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Abstract

The Constrained Application Protocol (CoAP) is used with TinyOS
which called TinyCoAP to give the same features of HTTP while
keeping a simple design and low overhead. TinyOS already have another
implementation of CoAP in its distribution called CoapBlip.However,
it’s a library doesn't meet the requirements ofTinyOS.TinyCoAP and
CoapBlip are evaluated using Avrora and TOSSIM simulations, as well
as implementations based on HTTP. The evaluation is performed in
terms of latency, memory occupation, and energy consumption. It shows
that TinyCoAPhas the best performance in most parameters comparing it
with other implementations.

TinyCoAP shows important development in performance compared with
CoapBlip which is limited by the implementation of dynamic RAM
memory allocation and the use of an external C library. HTTP/TCP has
the worst performance than that obtained by TinyCoAP. The
performance of TinyCoAP is same as HTTP/UDP but with high
reliability.
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Chapter One: Introduction

1.1 Overview

The importance of industries and researchers in the application of the
Internet communication model in constrained networks and devices has
developed to become one of the most hopeful developments in the
Internet of the future. Most of works are being achieved to enable the
using of standard and well-known protocols for interaction with WSNs.
In most applications using web services on the Internethas been
ubiquitous, and depends on the fundamental Representational State
Transfer (REST) architecture of the web [1].

In particular, a great deal of effort has been focused on the integration of
Wireless Sensor Networks (WSNs) and the Internet. The main interest in
making WSNs part of the Internet is to allow both to interact with each
other using the existing Web technologies. From this point of view,
WSNs would no longer be stand-alone networks but part of ubiquitous
networks. That refers to this new approach as the Web of Things
(WoT)[2].

There are hard works in the Internet of Things (IoT) to reuse Internet
technologies to integrate WSNs into existing Internet infrastructure.
Wireless Sensor Networks used to communicate via their own tools and
technologies, often with proprietary protocols for separated applications.
The necessary componentto enable efficient using of IP protocol in the
constrained nodes and networks in the area of WSN isthe [Pv6 over Low
power Personal Area Networks (6LoWPANSs), the adaptation layer[3] .
Using IP in WSNs is the first step towards the achievement of the
WoT.it holds many opportunities for reasons of direct communication
with WSNs. But the standard IP-Stack implementations cannot be directly
adapted for the use in WSNs.In this sense, the 6LoWPANSs protocol is a



IP-like but with a lighter weight which can be deployed in WSNs.
6LoWPAN enables the transmission of IPv6 packets in networks
adopting the IEEE 802.15.4 standard [4]. The Internet Engineering Task
Force (IETF)specific work group has detailed its definition in RFC 6282.
6LoWPAN has accelerated the integration of Wireless Sensor Networks
(WSNs) and smart objects with the Internet.

In traditional Internet Web services using HTTP have demonstrated to be
essential in enabling interoperable communications between computers.
Although RESTful paradigm is suitable for low power embedded
networks, the protocols and payload formats used to realize them are not
completely usable (too much overhead of HTTP, TCP performance over
lossy links, pull model inappropriate for sleeping nodes, complexity of
XML)[3].

REST architectures allow IoT and Machine-to-Machine (M2M)
applications to be developed on top ofshareable and reusable web
services. The sensors become abstract resources identified by
URIs,represented with arbitrary formats and manipulated with the same
methods as HTTP[5]. As a consequence, RESTful WSNs drastically
reduce the application development complexity. The functionalities and
consequently of RESTful web service makes the integration of WSNs
and smart objects with the Web is possible [3]. The use of Web services
on top of IP based WSNs facilitates the software reusability and reduces
the complexity of the application development [6].

The Internet Engineering Task Force (IETF) Constrained RESTful
environment (CoRE) Working Group has done major standardization
work for introducing the web service paradigm into networks of smart
objects. The CoRE group has defined a REST based web transfer
protocol called Constrained Application Protocol (CoAP). CoAP is
designed to present simplicity, low overhead and M2M communication

which is necessary to enable interaction with embedded objects in the
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[0T[3].CoAP includes several HTTP functionalities re-designed for
small embedded devices such as sensor nodes. In order to make the
protocol suitable to IoTand M2M applications, various new
functionalities have been added [7].

The CoAP protocol recent research mainly concentrate on evaluating the
performance presents by the multiple features of protocol, comparing
CoAP with HTTP and REST based approaches, discussing the network
auto-configurationcapabilities offered by CoAP, analyzing the scalability
and implementation possibilities in the Internet of Things concept. There
are already number of CoAP implementations and applications for
investigating and development purposes available. These are present on
different platforms and languages (as CoAP standardization is still not
complete, their development is also in progress): generic Libcoap for C
language, TinyOSand Contiki OS implementations, jCoAP and
Californium for Java, CoAPy for Python, Copper CoAP browser plug-in
for Firefox or HTTP-CoAP Bridge and browser for Android[3].

1.2 Problem Statement:

The Internet protocol (IP) protocol is heavy for tiny devices, the
communications between WSNs and the Internet became possible due to
the standardization of IPv6 over Low-power Personal Area Networks
(6LoWPANSs). The definition of 6LoWPAN protocol has provided the
necessary IP capabilities to WSN allowing interoperability with external
IP networks. However, 6LoWPAN does not enable integration at upper
layers. The commonly used HTTP fails to meet WSN requirements due
to its high complexity and over-head, as a result. Therefore, this works

focus in how the integration will be in upper layers.

1.3 Proposed Solution:



To solve compatibility problems, the CoAP application protocol is
presented and evaluated in order to provide a solution for upper layers in
WSNs, which takes into account the main characteristics of these
networks. So, to make complete integration the 6LoWPAN protocol is
used in lower layers and CoAP application protocol will be in upper
layer. Then CoAP application protocol will be evaluated in terms of
power consumption, latency, memory occupation and compared to

HTTP.

1.4 Objectives

» Provide a comprehensive analysis of the functioning of CoAP
including an evaluation of the reliability mechanism.

* Propose and develop a CoAP implementation for the TinyOS
operating system .

* Test and evaluate CoAP and HTTP ,the evaluation is performed in
terms of latency, memory occupation, response time and energy

consumption
1.5 Methodology:

In the first phase of this research, describe the major functionalities of
CoAP highlighting the differences with HTTP. In Second phase all
features of CoAP application protocol for constrained devices has
beendiscussed. It also shows how this protocol works.

In the last phase of this research, test and evaluate CoAP
implementationon TinyOS operating system in term of latency, memory

occupation and energy consumption and compare the result with HTTP.



1.6 Thesis outlines :

The rest of the research is organized as follows:

Chapter Two: Background and Literature review

This chapter analyses current state of art of fundamental concepts of

WSNe, its application classes followedby an overview of related work.

Chapter Three: Constrained application protocols

This chapter gives the basic concepts and background for integrating
WSN with other networks using web services .Web service integration
WSNs nodes uses CoAP protocols in the application layer and UDP in

the transport layer. In order to make them compatible, some kind of
translation must be made.So this chapter presents the CoAP application

protocol and explains how this protocol works and all its features. Then it

shows the detailed operations and scenarios for both HTTP and CoAP.

Chapter Four: Results and Discussion

This chapter provides the implementation details of a CoAP protocol.1t
discusses the possible simulators to implement this technique and why
the Avrora and TOSSIM simulators are selected. Then, it gives details of
possible operating system to implement this protocol and why the
TinyOS operating system is selected.

Chapter Five: Conclusion and Recommendation

This chapter summarizes the conclusions of the conducted research and
presents directions for future work. In the appendix, details for installing

TinyOS and its extensions are presented.



Chapter Two: Background and Literature Review

2.1 Background:

In some applications, using wired networks for controlling the
environment is usually unpractical and costly. For this reason, it is
interesting to create low-cost network architectures that give mobility to
its terminals. In this sense, the deployment of Wireless Sensor Networks

(WSNs) is a good solution.

A WSN consists of distributed autonomous sensors able to monitor
physical or environmental conditions and to cooperatively send their data
through the network to a main location .These networks are composed of
hundreds of low-power and low-cost devices that are characterized by
having constrained resources, limited operational capabilities and a short
communication range [8]. These constraints are the critical aspects that
influence the choice of a protocol stack. A widely-used protocol for the
physical and link layers is IEEE 802.15.4. When a WSN uses this
standard, it is called a Low Power Wireless Personal Area Network
(LoWPAN).

In low layers of WSNs, IEEE 802.15.4 is being a standard. However,
many problems arise when interconnecting different WSNs or sensor
nodes from different manufacturers. As a result of growing interest of
these networks, many solutions that restricted the possibility to
interconnect and integrate various WSNs are developed. An existing and
well-known protocol such as IP is using as a solution to solve this
problem. But because of the highly constrained requirements, it was
considered impractical

New developments show that it is possible to use efficient IPv6

communications over IEEE 802.15.4 links presenting an adaptation



layer. The out coming protocol stack Known as IPv6 over Low Power
Wireless Personal Area Networks (6LoOWPAN) [9].

Enabling IP on constrained devices has several advantages; WSNs can
be connected to external IP networks without needing intermediate
gateways. Furthermore, all knowledge from IP-based networks can be
reused, avoiding the conception of new tools for managing, configuring
or diagnosing these networks. IP connectivity would also allow a crucial
creation in the Internet field. In this perspective, Internet would be a
network with embedded objects that would be able to dealing with
information and interact with their environment. This new concept is
referred as the so-called Internet of Things. A key aspect to completely
integrate these networks is to extend the actual Web architecture to
WSNs. Furthermore, sensor nodes can be treated as any other Web
resource that would be accessed using standard Web mechanisms. This
new approach is known as Web of Things [10] .

The implementation of Web services in these networks must be
supported on an architectural style adapted to WSNs requirements. Also,
the implementation should reuse and adapt existing protocols and avoid
the innovation of new ones in order to avoid interoperability problems.
An IETF work group called Constrained RESTful Environments (CoRE)
has been established with the goal of participating to the development
and standardization of RESTful Web services for constrained networks.
With this sense, the work group defined a new Web transfer protocol
called Constrained Application Protocol (CoAP) [11].

CoAP try to apply the same application transfer paradigm and basic
features of HTTP to constrained networks, while keeping a simple
design and low overhead. Unlike HTTP, CoAP uses UDP as transport
protocol. This choice would enable CoAP to have a low impact on the

limited bandwidth of the 802.15.4 wireless links. However, since UDP is
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an unreliable protocol, CoAP has to implement its own mechanisms in

order to guarantee reliability to those applications that use it [6].

2.1.1 Wireless Sensor Network (WSN)

Wireless sensor networks (WSN) are concentrated wireless networks of
small, low-cost sensor nodes, which gather and spread out environmental
data. WSNs make possible monitoring and controlling of physical
environments from remote locations with better precisionthan other
known monitoring systems such as remote sensing. These tiny sensor
nodes leverage the idea of sensor networks based on cooperative effort
of a large number of nodes [6].

Sensor networks represent an important development over conventional
sensors. As they have the ability to route data back by a multi-hop
infrastructure-less architecture to the base station or sink, which is the
entity where information is required.

The most important constraints on sensor networks is the low power
consumption requirement. Sensor nodes carry limited, generally
irreplaceable, power sources. Therefore, while traditional networks want
to get high quality of service (QoS) requirements, sensor network
protocols focus firstly on energy conservation [6].

In addition to energy-aware techniques, WSN design often employs
some approaches such as, in-network processing, multi-hop
communication, and density control techniques to increase the network
lifetime. Moreover, WSNs should be flexible to failures due to different
reasons such as physical devastationof nodes or energy depletion.
Several challenges still need to be overcome to have ubiquitous
deployment of sensor networks. These challenges include dynamic
topology, devices, heterogeneity, lack of quality of service, application

support, manufacturing quality and ecological issues. These design



challenges make sensor networks different from other wireless ad-hoc or
mesh networks. Therefore, the protocols and algorithms have been

proposed for traditional wireless ad hoc networks are not well suited for

WSN [12].

Wireless Sensor Network

Sensor'lunde

Figure 2.1: Example of a Wireless Sensor Network (WSN).

2.1.2 WSN Protocols:

The sensor nodes can communicate through the wireless medium but
protocols and algorithms offered for traditional wireless ad hoc networks
may not be well fitting for sensor networks. Sensor networks are
application particular, and the sensor nodes work cooperatively together.
In addition, the sensor nodes are energy constrained compared to
traditional wireless ad hoc devices. Thus, the differences between sensor
networks and ad hoc networks should be Knownto provide a general
thought how the WSN protocols will be. The differences between both
networks [13] can be summarized in the following main points:

*The number of sensor nodes in a sensor network can be several orders
of magnitude higher than the nodes in an ad hoc network.

*Sensor nodes are densely deployed.

*Sensor nodes are prone to failures.



*The topology of a sensor network changes very frequently due to failure
and duty cycles of nodes.

*sensor nodes mainly use a broadcast communication paradigm whereas
most ad hoc networks are based on point-to-point communications.
*Sensor nodes are limited in power, computational capacities, and
memory.

*Sensor nodes may not have global identification (ID) because of the
large amount of overhead and large number of sensor nodes.

*Sensor networks are deployed with a specific sensing application in
mind; ad hoc networks are mostly constructed for communication

purposes.

A sensor network does not work in separation in functional deployment.
For many considerable applications, however, it is necessary to integrate
these sensor networks to the presented Internet Protocol (IP) networks.
The protocol stack used by sensor nodes is given in Figure 2.2 This
protocol stack combines power and routing realization, integrates data
with networking protocols, connects power-efficiently using the wireless
medium, and supports collaborative efforts of sensor nodes. The protocol
stack consists of the application layer, transport layer, network layer,
data link layer, physical layer, power management plane, mobility

management plane, and task management plane [6].
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Figure 2.2: The wireless sensor network protocol stack

Application layer:

Various types of application software can be built and used on the
application layer, depending on the sensing tasks. Sensor nodes can be
used for continuous sensing, event detection, event identification and
location sensing. The aim of micro-sensing and wireless communication
of these nodes pledge many new application areas. This results in a wide
range of application layer protocols.

Transport layer:

It helps to take care of the flow of data if the sensor networks application
needs it. In common, the most important objectives of the transport layer

arc.

= To bridge application and network layers by application
multiplexing and de-multiplexing.

= To provide data delivery service between the source and the sink
with an error control mechanism.

» To regulate the amount of traffic injected into the network via

flow and congestion control mechanisms.
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On the other hand, the required transport layer functionalities to
complete these objectives in the sensor networks are due to significant
modifications in order to fitwith unique characteristics of the sensor
network paradigm. For example, classic end-to-end, retransmission-
based error control mechanisms adopted by transport control protocol
(TCP) may not be practical for the sensor network area and for that
reason may lead to loss of limited resources. On the other hand, the
particularobjective of the sensor network also influences the design
requirements of the transport layer protocols. For example, the sensor
networks deployed for different applications may require different
reliability levels as well as different congestion control approaches. As a
result, improvement transport layer protocols is a challenge because the
restrictions of the sensor nodes and the particular application
requirements mostlydecide design principles of transport layer protocols

[14].
Network layer:

The main function of this layer is routing the data given by the transport
layer. Sensor nodes may be spreaddensely in an area to monitor a
phenomenon. Therefore, they may be very close to each other. In such a
situation, multi-hop communication may be a good selection for sensor
networks with strict requirements on power consumption and
transmission power levels. As the sensor nodes missing not much energy
when transmitting a message because the distances between sensor nodes
are shorter. As mentioned before, ad hoc routing techniques already
suggested in the literature do not usually suitablerequirements of the
sensor networks. Therefore, the network layer of the sensor networks is
usually designed according to the following standards:

* Energy efficiency is always an important consideration.
12



* Sensor networks are mostly data centric.

* An ideal sensor network has attribute-based addressing and location
awareness.

*Data aggregation is useful only when it does not hinder the
collaborative effort of the sensor nodes.

*The routing protocol is easily integrated with other networks, e.g.,
Internet.

One of the design principles for the network layer is to allow easy
integration with other networks such as the satellite network and the
Internet. As shown in Figure 2.1, the sinks are the basis of a
communication backbone that serves as a gateway to other networks.
The users may query the sensor networks through the Internet or the
satellite network, depending on the purpose of the query or the type of
application the users are running.

Data link layer:

It is mainly responsible for multiplexing data streams, data frame
detection, medium access, and error control; it make sure a reliable
point-to-point and point-to-multipoint connections in a communication
network. However, the collaborative and application-oriented nature of
the sensor networks and the physical constraints of the sensor nodes,
such as energy and processing limitations, decide the way in which these

responsibilities are achieved[14].

Physical layer:

It is regularlyresponsible for modulation and demodulation of digital
data; this work is executed by transceivers. In sensor networks, the
challenge is to find modulation schemes and transceiver architectures
that are easy, low cost, but still strong enough to introduce the required
service.
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2.2 Literature review:

A various studies have discussed the application of CoAP in WSNs. In
this section we give details about these works.

Previous work by the authors of [14] offered a CoAP implementation for
Contiki. The aim of this implementation was to obtain high-energy
efficiency by leveraging a radio duty cycling mechanism. The
implementation has been tested in a multi-hop network. The obtained
results have shown that when using a radio duty cycle, energy
consumption is lower but the latency performance is getting worse.

The authors [6] motivated the choice of the REST architecture and the
taking up of the CoAP protocol. We also suggest modifications to an
early format of the protocol and seek possible problems of its
implementation.

In [5], the authors statements a simple comparison of CoAP and HTTP
in terms of energy consumption. This work also presented the design of a
gateway used to communicate a CoAP based WSN to an external IP
network that uses HTTP. In [15], the authors of [5] compared the
performance of CoAP to that of HTTP. The evaluation was done on the
basis of energy consumption and response time. In particular, energy
consumption was evaluated by means of simulation. The response time
was measured in a real WSN. Both experiments were conducted
considering a client querying an embedded server to obtain temperature
and humidity values. The energy consumed was measured according to
the variance of the inter-arrival packet time. The response time was
calculated for the case where the server was at a distance of 1-hop and 2-
hop from the client. The results show that CoAP returns a better
performance in both the evaluation parameters considered by the

authors.
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A study used CoAP and HTTP on network sensor deployment [16] as
data transport protocol for sensor network reprogramming. The Results
were gained from measuring both protocols over a duty cycled radio
layer through simulation view that CoAP and HTTP present similar
results. In [17], the authors present a framework for M2M
communications using CoAP. They also present an improved
publish/subscribe mechanism also based in CoAP. Both solutions are
evaluated showing the advantage of using CoAP instead of HTTP.

The authors of [18] give an overview of the current CoAP
implementations and present the results of compatibility meeting
organized by the European Telecommunications Standards Institute
(ETSI). In [19], the authors present a CoAP implementation for TinyOS
and the implementation of a compression mechanism of the XML
format. A performance evaluation was carried out considering the CoAP
request success probability as a function of the request rate of the client
node. Furthermore, the authors report results from an evaluation of the
memory occupation of the TinyOS components used in their
implementation. Finally, the authors proved the ability of the XML
compression scheme by studying its processing-time. As previously
commented, this CoAP implementation was developed on top of an
unsupported and limited 6LoWPAN implementation named 6lowpancli
[20]. In particular, as pointed out in [21],[22]6lowpancli provides only
basic work of 6LoWPAN. 6Lowpancli doesn’t support any type of
neighbor discovery mechanism, it is completely static and requires
manual configuration. As reported in [21],[22] the support for mesh
network is not provided and when a packet with different destination
address is received, it is just dropped. The results of a performance

evaluation done in [21] show that 6lowpancli does not perform well in
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terms of energy consumption and latency. Thereby, its limitation would
affect any implementation build on top of it.

As previously mentioned, CoapBlip is currently included in the latest
distribution of TinyOS. The authors of CoapBlip present its design in
[23]. They evaluated their implementation and compared it to HTTP.
The performance evaluation considers the ROM occupation and the
average response time of CoAP and HTTP. The results of an evaluation
show that CoAP shows better performance than HTTP. In [24],
CoapBlip has been used to evaluate the CoAP protocol in integrations
with other low layer protocols. In this sense, it has been evaluated along
with the Routing Protocol for Low-power and Lossy Networks (RPL)
and the Low Power Listening (LPL) protocol.

16



Chapter Three: Constrained Application protocol

3.1Constrained RESTful Environments (CoRE)

IETF formed this WG with the main objective of presenting the
Constrained Application Protocol (CoAP), a RESTful protocol
appropriate for constrained environments. The Representational State
Transfer (REST) paradigm donates to designing APIs so that every data
exchange can be done with the GET, POST, DELETE and UPDATE
operations of the HTTP protocol [25].

The work of the CoORE WG has been chartered because of introducing a
web-oriented binary protocol, unsophisticated enough to be handled by
severely restricteddevices, yet simple to map onto HTTP. The reason
behind this approach is driven by the Widespread of HTTP in the Web,
allowing HTTP connection over constrained environments will further
expand its applicability and become ubiquitous. The recently proposed
protocol is attemptingtoobtain this objective defining a binary

representation of REST, which contain the most important and useful

features of HTTP [26].

Next-generation M2M environments are estimated to be the destroyer
application for this protocol: for instance, a lot of consideration has been
devoted to the design of publish/subscribe mechanisms, since this
approach is considered to be key for connecting constrained devices and
evading network congestion. As many spread content-generating
networks, Smart Grids would experience different benefits from a web-
like communication model: in fact, web services are well-known in the
traditional Internet for their applicability to al-most every kind of

application. Following this guideline, the WG is driving the Constrained
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Application Protocol (CoAP) to be employed for M2M communication,
resulting in a web-compatible standard for M2M applicability [19].

By designCoAP is directly mappable to the current HTTP realization: by
forcing its intrinsic Compatibility, the SG system design can be heavily
simplified, by directly allowing each network device to deal with
standard Internet languages and, at the same time, keeping the energy

and traffic load on the constrained environment low.

3.2 Application Protocols and Formats:

Constrained Application Protocol (CoAP) [10] is at this time being
standard within the CoRE working group of the IETF, which is
introducing a REST-based framework for resource—oriented applications
optimized for constrained IP networks and devices. by enabling this
protocol set, restricted packet sizes, low-energy devices and unreliable
channels are simple to be manage[26].

CoAPis based on the REST architectural style participating the
objectives and the intrinsic limitation listed above. It is designed for
simple stateless mapping with HTTP, and for providing M2M
interaction. HTTP compatibility is obtained by maintaining the same
interaction model, using a subset of the HTTP methods. Nodes
supporting CoAPoffering flexible services over any IP network using
UDP, and they also a strong communication framework to communicate
sensor nodes to the Internet. Any HTTP client or server can deal with
CoAP-Ready endpoints by easy installing a translation proxy between
the two devices. This will not be a load for the proxy, since these
translation processes have been designed not to be time and
computationallyrequirements. Also, CoAPmake as a message layer

between the application protocol and UDP.
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3.3 Constrained Application Protocol (CoAP)

Although HTTP is widely used with Web Services, it is by no means the
only protocol for M2M communication. The Internet Engineering Task
Force (IETF) Constrained RESTful Environments (CoRE) [27] working
group published the first draft of a RESTful web transfer protocol called
Constrained Application Protocol (CoAP) [28]. CoAP includes several
HTTP functionalities which have been re-designed for M2M
applications over constrained environments on the [oT, meaning it takes
into account the low processing power and constraints of small
embedded devices, such as sensors.

In addition, CoAP provide a number of characteristic that HTTP lacks,
such as built-in resource discovery, [P multicast support, and
asynchronous message exchange. There are many implementations of
CoAP in various languages, such as libcoapl (an open source C-
implementation) and Sensinode’sNanoService.The summary of the main
features addressed by CoAP are [28]:

* Constrained web protocol fulfilling M2M requirements.

« UDP binding with optional reliability, supporting unicast and multicast
requests.

» Asynchronous message exchanges.

*Native push model

» Small header overhead and parsing complexity.

* URI and Content-type support.

* Simple proxy and caching capabilities.

« Ability to operate with cyclic sleeping nodes, asynchronous message
exchanges [29].
+ A stateless HTTP mapping, allowing proxies to be built providing

access to CoAP resources via HTTP in a uniform way or for HTTP

simple interfaces to be realized alternatively over CoAP.
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* security binding to Datagram Transport Layer Security (DTLS).

3.3.1 CoAP Structure Model

The interaction model of CoAP in figure 3.1is similar to the client/server
model of HTTP. However, machine-to-machine interactions typically

result in a CoAP implementation acting in both client and server roles.

request

Client re spanse Server

Figure 3.1: The CoAP Interaction model
A CoAP request is comparable to that of HTTP, and is sent by a client to

request an action (using a method code) on a resource (known by a URI)
on a server. The server then sends a response with a response code; this
response may contain a resource representation.

Unlike HTTP, CoAP deals with these interchanges asynchronously over
a datagram-oriented transport such as UDP.

This is done logically using a layer of messages that supports optional
reliability (with exponential back-off). CoAP is organized in two layers
as shown in figure 3.2 ,the transaction layer handles asynchronous nature
of a single message exchange between two points and used to deal with
UDP. The Request/Response layer 1is responsible for the
requests/response transmission using Method and Response codes and
for the resource manipulation. CoAP is however a single protocol, with
messaging and request/response just features of the CoAPheader.

The dual layer approach allow CoAP to provide reliability mechanisms
even without TCP as transport protocol [30],[7].CoAP defines four types
of messages: Confirmable, Non-confirmable, Acknowledgement, Reset;

method codes and response codes included in some of these messages
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make them carry requests or responses[11]. The basic exchanges of the
four types of messages are somewhat orthogonal to the request/response
interactions; requests can be carried in Confirmable and Non-
confirmable messages, and responses can be carried in these as well as

piggy-backed in Acknowledgement messages.

dmmm e +

| Application |
e e E LR T e +

+ + 0\
| Requests/Responses | |
| = | | CoAP
| Megsages |
- + /
e EE LT e e +

| UDP |
et e e T e +

Figure 3.2: Abstract Layering of CoAP

3.3.1.1. REQUEST/RESPONSE LAYER MODEL

The CoAP client/server interaction model, depicted in Figure 3.1,
assesses that CoAP requests are sent by clients in order to request an
action on a resource of the server. After the request elaboration, the
server sends back a CoAP response containing an appropriate response

code and optionally a resource representation.

After receiving a request, a server responds with a CoAP response. There

are three types of responses:

* Piggy-backed: The response is carried directly in the acknowledgment
message. The response is returned in the acknowledgment message
independently of whether the response indicates success or failure as in

figure 3.3.
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Client Server Client Server

| CON [0xbc90] | | CON [0xbc91] |
| GET /temperature | | GET /temperature |
| (Token 0x71) | | (Token 0x72) |
Fomm e >| o >|

I
ACK [0xbc90] |
2.05 Content |
I
I

I

| ACK [0xbc91] |
I

| (Token 0x71)

I

I

I

4.04 Not Found |
(Token 0x72) |

|

|

|

|
n22.5 C" |  "Not found" |
I<

I I I
Figure 3.3: The successful and failure response results of GET method

» Separate: In some cases, it may not be possible to return a response
immediately. In order to avoid packet retransmission, the server sends an
ACK to promise the client it will process the request. When the server

finally processes it, then a CON message is sent as in figure 3.4.

Client Server

I
CON [0x7al0] |
GET /temperature |
(Token 0x73) |
|

I

I

Time Passes
I
CON [0x23bb] |
2.05 Content |
I
I

(Token 0x73)
"22.5 C"

Figure 3.4: GET request with a separate response
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* Non-confirmable: If the request is not confirmable, then the response
is also not confirmable as shown in fig 3.5. A response is identified by
the Code field in the CoAP message header. There are three code

classes:

* Success (2.x). The request was successfully received, understood, and

accepted

* Client Error (4.x). The request has bad syntax or cannot be fulfilled.

* Server Error (5.x). The server failed to fulfill an apparently valid
request.

Response codes are designed to be extensible. If one of them is not
recognized, then it must be treated as a being equivalent to the generic
Response Code of that class.

Client Server

NON [0x7all]
GET /temperature
(Token 0x74)

|

| NON [0x23bc]
| 2.05 Content
| (Token 0x74)
| "22.5 C"

|

Figure 3.5: A Request and a Response Carried in Non-confirmableMessages

CoAP Methods:

The client request contains a method that specifies the action requested,
an unique identifier of the server resource called Uniform Resource
Identifier (URI) and optionally a payload containing meta-data about the
request. The CoAP standard defines four different methods:

* GET: retrieves an information representation of the resource.
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* POST: carries an information representation and asks the receiver to
process it. The output depends on the target resource, usually involving
resource creation or update.

* PUT: requests an update operation of the resource identified by the
request URI with the carried information representation.

* DELETE: causes the deletion of the resource identified by the request
URL

Upon reception of the request, the server elaborates it and, if no errors
occur, sends back to the client its response containing a response code
that indicates the result of the request process. Response codes are
divided into three classes 2.xx (Success),4.xx (Client Error) and 5.xx
(Server Error) as it had mentioned before.

The fraction of the response code just denoted with xx does not have any
categorization role: it gives instead additional details of the output of the
request process. For example, the most common HTTP response code is
the 404 or not found error, which indicates that the client request was
correct but the server was not able to find the resource pointed by the
URI field. The matching between requests and responses is achieved by
means of a token, that is an unique identifier of any request/response
couple between two specific endpoints. This field is included on every

CoAP request as well as in every CoAP response.
3.3.1.2. MESSAGE LAYER MODEL

As CoAP is bound to the non-reliable protocol UDP, it implements a
lightweight reliability mechanism trying to recreate TCP. The main
characteristics are:

« Simple stop-and-wait retransmission reliability with exponential back-
off.
* Duplicate message detection.
* Multicast support.
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CoAP defines four types of messages: Confirmable, Non-Confirmable,
Acknowledgement, Reset. The exchange of messages is orthogonal to
the request/response interactions [31]. Requests can be carried both in
Confirmable and Non-Confirmable messages. Responses can be carried
equally in Confirmable and Non-Confirmable messages, but also piggy-

backed in Acknowledgement messages, CoAP type messages are:

* Confirmable (CON): This message is sent when a reliable
transmission is needed. The protocol guarantees that the message will
not be lost within certain conditions. Because messages are transported
over UDP, the reliability is accomplished with packet retransmission if a
response 1S not received in a given time out[11]. It increases
exponentially with every new retransmission and, thus, provides a simple
congestion mechanism. The packet will be lost if the maximum number

of retransmissions is reached.

* NON-Confirmable (NON): This message is sent if a reliable
transmission is not needed. It is useful for requests that are sent

regularly. This message may carry a response for a NON request.

* Acknowledge (ACK):This message carries a response to acknowledge
a CON request. This type of messages may carry response data or not. In
the first case, the response is called piggy- backed response and in the
second case separate response. The second one is used when the server
cannot process the request immediately but promises that it will be

processed.

* Reset (RST): This message indicates that a CON messages has arrived
but there is no context to process it.
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CoAP message reliability

A reliable transmission is started marking a packet as confirmable.A
recipient must acknowledge such message with an acknowledge message
or reject it with a reset message. The sender transmits the CON message
at exponential increasing intervals until receives an ACK, RESET or it
runs out of attempts. For each time out expired, the time out is doubled,
as shown in figure 3.6 [12] .

Client Server

I I
| NON [0x01la0] |

Figure 3.6: CoAP reliable message transmission

The recipient should acknowledge each duplicate copy of the CON
message using the same ACK but it should process any request or
response only once. It should ignore any duplicates and process the

message Ol'lly once.

Figure 3.7shows an example of unreliable CoAP transmission message.
A message is not acknowledged or rejected. If recipient lacks the context
to process the message, the message must be simply ignored. The

recipient must be prepared to receive the same message multiple times.

Client Server

I I
| NON [0x01la0] I

Figure 3.7: Unreliable message Transport

3.3.1.3. CoAP Message Format:
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The figure 3.8 shows how a CoAP message. It has three different parts
which are transported over an UDP packet:

* CoAP header: Provides basic information to recognize the CoAP
version, the type of message, a message code and a message identifier. It
also provides information to parse the message.

* CoAP options: Are used to provide parameters needed to fulfill
requests.
* CoAPpayload : Contains the message body.

The CoAP header has the following fields:

* Version (Ver): Indicates the CoAP version number. Implementations
of this specification MUST set this field to 1.

* Type (T). Indicates the message type: CON, NON, ACK or RST.

* Option Count (OC): Indicates the number of options after the header.
If OC set to 0, there are no options and the payload (if any) immediately
follows the header.

* Code: Indicates if the message carries a request (code values from 1 to
31) or a response (code values from 64 to 191), or is empty (0). (All
other code values are reserved.) In case of a request, the Code field
indicates the Request Method; in case of a response a Response Code.

* Message ID: Used for the detection of message duplication, and to

match messages of type ACK/RST and messages of type CON.

0 1 2 3
01234567890123456789012345678901
e s S B Sk s Ht At st s S e S e l 2
|Ver| T | TKL | Code | Message ID |

e s S B o s Ht s sk s St o S e S 2
| Token (if any, TKL bytes) ...

e s S B R s Ht s sk s St S S at
| Options (if any) ...

e s S B e Rk s Ht At sk s St e e  ah 2
|111111111| Payload (if any)

e s S S s Ht At sk s St A S e S &

Figure 3.8:CoAP Message Format
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3.3.1.4. Options:

Options are identified by an option number. Odd numbers indicate
critical options and even numbers elective options. Figure 3.9 shows the

option format. Options fields are:

0 1 2 3 4 b b 7

I Ooption Delta Option Length [ 1 byte
2 Option Delta z 0-2 bytes
extended)
e +
2 option Length 2 0-2 bytes
?extended
—_—————————————————————— - +
Option Value 0 or more bytes
L +

Figure 3.9: Option format fields in CoAP message format.

* Option Delta: 4-bit unsigned integer. It indicates the difference
between the option Number of the current option and the option number
of the previous option.

* Length: 4-bit unsigned integer. It indicates the length of the option
Value. When this field is set to 15 an 8-bit unsigned integer is added
allowing lengths ranging from 15 to 270 bytes. Options can be critical or
elective. The difference is how an unrecognized option is handled in an
end-point:

* Elective: Must ignore messages with unrecognized options.

* Critical: That occur in a CON message request must cause the return
of 4.02 response code.

* Critical: That occur in a CON message response and in a NON
message must silently ignore the message. There are several types of

options:
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* Token: It is used to match a response with a request. Every request has
a client-generated token which the server must echo in any response.

* Uri-Host: It specifies the Internet host of the resource being requested.
The default value is the IP literal representing the destination IP address.
* Uri-Port: It specifies the port number of the resource. The default
value is the destination port.

* Uri-Path: It specifies one segment of the absolute path to the resource.
* Uri-Query: It specifies a query string.

* Proxy-Uri: It is used to make a request to a proxy. The proxy is
requested to forward the request or service it from a valid cache and
return the response.

* Content-Type: It indicates the representation format of the message
payload given as a numeric value.

* Accept: It indicates when included one or more times in a request, one
or more media types, each of which is an acceptable media type for the
client, in the order of preference.

* Max-Age: The maximum time a response may be cached before it
must be considered not fresh. When included in a request, it indicates the
minimum value for the maximum age of cache response the client will
accept.

« E-Tag: In a response, provides the current value of the entity-tag for
the enclosed representation of the target resource. An entity-tag is
intended for use as a resource-local identifier for differentiating between
representations of the same resource that vary over time.

* Location-Path and Location-Query: It indicates the location of a
resource as an absolute path URI. It can be included in a response to

indicate the location of a new resource created with POST.
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« If-Match: It may be used to make a request conditional on the current
existence or value of an ETag for one or more representations of the
target resource.

 If-None-Match: It may be used to make a request conditional on the
non-existence of the target resource. If-None-Match is useful for
resource creation requests, such as PUT requests, as a means for
protecting against accidental overwrites when multiple clients are

reacting in parallel on the same resource.

Table 3.1 :CoAP message Options

o —— o s [ R — S SR —— R — o +
| MNo. | ¢ | U | 8| R | Name | Format | Length | Default |
o ——— e s e o S S —— T ——— +
| 1 | =] | | = | Tf-Match | opague | 0-8 | (none)
| 3| x|=]~-1 | Uri-Host | string | 1-255 | (see
below)
4 X ETag ocpagus 1-8 (none)
| 5 |. % | | | | If-None-Match | empty | O | (none)
| T ]l =]=L=] | uri-pPort | uint | 0-2 | (see |
below)
8 X Location-Path string 0-255 | (none)
| 11 | x| x| = | x | Uri-Path | string | 0-255 | (none) |
12 Content-Format uint 0-2 (none)
14 x - Max-Age uint 0-4 60
| 158 | x | x| - | x | Uri-guery | string | 0-255 | (none) |
I E | | | | Accept | nint | 0-2 | (none)
20 X Location-Quary string 0-255 (none)
35 x x - Proxy-Uri string 1-1034 (none)
| 38 | = | = | = | | Proxy-Scheme | string | 1-2656 | (none) |
T B e i ST e T ]

C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

3.4 CoAP URIs Scheme

CoAP uses the “coap” and “coaps” URI schemes (compared to the “http”
and “https” URI schemes respectively) for identifying CoAP resources
and to provide a means of locating the resources. The URI support in a
CoAP server is simplified as the client already parses the URI and splits
it into host, port, path and query options (uri-host, uri-port, uri-path, uri-
query), making use of default values for efficiency. The options encode
the different components of the request URI in a way that no percent-
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encoding is visible in the option values and that the full URI can be
reconstructed in any involved endpoint [3].Here's an example of a
CoAPURI:

coap://[fe80::¢30c:0000:0000:0002]:5683/HelloWorld .

Here, “[fe80::c30c:0000:0000:0002]” is the host IPv6 address, “5683”
the default UDP port number used for CoAP resources and

“HelloWorld” the resource representation asked by client to obtain.

3.5 Caching

Nodes can cache their responses in order to reduce the response time and
network bandwidth consumption on future. Unlike HTTP [21], caching
of the CoAP responses does not depend on the request method, but on
the particular response code [31] equivalent requests. The goal of
caching is to reuse a prior response message to satisfy a current request.
Table 3.1 shows which response codes can be cached and the relation
between caching and the response codes. A node must not use a stored
response unless:

* The request method and the one used to obtain the stored response
must match.

 All options match between those in the presented request and those of
the request used to obtain the stored response.

* The stored response is either fresh or successfully validated. There are

two ways to decide if a cache can be used to satisfy a request:

*Freshness model: The mechanism for determining freshness is for an
origin server to provide an explicit time in the future using Max-Age. In
this way, If an origin server wants to prevent caching it must explicitly

include a Max-Age option with a value of zero seconds. If the client has
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certain influence in the freshness calculation it can include a Max-Age

option in a request [32].

e Validation model: When an end-point has one or more stored
responses for a GET request but it cannot use any of them, it can use the
E-tag option in the GET request to give the origin server an opportunity
to both select a stored response to be used and to update its freshness.
Each stored response has an entity-tag that should be sent to the server
via an E-tag option. The server response 2.03 (Valid) indicates that the
stored response identified by its E-tag option can be reused. For any
other response, it should be used to satisfy the request.

Table 3.2: Relation between CoAP response codes and caching.

Code Caching

201 No Mark any stored response for the created resource (location options) as not fresh.
2.02 No Mark any stored response for the deleted resource as not fresh.

203 / Update the stored response with the value of the Max-Age Option.

204 No Mark any stored response for the changed resource as not fresh.

205 Yes UseMax-Age for freshness model and ETag for validation model.

3.6 Implementation:

TinyOS is an OS for WSNs designed to meet the requirements of
constrained networks and devices. It is composed by a set of reusable
components that can be used to build specific applications. TinyOS is
implemented in the NesC language [31]. NesC is a C dialect designed to
improve code efficiency and robustness in embedded software
applications [33]. Through its simplicity, NesC is able to reduce RAM
occupation, code size, and prevents low-level bugs. The programming
model of TinyOSis also based on this language. Besides NesC, TinyOS
allows using more complex languages such as Java, Python or C. In
particular, C code can be embedded in NesC programs or can be used to

build libraries for TinyOS. As we will explain later in this section, a
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TinyOS based WSN can achieve better performance and be more
reliable when using exclusively NesC. The design philosophy of
TinyCoAP follows the principles of the TinyOS programming model.
The code is structured in TinyOS components and the use of external
libraries is avoided. TinyCoAPis completely written in NesC. The rest of
this section focuses on the memory allocation system, library and the

data structures of TinyCoAP.

3.6.1 Structure of the Library

TinyCoAPis designed behind the aim that better performance and
reliable run-time execution are both executed integrating it with the OS
core libraries. It presents a CoAP library native for TinyOS. Using these
design characteristics, the core functionalities of CoAPare offered as
TinyOS components. These components are improved as part of the
TinyOS network library.Not like TinyCoAP, CoapBlipis thought as an
adaptation of a C library for generic embedded systems. A TinyOS
component is employed as an adapter between this library and the
TinyOS application. TinyCoAP bases completely on code developed in
the NesC language and evade using external C libraries. This allows
obtaining a high code optimization and having less effect on the WSN
node memory. These benefits derive mainly from the different
organization and functioning of C and NesC programs. Typical C
programs are composed by functions that are specified in separated files.
These are compiled separately and then linked together by matching
global name of functions. The interaction between them is achieved
dynamically during run-time by using function pointers. Pointers are
stored in the RAM memory and therefore cause a growth of its
occupancy. In contrast with C, TinyOS programs are considered as a set

of components connected together to carry out a specific task. These
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interact between each other using the interfaces that they offer.
Applications occur at compile-time which components they use and
then, they apparently wire the interfaces they will use at run-time.
Thanks to this static wiring, TinyOS programs keeps away from using
function pointers and therefore they are capable to decrease the RAM
memory footprint. The TinyCoAP library is consistsof five components.
Its design follows the CoAP principals layering. The message layer is
implemented by three components. CoapPDU, where PDU set for
Protocol Data Unit, is the important component of this sub-layer. It
introduces the interface used to create, read and write CoAP packets. The
interface require to create or delete options is offered by the CoapOption
component. The creation, use and organization of the linked lists
areachieved by the interface offered by the CoapList component. Linked
lists are useful for repeating the packets that are in the memory pool
waiting for being processed. CoapList is also used to laying up and
repeat the options that contain a packet and to control retransmissions.
CoapPDUis wired to CoapList and CoapOption. This enables CoapPDU
to deal with the options composed in a CoAP packet. additionally, each
element of the message layer is wired to the TinyOSPoolC component.
This 1s used to assign the memory required to complete their operation.
PoolC specifies memory corresponding to the data structure that is
identified by each component. The wiring of the message layer
components. The request/response matching layer of CoAPis carried out
by the CoapServer and CoapClient components. CoapClient introduces
the interface used to send CoAP requests. The interface introduced by
CoapServer enables initializing and connecting the server to a particular
UDP port. The retransmission technique and the CoAP packet
development are also achieved by these components. CoapServer
executed the discovery of CoAP resources [34] and the observe option of
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CoAP. The management of the resources presented by the server is
performed in anindividual interface. The resources are generated through
a parameterized interface. This is calledCoapResource and gives
commands and events to keep resources and the separate response

mechanism of CoAP.

3.6.2 RAM Memory Allocation

The most significant concept to take into account when embedding
software applications in WSN nodes is managing the allocation of RAM
memory. The management of memory allocation has to handle with the
limited size of RAM memory and the short of hardware memory
protection that describe constrained nodes. From that point of view,
managing the RAM memory dynamically could raise the chanceof
having failure nodes or could consume the existing memory. In fact, the
shortage of hardware memory protection does not avoid the risks of
containing a collision between the heap and stack or a memory leak [35].
Moreover, the size of the allocated RAM memory would be complicated
to mange with this allocation system. TinyCoAP evades these threats by
allocating RAM memory statically. The size of the allocated memory is
known at execute time and the possibility of memory exhaustion is
therefore evaded. in addition, static allocation would reduced the risks of
failures consequentto collision of the heap and the stack. for that reason
it would improve the network reliability. A more enhancement is
obtained enabling TinyCoAP to make CoAP responses without
allocating new memory. TinyCoAP creates responses using the memory
already specified to store the related CoAP requests. Furthermore, the
decreasing of the RAM memory footprint this allowing a lighter packet
processing with less influence on the CPU. As a result, the decreasing of

the CPU use would minimize the energy consumption. As reported in
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[35], the CPU expend 4.6 mA when active and 2.4 mA when idle while
the radio consume 3.9 mA when receiving. Therefore, the TinyCoAP
management of buffers would save CPU cycles and improve the battery
life of nodes. The static allocation of memory made by TinyCoAP is
compliant with the RAM memory management specified in NesC.
Actually, NesC does not maintain dynamic memory allocation. This
propertiesenables avoiding memory fragmentation and run-time
allocation failures [36]. on the other hand, a position may arise in which
applications might require dynamic allocation. To avoiding this problem,
TinyOS introduces a component calledPoolC that reproduce the dynamic
memory allocation. Should PoolC be enabled, the most pool memory
size would be specified statically at compile time. Through the execution
time, the applications will get the amount of RAM memory they require
from that presented in the pool. An concluding memory leak would
make the pool to empty, but the heap and stack would not collide. As
mentioned above, TinyCoAP uses PoolC to assign the buffers required to
keep the CoAP packets and the linked lists. In a different way from
TinyCoAP, CoapBlip implements a dynamic memory allocation
management. It uses the malloc memory management library to allocate

memory for buffers and linked lists.

3.6.3 Data Structure

As declared above, TinyCoAP components are structured following the
conceptual layering of CoAP. The message layer is being on top of Blip.
CoapBlip also implements this 6LoWPAN stack. Should Blip receive a
UDP packet, it verifies the existence of the CoAP header. If it is exist,
the interface introduced by CoapPDU keeps it in a CoAP PDU. This
PDU is stored in the memory already allocated through PoolC. The use

of PoolC enables TinyCoAP to begin at compile time the maximum size
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a packet can get and the maximum number of packets it can handle. The
maximum length of options and the maximum number of packets that
can be queued by a node can also be specified. These characteristics
make TinyCoAP powerful against possible memory leaks and always
present it with room in the memory for the received packets. Moreover,
TinyCoAP is easily flexible to different applications. The TinyCoAP
PDU data structure is designed to be used with PoolC. It prevents the use
of pointers for reaching to the various components of the PDU. Table
4.1explain the CoAP PDU used in CoapBlip and TinyCoAP. In
TinyCoAP, the received CoAP message is firstlykept in the UDP buffer
as an invalid element. This element is then transformed into a
coap_pdu t structure and stored in the memory pool. Once the PDU
structure has been made, the UDP buffer is ready to accept a new
incoming packet. In TinyCoAP the maximum payload allowed for
requests and responses can be defined at compile time. Thus, the
memory usage can be accommodated to the application requirements and
to the features of the sensor. CoapBlip uses pointers to reach to various
parts of the PDU. Should a CoAP packet be received, CoapBlip stores it
in a buffer allocated through malloc and initializes the pointers defined
in coap_pdu_t. This buffer is placed at UDP level and its size is always
equivalent to the maximum packet size enabled by CoapBlip. Therefore,
although CoapBlip uses malloc, the memory is always allocated with the

same size.
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Table 3.3: CoAP PDU structures

CoapBlip TinyCoAP
typedef struct { typedef struct {
coap_hdr_t *hdr: wnt§_t timestamp:
unsigned short length: coap_hdr_t hdr:
coap_list_t *options: struct sockaddr_in6 addr:
unsigned char *data: uint8_t payload [MAX]:
} coap_pdu_t: uintl6_t payload len:
coap_list_t opt_list:
} coap_pdu t:

CoapBlip stores the PDU in the UDP buffer and uses a pointer to provide

access. TinyCoAP saves it in the memory allocated with PoolC.

3.6.4 Tools:
A software solution to integrate RESTful Web services in WSNs based

on the CoAP protocol is presented. This software is a library for the
TinyOS operating system that has been developed in order to easily
create new applications that can use and other Web-based services using
the CoAP protocol. The Figure below is architecture of a CoAP-based
Wireless Sensor Network (WSN).

TinyOS is an "operating system" designed for low-power wireless
embedded systems. Fundamentally, it is a work scheduler and a
collection of drivers for microcontrollers and other ICs commonly used
in wireless embedded platforms. TinyOS[33] is an embedded OS for
WSNs designed to meet the requirements of constrained networks and
devices. It is composed by a set of reusable components that can be used
to build specific applications. TinyOS is implemented in the NesC
language [31]. NesC is a C dialect designed to improve code efficiency
and robustness in embedded software applications [33].

Through its simplicity, NesC is able to reduce RAM occupation, code
size, and prevents low-level bugs. The programming model of TinyOSis
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also based on this language. Besides NesC, TinyOS allows using more
complex languages such as Java, Python or C. In particular, C code can
be embedded in NesC programs or it can be used to build libraries that
TinyOS components can use. TinyOS based WSN can achieve better
performance and be more reliable when using exclusively NesC.

In this work TOSSIM and Avrora simulations will be used. TOSSIM is
the TinyOS mote simulator which has been developed, to ease the
development of sensor network applications. TOSSIM scales to
thousands of nodes, and compiles directly from TinyOS code;
developers can test not only their algorithms, but also their
implementations. TOSSIM simulates the TinyOS network stack at the bit
level, allowing experimentation with low-level protocols in addition to
top-level application systems. Users can connect to TOSSIM and interact
with it using the same tools as one would for a real-world networking,
making the transition between the two easy. TOSSIM also has a GUI
tool, TinyViz, which can visualize and interact with running simulations.
Using an simple plug-in model, users can develop new visualizations and
interfaces for TinyViz.

Avrora, a research project of the UCLA Compilers Group, is a set of
simulation and analysis tools for programs written for the AVR
microcontroller produced byAtmel and the Mica2 sensor nodes. Avrora
contains a flexible framework for simulating and analyzing assembly
programs, providing a clean Java APl and infrastructure for
experimentation, profiling, and analysis.

Avrora Simulation is an important step in the development cycle of
embedded systems, allowing more detailed inspection of the dynamic
execution of microcontroller programs and diagnosis of software
problems before the software is deployed onto the target hardware.
Avrora is a clean and open implementation motivated by this need. It
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also provides a framework for program analysis, allowing static
checking of embedded software and an infrastructure for future program
analysis research. Avrora 1is flexible, providing a Java API for
developing analyses and removes the need to build a large support

structure to investigate program analysis.

3.6.5 Test bed:
In this work, the performance of TinyCoAP, CoapBlip and HTTP,

including different implementations for the transport layer used by
HTTP, HTTP/TCP and HTTP/UDP is compared anddiscussed.

The implementation includes client/server transactions. The server get
back information when the client sends requests to it. All the requests are
sent using the GET method. The server receives a request with test as
URI and the CoAP or HTTP server replies with a payload consisted by
sequence of bits of fixed size. In this way, the node does not make
sensing operation that might affect in the results. Therefore, the
experimentsmake only for the performance of each technique in
processing and replying to the received messages. The network can be
simple in this work because a single client/server transactions is
evaluated and deploying complex architectures can be evaded as shown

in Figure 3.1.

40



Chapter Four: Results and Discussion

This chapter shows the implementation of CoAP in TinyOS, it refer as
TinyCoAP. TinyOS has already included an implementation of CoAP
called CoapBlip. However, this is based on a library not originally
designed to meet the requirements of TinyOS. Thereby, it does not allow
to CoAP to realize its full potential and minimize resource consumption.
Better performance and minimal resource consumption can be achieved
by using native library. A comprehensive performance evaluation is
made to prove the effectiveness of this approach. In particularTinyCoAP
and CoapBlip are tested and evaluated using avrora simulation, as well
as solutions based on HTTP. The evaluation is performed in terms of

latency, memory occupation, and energy consumption.

4.1 Results

The results of a performance evaluation for all the considered solution
has been discussed in this section.The evaluationinvolves various
parameters. First, the amount of RAM and ROM memory used by each
solution has been measured; then evaluate thelatency of request/response
transactions is evaluated; after that, the energy consumed by each

different solution to processing and reply to a request is measured .

4.1.1 Memory occupation

The amount of RAM and ROM memory allocated at compile time for
each considered implementation is shown in Table 4.2 the values for

HTTP/TCP uses the TCP buffers.

Table 4.1: ROM and RAM memory Occupation

41



Solution ROM/Bytes RAM /Bytes
TinyCoAP 39040 8319
CoapBlip 43540 6800
HTTP/UDP 40430 6696
HTTP/TCP 45035 7089

TinyCoAP occupies more RAM memory than the other implementation
because it specifies all the memory needed for buffering the CoAP
packets at compile time. The ROM memory occupation specifythe
complexity and weight of the code of each implementation. In fact, the
compiled code is stored in the ROM memory. CoapBlip has the highest
ROM memory occupation of optimization of the code. CoapBlip is an
adaptation of a C library. This library is installed in the node along with
the TinyOS component used to adapt it to the OS. The use of C libraries
is usually toocomplex for the memory constraints of a mote and implies
a growth of the memory occupation. Also HTTP solutions using TCP
rely on a C library, so the ROM occupation increases also for these
implementations.

TinyCoAPis written in NesC therefore it lowers the ROM and is
optimized for TinyOS. The HTTP/UDP implementation has the lowest
memory occupation. It has no reliability mechanism or request/response
matching and it has a very low complexity. Therefore it can reduce the
code size and memory occupation. RAM memory occupation is very
low, since it does not implement any HTTP buffer. It just use UDP
buffer provided by Blip.

4.1.2 Latency
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one of the most significant parameters used to evaluate the goodness of
the protocol design is Low latency values .The latency is defined as the
time elapsed from the moment the sender sends a request until the
moment it receives the response. Low latency values can significantly
enhance user experience and benefit those applications that work in real-

time.

The latency for each implementation has been tested comparing to show
the differences between TinyCoAP and the other implementations.
Payload size ranges from 1 to 30packet with increments of 1 packet
,each packet 33 bytes. The client sends a new request after receiving a
response to the request previously sent.This is shown in table 4.2 and the

simulation of the result is shown in figure 4.1.
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Table 4.2: The latency of TinyCoAP andHTTP/TCP

latency(s)

200

150

100

50+

No.packets Latency(s)

TinyCoAP | HTTP/TCP

1 3 10
3 16 40.6
6 26 55.06
9 43 75
12 59 90
15 68 105
18 89 122
21 105 136
24 128 158
27 138 175
30 158 200

—=— http/tcp

—e— tiinycoap

no.packet

Figure 4.1: The implementation of HTTP/TCP and TinyCoAP

The lowest latency is obtained by the HTTP/UDP implementation, as
shown table 4.3 and the simulation of the result is shown in figure 4.2.
HTTP/UDP does not implement any reliability mechanism or HTTP

logic. Therefore, it should be considered as a lower bound for latency.

Table 4.3 : The latency of TinyCoAP and HTTP/UDP
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Latency(s)

No.packets = CoAP | HTTP/UDP
1 3.9 3
3 16 14
6 26 25
9 45 8
12 59.2 53.9
15 68 65
18 89 85
21 105 102
24 128 125
27 138 137
30 158 159

180
160—-
140
120—-
100—-

80

(Latency(s))

60 —
40

20

—m— TinycoAP
—e— HTTP/UDP

no.packet

25 30

Figure 4.2: The implementation of latency for HTTP/UDP and TinyCoAP

In figure 4.3 and table 4.4show thatTinyCoAPis better than CoapBlip in
terms of latency. TinyCoAP improved RAM memory management
implemented and the memory allocation used by CoapBlip increases
packet processing time and it can send 650 bytes the maximum payload
size. Therefore Applications that work with aggregation or high

payloadsizes cannot be used in CoapBlip or with HTTP implementations

using TCP.
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Table 4.4: The latency of TinyCoAPand CoapBlip

Latency(s)
No.packets TinyCoAP | CoapBlip

1 3.9 4

3 16 20.5

6 26 34.9

9 43 58.32
12 59.2 61.5

15 68 76

18 89 118
21 105 135

180 -
160
140 4

120 4

(Latency(s))
8 8 8
1 " 1 1

N
=]
L

20 1

—a— coapBlip
—e— TinycoAP

20 25

30

no.packet

Figure 4.3:The implementation of latency forCoapBlip and TinyCoAP

The result of latency for all implementation is shown in figure 4.4.
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Figure 4.4 : The Latency for all implementation

4.1.3 Energy consumption

The energy consumption testshave been made for all implementation.
The test measures the energy consumed by a node when replying to
consecutive requests. It does not take into account the energy lost by the
radio chip for listening the channel because it has the same effect in each
implementation. The evaluation does not need to consider power- saving
protocols for radio duty cycling. It measured the energy consumed for
receiving, processing and sending a packet, The difference between the
performances of each implementation is only due to the effects that the
packet processing has on consumption. For each different payload size,
the energy consumption has been tested and the number of node
increased by 100 from 1 to 1000 nodes using the Avrora simulation.

HTTP implementations using TCP consume more energy than others.
The reason is the message overhead caused by TCP lost more energy,so
it is not Compatible with constrained networks. The performance is
much worse than that obtained by TinyCoAP as shown in figure 4.5 and

simulation result in table 4.5.The management of TCP connections
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requires a high degree of complexity and the maintenance in memory of
theconnection state. Consequently, there is a growth in the energy drawn
by the RAM memory for keeping thesestates and the ratio between

TinyCoAP and HTTP/TCP is about 1:3.5
Table 4.5: The energy of TinyCoAPand HTTP/UDP

num/nodes Energy/joule
TinyCoAP | HTTP/TCP

10 1.625 5.211
50 1.641 5.431
100 1.651 5.821
150 1.698 5.931
200 1.731 5.991
250 1.761 6.008
300 1.812 6.0212
350 1.847 6.077
400 1.888 6.1043
450 1.903 6.139
500 1.9121 6.187
550 1.949 6.209
600 1.974 6.304
650 1.998 6.269
700 2.063 6.304
750 2.088 6.364
800 2.113 6.399
850 2.138 6.415
900 2.165 6.459
950 2.182 6.488
1000 2.207 6.541
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Figure 4.5: The energy consumption of HITP/TCP and TinyCoAP

The mechanism implemented by CoapBlip to allocate and manage RAM
memory shows that CoapBlip is to be unsuitable for constrained devices.
The CoapBlip is again has worse performance with that of TinyCoAP as
shown in figure 4.6 and simulation result in table 4.6 . However, the
increase in packet size causes more consumption of CoapBlip energy.On
another hand, TinyCoAP benefits from its different memory allocation

mechanism. From the graph the ratio between two protocols is about

1:2.25
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Table 4.6: The energy consumption of TinyCoAPand CoapBlip

num/nodes Energy /joule
TinyCoAP | CoapBlip

10 1.625 3.662

50 1.641 3.712
100 1.651 3.781
150 1.698 3.887
200 1.731 3.931
250 1.761 4.001
300 1.812 4.071
350 1.847 4.106
400 1.888 4.192
450 1.903 4.192
500 1.9121 4.325
550 1.949 4.684
600 1.974 4.871
650 1.998 4.996
700 2.063 5.062
750 2.088 5.094
800 2.113 5.119
850 2.138 5.154
900 2.165 5.179
950 2.182 5.224
1000 2.207 5.294

—m— tinycoap
55— —@— coapBlip

energy(j)

. . . T . T . T
0 200 400 600 800 1000
num/nodes

Figure 4.6: The implementation of energy consumption for CoapBlip and TinyCoAP
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TinyCoAP has a performance that is highly similar to that of
HTTP/UDP, the ratio between them approximately 1:1. This shows
thatTinyCoAP is able to minimize the consumption of resources, as

shown in table 4.7 figure 4.7.

Table 4.7: Comparison of energy between TinyCoAP and HTTP/UDP

Energy /joule
num/nodes

TinyCoAP | HTTP/UDP

10 1.625 1.6233
50 1.641 1.643
100 1.651 1.649
150 1.698 1.689
200 1.731 1.71
250 1.761 1.768
300 1.812 1.81
350 1.847 1.837
400 1.888 1.853
450 1.903 1.906
500 1.9121 1.911
550 1.949 1.936
600 1.974 1.971
650 1.998 1.996
700 2.063 2.021
750 2.088 2.098
800 2.113 2.123
850 2.138 2.148
900 2.165 2.183
950 2.182 2.208
1000 2.207 2.233
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Figure 4.7: The energy consumption for HTTP/UDPand TinyCoAP

The energy consumption for all implementation is shown in figure 4.8.
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Figure 4.8: The energy consumption for all implementation
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Chapter Five: Conclusion and Recommendation

5.1 Conclusion

This thesis has been committed to theimplementation and
experimentation of a full-feature of TinyCoAP, which is original library
for TinyOS .in addition to comparing it with the CoAP implementation
distributed with TinyOS, called CoapBlip.
Along the dissertation we have evaluated all the solutions considered.
This experience has allowed us to measure the amount of memory
occupied at compile time, the latency practiced by a client when
retrieving information from a server, and the energy consumed when
replying to the client. HTTP is used with different solutions for the
transport layer. Constant attention has been devoted to UDP and TCP
connections. We denote to each of these solutions as HTTP/TCP and
HTTP/UDP.
The best performance is introduced by TinyCoAP in the most of the
considered parameters. In particular, TinyCoAP offer an important
enhancement in performance compared with CoapBlip. The
performance of CoapBlipis restricted by using the dynamic RAM
memory allocation and the use of an external C library. TinyCoAP
uses static allocation, so it is able to reach a high code optimization and
to reduce the effect over the memory of WSN nodes
Results show that using the HTTP in WSNs produces high latency
incomparison with using the CoAP protocol. The main cause is that
HTTP uses the TCP protocol that uses several messages to establish a
TCP connection.

In conclusion, TinyCoAP approve that it is a complete and flexible

CoAP-based solution for integrating the Web communication paradigm
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in TinyOS based WSNs. TinyCoAP fixes the problems founded in
CoapBlip, and can improve performance considerably and to minimize

the power consumption.

5.2 Recommendation

A further evaluation of the TinyCoAP implementation must be done in
a real environment and simulation in order to investigate its performance
in networks with higher number of nodes and parameter.Furthermore a
CoAP-HTTP proxy must be design and implement to support
applications that need to interact with WSN nodes. This could cause an
unnecessary communication overhead and a resultant increase of latency

and network traffic.
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