
I

 الآیة

 بسم الله الرحمن الرحیم

 ُِیمُ الْحَكِیم نتَ الْعَل َ َّكَ أ ن ِ اَ إ َّمْتنَ ِلاَّ مَا عَل اَ إ َن كََ لاَ عِلْمَ ل ُواْ سُبْحَان َال ق

)٣٢(سورة البقرة

II

Dedication

I dedicated this thesis To:

The sake of Allah, my Creator and my Master,

School of Electronics Engineering Sudan University of Science and

Technology,

My parents: words are just not expressive enough; they introduced me to

the joy of reading from birth enabling such a sudy to take place today,

My brothers, sister and my best friends without them none of my success

will be possible,

My beloved kid: Dania who I can't force myself to stop loving her,

All the people in my life who touch my heart,

I hope this will be a source inspiration and motivationfor all whom

watching my presentation.

III

Acknowledgement

All praise and thanks to ALLAH, who provided me the ability to

complete this work. I am thankful of my mother and my family who is

always support and help me the whole years of study. I hope I can give

that back to them.

I would like to express my special appreciation and thanks to my advisor

Dr. SALAH EDAM being such an inspiring person to work with and

great thanks forencouraging my research and allowing me to grow as a

research scientist. Your advice on both research as well as on my career

have been priceless. I would also thank my co-supervisor Dr.SaraAljak

for her support.

IV

Abstract

The Constrained Application Protocol (CoAP) is used with TinyOS

which called TinyCoAP to give the same features of HTTP while

keeping a simple design and low overhead. TinyOS already have another

implementation of CoAP in its distribution called CoapBlip.However,

it’s a library doesn't meet the requirements ofTinyOS.TinyCoAP and

CoapBlip are evaluated using Avrora and TOSSIM simulations, as well

as implementations based on HTTP. The evaluation is performed in

terms of latency, memory occupation, and energy consumption. It shows

that TinyCoAPhas the best performance in most parameters comparing it

with other implementations.

TinyCoAP shows important development in performance compared with

CoapBlip which is limited by the implementation of dynamic RAM

memory allocation and the use of an external C library. HTTP/TCP has

the worst performance than that obtained by TinyCoAP. The

performance of TinyCoAP is same as HTTP/UDP but with high

reliability.

V

 مستخلص

ویسمى TinyOSنظام التشغیل قد استخدم مع) CoAP(بروتوكول التطبیقات المقیدة

وقلة مع الاحتفاظ مع ببساطةالتصمیم HTTPخصائص لاعطاء نفس TinyCoAPببرتوكول

ومع ذلك، فان CoapBlipیدعى CoAPلدیھ تطبیق آخر لبرتوكول TinyOS. الحمولھ

 بالإضافة إلى تطبیقات CoapBlipوTinyCoAPتقییم تم. TinyOSمكتبتھ لا تلبي احتیاجات

HTTP باستخدام برامج المحاكاةAVRORA وTOSSIM . من التطبیقات من كل تمتقییم

 لدیھ TinyCoAPولقد اظھر التقییم ان . حیث زمن التاخیر واستقلال الذاكرة واستھلاك القدرة

 .خرىالمعاملات مقارنة مع التطبیقات الا أفضل أداء في معظم

التي تحد من تنفیذه دینامیكیة CoapBlipتطورا ھاما في الأداء مقارنة مع TinyCoAPأظھر

فلدیھ أسوأ أداء من HTTP /TCPأما.الخارجیةCواستخدام مكتبة RAMتخصیص الذاكرة

تقریبا لكن HTTP/ UDP ھو نفس أداء TinyCoAPان أداء .TinyCoAPالتي حصل علیھا

 .بوثوقیة عالیة

VI

List of Contents
 I......……………………………………………………………………الآیة

Dedication……………………………………………………………….II

Acknowledgement……………………………………………………...III

Abstract...IV

 V…………………………………………………………………المستخلص
List of Contents...Vi

List of Tables …………………………………………………….......Viii
List of Figures….……...……………………………………………..VIII

Abbreviations and cronyms...X

Chapter One: Introduction…...…………...………………………….…..1

1.1 Overview1

1.2 Problem Statemen………………………………………….………....3

1.3 Proposed Solution……...………………………………….…………3

1.4 Objectives……………………………………………………………4

1.5 Methodology…...…………………………………………………....4

Chapter Two: Background And Literature Review6

2.1 Background:6

2.1.1 Wireless Sensor Network(Wsn) ...8

2.1.2 WSN Protocols...…………………………………………….....9

2.2 Literature Review: .. 14

Chapter Three: Constrained Application Protocol……………………..17

3.1 Constrained Restful Environments (Core) 17

3.2 Application Protocols And Formats: ... 18

3.3 Constrained Application Protocol (Coap) 19

3.3.1 Coap Structure Model ...……………………………………...20

3.3.1.1 Request/Response Layer Model 21

3.3.1.2 Message Layer Model ... 24

VII

3.3.1.3.CoAP Message Format: .. 26

3.3.1.4.Options: .. 28
3.4 CoAP URIs Scheme ..……………………………………………...30

3.5 Caching .. 31

3.6Implementation:... 32

3.6.1Structure of theLibrary…………….…………………………..33

3.6.2 RAM MemoryAllocation ..….…..……………………………35

3.6.3 DataStructure.……………………..……………………….….36

3.6.4 Tools………...…………………………………………….…..38

3.6.5 Test bed…………...…………………………………………..40

ChapterFour: ResultsandDiscussion .…………..……..………………41

4.1 Results………………………………………...……………...…….41

4.1.1Memory Occupation………….………………………………..41

4.1.2Latency ..……………………………………………..……….42

4.1.3 Energy Consumption ………………...……….…..…………47

Chapter Five: Conclusionand Recommendation…..………………….53

5.1 Conclusion ……………………………………………………...….53

5.2 Recommendation ..…………………………………………………54

Reference………….……………………………………………………55

VIII

List of Tables

Table 3.1: CoAP message Options .. 30

Table 3.2: Relation between CoAP response codes and caching 32

Table 3.3: CoAP PDU structures ... 38

Table 4.1: ROM and RAM memory Occupation 42

Table 4.2: The latency of HTTP/TCP and TinyCoAP 44

Table 4.3: The latency of HTTP/UDP and TinyCoAP 45

Table 4.4: The latency of CoapBlip and TinyCoAP 46

Table 4.5: The energy consumption of HTTP/TCP and TinyCoAP 48

Table 4.6: The energy consumption of CoapBlip and TinyCoAP 50

Table 4.7: The energy consumption of HTTP/UDP and TinyCoAP 51

IX

List of Figures

Figure 2.1: Example of a Wireless Sensor Network (WSN). 9

Figure 2.2: The wireless sensor network protocol stack 11

Figure 3.1: The CoAP Interaction model .. 20

Figure 3.2: Abstract Layering of CoAP .. 21

Figure 3.3: The response of GET method ... 22

Figure 3.4: GET request with a separate response 22

Figure 3.5: A Request and a Response Message 23

Figure 3.6: CoAP reliable message transmission 26

Figure 3.7: Unreliable message Transport .. 26

Figure 3.8:CoAP Message Format .. 27

Figure 3.9: Option format fields in CoAP message format 28

Figure 4.1: Latency for HTTP/TCP and TinyCoAP 44

Figure 4.2: Latency for HTTP/UDP and TinyCoAP 45

Figure 4.3: Latency for CoapBlip and TinyCoAP 46

Figure 4.4: Latency for all implementation ... 47

Figure4.5: Energy consumption of HTTP/TCP and TinyCoAP 49

Figure 4.6: Energy consumption for CoapBlip and TinyCoAP 50

Figure 4.7: Energy consumption for HTTP/UDP and TinyCoAP 52

Figure 4.8: Energy consumption for all implementation 52

X

Abbreviations and acronyms

For the purposes of the present document, the following abbreviations

and acronyms apply:

6LoWPAN IPv6 over Low Power Networks

IoT Internet of Things

CoAP Constrained Application Protocol

CoAP ACK CoAP acknowledgment

CoRE Constrained RESTful Environments

CON CoAP confirmable message

DTLS Datagram Transport Layer Security

EBHTTP Embedded Binary HTTP

ETSI European Telecommunications Standards Institute

EXI Efficient XML Interchange

HART Highway Addressable Remote Transducer

HTTP Hypertext Transfer Protocol

IEFT Internet Engineering Task Force

IP Internet Protocol

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

LOWPAN Low Power Wireless Personal Area Network

LR-WPAN Low-Rate Wireless Personal Area Network

XI

LTP Lean Transport Protocol

M2M Machine-to-Machine

NON CoAP non-confirmable message

P2P Point to Point

QOS Quality Of Service

REST REpresentational State Transfer

RST CoAP reset message

SOAP Service Oriented Application Protocol

TCP Transport Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

WG Working Group

WoT Web of Things

WSN Wireless Sensor Network

XML Extensible Markup Language

1

Chapter One: Introduction

1.1 Overview

The importance of industries and researchers in the application of the

Internet communication model in constrained networks and devices has

developed to become one of the most hopeful developments in the

Internet of the future. Most of works are being achieved to enable the

using of standard and well-known protocols for interaction with WSNs.

In most applications using web services on the Internethas been

ubiquitous, and depends on the fundamental Representational State

Transfer (REST) architecture of the web [1].

In particular, a great deal of effort has been focused on the integration of

Wireless Sensor Networks (WSNs) and the Internet. The main interest in

making WSNs part of the Internet is to allow both to interact with each

other using the existing Web technologies. From this point of view,

WSNs would no longer be stand-alone networks but part of ubiquitous

networks. That refers to this new approach as the Web of Things

(WoT)[2].

There are hard works in the Internet of Things (IoT) to reuse Internet

technologies to integrate WSNs into existing Internet infrastructure.

Wireless Sensor Networks used to communicate via their own tools and

technologies, often with proprietary protocols for separated applications.

The necessary componentto enable efficient using of IP protocol in the

constrained nodes and networks in the area of WSN isthe IPv6 over Low

power Personal Area Networks (6LoWPANs), the adaptation layer[3] .

Using IP in WSNs is the first step towards the achievement of the

WoT.it holds many opportunities for reasons of direct communication

with WSNs. But the standard IP-Stack implementations cannot be directly

adapted for the use in WSNs.In this sense, the 6LoWPANs protocol is a

2

IP-like but with a lighter weight which can be deployed in WSNs.

6LoWPAN enables the transmission of IPv6 packets in networks

adopting the IEEE 802.15.4 standard [4]. The Internet Engineering Task

Force (IETF)specific work group has detailed its definition in RFC 6282.

6LoWPAN has accelerated the integration of Wireless Sensor Networks

(WSNs) and smart objects with the Internet.

In traditional Internet Web services using HTTP have demonstrated to be

essential in enabling interoperable communications between computers.

Although RESTful paradigm is suitable for low power embedded

networks, the protocols and payload formats used to realize them are not

completely usable (too much overhead of HTTP, TCP performance over

lossy links, pull model inappropriate for sleeping nodes, complexity of

XML)[3].

REST architectures allow IoT and Machine-to-Machine (M2M)

applications to be developed on top ofshareable and reusable web

services. The sensors become abstract resources identified by

URIs,represented with arbitrary formats and manipulated with the same

methods as HTTP[5]. As a consequence, RESTful WSNs drastically

reduce the application development complexity. The functionalities and

consequently of RESTful web service makes the integration of WSNs

and smart objects with the Web is possible [3]. The use of Web services

on top of IP based WSNs facilitates the software reusability and reduces

the complexity of the application development [6].

The Internet Engineering Task Force (IETF) Constrained RESTful

environment (CoRE) Working Group has done major standardization

work for introducing the web service paradigm into networks of smart

objects. The CoRE group has defined a REST based web transfer

protocol called Constrained Application Protocol (CoAP). CoAP is

designed to present simplicity, low overhead and M2M communication

which is necessary to enable interaction with embedded objects in the

3

IoT[3].CoAP includes several HTTP functionalities re-designed for

small embedded devices such as sensor nodes. In order to make the

protocol suitable to IoTand M2M applications, various new

functionalities have been added [7].

The CoAP protocol recent research mainly concentrate on evaluating the

performance presents by the multiple features of protocol, comparing

CoAP with HTTP and REST based approaches, discussing the network

auto-configurationcapabilities offered by CoAP, analyzing the scalability

and implementation possibilities in the Internet of Things concept. There

are already number of CoAP implementations and applications for

investigating and development purposes available. These are present on

different platforms and languages (as CoAP standardization is still not

complete, their development is also in progress): generic Libcoap for C

language, TinyOSand Contiki OS implementations, jCoAP and

Californium for Java, CoAPy for Python, Copper CoAP browser plug-in

for Firefox or HTTP-CoAP Bridge and browser for Android[3].

1.2 Problem Statement:
The Internet protocol (IP) protocol is heavy for tiny devices, the

communications between WSNs and the Internet became possible due to

the standardization of IPv6 over Low-power Personal Area Networks

(6LoWPANs). The definition of 6LoWPAN protocol has provided the

necessary IP capabilities to WSN allowing interoperability with external

IP networks. However, 6LoWPAN does not enable integration at upper

layers. The commonly used HTTP fails to meet WSN requirements due

to its high complexity and over-head, as a result. Therefore, this works

focus in how the integration will be in upper layers.

1.3 Proposed Solution:

4

To solve compatibility problems, the CoAP application protocol is

presented and evaluated in order to provide a solution for upper layers in

WSNs, which takes into account the main characteristics of these

networks. So, to make complete integration the 6LoWPAN protocol is

used in lower layers and CoAP application protocol will be in upper

layer. Then CoAP application protocol will be evaluated in terms of

power consumption, latency, memory occupation and compared to

HTTP.

1.4 Objectives

 Provide a comprehensive analysis of the functioning of CoAP

including an evaluation of the reliability mechanism.

 Propose and develop a CoAP implementation for the TinyOS

operating system .

 Test and evaluate CoAP and HTTP ,the evaluation is performed in

terms of latency, memory occupation, response time and energy

consumption

1.5 Methodology:
In the first phase of this research, describe the major functionalities of

CoAP highlighting the differences with HTTP. In Second phase all

features of CoAP application protocol for constrained devices has

beendiscussed. It also shows how this protocol works.

In the last phase of this research, test and evaluate CoAP

implementationon TinyOS operating system in term of latency, memory

occupation and energy consumption and compare the result with HTTP.

5

1.6 Thesis outlines :
The rest of the research is organized as follows:

Chapter Two: Background and Literature review

This chapter analyses current state of art of fundamental concepts of

WSNs, its application classes followedby an overview of related work.

Chapter Three: Constrained application protocols

This chapter gives the basic concepts and background for integrating

WSN with other networks using web services .Web service integration

WSNs nodes uses CoAP protocols in the application layer and UDP in

the transport layer. In order to make them compatible, some kind of

translation must be made.So this chapter presents the CoAP application

protocol and explains how this protocol works and all its features. Then it

shows the detailed operations and scenarios for both HTTP and CoAP.

Chapter Four: Results and Discussion

This chapter provides the implementation details of a CoAP protocol.It

discusses the possible simulators to implement this technique and why

the Avrora and TOSSIM simulators are selected. Then, it gives details of

possible operating system to implement this protocol and why the

TinyOS operating system is selected.

Chapter Five: Conclusion and Recommendation

 This chapter summarizes the conclusions of the conducted research and

presents directions for future work. In the appendix, details for installing

TinyOS and its extensions are presented.

6

Chapter Two: Background and Literature Review

2.1 Background:

In some applications, using wired networks for controlling the

environment is usually unpractical and costly. For this reason, it is

interesting to create low-cost network architectures that give mobility to

its terminals. In this sense, the deployment of Wireless Sensor Networks

(WSNs) is a good solution.

 A WSN consists of distributed autonomous sensors able to monitor

physical or environmental conditions and to cooperatively send their data

through the network to a main location .These networks are composed of

hundreds of low-power and low-cost devices that are characterized by

having constrained resources, limited operational capabilities and a short

communication range [8]. These constraints are the critical aspects that

influence the choice of a protocol stack. A widely-used protocol for the

physical and link layers is IEEE 802.15.4. When a WSN uses this

standard, it is called a Low Power Wireless Personal Area Network

(LoWPAN).

In low layers of WSNs, IEEE 802.15.4 is being a standard. However,

many problems arise when interconnecting different WSNs or sensor

nodes from different manufacturers. As a result of growing interest of

these networks, many solutions that restricted the possibility to

interconnect and integrate various WSNs are developed. An existing and

well-known protocol such as IP is using as a solution to solve this

problem. But because of the highly constrained requirements, it was

considered impractical

New developments show that it is possible to use efficient IPv6

communications over IEEE 802.15.4 links presenting an adaptation

7

layer. The out coming protocol stack Known as IPv6 over Low Power

Wireless Personal Area Networks (6LoWPAN) [9].

Enabling IP on constrained devices has several advantages; WSNs can

be connected to external IP networks without needing intermediate

gateways. Furthermore, all knowledge from IP-based networks can be

reused, avoiding the conception of new tools for managing, configuring

or diagnosing these networks. IP connectivity would also allow a crucial

creation in the Internet field. In this perspective, Internet would be a

network with embedded objects that would be able to dealing with

information and interact with their environment. This new concept is

referred as the so-called Internet of Things. A key aspect to completely

integrate these networks is to extend the actual Web architecture to

WSNs. Furthermore, sensor nodes can be treated as any other Web

resource that would be accessed using standard Web mechanisms. This

new approach is known as Web of Things [10] .

The implementation of Web services in these networks must be

supported on an architectural style adapted to WSNs requirements. Also,

the implementation should reuse and adapt existing protocols and avoid

the innovation of new ones in order to avoid interoperability problems.

An IETF work group called Constrained RESTful Environments (CoRE)

has been established with the goal of participating to the development

and standardization of RESTful Web services for constrained networks.

With this sense, the work group defined a new Web transfer protocol

called Constrained Application Protocol (CoAP) [11] .

CoAP try to apply the same application transfer paradigm and basic

features of HTTP to constrained networks, while keeping a simple

design and low overhead. Unlike HTTP, CoAP uses UDP as transport

protocol. This choice would enable CoAP to have a low impact on the

limited bandwidth of the 802.15.4 wireless links. However, since UDP is

8

an unreliable protocol, CoAP has to implement its own mechanisms in

order to guarantee reliability to those applications that use it [6].

2.1.1 Wireless Sensor Network (WSN)

Wireless sensor networks (WSN) are concentrated wireless networks of

small, low-cost sensor nodes, which gather and spread out environmental

data. WSNs make possible monitoring and controlling of physical

environments from remote locations with better precisionthan other

known monitoring systems such as remote sensing. These tiny sensor

nodes leverage the idea of sensor networks based on cooperative effort

of a large number of nodes [6].

Sensor networks represent an important development over conventional

sensors. As they have the ability to route data back by a multi-hop

infrastructure-less architecture to the base station or sink, which is the

entity where information is required.

The most important constraints on sensor networks is the low power

consumption requirement. Sensor nodes carry limited, generally

irreplaceable, power sources. Therefore, while traditional networks want

to get high quality of service (QoS) requirements, sensor network

protocols focus firstly on energy conservation [6].

 In addition to energy-aware techniques, WSN design often employs

some approaches such as, in-network processing, multi-hop

communication, and density control techniques to increase the network

lifetime. Moreover, WSNs should be flexible to failures due to different

reasons such as physical devastationof nodes or energy depletion.

Several challenges still need to be overcome to have ubiquitous

deployment of sensor networks. These challenges include dynamic

topology, devices, heterogeneity, lack of quality of service, application

support, manufacturing quality and ecological issues. These design

9

challenges make sensor networks different from other wireless ad-hoc or

mesh networks. Therefore, the protocols and algorithms have been

proposed for traditional wireless ad hoc networks are not well suited for

WSN [12].

Figure 2.1: Example of a Wireless Sensor Network (WSN).

2.1.2 WSN Protocols:

The sensor nodes can communicate through the wireless medium but

protocols and algorithms offered for traditional wireless ad hoc networks

may not be well fitting for sensor networks. Sensor networks are

application particular, and the sensor nodes work cooperatively together.

In addition, the sensor nodes are energy constrained compared to

traditional wireless ad hoc devices. Thus, the differences between sensor

networks and ad hoc networks should be Knownto provide a general

thought how the WSN protocols will be. The differences between both

networks [13] can be summarized in the following main points:

•The number of sensor nodes in a sensor network can be several orders

of magnitude higher than the nodes in an ad hoc network.

•Sensor nodes are densely deployed.

•Sensor nodes are prone to failures.

10

•The topology of a sensor network changes very frequently due to failure

and duty cycles of nodes.

•sensor nodes mainly use a broadcast communication paradigm whereas

most ad hoc networks are based on point-to-point communications.

•Sensor nodes are limited in power, computational capacities, and

memory.

•Sensor nodes may not have global identification (ID) because of the

large amount of overhead and large number of sensor nodes.

•Sensor networks are deployed with a specific sensing application in

mind; ad hoc networks are mostly constructed for communication

purposes.

A sensor network does not work in separation in functional deployment.

For many considerable applications, however, it is necessary to integrate

these sensor networks to the presented Internet Protocol (IP) networks.

The protocol stack used by sensor nodes is given in Figure 2.2 This

protocol stack combines power and routing realization, integrates data

with networking protocols, connects power-efficiently using the wireless

medium, and supports collaborative efforts of sensor nodes. The protocol

stack consists of the application layer, transport layer, network layer,

data link layer, physical layer, power management plane, mobility

management plane, and task management plane [6].

11

Figure 2.2: The wireless sensor network protocol stack

Application layer:

Various types of application software can be built and used on the

application layer, depending on the sensing tasks. Sensor nodes can be

used for continuous sensing, event detection, event identification and

location sensing. The aim of micro-sensing and wireless communication

of these nodes pledge many new application areas. This results in a wide

range of application layer protocols.

Transport layer:

It helps to take care of the flow of data if the sensor networks application

needs it. In common, the most important objectives of the transport layer

are:

 To bridge application and network layers by application

multiplexing and de-multiplexing.

 To provide data delivery service between the source and the sink

with an error control mechanism.

 To regulate the amount of traffic injected into the network via

flow and congestion control mechanisms.

12

On the other hand, the required transport layer functionalities to

complete these objectives in the sensor networks are due to significant

modifications in order to fitwith unique characteristics of the sensor

network paradigm. For example, classic end-to-end, retransmission-

based error control mechanisms adopted by transport control protocol

(TCP) may not be practical for the sensor network area and for that

reason may lead to loss of limited resources. On the other hand, the

particularobjective of the sensor network also influences the design

requirements of the transport layer protocols. For example, the sensor

networks deployed for different applications may require different

reliability levels as well as different congestion control approaches. As a

result, improvement transport layer protocols is a challenge because the

restrictions of the sensor nodes and the particular application

requirements mostlydecide design principles of transport layer protocols

[14].

Network layer:

The main function of this layer is routing the data given by the transport

layer. Sensor nodes may be spreaddensely in an area to monitor a

phenomenon. Therefore, they may be very close to each other. In such a

situation, multi-hop communication may be a good selection for sensor

networks with strict requirements on power consumption and

transmission power levels. As the sensor nodes missing not much energy

when transmitting a message because the distances between sensor nodes

are shorter. As mentioned before, ad hoc routing techniques already

suggested in the literature do not usually suitablerequirements of the

sensor networks. Therefore, the network layer of the sensor networks is

usually designed according to the following standards:

• Energy efficiency is always an important consideration.

13

• Sensor networks are mostly data centric.

• An ideal sensor network has attribute-based addressing and location

awareness.

•Data aggregation is useful only when it does not hinder the

collaborative effort of the sensor nodes.

•The routing protocol is easily integrated with other networks, e.g.,

Internet.

One of the design principles for the network layer is to allow easy

integration with other networks such as the satellite network and the

Internet. As shown in Figure 2.1, the sinks are the basis of a

communication backbone that serves as a gateway to other networks.

The users may query the sensor networks through the Internet or the

satellite network, depending on the purpose of the query or the type of

application the users are running.

Data link layer:

It is mainly responsible for multiplexing data streams, data frame

detection, medium access, and error control; it make sure a reliable

point-to-point and point-to-multipoint connections in a communication

network. However, the collaborative and application-oriented nature of

the sensor networks and the physical constraints of the sensor nodes,

such as energy and processing limitations, decide the way in which these

responsibilities are achieved[14].

Physical layer:

It is regularlyresponsible for modulation and demodulation of digital

data; this work is executed by transceivers. In sensor networks, the

challenge is to find modulation schemes and transceiver architectures

that are easy, low cost, but still strong enough to introduce the required

service.

14

2.2 Literature review:

A various studies have discussed the application of CoAP in WSNs. In

this section we give details about these works.

Previous work by the authors of [14] offered a CoAP implementation for

Contiki. The aim of this implementation was to obtain high-energy

efficiency by leveraging a radio duty cycling mechanism. The

implementation has been tested in a multi-hop network. The obtained

results have shown that when using a radio duty cycle, energy

consumption is lower but the latency performance is getting worse.

The authors [6] motivated the choice of the REST architecture and the

taking up of the CoAP protocol. We also suggest modifications to an

early format of the protocol and seek possible problems of its

implementation.

In [5], the authors statements a simple comparison of CoAP and HTTP

in terms of energy consumption. This work also presented the design of a

gateway used to communicate a CoAP based WSN to an external IP

network that uses HTTP. In [15], the authors of [5] compared the

performance of CoAP to that of HTTP. The evaluation was done on the

basis of energy consumption and response time. In particular, energy

consumption was evaluated by means of simulation. The response time

was measured in a real WSN. Both experiments were conducted

considering a client querying an embedded server to obtain temperature

and humidity values. The energy consumed was measured according to

the variance of the inter-arrival packet time. The response time was

calculated for the case where the server was at a distance of 1-hop and 2-

hop from the client. The results show that CoAP returns a better

performance in both the evaluation parameters considered by the

authors.

15

A study used CoAP and HTTP on network sensor deployment [16] as

data transport protocol for sensor network reprogramming. The Results

were gained from measuring both protocols over a duty cycled radio

layer through simulation view that CoAP and HTTP present similar

results. In [17], the authors present a framework for M2M

communications using CoAP. They also present an improved

publish/subscribe mechanism also based in CoAP. Both solutions are

evaluated showing the advantage of using CoAP instead of HTTP.

The authors of [18] give an overview of the current CoAP

implementations and present the results of compatibility meeting

organized by the European Telecommunications Standards Institute

(ETSI). In [19], the authors present a CoAP implementation for TinyOS

and the implementation of a compression mechanism of the XML

format. A performance evaluation was carried out considering the CoAP

request success probability as a function of the request rate of the client

node. Furthermore, the authors report results from an evaluation of the

memory occupation of the TinyOS components used in their

implementation. Finally, the authors proved the ability of the XML

compression scheme by studying its processing-time. As previously

commented, this CoAP implementation was developed on top of an

unsupported and limited 6LoWPAN implementation named 6lowpancli

[20]. In particular, as pointed out in [21],[22]6lowpancli provides only

basic work of 6LoWPAN. 6Lowpancli doesn’t support any type of

neighbor discovery mechanism, it is completely static and requires

manual configuration. As reported in [21],[22] the support for mesh

network is not provided and when a packet with different destination

address is received, it is just dropped. The results of a performance

evaluation done in [21] show that 6lowpancli does not perform well in

16

terms of energy consumption and latency. Thereby, its limitation would

affect any implementation build on top of it.

As previously mentioned, CoapBlip is currently included in the latest

distribution of TinyOS. The authors of CoapBlip present its design in

[23]. They evaluated their implementation and compared it to HTTP.

The performance evaluation considers the ROM occupation and the

average response time of CoAP and HTTP. The results of an evaluation

show that CoAP shows better performance than HTTP. In [24],

CoapBlip has been used to evaluate the CoAP protocol in integrations

with other low layer protocols. In this sense, it has been evaluated along

with the Routing Protocol for Low-power and Lossy Networks (RPL)

and the Low Power Listening (LPL) protocol.

17

Chapter Three: Constrained Application protocol

3.1 Constrained RESTful Environments (CoRE)

IETF formed this WG with the main objective of presenting the

Constrained Application Protocol (CoAP), a RESTful protocol

appropriate for constrained environments. The Representational State

Transfer (REST) paradigm donates to designing APIs so that every data

exchange can be done with the GET, POST, DELETE and UPDATE

operations of the HTTP protocol [25].

The work of the CoRE WG has been chartered because of introducing a

web-oriented binary protocol, unsophisticated enough to be handled by

severely restricteddevices, yet simple to map onto HTTP. The reason

behind this approach is driven by the Widespread of HTTP in the Web,

allowing HTTP connection over constrained environments will further

expand its applicability and become ubiquitous. The recently proposed

protocol is attemptingtoobtain this objective defining a binary

representation of REST, which contain the most important and useful

features of HTTP [26].

Next-generation M2M environments are estimated to be the destroyer

application for this protocol: for instance, a lot of consideration has been

devoted to the design of publish/subscribe mechanisms, since this

approach is considered to be key for connecting constrained devices and

evading network congestion. As many spread content-generating

networks, Smart Grids would experience different benefits from a web-

like communication model: in fact, web services are well-known in the

traditional Internet for their applicability to al-most every kind of

application. Following this guideline, the WG is driving the Constrained

18

Application Protocol (CoAP) to be employed for M2M communication,

resulting in a web-compatible standard for M2M applicability [19].

By designCoAP is directly mappable to the current HTTP realization: by

forcing its intrinsic Compatibility, the SG system design can be heavily

simplified, by directly allowing each network device to deal with

standard Internet languages and, at the same time, keeping the energy

and traffic load on the constrained environment low.

3.2 Application Protocols and Formats:

Constrained Application Protocol (CoAP) [10] is at this time being

standard within the CoRE working group of the IETF, which is

introducing a REST–based framework for resource–oriented applications

optimized for constrained IP networks and devices. by enabling this

protocol set, restricted packet sizes, low-energy devices and unreliable

channels are simple to be manage[26].

CoAPis based on the REST architectural style participating the

objectives and the intrinsic limitation listed above. It is designed for

simple stateless mapping with HTTP, and for providing M2M

interaction. HTTP compatibility is obtained by maintaining the same

interaction model, using a subset of the HTTP methods. Nodes

supporting CoAPoffering flexible services over any IP network using

UDP, and they also a strong communication framework to communicate

sensor nodes to the Internet. Any HTTP client or server can deal with

CoAP-Ready endpoints by easy installing a translation proxy between

the two devices. This will not be a load for the proxy, since these

translation processes have been designed not to be time and

computationallyrequirements. Also, CoAPmake as a message layer

between the application protocol and UDP.

19

3.3 Constrained Application Protocol (CoAP)

Although HTTP is widely used with Web Services, it is by no means the

only protocol for M2M communication. The Internet Engineering Task

Force (IETF) Constrained RESTful Environments (CoRE) [27] working

group published the first draft of a RESTful web transfer protocol called

Constrained Application Protocol (CoAP) [28]. CoAP includes several

HTTP functionalities which have been re-designed for M2M

applications over constrained environments on the IoT, meaning it takes

into account the low processing power and constraints of small

embedded devices, such as sensors.

In addition, CoAP provide a number of characteristic that HTTP lacks,

such as built-in resource discovery, IP multicast support, and

asynchronous message exchange. There are many implementations of

CoAP in various languages, such as libcoap1 (an open source C-

implementation) and Sensinode’sNanoService.The summary of the main

features addressed by CoAP are [28]:

• Constrained web protocol fulfilling M2M requirements.

• UDP binding with optional reliability, supporting unicast and multicast

requests.

• Asynchronous message exchanges.

•Native push model

• Small header overhead and parsing complexity.

• URI and Content-type support.

• Simple proxy and caching capabilities.

• Ability to operate with cyclic sleeping nodes, asynchronous message
exchanges [29].
• A stateless HTTP mapping, allowing proxies to be built providing

access to CoAP resources via HTTP in a uniform way or for HTTP

simple interfaces to be realized alternatively over CoAP.

20

• security binding to Datagram Transport Layer Security (DTLS).

3.3.1 CoAP Structure Model

The interaction model of CoAP in figure 3.1is similar to the client/server

model of HTTP. However, machine-to-machine interactions typically

result in a CoAP implementation acting in both client and server roles.

Figure 3.1: The CoAP Interaction model
A CoAP request is comparable to that of HTTP, and is sent by a client to

request an action (using a method code) on a resource (known by a URI)

on a server. The server then sends a response with a response code; this

response may contain a resource representation.

Unlike HTTP, CoAP deals with these interchanges asynchronously over

a datagram-oriented transport such as UDP.

 This is done logically using a layer of messages that supports optional

reliability (with exponential back-off). CoAP is organized in two layers

as shown in figure 3.2 ,the transaction layer handles asynchronous nature

of a single message exchange between two points and used to deal with

UDP. The Request/Response layer is responsible for the

requests/response transmission using Method and Response codes and

for the resource manipulation. CoAP is however a single protocol, with

messaging and request/response just features of the CoAPheader.

The dual layer approach allow CoAP to provide reliability mechanisms

even without TCP as transport protocol [30],[7].CoAP defines four types

of messages: Confirmable, Non-confirmable, Acknowledgement, Reset;

method codes and response codes included in some of these messages

21

make them carry requests or responses[11]. The basic exchanges of the

four types of messages are somewhat orthogonal to the request/response

interactions; requests can be carried in Confirmable and Non-

confirmable messages, and responses can be carried in these as well as

piggy-backed in Acknowledgement messages.

Figure 3.2: Abstract Layering of CoAP

3.3.1.1. REQUEST/RESPONSE LAYER MODEL

The CoAP client/server interaction model, depicted in Figure 3.1,

assesses that CoAP requests are sent by clients in order to request an

action on a resource of the server. After the request elaboration, the

server sends back a CoAP response containing an appropriate response

code and optionally a resource representation.

After receiving a request, a server responds with a CoAP response. There

are three types of responses:

• Piggy-backed: The response is carried directly in the acknowledgment

message. The response is returned in the acknowledgment message

independently of whether the response indicates success or failure as in

figure 3.3.

22

 Client Server Client Server
 | | | |
 | CON [0xbc90] | | CON [0xbc91] |
 | GET /temperature | | GET /temperature |
 | (Token 0x71) | | (Token 0x72) |
 +----------------->| +----------------->|

 | | | |
 | ACK [0xbc90] | | ACK [0xbc91] |
 | 2.05 Content | | 4.04 Not Found |
 | (Token 0x71) | | (Token 0x72) |
 | "22.5 C" | | "Not found" |
 |<-----------------+ |<-----------------+
 | | | |

Figure 3.3: The successful and failure response results of GET method

• Separate: In some cases, it may not be possible to return a response

immediately. In order to avoid packet retransmission, the server sends an

ACK to promise the client it will process the request. When the server

finally processes it, then a CON message is sent as in figure 3.4.

Client Server
| |
| CON [0x7a10] |
| GET /temperature |
| (Token 0x73) |
+----------------->|
| |
| ACK [0x7a10] |
|<-----------------+
| |
... Time Passes ...
| |
| CON [0x23bb] |
| 2.05 Content |
| (Token 0x73) |
| "22.5 C" |
|<-----------------+
| |
| ACK [0x23bb] |
+----------------->|
| |

Figure 3.4: GET request with a separate response

23

• Non-confirmable: If the request is not confirmable, then the response

is also not confirmable as shown in fig 3.5. A response is identified by

the Code field in the CoAP message header. There are three code

classes:

• Success (2.x). The request was successfully received, understood, and

accepted

• Client Error (4.x). The request has bad syntax or cannot be fulfilled.

• Server Error (5.x). The server failed to fulfill an apparently valid
request.

Response codes are designed to be extensible. If one of them is not

recognized, then it must be treated as a being equivalent to the generic

Response Code of that class.

Client Server
| |
| NON [0x7a11] |
| GET /temperature |
| (Token 0x74) |
+----------------->|
| |
| NON [0x23bc] |
| 2.05 Content |
| (Token 0x74) |
| "22.5 C" |
|<-----------------+
| |

Figure 3.5: A Request and a Response Carried in Non-confirmableMessages

CoAP Methods:

The client request contains a method that specifies the action requested,

an unique identifier of the server resource called Uniform Resource

Identifier (URI) and optionally a payload containing meta-data about the

request. The CoAP standard defines four different methods:

• GET: retrieves an information representation of the resource.

24

• POST: carries an information representation and asks the receiver to

process it. The output depends on the target resource, usually involving

resource creation or update.

• PUT: requests an update operation of the resource identified by the

request URI with the carried information representation.

• DELETE: causes the deletion of the resource identified by the request

URI.

Upon reception of the request, the server elaborates it and, if no errors

occur, sends back to the client its response containing a response code

that indicates the result of the request process. Response codes are

divided into three classes 2.xx (Success),4.xx (Client Error) and 5.xx

(Server Error) as it had mentioned before.

The fraction of the response code just denoted with xx does not have any

categorization role: it gives instead additional details of the output of the

request process. For example, the most common HTTP response code is

the 404 or not found error, which indicates that the client request was

correct but the server was not able to find the resource pointed by the

URI field. The matching between requests and responses is achieved by

means of a token, that is an unique identifier of any request/response

couple between two specific endpoints. This field is included on every

CoAP request as well as in every CoAP response.

3.3.1.2. MESSAGE LAYER MODEL

As CoAP is bound to the non-reliable protocol UDP, it implements a

lightweight reliability mechanism trying to recreate TCP. The main

characteristics are:

• Simple stop-and-wait retransmission reliability with exponential back-
off.
• Duplicate message detection.
• Multicast support.

25

CoAP defines four types of messages: Confirmable, Non-Confirmable,

Acknowledgement, Reset. The exchange of messages is orthogonal to

the request/response interactions [31]. Requests can be carried both in

Confirmable and Non-Confirmable messages. Responses can be carried

equally in Confirmable and Non-Confirmable messages, but also piggy-

backed in Acknowledgement messages, CoAP type messages are:

• Confirmable (CON): This message is sent when a reliable

transmission is needed. The protocol guarantees that the message will

not be lost within certain conditions. Because messages are transported

over UDP, the reliability is accomplished with packet retransmission if a

response is not received in a given time out[11]. It increases

exponentially with every new retransmission and, thus, provides a simple

congestion mechanism. The packet will be lost if the maximum number

of retransmissions is reached.

• NON-Confirmable (NON): This message is sent if a reliable

transmission is not needed. It is useful for requests that are sent

regularly. This message may carry a response for a NON request.

• Acknowledge (ACK):This message carries a response to acknowledge

a CON request. This type of messages may carry response data or not. In

the first case, the response is called piggy- backed response and in the

second case separate response. The second one is used when the server

cannot process the request immediately but promises that it will be

processed.

• Reset (RST): This message indicates that a CON messages has arrived
but there is no context to process it.

26

CoAP message reliability

A reliable transmission is started marking a packet as confirmable.A

recipient must acknowledge such message with an acknowledge message

or reject it with a reset message. The sender transmits the CON message

at exponential increasing intervals until receives an ACK, RESET or it

runs out of attempts. For each time out expired, the time out is doubled,

as shown in figure 3.6 [12] .

Client Server
| |
| NON [0x01a0] |
+----------------->|
| |

Figure 3.6: CoAP reliable message transmission

The recipient should acknowledge each duplicate copy of the CON

message using the same ACK but it should process any request or

response only once. It should ignore any duplicates and process the

message only once.

Figure 3.7shows an example of unreliable CoAP transmission message.

A message is not acknowledged or rejected. If recipient lacks the context

to process the message, the message must be simply ignored. The

recipient must be prepared to receive the same message multiple times.
Client Server

| |
| NON [0x01a0] |
+----------------->|
| |

Figure 3.7: Unreliable message Transport

3.3.1.3. CoAP Message Format:

27

The figure 3.8 shows how a CoAP message. It has three different parts

which are transported over an UDP packet:

• CoAP header: Provides basic information to recognize the CoAP

version, the type of message, a message code and a message identifier. It

also provides information to parse the message.

• CoAP options: Are used to provide parameters needed to fulfill
requests.
• CoAPpayload : Contains the message body.

The CoAP header has the following fields:

• Version (Ver): Indicates the CoAP version number. Implementations

of this specification MUST set this field to 1.

• Type (T). Indicates the message type: CON, NON, ACK or RST.

• Option Count (OC): Indicates the number of options after the header.

If OC set to 0, there are no options and the payload (if any) immediately

follows the header.

• Code: Indicates if the message carries a request (code values from 1 to

31) or a response (code values from 64 to 191), or is empty (0). (All

other code values are reserved.) In case of a request, the Code field

indicates the Request Method; in case of a response a Response Code.

• Message ID: Used for the detection of message duplication, and to

match messages of type ACK/RST and messages of type CON.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Ver| T | TKL | Code | Message ID |
+-+
| Token (if any, TKL bytes) ...
+-+
| Options (if any) ...
+-+
|1 1 1 1 1 1 1 1| Payload (if any) ...
+-+

Figure 3.8:CoAP Message Format

28

3.3.1.4. Options:

Options are identified by an option number. Odd numbers indicate

critical options and even numbers elective options. Figure 3.9 shows the

option format. Options fields are:

Figure 3.9: Option format fields in CoAP message format.

• Option Delta: 4-bit unsigned integer. It indicates the difference

between the option Number of the current option and the option number

of the previous option.

• Length: 4-bit unsigned integer. It indicates the length of the option

Value. When this field is set to 15 an 8-bit unsigned integer is added

allowing lengths ranging from 15 to 270 bytes. Options can be critical or

elective. The difference is how an unrecognized option is handled in an

end-point:

• Elective: Must ignore messages with unrecognized options.

• Critical: That occur in a CON message request must cause the return

of 4.02 response code.

• Critical: That occur in a CON message response and in a NON

message must silently ignore the message. There are several types of

options:

29

• Token: It is used to match a response with a request. Every request has

a client-generated token which the server must echo in any response.

• Uri-Host: It specifies the Internet host of the resource being requested.

The default value is the IP literal representing the destination IP address.

• Uri-Port: It specifies the port number of the resource. The default

value is the destination port.

• Uri-Path: It specifies one segment of the absolute path to the resource.

• Uri-Query: It specifies a query string.

• Proxy-Uri: It is used to make a request to a proxy. The proxy is

requested to forward the request or service it from a valid cache and

return the response.

• Content-Type: It indicates the representation format of the message

payload given as a numeric value.

• Accept: It indicates when included one or more times in a request, one

or more media types, each of which is an acceptable media type for the

client, in the order of preference.

• Max-Age: The maximum time a response may be cached before it

must be considered not fresh. When included in a request, it indicates the

minimum value for the maximum age of cache response the client will

accept.

• E-Tag: In a response, provides the current value of the entity-tag for

the enclosed representation of the target resource. An entity-tag is

intended for use as a resource-local identifier for differentiating between

representations of the same resource that vary over time.

• Location-Path and Location-Query: It indicates the location of a

resource as an absolute path URI. It can be included in a response to

indicate the location of a new resource created with POST.

30

• If-Match: It may be used to make a request conditional on the current

existence or value of an ETag for one or more representations of the

target resource.

• If-None-Match: It may be used to make a request conditional on the

non-existence of the target resource. If-None-Match is useful for

resource creation requests, such as PUT requests, as a means for

protecting against accidental overwrites when multiple clients are

reacting in parallel on the same resource.

Table 3.1 :CoAP message Options

C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

3.4 CoAP URIs Scheme

CoAP uses the “coap” and “coaps” URI schemes (compared to the “http”

and “https” URI schemes respectively) for identifying CoAP resources

and to provide a means of locating the resources. The URI support in a

CoAP server is simplified as the client already parses the URI and splits

it into host, port, path and query options (uri-host, uri-port, uri-path, uri-

query), making use of default values for efficiency. The options encode

the different components of the request URI in a way that no percent-

31

encoding is visible in the option values and that the full URI can be

reconstructed in any involved endpoint [3].Here's an example of a

CoAPURI:

coap://[fe80::c30c:0000:0000:0002]:5683/HelloWorld .

Here, “[fe80::c30c:0000:0000:0002]” is the host IPv6 address, “5683”

the default UDP port number used for CoAP resources and

“HelloWorld” the resource representation asked by client to obtain.

3.5 Caching

Nodes can cache their responses in order to reduce the response time and

network bandwidth consumption on future. Unlike HTTP [21], caching

of the CoAP responses does not depend on the request method, but on

the particular response code [31] equivalent requests. The goal of

caching is to reuse a prior response message to satisfy a current request.

Table 3.1 shows which response codes can be cached and the relation

between caching and the response codes. A node must not use a stored

response unless:

• The request method and the one used to obtain the stored response

must match.

• All options match between those in the presented request and those of

the request used to obtain the stored response.

• The stored response is either fresh or successfully validated. There are

two ways to decide if a cache can be used to satisfy a request:

•Freshness model: The mechanism for determining freshness is for an

origin server to provide an explicit time in the future using Max-Age. In

this way, If an origin server wants to prevent caching it must explicitly

include a Max-Age option with a value of zero seconds. If the client has

32

certain influence in the freshness calculation it can include a Max-Age

option in a request [32].

• Validation model: When an end-point has one or more stored

responses for a GET request but it cannot use any of them, it can use the

E-tag option in the GET request to give the origin server an opportunity

to both select a stored response to be used and to update its freshness.

Each stored response has an entity-tag that should be sent to the server

via an E-tag option. The server response 2.03 (Valid) indicates that the

stored response identified by its E-tag option can be reused. For any

other response, it should be used to satisfy the request.
Table 3.2: Relation between CoAP response codes and caching.

3.6 Implementation:

TinyOS is an OS for WSNs designed to meet the requirements of

constrained networks and devices. It is composed by a set of reusable

components that can be used to build specific applications. TinyOS is

implemented in the NesC language [31]. NesC is a C dialect designed to

improve code efficiency and robustness in embedded software

applications [33]. Through its simplicity, NesC is able to reduce RAM

occupation, code size, and prevents low-level bugs. The programming

model of TinyOSis also based on this language. Besides NesC, TinyOS

allows using more complex languages such as Java, Python or C. In

particular, C code can be embedded in NesC programs or can be used to

build libraries for TinyOS. As we will explain later in this section, a

33

TinyOS based WSN can achieve better performance and be more

reliable when using exclusively NesC. The design philosophy of

TinyCoAP follows the principles of the TinyOS programming model.

The code is structured in TinyOS components and the use of external

libraries is avoided. TinyCoAPis completely written in NesC. The rest of

this section focuses on the memory allocation system, library and the

data structures of TinyCoAP.

3.6.1 Structure of the Library

TinyCoAPis designed behind the aim that better performance and

reliable run-time execution are both executed integrating it with the OS

core libraries. It presents a CoAP library native for TinyOS. Using these

design characteristics, the core functionalities of CoAPare offered as

TinyOS components. These components are improved as part of the

TinyOS network library.Not like TinyCoAP, CoapBlipis thought as an

adaptation of a C library for generic embedded systems. A TinyOS

component is employed as an adapter between this library and the

TinyOS application. TinyCoAP bases completely on code developed in

the NesC language and evade using external C libraries. This allows

obtaining a high code optimization and having less effect on the WSN

node memory. These benefits derive mainly from the different

organization and functioning of C and NesC programs. Typical C

programs are composed by functions that are specified in separated files.

These are compiled separately and then linked together by matching

global name of functions. The interaction between them is achieved

dynamically during run-time by using function pointers. Pointers are

stored in the RAM memory and therefore cause a growth of its

occupancy. In contrast with C, TinyOS programs are considered as a set

of components connected together to carry out a specific task. These

34

interact between each other using the interfaces that they offer.

Applications occur at compile-time which components they use and

then, they apparently wire the interfaces they will use at run-time.

Thanks to this static wiring, TinyOS programs keeps away from using

function pointers and therefore they are capable to decrease the RAM

memory footprint. The TinyCoAP library is consistsof five components.

Its design follows the CoAP principals layering. The message layer is

implemented by three components. CoapPDU, where PDU set for

Protocol Data Unit, is the important component of this sub-layer. It

introduces the interface used to create, read and write CoAP packets. The

interface require to create or delete options is offered by the CoapOption

component. The creation, use and organization of the linked lists

areachieved by the interface offered by the CoapList component. Linked

lists are useful for repeating the packets that are in the memory pool

waiting for being processed. CoapList is also used to laying up and

repeat the options that contain a packet and to control retransmissions.

CoapPDUis wired to CoapList and CoapOption. This enables CoapPDU

to deal with the options composed in a CoAP packet. additionally, each

element of the message layer is wired to the TinyOSPoolC component.

This is used to assign the memory required to complete their operation.

PoolC specifies memory corresponding to the data structure that is

identified by each component. The wiring of the message layer

components. The request/response matching layer of CoAPis carried out

by the CoapServer and CoapClient components. CoapClient introduces

the interface used to send CoAP requests. The interface introduced by

CoapServer enables initializing and connecting the server to a particular

UDP port. The retransmission technique and the CoAP packet

development are also achieved by these components. CoapServer

executed the discovery of CoAP resources [34] and the observe option of

35

CoAP. The management of the resources presented by the server is

performed in anindividual interface. The resources are generated through

a parameterized interface. This is calledCoapResource and gives

commands and events to keep resources and the separate response

mechanism of CoAP.

3.6.2 RAM Memory Allocation

The most significant concept to take into account when embedding

software applications in WSN nodes is managing the allocation of RAM

memory. The management of memory allocation has to handle with the

limited size of RAM memory and the short of hardware memory

protection that describe constrained nodes. From that point of view,

managing the RAM memory dynamically could raise the chanceof

having failure nodes or could consume the existing memory. In fact, the

shortage of hardware memory protection does not avoid the risks of

containing a collision between the heap and stack or a memory leak [35].

Moreover, the size of the allocated RAM memory would be complicated

to mange with this allocation system. TinyCoAP evades these threats by

allocating RAM memory statically. The size of the allocated memory is

known at execute time and the possibility of memory exhaustion is

therefore evaded. in addition, static allocation would reduced the risks of

failures consequentto collision of the heap and the stack. for that reason

it would improve the network reliability. A more enhancement is

obtained enabling TinyCoAP to make CoAP responses without

allocating new memory. TinyCoAP creates responses using the memory

already specified to store the related CoAP requests. Furthermore, the

decreasing of the RAM memory footprint this allowing a lighter packet

processing with less influence on the CPU. As a result, the decreasing of

the CPU use would minimize the energy consumption. As reported in

36

[35], the CPU expend 4.6 mA when active and 2.4 mA when idle while

the radio consume 3.9 mA when receiving. Therefore, the TinyCoAP

management of buffers would save CPU cycles and improve the battery

life of nodes. The static allocation of memory made by TinyCoAP is

compliant with the RAM memory management specified in NesC.

Actually, NesC does not maintain dynamic memory allocation. This

propertiesenables avoiding memory fragmentation and run-time

allocation failures [36]. on the other hand, a position may arise in which

applications might require dynamic allocation. To avoiding this problem,

TinyOS introduces a component calledPoolC that reproduce the dynamic

memory allocation. Should PoolC be enabled, the most pool memory

size would be specified statically at compile time. Through the execution

time, the applications will get the amount of RAM memory they require

from that presented in the pool. An concluding memory leak would

make the pool to empty, but the heap and stack would not collide. As

mentioned above, TinyCoAP uses PoolC to assign the buffers required to

keep the CoAP packets and the linked lists. In a different way from

TinyCoAP, CoapBlip implements a dynamic memory allocation

management. It uses the malloc memory management library to allocate

memory for buffers and linked lists.

3.6.3 Data Structure

 As declared above, TinyCoAP components are structured following the

conceptual layering of CoAP. The message layer is being on top of Blip.

CoapBlip also implements this 6LoWPAN stack. Should Blip receive a

UDP packet, it verifies the existence of the CoAP header. If it is exist,

the interface introduced by CoapPDU keeps it in a CoAP PDU. This

PDU is stored in the memory already allocated through PoolC. The use

of PoolC enables TinyCoAP to begin at compile time the maximum size

37

a packet can get and the maximum number of packets it can handle. The

maximum length of options and the maximum number of packets that

can be queued by a node can also be specified. These characteristics

make TinyCoAP powerful against possible memory leaks and always

present it with room in the memory for the received packets. Moreover,

TinyCoAP is easily flexible to different applications. The TinyCoAP

PDU data structure is designed to be used with PoolC. It prevents the use

of pointers for reaching to the various components of the PDU. Table

4.1explain the CoAP PDU used in CoapBlip and TinyCoAP. In

TinyCoAP, the received CoAP message is firstlykept in the UDP buffer

as an invalid element. This element is then transformed into a

coap_pdu_t structure and stored in the memory pool. Once the PDU

structure has been made, the UDP buffer is ready to accept a new

incoming packet. In TinyCoAP the maximum payload allowed for

requests and responses can be defined at compile time. Thus, the

memory usage can be accommodated to the application requirements and

to the features of the sensor. CoapBlip uses pointers to reach to various

parts of the PDU. Should a CoAP packet be received, CoapBlip stores it

in a buffer allocated through malloc and initializes the pointers defined

in coap_pdu_t. This buffer is placed at UDP level and its size is always

equivalent to the maximum packet size enabled by CoapBlip. Therefore,

although CoapBlip uses malloc, the memory is always allocated with the

same size.

38

Table 3.3: CoAP PDU structures

CoapBlip stores the PDU in the UDP buffer and uses a pointer to provide

access. TinyCoAP saves it in the memory allocated with PoolC.

3.6.4 Tools:
 A software solution to integrate RESTful Web services in WSNs based

on the CoAP protocol is presented. This software is a library for the

TinyOS operating system that has been developed in order to easily

create new applications that can use and other Web-based services using

the CoAP protocol. The Figure below is architecture of a CoAP-based

Wireless Sensor Network (WSN).

TinyOS is an "operating system" designed for low-power wireless

embedded systems. Fundamentally, it is a work scheduler and a

collection of drivers for microcontrollers and other ICs commonly used

in wireless embedded platforms. TinyOS[33] is an embedded OS for

WSNs designed to meet the requirements of constrained networks and

devices. It is composed by a set of reusable components that can be used

to build specific applications. TinyOS is implemented in the NesC

language [31]. NesC is a C dialect designed to improve code efficiency

and robustness in embedded software applications [33].

 Through its simplicity, NesC is able to reduce RAM occupation, code

size, and prevents low-level bugs. The programming model of TinyOSis

39

also based on this language. Besides NesC, TinyOS allows using more

complex languages such as Java, Python or C. In particular, C code can

be embedded in NesC programs or it can be used to build libraries that

TinyOS components can use. TinyOS based WSN can achieve better

performance and be more reliable when using exclusively NesC.

In this work TOSSIM and Avrora simulations will be used. TOSSIM is

the TinyOS mote simulator which has been developed, to ease the

development of sensor network applications. TOSSIM scales to

thousands of nodes, and compiles directly from TinyOS code;

developers can test not only their algorithms, but also their

implementations. TOSSIM simulates the TinyOS network stack at the bit

level, allowing experimentation with low-level protocols in addition to

top-level application systems. Users can connect to TOSSIM and interact

with it using the same tools as one would for a real-world networking,

making the transition between the two easy. TOSSIM also has a GUI

tool, TinyViz, which can visualize and interact with running simulations.

Using an simple plug-in model, users can develop new visualizations and

interfaces for TinyViz.

Avrora, a research project of the UCLA Compilers Group, is a set of

simulation and analysis tools for programs written for the AVR

microcontroller produced byAtmel and the Mica2 sensor nodes. Avrora

contains a flexible framework for simulating and analyzing assembly

programs, providing a clean Java API and infrastructure for

experimentation, profiling, and analysis.

Avrora Simulation is an important step in the development cycle of

embedded systems, allowing more detailed inspection of the dynamic

execution of microcontroller programs and diagnosis of software

problems before the software is deployed onto the target hardware.

Avrora is a clean and open implementation motivated by this need. It

40

also provides a framework for program analysis, allowing static

checking of embedded software and an infrastructure for future program

analysis research. Avrora is flexible, providing a Java API for

developing analyses and removes the need to build a large support

structure to investigate program analysis.

3.6.5 Test bed:
 In this work, the performance of TinyCoAP, CoapBlip and HTTP,

including different implementations for the transport layer used by

HTTP, HTTP/TCP and HTTP/UDP is compared anddiscussed.

The implementation includes client/server transactions. The server get

back information when the client sends requests to it. All the requests are

sent using the GET method. The server receives a request with test as

URI and the CoAP or HTTP server replies with a payload consisted by

sequence of bits of fixed size. In this way, the node does not make

sensing operation that might affect in the results. Therefore, the

experimentsmake only for the performance of each technique in

processing and replying to the received messages. The network can be

simple in this work because a single client/server transactions is

evaluated and deploying complex architectures can be evaded as shown

in Figure 3.1.

41

Chapter Four: Results and Discussion
This chapter shows the implementation of CoAP in TinyOS, it refer as

TinyCoAP. TinyOS has already included an implementation of CoAP

called CoapBlip. However, this is based on a library not originally

designed to meet the requirements of TinyOS. Thereby, it does not allow

to CoAP to realize its full potential and minimize resource consumption.

Better performance and minimal resource consumption can be achieved

by using native library. A comprehensive performance evaluation is

made to prove the effectiveness of this approach. In particularTinyCoAP

and CoapBlip are tested and evaluated using avrora simulation, as well

as solutions based on HTTP. The evaluation is performed in terms of

latency, memory occupation, and energy consumption.

4.1 Results

 The results of a performance evaluation for all the considered solution

has been discussed in this section.The evaluationinvolves various

parameters. First, the amount of RAM and ROM memory used by each

solution has been measured; then evaluate thelatency of request/response

transactions is evaluated; after that, the energy consumed by each

different solution to processing and reply to a request is measured .

4.1.1 Memory occupation
The amount of RAM and ROM memory allocated at compile time for

each considered implementation is shown in Table 4.2 the values for

HTTP/TCP uses the TCP buffers.

Table 4.1: ROM and RAM memory Occupation

42

 Solution ROM/Bytes RAM /Bytes
TinyCoAP 39040 8319
CoapBlip 43540 6800

HTTP/UDP 40430 6696

HTTP/TCP 45035 7089

TinyCoAP occupies more RAM memory than the other implementation

because it specifies all the memory needed for buffering the CoAP

packets at compile time. The ROM memory occupation specifythe

complexity and weight of the code of each implementation. In fact, the

compiled code is stored in the ROM memory. CoapBlip has the highest

ROM memory occupation of optimization of the code. CoapBlip is an

adaptation of a C library. This library is installed in the node along with

the TinyOS component used to adapt it to the OS. The use of C libraries

is usually toocomplex for the memory constraints of a mote and implies

a growth of the memory occupation. Also HTTP solutions using TCP

rely on a C library, so the ROM occupation increases also for these

implementations.

TinyCoAPis written in NesC therefore it lowers the ROM and is

optimized for TinyOS. The HTTP/UDP implementation has the lowest

memory occupation. It has no reliability mechanism or request/response

matching and it has a very low complexity. Therefore it can reduce the

code size and memory occupation. RAM memory occupation is very

low, since it does not implement any HTTP buffer. It just use UDP

buffer provided by Blip.

4.1.2 Latency

43

one of the most significant parameters used to evaluate the goodness of

the protocol design is Low latency values .The latency is defined as the

time elapsed from the moment the sender sends a request until the

moment it receives the response. Low latency values can significantly

enhance user experience and benefit those applications that work in real-

time.

The latency for each implementation has been tested comparing to show

the differences between TinyCoAP and the other implementations.

Payload size ranges from 1 to 30packet with increments of 1 packet

,each packet 33 bytes. The client sends a new request after receiving a

response to the request previously sent.This is shown in table 4.2 and the

simulation of the result is shown in figure 4.1.

44

Table 4.2: The latency of TinyCoAP andHTTP/TCP

No.packets Latency(s)
 TinyCoAP HTTP/TCP

1 3 10
3 16 40.6
6 26 55.06
9 43 75

12 59 90
15 68 105
18 89 122
21 105 136
24 128 158
27 138 175
30 158 200

0 5 10 15 20 25 30

0

50

100

150

200

la
te

nc
y(

s)

no.packet

 http/tcp
 tiinycoap

Figure 4.1: The implementation of HTTP/TCP and TinyCoAP

The lowest latency is obtained by the HTTP/UDP implementation, as

shown table 4.3 and the simulation of the result is shown in figure 4.2.

HTTP/UDP does not implement any reliability mechanism or HTTP

logic. Therefore, it should be considered as a lower bound for latency.

Table 4.3 : The latency of TinyCoAP and HTTP/UDP

45

No.packets Latency(s)
TinyCoAP HTTP/UDP

1 3.9 3
3 16 14
6 26 25
9 45 43

12 59.2 53.9
15 68 65
18 89 85
21 105 102
24 128 125
27 138 137
30 158 159

0 5 10 15 20 25 30

0

20

40

60

80

100

120

140

160

180

(L
at

en
cy

(s
))

no .packet

 T inycoAP
 HTTP/UDP

Figure 4.2: The implementation of latency for HTTP/UDP and TinyCoAP

 In figure 4.3 and table 4.4show thatTinyCoAPis better than CoapBlip in

terms of latency. TinyCoAP improved RAM memory management

implemented and the memory allocation used by CoapBlip increases

packet processing time and it can send 650 bytes the maximum payload

size. Therefore Applications that work with aggregation or high

payloadsizes cannot be used in CoapBlip or with HTTP implementations

using TCP.

46

Table 4.4: The latency of TinyCoAPand CoapBlip

No.packets Latency(s)
TinyCoAP CoapBlip

1 3.9 4
3 16 20.5
6 26 34.9
9 43 58.32

12 59.2 61.5
15 68 76
18 89 118
21 105 135

0 5 10 15 20 25 30

0

20

40

60

80

100

120

140

160

180

(L
at

en
cy

(s
))

no.packet

 coapBlip
 TinycoAP

Figure 4.3:The implementation of latency forCoapBlip and TinyCoAP

The result of latency for all implementation is shown in figure 4.4.

47

0 5 10 15 20 25 30

0

20

40

60

80

100

120

140

160

180

200

220

(L
at

en
cy

(s
))

no.packet

 TinycoAP
 coapBlip
 HTTP/UDP
 http/tcp

Figure 4.4 : The Latency for all implementation

4.1.3 Energy consumption
The energy consumption testshave been made for all implementation.

The test measures the energy consumed by a node when replying to

consecutive requests. It does not take into account the energy lost by the

radio chip for listening the channel because it has the same effect in each

implementation. The evaluation does not need to consider power- saving

protocols for radio duty cycling. It measured the energy consumed for

receiving, processing and sending a packet, The difference between the

performances of each implementation is only due to the effects that the

packet processing has on consumption. For each different payload size,

the energy consumption has been tested and the number of node

increased by 100 from 1 to 1000 nodes using the Avrora simulation.

HTTP implementations using TCP consume more energy than others.

The reason is the message overhead caused by TCP lost more energy,so

it is not Compatible with constrained networks. The performance is

much worse than that obtained by TinyCoAP as shown in figure 4.5 and

simulation result in table 4.5.The management of TCP connections

48

requires a high degree of complexity and the maintenance in memory of

theconnection state. Consequently, there is a growth in the energy drawn

by the RAM memory for keeping thesestates and the ratio between

TinyCoAP and HTTP/TCP is about 1:3.5
Table 4.5: The energy of TinyCoAPand HTTP/UDP

num/nodes Energy/joule

TinyCoAP HTTP/TCP

10 1.625 5.211
50 1.641 5.431

100 1.651 5.821
150 1.698 5.931
200 1.731 5.991
250 1.761 6.008
300 1.812 6.0212
350 1.847 6.077
400 1.888 6.1043
450 1.903 6.139
500 1.9121 6.187
550 1.949 6.209
600 1.974 6.304
650 1.998 6.269
700 2.063 6.304
750 2.088 6.364
800 2.113 6.399
850 2.138 6.415
900 2.165 6.459
950 2.182 6.488
1000 2.207 6.541

49

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

en
er

gy
 (j

ou
le

)

num/nodes

 tinycoap
 http/tcp

Figure 4.5: The energy consumption of HTTP/TCP and TinyCoAP

The mechanism implemented by CoapBlip to allocate and manage RAM

memory shows that CoapBlip is to be unsuitable for constrained devices.

The CoapBlip is again has worse performance with that of TinyCoAP as

shown in figure 4.6 and simulation result in table 4.6 . However, the

increase in packet size causes more consumption of CoapBlip energy.On

another hand, TinyCoAP benefits from its different memory allocation

mechanism. From the graph the ratio between two protocols is about

1:2.25

50

Table 4.6: The energy consumption of TinyCoAPand CoapBlip

num/nodes Energy /joule

TinyCoAP CoapBlip

10 1.625 3.662
50 1.641 3.712

100 1.651 3.781
150 1.698 3.887
200 1.731 3.931
250 1.761 4.001
300 1.812 4.071
350 1.847 4.106
400 1.888 4.192
450 1.903 4.192
500 1.9121 4.325
550 1.949 4.684
600 1.974 4.871
650 1.998 4.996
700 2.063 5.062
750 2.088 5.094
800 2.113 5.119
850 2.138 5.154
900 2.165 5.179
950 2.182 5.224
1000 2.207 5.294

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

en
er

gy
(j)

num/nodes

 tinycoap
 coapBlip

Figure 4.6: The implementation of energy consumption for CoapBlip and TinyCoAP

51

TinyCoAP has a performance that is highly similar to that of

HTTP/UDP, the ratio between them approximately 1:1. This shows

thatTinyCoAP is able to minimize the consumption of resources, as

shown in table 4.7 figure 4.7.

Table 4.7: Comparison of energy between TinyCoAP and HTTP/UDP

num/nodes

Energy /joule

 TinyCoAP HTTP/UDP

10 1.625 1.6233
50 1.641 1.643

100 1.651 1.649
150 1.698 1.689
200 1.731 1.71
250 1.761 1.768
300 1.812 1.81
350 1.847 1.837
400 1.888 1.853
450 1.903 1.906
500 1.9121 1.911
550 1.949 1.936
600 1.974 1.971
650 1.998 1.996
700 2.063 2.021
750 2.088 2.098
800 2.113 2.123
850 2.138 2.148
900 2.165 2.183
950 2.182 2.208

1000 2.207 2.233

52

\

0 200 400 600 800 1000
0

1

2

en
er

gy
 (j

ou
le

)

n um /nodes

 tinycoap
 http /udp

Figure 4.7: The energy consumption for HTTP/UDPand TinyCoAP

The energy consumption for all implementation is shown in figure 4.8.

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

en
er

gy
 (j

ou
le

)

 tinycoap
 coapBlip
 http/tcp
 http/udp

Figure 4.8: The energy consumption for all implementation

53

Chapter Five: Conclusion and Recommendation

5.1 Conclusion
This thesis has been committed to theimplementation and

experimentation of a full-feature of TinyCoAP, which is original library

for TinyOS .in addition to comparing it with the CoAP implementation

distributed with TinyOS, called CoapBlip.

Along the dissertation we have evaluated all the solutions considered.

This experience has allowed us to measure the amount of memory

occupied at compile time, the latency practiced by a client when

retrieving information from a server, and the energy consumed when

replying to the client. HTTP is used with different solutions for the

transport layer. Constant attention has been devoted to UDP and TCP

connections. We denote to each of these solutions as HTTP/TCP and

HTTP/UDP.

The best performance is introduced by TinyCoAP in the most of the

considered parameters. In particular, TinyCoAP offer an important

enhancement in performance compared with CoapBlip. The

performance of CoapBlipis restricted by using the dynamic RAM

memory allocation and the use of an external C library. TinyCoAP

uses static allocation, so it is able to reach a high code optimization and

to reduce the effect over the memory of WSN nodes
Results show that using the HTTP in WSNs produces high latency

incomparison with using the CoAP protocol. The main cause is that

HTTP uses the TCP protocol that uses several messages to establish a

TCP connection.

In conclusion, TinyCoAP approve that it is a complete and flexible

CoAP-based solution for integrating the Web communication paradigm

54

in TinyOS based WSNs. TinyCoAP fixes the problems founded in

CoapBlip, and can improve performance considerably and to minimize

the power consumption.

5.2 Recommendation

A further evaluation of the TinyCoAP implementation must be done in

a real environment and simulation in order to investigate its performance

in networks with higher number of nodes and parameter.Furthermore a

CoAP-HTTP proxy must be design and implement to support

applications that need to interact with WSN nodes. This could cause an

unnecessary communication overhead and a resultant increase of latency

and network traffic.

55

Reference
1. Davis, E.G., A. Calveras, and I. Demirkol, Improving packet

delivery performance of publish/subscribe protocols in wireless

sensor networks. Sensors, 2013. 13(1): p. 648-680.

2. Buschmann, C., CONET Newsletter.

3. Kozák, J. and M. VACULÍK, Application Protocol for

constrained nodes in the Internet Of Things. Journal of

Information, Control and Management Systems, 2012. 10(2).

4. Berners-Lee, T., R. Fielding, and L. Masinter, Uniform resource

identifiers (URI): generic syntax. 1998, RFC 2396, August.

5. Colitti, W., K. Steenhaut, and N. De Caro, Integrating wireless

sensor networks with the web. Extending the Internet to Low

power and Lossy Networks (IP+ SN 2011), 2011.

6. Ludovici, A., P. Moreno, and A. Calveras, TinyCoAP: a novel

constrained application protocol (CoAP) implementation for

embedding RESTful web services in wireless sensor networks

based on TinyOS. Journal of Sensor and Actuator Networks, 2013.

2(2): p. 288-315.

7. Shelby, Z., Constrained RESTful Environments (CoRE) Link

Format. 2012.

8. Bokare, M. and M.A. Ralegaonkar, Wireless Sensor Network: A

Promising Approach for Distributed Sensing Tasks. Excel Journal

of Engineering Technology and Management Science, 2012. 1: p.

1-9.

9. Montenegro, G., et al., Transmission of IPv6 packets over IEEE

802.15. 4 networks. Internet proposed standard RFC, 2007. 4944.

10. Moreno Yeste, P., RESTful Web services in Wireless Sensor

Networks. 2011.

56

11. Alghamdi, T.A., A. Lasebae, and M. Aiash. Security analysis of

the constrained application protocol in the Internet of Things.

inFuture Generation Communication Technology (FGCT), 2013

Second International Conference on. 2013: IEEE.

12. Akyildiz, I.F., et al., Wireless sensor networks: a survey.

Computer networks, 2002. 38(4): p. 393-422.

13. Ludovici, A. and A. Calveras. Integration of Wireless Sensor

Networks in IP-based networks through Web Services.

inProceedings of 4th Symposium of Ubiquitous Computing and

Ambient Intelligence, Valencia, Spain. 2010.

14. Kovatsch, M., S. Duquennoy, and A. Dunkels. A low-power CoAP

for Contiki. inMobile Adhoc and Sensor Systems (MASS), 2011

IEEE 8th International Conference on. 2011: IEEE.

15. Colitti, W., et al. Evaluation of constrained application protocol

for wireless sensor networks. inLocal & Metropolitan Area

Networks (LANMAN), 2011 18th IEEE Workshop on. 2011: IEEE.

16. Duquennoy, S., et al. Leveraging IP for Sensor Network

Deployment. in Proceedings of the workshop on Extending the

Internet to Low power and Lossy Networks (IP+ SN 2011),

Chicago, IL, USA. 2011: Citeseer.

17. Chander, R.V., et al. A REST based design for Web of Things in

smart environments. inParallel Distributed and Grid Computing

(PDGC), 2012 2nd IEEE International Conference on. 2012:

IEEE.

18. Lerche, C., K. Hartke, and M. Kovatsch. Industry adoption of the

internet of things: a constrained application protocol survey.

inEmerging Technologies & Factory Automation (ETFA), 2012

IEEE 17th Conference on. 2012: IEEE.

57

19. Castellani, A.P., et al. Web Services for the Internet of Things

through CoAP and EXI. inCommunications Workshops (ICC),

2011 IEEE International Conference on. 2011: IEEE.

20. Harvan, M. and J. Schönwälder, TinyOS Motes on the Internet:

IPv6 over 802.15. 4 (6lowpan). PIK-Praxis der

Informationsverarbeitung und Kommunikation, 2008. 31(4): p.

244-251.

21. Silva, R., J.S. Silva, and F. Boavida, Evaluating 6lowPAN

implementations in WSNs. Proceedings of 9th Conferncia sobre

Redes de Computadores Oeiras, Portugal, 2009. 21.

22. Yibo, C., et al. 6LoWPAN stacks: a survey. inWireless

Communications, Networking and Mobile Computing (WiCOM),

2011 7th International Conference on. 2011: IEEE.

23. Kuladinithi, K., et al., Implementation of coap and its application

in transport logistics. Proc. IP+ SN, Chicago, IL, USA, 2011.

24. Potsch, T., et al. Performance Evaluation of CoAP using RPL and

LPL in TinyOS. inNew Technologies, Mobility and Security

(NTMS), 2012 5th International Conference on. 2012: IEEE.

25. Kovatsch, F.M., Scalable Web Technology

for the Internet of Things, in (Dr. sc. ETH Zurich. 2015, Alexander-

Universitat Erlangen: Germany.

26. Castellani, A.P., Design, implementation and experimentation of a

protocol stack for the Internet of Things. 2012.

27. Ilyas, M. and I. Mahgoub, Handbook of sensor networks: compact

wireless and wired sensing systems. 2004: CRC press.

28. Shelby, Z., K. Hartke, and C. Bormann, The Constrained

Application Protocol (CoAP). 2014.

29. Bui, N., Internet of things architecture (IoT-A), project deliverable

D1. 1-SOTA report on existing integration

58

frameworks/architectures for WSN, RFID and other emerging IOT

related technology. 2014, Tech. Rep. 257521 [Online]. Available:

http://www. iot-a. eu/public/public-documents/d1. 1/view,

accessed on Jan. 21.

30. Mukhopadhyay, S.C. and N. Suryadevara, Internet of Things:

Challenges and Opportunities. 2014: Springer.

31. Gay, D., et al. The nesC language: A holistic approach to

networked embedded systems. inAcm Sigplan Notices. 2003:

ACM.

32. Malnati, G., F. Mattern, and S. Ceri, Web-Integrated Smart City

Infrastructure.

33. Levis, P., et al., TinyOS: An operating system for sensor networks,

in Ambient intelligence. 2005, Springer. p. 115-148.

34. Shelby, Z., CoRE Link Format, draft-ietf-core-link-format-11.

2012, Internet draft, IETF 2012 (in progress).

35. Lauwens, B., B. Scheers, and A. Van de Capelle, Performance

analysis of unslotted CSMA/CA in wireless networks.

Telecommunication Systems, 2010. 44(1-2): p. 109-123.

36. Zheng, M., et al., Towards a model checker for nesc and wireless

sensor networks, in Formal Methods and Software Engineering.

2011, Springer. p. 372-387.

