViz. 

Avrora, a research project of the UCLA Compilers Group, is a set of 

simulation and analysis tools for programs written for the AVR 

microcontroller produced byAtmel and the Mica2 sensor nodes. Avrora 

contains a flexible framework for simulating and analyzing assembly 

programs, providing a clean Java API and infrastructure for 

experimentation, profiling, and analysis. 

Avrora Simulation is an important step in the development cycle of 

embedded systems, allowing more detailed inspection of the dynamic 

execution of microcontroller programs and diagnosis of software 

problems before the software is deployed onto the target hardware. 

Avrora is a clean and open implementation motivated by this need. It 
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also provides a framework for program analysis, allowing static 

checking of embedded software and an infrastructure for future program 

analysis research. Avrora is flexible, providing a Java API for 

developing analyses and removes the need to build a large support 

structure to investigate program analysis. 

3.6.5 Test bed: 
 In this work, the performance of TinyCoAP, CoapBlip and HTTP, 

including different implementations for the transport layer used by 

HTTP, HTTP/TCP and HTTP/UDP is compared anddiscussed. 

The implementation includes client/server transactions. The server get 

back information when the client sends requests to it. All the requests are 

sent using the GET method. The server receives a request with test as 

URI and the CoAP or HTTP server replies with a payload consisted by 

sequence of bits of fixed size. In this way, the node does not make 

sensing operation that might affect in the results. Therefore, the 

experimentsmake only for the performance of each technique in 

processing and replying to the received messages. The network can be 

simple in this work because a single client/server transactions is 

evaluated and deploying complex architectures can be evaded  as shown 

in Figure 3.1.  
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Chapter Four: Results and Discussion 
This chapter shows the implementation of CoAP in TinyOS, it refer as 

TinyCoAP. TinyOS has already included an implementation of CoAP 

called CoapBlip. However, this is based on a library not originally 

designed to meet the requirements of TinyOS. Thereby, it does not allow 

to CoAP to realize its full potential and minimize resource consumption. 

Better performance and minimal resource consumption can be achieved 

by using native library. A comprehensive performance evaluation is 

made to prove the effectiveness of this approach. In particularTinyCoAP 

and CoapBlip are tested and evaluated using avrora simulation, as well 

as solutions based on HTTP. The evaluation is performed in terms of 

latency, memory occupation, and energy consumption.  

4.1 Results 

 The results of a performance evaluation for all the considered solution 

has been discussed in this section.The evaluationinvolves various 

parameters. First, the amount of RAM and ROM memory used by each 

solution has been measured; then evaluate thelatency of request/response 

transactions is evaluated; after that, the energy consumed by each 

different solution to processing and reply to a request is measured . 

4.1.1 Memory occupation 
The amount of RAM and ROM memory allocated at compile time for 

each considered implementation is shown in Table 4.2 the values for 

HTTP/TCP uses the TCP buffers. 

 

 

 
Table 4.1: ROM and RAM memory Occupation 
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 Solution ROM/Bytes RAM /Bytes 
TinyCoAP 39040 8319 
CoapBlip 43540 6800 

HTTP/UDP 40430 6696 

HTTP/TCP 45035 7089 
 
 

TinyCoAP occupies more RAM memory than the other implementation 

because it specifies all the memory needed for buffering the CoAP 

packets at compile time. The ROM memory occupation specifythe 

complexity and weight of the code of each implementation. In fact, the 

compiled code is stored in the ROM memory. CoapBlip has the highest 

ROM memory occupation of optimization of the code. CoapBlip is an 

adaptation of a C library. This library is installed in the node along with 

the TinyOS component used to adapt it to the OS. The use of C libraries 

is usually toocomplex for the memory constraints of a mote and implies 

a growth of the memory occupation. Also HTTP solutions using TCP 

rely on a C library, so the ROM occupation increases also for these 

implementations. 

TinyCoAPis written in NesC therefore it lowers the ROM and is 

optimized for TinyOS. The HTTP/UDP implementation has the lowest 

memory occupation. It has no reliability mechanism or request/response 

matching and it has a very low complexity. Therefore it can reduce the 

code size and memory occupation. RAM memory occupation is very 

low, since it does not implement any HTTP buffer. It just use UDP 

buffer provided by Blip. 

 

4.1.2 Latency 
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one of the most significant parameters used to evaluate the goodness of 

the protocol design is  Low latency values .The latency is defined as  the 

time elapsed from the moment the sender sends a request until the 

moment it receives the response. Low latency values can significantly 

enhance user experience and benefit those applications that work in real-

time. 

The latency for each implementation has been tested comparing to show  

the differences between TinyCoAP and the other implementations. 

Payload size ranges from 1 to 30packet with increments of 1 packet 

,each packet 33 bytes. The client sends a new request after receiving a 

response to the request previously sent.This is shown in table 4.2 and the 

simulation of the result is shown in figure 4.1. 
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Table 4.2: The latency of TinyCoAP andHTTP/TCP 

No.packets Latency(s) 
  TinyCoAP HTTP/TCP 

1 3 10 
3 16 40.6 
6 26 55.06 
9 43 75 

12 59 90 
15 68 105 
18 89 122 
21 105 136 
24 128 158 
27 138 175 
30 158 200 
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Figure 4.1: The implementation of HTTP/TCP and TinyCoAP 

The lowest latency is obtained by the HTTP/UDP implementation, as 

shown table 4.3 and the simulation of the result is shown in figure 4.2. 

HTTP/UDP does not implement any reliability mechanism or HTTP 

logic. Therefore, it should be considered as a lower bound for latency. 

 

 

Table 4.3 : The latency of  TinyCoAP and  HTTP/UDP 
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No.packets Latency(s) 
TinyCoAP HTTP/UDP 

1 3.9 3 
3 16 14 
6 26 25 
9 45 43 

12 59.2 53.9 
15 68 65 
18 89 85 
21 105 102 
24 128 125 
27 138 137 
30 158 159 
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Figure 4.2: The implementation of latency for HTTP/UDP and TinyCoAP 

 In figure 4.3 and table 4.4show thatTinyCoAPis better than CoapBlip in 

terms of latency. TinyCoAP improved RAM memory management 

implemented and the memory allocation used by CoapBlip increases 

packet processing time and it can send 650 bytes the maximum payload 

size. Therefore Applications that work with aggregation or high 

payloadsizes cannot be used in CoapBlip or with HTTP implementations 

using TCP. 
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Table 4.4: The latency of TinyCoAPand  CoapBlip 

No.packets Latency(s) 
TinyCoAP CoapBlip 

1 3.9 4 
3 16 20.5 
6 26 34.9 
9 43 58.32 

12 59.2 61.5 
15 68 76 
18 89 118 
21 105 135 

 

 

 

0 5 10 15 20 25 30

0

20

40

60

80

100

120

140

160

180

(L
at

en
cy

(s
))

no.packet

 coapBlip
 TinycoAP

 
 

  

Figure 4.3:The implementation of latency forCoapBlip and TinyCoAP 

The result of latency for all implementation is shown in figure 4.4. 
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Figure 4.4 : The Latency  for  all implementation 

4.1.3 Energy consumption 
The energy consumption testshave been made for all implementation. 

The test measures the energy consumed by a node when replying to 

consecutive requests. It does not take into account the energy lost by the 

radio chip for listening the channel because it has the same effect in each 

implementation. The evaluation does not need to consider power- saving 

protocols for radio duty cycling. It measured the energy consumed for 

receiving, processing and sending a packet, The difference between the 

performances of each implementation is only due to the effects that the 

packet processing has on consumption. For each different payload size, 

the energy consumption has been tested and the number of node 

increased by 100 from 1 to 1000 nodes using the Avrora simulation. 

HTTP implementations using TCP consume more energy than others. 

The reason is the message overhead caused by TCP lost more energy,so 

it is not Compatible with constrained networks. The performance is 

much worse than that obtained by TinyCoAP as shown in figure 4.5 and 

simulation result in table 4.5.The management of TCP connections 
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requires a high degree of complexity and the maintenance in memory of 

theconnection state. Consequently, there is a growth in the energy drawn 

by the RAM memory for keeping thesestates and the ratio between 

TinyCoAP and HTTP/TCP is about 1:3.5 
Table 4.5: The energy of TinyCoAPand  HTTP/UDP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

num/nodes Energy/joule 

TinyCoAP HTTP/TCP 

10 1.625 5.211 
50 1.641 5.431 

100 1.651 5.821 
150 1.698 5.931 
200 1.731 5.991 
250 1.761 6.008 
300 1.812 6.0212 
350 1.847 6.077 
400 1.888 6.1043 
450 1.903 6.139 
500 1.9121 6.187 
550 1.949 6.209 
600 1.974 6.304 
650 1.998 6.269 
700 2.063 6.304 
750 2.088 6.364 
800 2.113 6.399 
850 2.138 6.415 
900 2.165 6.459 
950 2.182 6.488 
1000 2.207 6.541 
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Figure 4.5: The energy consumption of HTTP/TCP and TinyCoAP 

 

The mechanism implemented by CoapBlip to allocate and manage RAM 

memory shows that CoapBlip is to be unsuitable for constrained devices. 

The CoapBlip is again has worse performance with that of TinyCoAP as 

shown in figure 4.6 and simulation result in table 4.6 . However, the 

increase in packet size causes more consumption of CoapBlip energy.On 

another hand, TinyCoAP benefits from its different memory allocation 

mechanism. From the graph the ratio between two protocols is about 

1:2.25 
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Table 4.6: The energy consumption of TinyCoAPand CoapBlip 

num/nodes Energy /joule 
  
TinyCoAP CoapBlip 

10 1.625 3.662 
50 1.641 3.712 

100 1.651 3.781 
150 1.698 3.887 
200 1.731 3.931 
250 1.761 4.001 
300 1.812 4.071 
350 1.847 4.106 
400 1.888 4.192 
450 1.903 4.192 
500 1.9121 4.325 
550 1.949 4.684 
600 1.974 4.871 
650 1.998 4.996 
700 2.063 5.062 
750 2.088 5.094 
800 2.113 5.119 
850 2.138 5.154 
900 2.165 5.179 
950 2.182 5.224 
1000 2.207 5.294 
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Figure 4.6: The implementation of energy consumption for CoapBlip and TinyCoAP 
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TinyCoAP has a performance that is highly similar to that of 

HTTP/UDP, the ratio between them approximately 1:1. This shows 

thatTinyCoAP is able to minimize the consumption of resources, as 

shown in table 4.7 figure 4.7.  

Table 4.7: Comparison of energy between TinyCoAP and HTTP/UDP 

num/nodes 

Energy /joule 

  TinyCoAP HTTP/UDP 
      

10 1.625 1.6233 
50 1.641 1.643 

100 1.651 1.649 
150 1.698 1.689 
200 1.731 1.71 
250 1.761 1.768 
300 1.812 1.81 
350 1.847 1.837 
400 1.888 1.853 
450 1.903 1.906 
500 1.9121 1.911 
550 1.949 1.936 
600 1.974 1.971 
650 1.998 1.996 
700 2.063 2.021 
750 2.088 2.098 
800 2.113 2.123 
850 2.138 2.148 
900 2.165 2.183 
950 2.182 2.208 

1000 2.207 2.233 
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Figure 4.7: The energy consumption for HTTP/UDPand TinyCoAP 

 

The energy consumption for all implementation is shown in figure 4.8. 
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Figure 4.8: The energy consumption for all implementation 
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Chapter Five: Conclusion and Recommendation 
 

5.1 Conclusion 
This thesis has been committed to theimplementation and 

experimentation of a full-feature of TinyCoAP, which is original library 

for TinyOS .in addition to comparing it with the CoAP implementation 

distributed with TinyOS, called CoapBlip. 

Along the dissertation we have evaluated all the solutions considered. 

This experience has allowed us to measure the amount of memory 

occupied at compile time, the latency practiced by a client when 

retrieving information from a server, and the energy consumed when 

replying to the client. HTTP is used with different solutions for the 

transport layer. Constant attention has been devoted to UDP and TCP 

connections. We denote to each of these solutions as HTTP/TCP and 

HTTP/UDP. 

The best performance is introduced by TinyCoAP in the most of the 

considered parameters. In particular, TinyCoAP offer an important 

enhancement in performance compared with CoapBlip. The 

performance of CoapBlipis restricted by using the dynamic RAM 

memory allocation and the use of an external C library. TinyCoAP 

uses static allocation, so it is able to reach a high code optimization and 

to reduce the effect over the memory of WSN nodes 
Results show that using the HTTP in WSNs produces high latency 

incomparison with using the CoAP protocol. The main cause is that 

HTTP uses the TCP protocol that uses several messages to establish a 

TCP connection. 

In conclusion, TinyCoAP approve that it is  a complete and flexible 

CoAP-based solution for integrating the Web communication paradigm 
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in TinyOS based WSNs. TinyCoAP fixes the problems founded  in 

CoapBlip, and can improve performance considerably and to minimize 

the power consumption.  

5.2 Recommendation 
 

A further evaluation of the TinyCoAP implementation must be done in 

a real environment and simulation in order to investigate its performance 

in networks with higher number of nodes and parameter.Furthermore a 

CoAP-HTTP proxy must be design and implement to support 

applications that need to interact with WSN nodes. This could cause an 

unnecessary communication overhead and a resultant increase of latency 

and network traffic. 
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