

الآلية

أَهُمْ يَقِيمُونَ رَحْمَةَ رَبِّكَ نَحْنُ قَسَمْنَا بَيْنَهُمْ مَعِيشَتَهُمْ فِي الْحَيَاةِ الدُّنْيَا وَرَفَعْنَا بَعْضَهُمْ فَوْقَ بَعْضٍ دَرَجَاتٍ لِيَتَّخِذَ بَعْضُهُمْ بَعْضًا سُحْرِيًّا وَرَحْمَةُ رَبِّكَ خَيْرٌ مِمَّا يَجْمَعُونَ.

الزخرف(٣٢)

Dedication

This thesis dedicated with heartfelt condolences to our friend Nibrass Gedam who was quickly gone from our world, we ask Alla's mercy and forgiveness for him.

Acknowledgement

Foremost, I would like to express my sincere gratitude to Alla Bulk of his Majesty for the wisdom and perseverance that has been bestowed upon me during this research project, and indeed, throughout my life: "I can do everything through him because he gives me strength.

I would like to express the deepest appreciation to my committee Dr. Khawad Eli Elfaki, who has shown the attitude and the substance of a genius: he continually and persuasively conveyed a spirit of adventure in regard to research. Without his supervision and constant help this dissertation would not have been possible. Also Iwould like to thank my friends especially Alhaleem Musa, Elshazali Elhussein, Mohammed Elfatih and Mohammed Musa for their suggestions and sport.

My thanks and appreciations also go to Kenana boiler staff for their help. Last but not least, I would like to thank my parents for their unconditional support, both financially and emotionally throughout my degree.

Abstract

The efficiency of a heating appliance or application is dependent on the efficiency of the combustion process. Complete combustion with the appropriate flame is necessary to release the maximum amount of energy available. The efficiency of combustion is affected by the ratio of air to fuel, the degree of atomization of liquid fuels, the degree of air and fuel mixing that takes place in the combustion zone, the flame shape, temperature and speed. The setting of these variables requires skill and instrumentation.

The purpose of this study was to explore the effect of gas analyzer in Kenana boilers combustion efficiency to increase combustion efficiency reducing fuel consumption and improving boiler environment gases. In Kenana boilers all boilers running without gas analyzers in this case combustion control so difficult beside that is not possible to know boiler efficiency, so the study was showed Kenana combustion control and made new control depending upon gas analyzer. The result recommended installing gas analyzer for combustion control optimization.

المستخلص

كفاءة الأجهزة الحرارية تعتمد على كفاءة عملية الاحتراق. الاحتراق الكامل مع الشعلة المناسبة تمكن من الحصول على أعلى قدر من الطاقة المتاحة. تتأثر كفاءة الاحتراق بعدة عوامل منها نسبة الهواء إلى الوقود، درجة تذرية الوقود السائل، درجة الخلط بين الهواء والوقود في منطقة الاحتراق، شكل الهب، درجة الحرارة والسرعة. لتحديد هذه العوامل تتطلب مهارة وتحكم دقيق.

كان الغرض من هذه الدراسة هو استكشاف تأثير جهاز تحليل الغازات في كفاءة الاحتراق لمراجل شركة سكر كنانة لزيادة كفاءة الاحتراق، وتقليل استهلاك الوقود وتحسين البيئة لغازات المرجل. في مراجل كنانة كل المراجل تعمل دون محلل لغازات الاحتراق الأمر الذي يجعل عملية التحكم في الاحتراق صعبة وأيضا لا يمكن معرفة كفاءة الاحتراق للمرجل ، لذلك أظهرت الدراسة مكونات التحكم في مراجل كنانة وعمل نظام تحكم جديد اعتمادا على جهاز تحليل الغازات. أوصت النتيجة بضرورة تركيب جهاز تحليل غازات العادم للحصول على تحكم امثل ل الاحتراق.

TABLE OF CONTENTS

الأية	i
Dedications	ii
Acknowledgements	iii
Abstract	iv
المستخلص	v
Table of contents	vi
List of Figures	ix
List of Tables	x
List of Abbreviations	xi
Chapter One: Introduction	
1.1 General	1
1.2 Problem Description	3
1.3 Problem Importance	3
1.3 Research Methodology	4
1.4 Objectives	4
1.5 literature review	4
Chapter Two: Boiler systems, classifications and control	
2.1 Preface	7
2.2 Boiler types and classification	9
2.2.1 Fire tube boiler	9
2.2.2 Water tube boilers	10
2.2.3 Packaged boilers	11
2.2.4 Fluidized bed combustion (FBC) boilers	12
2.3 Boiler control	13
2.3.1 Water level control	14
2.3.2 Master pressure control	15

2.3.3 Furnace pressure control	16
Chapter three: Boiler combustion	
3.1 Preface.....	18
3 .2 Combustion basics.....	19
3.2.1 Stoichiometric Combustion	19
3.2.2 Complete Combustion	19
3.2.3 In complete Combustion	20
3.2.4 Excess air	20
3.2.5 Combustion Gases	22
3.3 Fuels.....	22
3.3.1 Solid Fuel	22
3.3.2 Liquid Fuel	23
3.3.3 Gaseous Fuels	24
3.4 Burner Technology	25
3.5 Energy Content	25
3.6 Emission.....	26
3.6.1 Nitrogen Oxides	28
3.6.2 Sulfur Dioxide	29
3.6.3 Particulate Matter	29
3.6.4 Carbon Monoxide	30
3.7 Combustion Efficiency.....	30
3.7.1 Heat Losses	31
Chapter Four: Optimum Gas Analyzer with Trim System for Combustion	
4.1 Preface.....	33
4.2 Measuring Oxygen in Flue Gases	34
4.2.1 Orsat Test.....	34
4.2.2 Oxygen sensor.....	36
4.2.2.1 Portable gas analyzer	36
4.2.2.2 Oxygen gas analyzers	38

4.3 Oxygen trim analyzers	39
4.3.1 Features	40
4.3.2 System description.....	40
4.3.3 Equipment description	42
Chapter Five: Old Boiler Control System Vis New One (Comparative study)	
5.1 Preface.....	44
5.2 Kenana boilers control over view	45
5.2.1 Single point positioning control system.....	47
5.3 New control optimization	50
5.4 Burner Turndown Affects Efficiency.....	51
5.5 Improving Combustion Efficiency.....	53
Chapter Six: Conclusion and Recommendations	
6.1Results.....	55
6.2 Results Discussion	55
6.3 Conclusion.....	56
6.4 Recommendations.....	57
References.....	57

Appendices

Appendix A: Energy Units	A1
Appendix B: Fuel Specifications	B1
Appendix C: Calculations	C1

List of Figures

Figure	Title	Page
2.1	Schematic diagram of a Boiler Room	8
2.2	Fire tube Boiler	9
2.3	Water Tube Boiler configuration	10
2.4	A typical three Pass Oil fired	12
2.5	Fluidized bed combustion boiler	13
2.6	Boiler control	14
2.7	Water level control	15
2.8	A typical pressure control loop	16
2.9	Furnace control	17
3.1	Combustion	19
3.2	Appropriate air ratio for combustion	21
3.3	Oil burners	24
3.4	Combustion efficiency and flue gases	31
3.5	Various heat losses occurring in the boiler	32
4.1	Orsat device	35
4.2	Overview of Flue Portable Gas Analyzer Components	37
4.3	Shows oxygen analyzer	39
4.4	Typical oxygen trim system	41
5.1	Kenana boilers	46
5.2	Kenana boiler combustion control	47
5.3	Single position control system	48
5.4	Mechanical jack shaft	49
5.5	fully metered combustion control system	50

List of Tables

3.1	Appropriate air for fuel	21
3.2	Heating Values	26
3.3	Emissions from combustion systems and their effects	27
6.1	fuel specifications for selected fuels	61
6.2	Siegert Constants	67
6.3	Rate conversion factors to convert from ppm to pounds per million btu of fuel for selected gases.	69

List of Abbreviations

EPA	
TDLS	Tunable Diode Laser Gas Analyzer
SME	Society of Mechanical Engineers
EPA	Environmental Protection Agency
FBC	Fluidized bed combustion
LT	Level Transmitter
A.S	Air Supply
LIC	Level Indicating Controller
FD	Forced Draft
ID	Induced Drafr
PM	Particulate Matter
NO	Nitric Oxide
O ₃	Ozone
HNO ₃	dilute nitric acid
HCN	nitrogen cyanide
H ₂ SO ₄	sulphuric acid
CaSO ₄	calcium sulfate
CaSO ₃	calcium sulfite
CuCl ₂	cuprous chloride
KOH	Potassium hydroxide
HCL	Hydrochloric Acid
USB	Universal Serial Bus
PC	Personal Computer
VFD	Variable Frequency Drive
I/O	Input/output
CPU	Core Processing Unit
RAM	Random Access Memory
NEMA	National Electrical Manufacturers Association
FGR	Flue Gas Recirculation
FPC	Federal Power Commission
MPPC	Metered Parallel Positioning Control
GHGMRR	Greenhouse Gas Mandatory Reporting Rule
PID	Proportional-Integral-Derivative

BTU	British Thermal Unit
BHP	Boiler Horsepower
ASME	American Society of Mechanical Engineers
PPM	Parts Per Million