Dedication

To my father
To my mother
To my husband
To my daughter
To my Brothers and Sisters

Acknowledgment

I wish to present my special thank to everybody helped to make this thesis possible, by supporting and providing me the valuable information which is required for this research, so please allow me to dedicate my acknowledgment of gratitude towards the followings:

First, I would like to thank my supervisor Dr. Kamal Mohamed saeed for his most support and encouragement.

Second, I would like to thank Dr. EL-Fateh Ahmed Hassan for providing the gum sample used in this search.

Finally, I wish to thank all the faculty, staff members and lab technicians of Chemistry Department, whose services turned my research a success.

Abstract

Physiochemical and thermodynamic properties of a composite sample of *Anogeissus Leiocapus* gum were studied using standerd methods. The average values of a different Characterization methods were determined to obtain the mean values of: moisture, ash, nitrogen specific rotation, intrinsic and protein, refractive index, ph of The gum. The results of this characterization as the mean values of all proprieties as follows: 10.7 %, 2.6 %, 0.7, 4.5, -43.8, 0.43, 1.333, 5.00 respectively. cationic composition of gum sample was also determined for eight elements: potassium (K), Calcium (Ca), Magnesium (mg), Copper (Cu), Sodium (Na), Zinc (Zn), Irion (Fe) and Lead (pb). The results is: 494.4, 356.7, 285.7, 95.5, 50.5, 8.5, 4.9, 0.3 respectively. The solubility of *Anogeissus leiocarpus* gum in water was determined and found to be 65.5 %. molecular weight of polymer by osmotic pressure was found to be 6.82746 \times 10⁵ Da.

The thermodynamic properties of the gum solution (partial specific volume of gum sample and the solvent (water), volume fraction of both, and density of solid) was studied and the values was found to be: 0.7, 1.001, 0.41, 0.59, 0.881 respectively. The changes in Chemical potential of gum sample in a different concentration of gum solution was calculated and were

found to be in the range (-0.84 to -7.47×10^{-3} Jg⁻¹). The changes in Gibbs free energy of mixing were found to be in the range (-0.74 to -4.33×10^{-2} Jg⁻¹).

الملخص

تمت دراسة الخصائص الفيزيوكيميائية و الثيرموديناميكية لعينة صمغ الصهب باستخدام الطرق القياسية. حيث قدر متوسط قيم بعض الخصائص مثل:(محتوى الرطوبة, محتوى الرماد, نسبة النيتروجين والبروتين, الدوران الضوئي النوعي, اللزوجة, معامل الانكسار, الرقم والبروتين, الدوران الضوئي النوعي, اللزوجة, معامل الانكسار, الرقم الهيدروجيني) وسجلت النتائج على التوالي كما يلي: 10.7%, 2.6%, معامل المحتوى .0.7%, 5.00%, الكاتيوني للعناصر الآتية: بوتاسيوم, كالسيوم, ماغنسيوم, نحاس, الكاتيوني للعناصر الآتية: بوتاسيوم, كالسيوم, ماغنسيوم, نحاس, 356.7%, حديد, رصاص وكانت النتائج كألآتي: 494.4%, 356.7% وربائي للبوليمر بواسطة خاصية الضغط الصهب 65.5%. قدر الوزن الجزيئي للبوليمر بواسطة خاصية الضغط التوالي. الدوبانية الضغط التوالية كالآثون الجزيئي للبوليمر بواسطة خاصية الضغط التواني 85.746%.

العوامل الثيرموديناميكية للصمغ وهي:(الحجّم الجزئ النوعي لعينة الصمغ و الماء, الكسر الحجمي لكليهما, كثافة الصلب) وجدت على التوالي: 0.7, 1.001, 1.009, 059, 0.41. التغير في الجهد الكيميائي للعينة و الماء في تراكيز مختلفة محلول الصمغ وجد في المدى (0.84- إلى 7.47 -3°- 10 جول/جرام) و التغير في طاقة جبس المدى (4.33 × 4.33 جول/جرام).

List of figure

Figure	Page
Figure (1.1): Carbohydrates unites in gum molecule	6
Figure (1.2): Structural model for Acacia senegal gum as proposed by Anderson et. al.,(1966b)	7
Figure (1.3): The structure of Acacia senegal gum as proposed by Street et. al., (1983)	7
Figure (1.4): Molecular structure of Acacia senegal gum as proposed by Defay and Wang, (1986)	9
Figure (1.5): Wattle blossom type structure of Acacia senegal gum as proposed by Fincher et. al., (1983)	12
Figure (1.6): The twisted hairy rope structure of Acacia senegal as proposed by Qi et. al.,(1990)	12
Figure (1.7): Model of (GAGP) as suggested by Goodrum <i>et.al.</i> , (2000)	14
Figure (1.8): refraction of light ray	20
Figure (1.9): variation of $\frac{\omega_1}{\omega_2}$ vs. $\Delta\mu_1$	29
Figure (1.10): Correction of $\Delta\mu_2$	30

Figure (3.1): variation of reduced viscosity with concentration	40
Figure (3.2): variation of Osmotic pressure with concentration of gum solution	42
Figure (3.3): partial specific volume of water as a solvent in gum solution	44
Figure (3.4): partial specific volume of Anogeissus leiocarpus in gum solution	45
Figure (3.5): chemical potential of gum sample	48
Figure (3.6): correct of chemical potential $\Delta\mu_2$ of gum sample using A segment value	49

List of table

Table	Page
Table(3.1): physiochemical properties of	39
Anogeissus leiocarpus gum sample	
Table(3.2): the reduced viscosity value of	40
composite sample	
Table(3.3): the evarge values of cationic	41
composition of the gum sample	
Table(3.4): Osmotic pressure of different	42
concentration of gum solution	
Table(3.5): partial specific volume of	44
water as solvent in gum solution	
Table(3.6): partial specific volume of	45
sample in gum solution	
Table(3.7): the values of volume fraction	46
of gum and water in gum solution	
Table(3.8): chemical potential values of	46

water in different concentration of gum	
solution	
Table(3.9): the osmotic pressure and	47
chemical potential of water in different	
concentration of gum solution	
Table(3.10): data of plotting $\Delta\mu_1$ versus	47
$\frac{\omega_1}{\omega_2}$ of <i>Anogeissus leiocarpus</i> gum sample	
Table(3.11): data of plotting $\Delta\mu_2$ versus ω_1	48
Table(3.12): chemical potential of gum	49
sample after correction Δμ ₂	
Table(3.13): calculating the free energy of	50
gum solution	
Table(3.14): free energy of mixing in	50
different units	

TABLE OF CONTENT

CHAPTER ONE INTRODUCTION

	Content	Page
	1- Introduction	1
1.1-	Distribution of <i>Anogeissus leiocarpus</i>	1
1.2-	Discribtion of <i>Anogeissus leiocarpus</i>	2
1.3-	Botanical classification	2
1.4-	Definition of family	3
1.5-	Uses of <i>Anogeissus leiocarpus</i>	3

1.6- Chemical structure of gum arabic	4
1.7- Physiochemical properties of gum	15
arabic	
1.7.1- Solubility	15
1.7.2- Moisture content	15
1.7.3- Ash content	15
1.7.4- Nitrogen and protein content	15
1.7.5- Optical rotation	16
1.7.6- Intrinsic viscosity	16
1.7.6.1- Relative viscosity (η _r)	18
1.7.6.2- Specific viscosity (η sp)	18
1.7.6.3- Reduced viscosity (η red)	19
1.7.7- Refractive index	20
1.8- Thermodynamic Parameters	22
1.8.1- Weight fraction(ω)	22
1.8.2- mole fraction(X)	22
1.8.3- volume fraction(Φ)	23
1.8.4- Partial molar specific volume (V)	23
1.8.4.2- Tangent method	23
1.8.4.3- Intercept method	23
1.8.5- Chemical potential	24
1.8.6- Osmotic pressure	25
1.8.6.1- Osmometry	25
1.8.6.2- Number average molecular	27
weight	
1.8.6.3- Colligative properties	27
1.8.6.4- Osmotic pressure	27
1.8.6.5- Membrane Osmometry	28
1.8.7- Density of solid	28
1.8.8- Gibbs free energy of <i>Anogeissus</i>	29
leiocarpus	
1 10 Application of Appreciation	31
1.10- Application of <i>Anogeissus</i>	
leiocarpus	

	31
1.11- The aim of the work	_

CHAPTER TWO MATERIALS AND METHODS

Content	Page
2- Materials and Methods	32
2.2- purification of gum sample	32
2.3- Chemicals	32
2.4- Physiochemical methods of gum	32
2.4.1- Method of determination of	33
moisture content	
2.4.2- Method of determination of Ash	33
content	
2.4.3- Method of determination of Specific	34
optical rotation	
2.4.4- Determination of total nitrogen and	34
protein content	
2.4.5- Method of determination of intrinsic	35
viscosity	
2.4.6- Method of determination of	35
refractive index	
2.4.7- Determination of cationic	36
composition	
2.5- Thermodynamic methods	37
2.5.1- Method of determination of	37
molecular weight of the gum using	
Osmotic pressure	

2.5.2- Determination of Partial specific	37
volume of water	
2.5.3- Determination of Partial specific	37
volume of sample	
2.5.4- Determination of Density of solid	37

CHPTER TREE RESULTS AND DISSCISION

Content	Page
3- Results and Discussions	38
3.1- Physiochemical properties of	38
Anogeissus leiocarpus	
3.2- Thermodynamic properties of	42
Anogeissus leiocarpus	
Conclusion	51