بسم الله الرحمن الرحيم

(وَأَعِدُوا لَهُمْ مَا اسْتَطَعْتُمْ مِنْ قُوَّةٍ وَمِنْ رِبَاطِ الْخَيْلِ ثُرْهِبُونَ بِهِ عَدُوَ اللهِ وَعَدُوّكُمْ وَآخَرِينَ مِنْ دُونِهِمْ لَا ثُرْهِبُونَ بِهِ عَدُوّ اللهِ وَعَدُوّكُمْ وَآخَرِينَ مِنْ دُونِهِمْ لَا تَعْلَمُهُمْ قَوْمَا تُنْفِقُوا مِنْ شَيْءٍ فِي سَبِيلِ اللهِ يُعْلَمُهُمْ وَمَا تُنْفِقُوا مِنْ شَيْءٍ فِي سَبِيلِ اللهِ يُوفَقُ إِلَيْكُمْ وَأَنْتُمْ لَا تُظْلَمُونَ)

صدق الله العظيم (الأنفال الأية 60)

DEDICATION

To my beloved parents and my small family, wife and daughters

ACKNOWLEDGEMENT

First, giving special thanks to my supervisor, Dr. Hassan Osman Ali, for his guidance during research, he always accessible and willing to help me.

I wish to acknowledgement the effort of the Yarmok Industrial complex, material laboratory staff for their help during the experimental work.

At last "thanks" for every one stood beside me and gave me a new hope for successful

ABSTRACT

Combat armored vehicles contribute significantly in military forces, they performed general or specified mission and support all war fighting function.WMZ551B is armored personnel carrier. The movable joint in a steering system is one of the main parts used to attain stability and steady movement of the vehicle. A repeated failure is detected in the steering mechanism at the movable joint of armored vehicle. The transmission system of the vehicle consists of several components which sometimes encounter unfortunate failures. Some of this failure may cause by the manufacturing and design faults, material faults, maintenance faults as well as user originated faults. The work in this research is carried out to investigate the failure mechanism and cause of the failed part of the movable joint. The work dealt with two steps. First part involves the experimental process, including the metallurgical analysis mechanical testing to find out the properties of the material and identify the fracture mechanism. While second part involves stress analytical analysis to determine the combined stresses affecting the failure part. The chemical tests for the steering movable joint shows that the joint part has low carbon content of (0.208%) and higher content of chromium (0.873%) results in adherent, stable chromium oxide for corrosion resisting property of the material. Rockwell hardness test is conducted at the specimen and the results shows that the specimen has a surface hardening with 60 HRC at the outside surface and around 16 HRC at the cross section area. Examination of the fractured surface with SEM machine revealed a combination of ductile and brittle overload (dimpled rupture and cleavage) fracture with no indications of progressive crack growth via fatigue noticed. This transition in fracture morphology coincided with the change in properties of the material.

تجريدة

العربات القتالية المدرعة ذات أهمية اعتبارية في القوات العسكرية، اذ أنها تؤدي المهام العامة والخاصة وتدعم كافة العمليات القتالية لما تتميز به من خصائص. الناقلة (WMZ551B) هي عبارة عن ناقلة جنود مدرعة. المفصل المتحرك في نظام الإنعطاف هو من الأجزاء الرئيسية ويلعب دورا اساسيا في عمليات الإتزان والحركة المحكمة للعجل. هنالك عمليات كسر متكررة تحدث في هذا الجزء من نظام الإنعطاف في العربات المدرعة. يحتوى نظام نقل الحركة في المدرعة على عدة مكونات تتعرض في بعض الأحيان للأعطال، بعض من هذه الأعطال تحدّث بسبب أخطاء التصميم والتصنيع ، المواد المستخدمة علاوة علي سوء الإستخدام وعدم اجراء عمليات الصيانة المخططة. لمعرفة اسباب ونمط الكسر للمفصل ، ارتكزت منهجية البحث على محورين حيث تناول الجزء الأول اجراء التجارب المعملية والتي شملت تحليل ميتالورجيا المواد والإختبارات الميكانيكية لمعرفة خواص المادة ولتحديد نمط الكسر، بينما تتاول الجزء الأخر تحليل الإجهادات المختلفة التي تؤثر في المفصل . أظهر التحليل الكيميائي للمفصل ان نسبة الكربون منخضة (0.208%) علاوة على ارتفاع طفيف في نسبة الكروم(873.0%) الذي يساعد في تكوين طبقة رقيقة من أوكسيد الكروم التي تحسن من مقاومة التأكل للمعدن إختبار روكويل للصلادة التي أجريت للعينة اظهر ان هنالك تباين في الصلادة حيث أنها مرتفعة جدا على السطح الخارجي (60 HRC) ومنخفضة داخل المقطع (16 HRC). اختبار سطح الكسر بواسطة المجهر الماسح الإلكتروني اظهر هذا التحول في نمط الكسر من قصف الى لدن مما يعزز النتيجة المتحصلة بواسطة إختبار الصلادة

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DEDICATION	
	ACKNOWLEDGEMENT	
	ABSTRACT	
	TABLE OF CONTENT	
	LIST OF TABLE	
	LIST OF FIGURE	
1 INIT	DODUCTION	
	RODUCTION	1
	General Introduction	1
-	oroblem statement	2
	Objectives Scope	2 3
	Significance of study	3
2 Lite	rature review	
2.1	Preface	4
2.2	Military vehicles classifications	5
2.3 V	VMZ551B Wheeled armored vehicle	6
2	2.3.1 Major subsystems and component parts	6
	2.3.2 Technical specifications of WMZ551B	6
	2.3.3 Steering system	7
	Failure of Elements	9
	racture Mechanism	10
	2.5.1 Ductile fracture	13
4	2.5.2 Brittle fracture	14

	2	.5.3 Fatigue failure	15
	2.6	Fracture Appearance and Mechanisms of Fracture	19
	2.7	Ductile and Brittle Behavior	21
	2.8	Macroscopic Ductile and Brittle Fracture Surfaces	24
	2.9	Classification of Fracture Processes	28
	2.10	Macroscopic Manifestations of Fracture	28
3	MET	THODOLOGY	
	3.1	Preface	32
	3.2 F	Research Approach	32
	3.4 N	Metallurgical study	33
	3.5	Mechanical testing	34
	3.6	Fractographic Analysis	34
4	RES	ULTS AND DISCUSSIONS	
	4.1	Preface	35
	4.2	Chemical analysis	35
	4.3	Tensile Test	36
		4.3.1 stress strain diagram	37
		4.3.2 failure mechanism	37
	4.4	Hardness test	38
	4.5	Fractographic analysis	40
	4.6	Analytical analysis	42
	4.7	Finite Element Analysis for the Movable Joint.	44
5	CON	NCLUSIONS AND RECOMMEDTIONS	
	5.1	Conclusion	46
	5.2	Recommendations	47
REFERENCES		48	

LIST OF TABLES

TABLE	NO. TITLE	PAGE
2.1	Armored WMZ551B Specifications	7
2.2	Different fracture modes.	10
2.3	Ductile Vs. Brittle fracture.	12
2.4	Deformation under static and cyclic loads	18
2.5	Fatigue crack growth: stage-I Vs stage-II	18
2.6	Macroscale fractographic features	20
4-1	Chemical analysis result	36
4.2	Rockwell hardness data at the surface.	38
4.3	Rockwell hardness data at the core.	39

LIST OF FIGURES

FIGU	TITLE	PAGE
2.1	Military vehicle classifications	5
2.2	Steering system of armored vehicle (WMZ551B)	8
2.3	Steering linkage for Armored type WMZ551B	8
2.4	Fracture profiles.	12
2.5	Stages of ductile tensile fracture.	13
2.6	Schematic of fatigue fracture surface.	16
2.7	Comparison of slip bands formed under (a) static	
	Loading and (b) cyclic loading.	18
2.8	Schematic of variation in fracture	25
2.9	Fracture surface of high Mn steel	27
2.10	A high magnification SEM of the ductile fracture surface	27
2.11	Orientation of crack surfaces with respect to	
	Principal stress directions	29
2.12	Classification of fracture processes	31
3.1	Operational framework- methodologies	33
3.2	Geometry of hardness test specimen	34
4-1	Tensile specimen	36
4.2	Stress strain diagram	37
4.3	Fracture of tensile specimen tested at room temperature	38
4.4	Geometry of hardness test specimen.	38
4.5	Surface hardness	39
4.6	Core hardness	40
4.7	SEM micrograph of surface morphology for steering mov	able
	joint failure	41
4.8	SEM micrograph of fracture surface morphology at upper	r
	leftsite (region a).	41
4.9	a high magnification SEM micrograph of fracture surface	e
	morphology at lower region.	42
4.10	a high magnification SEM micrograph of fracture surfac	e 42
4.11	geometry drawing of a movable joint part	43
4.12	Finite Element Model for a movable joint part.	
4.13	Finite Element Model for a movable joint	45
4.14	Shear stress at movable joint part	45