Dedication

I dedicate to my Father, to my Mother, to Rasheeda, to my brothers and sisters, to my friends, and colleagues, to all who help me.

Acknowledgment

At first my great thank and love to Allah who helps me to prepare this research, I would like to pass my great thank to my supervisor:

Dr: Ahmed Elhassen Elfaki

Also thanks to Sudan University of science and technology, college of science, and teachers who help me and my colleagues for this advice to help my master degree.

Abstract

This research as a resulting of collecting information about safety in nuclear reactor power plant and its relationship with radiation intensity variation with theoretical background of radiated material, nuclear reactor types and it is technique of working and practical side which takes radiation intensity of radioactive source (γ) .

The only one result that this search has reach is safety procedure in nuclear reactor power plant is very important procedure and must be taken as a series.

All the arrangements even the small details that guaranteed the safety of people inside and outside the nuclear reactor must be done.

ملخص

هذا البحث هو نتيجه لتجميع معلومات عن السلامه في المفاعلات النوويه, وعلاقتها بالتغير في شدة الإشعاع مع خلفيه نظريه عن المواد المشعه, وأنواع المفاعلات النوويه والتقنيم المتي تعمل بها مع الجانب العملى لقياس شدة الإشعاع من مصدر مشع لاشعة (γ).

النتيجـة الوحيـده الـتي توصـل إليهـا هـذا البحـث هـو أن عميلة السلامه فى المفاعلات النوويه هى عمليـه مهمـة جـدا ويجب أن تؤحذ فى غاية الجديه.

كـل الإجـراءات و حـتى التفاصـيل الصـغيره منهـا والـتي تضمن السلامه للناس داخل وخارج المفاعل النووي يجــب أن تنفذ .

Contents

Contents	Page
Dedication	1
Acknowledgement	11
Abstract	III
Abstract in Arabic	IV
Contents	V
Chapter One	1
1.1 Nuclear reactor history Introduction	2
1.2 Research Problem	2
1.3 Aim of the work	3
1.4 Research Significance	3
1.5 Research Layout	3
1.6Methodology	3
1.7Literature Review	3
Chapter two	4
2.1 Radiated material Introduction	5
2.2 Definition of Radiation	5
2.3 Types of Radiation	6
2.3.1 Ionizing radiation	6

2.3.2 Non-ionizing Radiation	7
2.4 Ionizing Versus Non-ionizing Radiation	8
2.5 Radiation controls	8
2.6Radiation Postings	9
2.7 Nuclear reactor	10
2.8 Types of Nuclear Power Reactors	11
2.8.1 Uranium-fuelled Reactors	11
2.8.2 Plutonium-fuelled Reactors	13
2.8.3Light Water Reactors	13
2.8.4 Pressurized Water Reactors	14
2.8.5Boiling Water Reactors	15
Chapter Three	17
3.1 Introduction	18
3.2 Nuclear Security	19
3.3Emergency Classification	20
3.4 Safety Standards	22
3.4.1 Technical Standards	22
3.4.2 Safety standards	22
3.5 International Standards	22
3.5.1 Metrological Standards	22
3.5.2 Written Standards	22
3.6 IAEA Standards, Guides and Codes	24
3.7 Hierarchy of IAEA Safety Standards	24

3.8Fundamental safety principle	25
3.9 Protection Systems Designs and Failure Analyses	27
3.10 Source Terms	27
3.11Radionuclide Inventories	28
3.12 Dose Pathways	28
3.13 Health Effects	28
3.14Protective Actions	29
Chapter Four	30
4.1Effect of distance and angle on radiation intensity introductions	31
4.2 materials and methods	31
4.3 results and tables	33
4.4 discussions	34
4.5 conclusions	34
4.6References	35
Table of Figures	36