الاية

الرَّحْمَنُ (1) عَلَّم الْقُرْآنَ (2) خَلَقَ الْإِنسَانَ (3) عَلَّمَهُ الْبَيَانَ (4) خَلَقَ الْإِنسَانَ (3) صدق الله العظيم صدق الله العظيم (سورة الرحمن)

DEDICATION

This work is dedicated to My parents

ACKNOWLEDGEMENT

O my lord! So order that I may be grateful for thy favors, which thou has bestowed on me and on my parents, and that I may work the righteousness that will please thee.

I would like to thank all those who supported me, my parents, my brother, my sisters and my friends. Special thanks are due to my Supervisor, Dr. Abdelfattah Bilal Abdelsalam, for supporting me. I greatly express my thanks to E. Mohammed Osman, Mohammed Alfatih and all persons who supported me in preparing this research.

ABSTRACT

The programmable logic controller (PLC) and human machine interface (HMI) have been successfully applied to a wide variety of practical problems such as the Parking Availability and Gate Control system. It has been shown that this programmable logic controller performs better than conventional system, especially when applied on processes that have a difficult model and when there is heuristic knowledge from human operators. The SIMATIC S7-300 PLC has been used because it is one of the most common used in automated system.

The main objective of this research is to design and implement the Parking Availability and Gate Control system. The Gate Control system using led indicators to compensate a DC motor which has been controlled by PLC and HMI to help and guide the driver. The model has been programmed by using SIMATIC STEP7300 and HMI WinCC flexible software. The model has been implemented and built.

الملخص

المتحكم المنطقي القابل للبرمجة وشاشة الاتصال الجرافيكية طبقا بنجاح على مجموعة واسعة من المشاكل العملية على سبيل المثال نظام إمكانية مواقف السيارات وأنظمة المتحكم في المدخل. ولقد ثبت أن اداء المتحكم المنطقي القابل للبرمجة أفضل من اداء المتحكمات التقليدية، وخصوصا عندما تطبق على عمليات تتميز بصعوبة النموذج، وعندما يكون هناك حاجة لمعرفة مجريات الأمور من الاشخاص العاملين. وقد استخدم المتحكم المنطقي القابل للبرمجة SIMATIC STEP7300 وذلك اكثر شيوعاً في الأنظمة المؤتمة.

الهدف الرئيس من هذا البحث هو تصميم وتنفيذ نظام إمكانية القراج وأنظمة التحكم في البوابة باستخدام المتحكم المنطقي القابل للبرمجة. استخدم لمبة بيان عوضاً عن محرك التيار المباشر في نظام التحكم في البوابة كما أستخدم نظام شاشة الاتصال الجرافيكية لتوجية السائقين. تم برمجة النموذج باستخدام (SIMATIC STEP7300) بعد ذلك تمت محاكاة النموذج باستخدام (HMI software). أخيراً تم بناء النموذج وتنفيذه.

TABLE OF CONTENTS	
الآية	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
الملخص	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	xii
CHAPTER ONE: INTRODUCTION	
1.1 General	1
1.2 Problem Statement	1
1.3 Objectives	2
1.4 Methodology	2
1.5 Layout	2
CHAPTER TWO: LITERATURE REVIEW AND THEORETICAL BACKGR	OUND
2.1 Parking Availability and Gate Control System	4
2.1.1 Parking System history	4
2.1.2 Parking availability and gate control system components	6
2.1.2.1 Entrance and exit electrical gates	6
2.1.2.2 Parking structure	6

2.1.2.3 Parking and gate control elements	7
2.2 programmable logic controllers Overview	7
2.2.1 Programmable logic controllers history	8
2.2.2 Internal architecture	10
2.2.2.1 The CPU	11
2.2.2.2 The buses	11
2.2.2.3 The Memory	12
2.2.2.4 Input/output unit	13
2.2.3 Principles of operation	14
2.2.4 PLC Configurations	16
2.2.4.1 Single printed circuit board	16
2.2.4.2 Single case (box)	17
2.2.4.3 Modular/rack types	18
2.2.5 PLC programing	22
2.2.6 PLCs versus computers	26
2.2.7 PLC Advantages	27
2.3 Human Machine Interface	27
2.3.1 Typical Applications	28
2.3.2 HMI Advantages	29
2.4 Sensors	31
2.4.1 Position sensors	31
2.4.2 Angular velocity sensors	31

2.4.3 Proximity sensors	32
2.4.4 Load sensors	32
2.4.5 Pressure sensors	33
2.4.6 Temperature sensors	33
2.4. 7 Vision sensors	33
2.5 Direct Current Motors	34
2.5.1 Theory of operation	35
2.5.2 Wound-field dc motors	35
2.5.3 permanent-magnet motors	36
2.5.4 Brushless Dc motors	36
CHAPTER THREE: PARKING AND GATE CONTROL SYSTEM DESCRIPTION	ON AND
CHAPTER THREE: PARKING AND GATE CONTROL SYSTEM DESCRIPTION STRUCTURE	ON AND
	ON AND 37
STRUCTURE	
STRUCTURE 3.1 Parking and gate control system description	37
STRUCTURE 3.1 Parking and gate control system description 3.2 parking and gate control system structure	37
3.1 Parking and gate control system description 3.2 parking and gate control system structure 3.2.1 Programmable logic controller	37 38 39
3.1 Parking and gate control system description 3.2 parking and gate control system structure 3.2.1 Programmable logic controller 3.2.1.1 PLC S7-300, CPU315-2 PN/DP features	37 38 39 40
STRUCTURE 3.1 Parking and gate control system description 3.2 parking and gate control system structure 3.2.1 Programmable logic controller 3.2.1.1 PLC S7-300, CPU315-2 PN/DP features 3.2.1.2 Power supply module PS 307-2A	37 38 39 40 43
3.1 Parking and gate control system description 3.2 parking and gate control system structure 3.2.1 Programmable logic controller 3.2.1.1 PLC S7-300, CPU315-2 PN/DP features 3.2.1.2 Power supply module PS 307-2A 3.2.1.2.1 Properties of power supply module PS 307-2A	37 38 39 40 43
3.1 Parking and gate control system description 3.2 parking and gate control system structure 3.2.1 Programmable logic controller 3.2.1.1 PLC S7-300, CPU315-2 PN/DP features 3.2.1.2 Power supply module PS 307-2A 3.2.1.2.1 Properties of power supply module PS 307-2A 3.2.1.3 Digital input module SM 321; DI 16 x DC 24 V	37 38 39 40 43 43 44
3.1 Parking and gate control system description 3.2 parking and gate control system structure 3.2.1 Programmable logic controller 3.2.1.1 PLC S7-300, CPU315-2 PN/DP features 3.2.1.2 Power supply module PS 307-2A 3.2.1.2.1 Properties of power supply module PS 307-2A 3.2.1.3 Digital input module SM 321; DI 16 x DC 24 V 3.2.1.4 Digital output module SM 322- DO 16 x DC 24 V	37 38 39 40 43 43 44 45

3.2.2.1 Inductive proximity sensor	48
3.2.2.2 Led indicator 24V DC	50
3.2.3 Parking structure	50
3.2.3.1 Limit switch	50
3.2.3.2 Led indicator 24V DC	51
3.2.4 Exit gate	51
3.2.5 Human machine interface (HMI)	52
3.3 model wiring diagrams	54
3.3.1 Inputs wiring diagram	54
3.3.2 Outputs wiring diagram	54
3.3.4 Model ladder program language 3	55
3.4.1 Green led indicator start system network NO.1	55
3.4.2 Red led indicator stop system network NO.2	56
3.4.3 Led indicator parking level-1 full network NO.3	56
3.4.4 Led indicator parking level-2 full network NO.4	57
3.4.5 Led indicator parking full network NO.5	58
3.4.6 Led indicator welcome parking network NO.6	59
3.4.7 Green led indicator entrance gate network NO.7	61
3.4.8 Red led indicator closed entrance gate network NO.8	63

3.4.9 Green led indicator exit gate network NO.9	63
3.4.10 T4 (NO) ON delay timer network NO.10	63
3.4.11 lock between opened exit gate and exit gate closed network NO.11	65
3.4.12 T5 (NO) ON delay timer network NO.12	65
3.4.13 led indicator slots networks	66
3.4.14 Entrance and exit gate counter network NO.19	68
3.4.15 MOV and CMP instructions network NO.20-21	68
CHAPTER FOUR: PARKING AVAILABILITY AND GATE CONTROL	69
SYSTEM IMPLEMENTATION AND HMI SOFTWARE	09
4.1 Parking availability and gate control system implementation	69
4.1 Parking availability and gate control system implementation	69
4.1 Parking availability and gate control system implementation 4.1.1 Parking and gate control system hardware implementation	69 69
4.1 Parking availability and gate control system implementation 4.1.1 Parking and gate control system hardware implementation 4.1.1.1Entrance gate implementation	69 69 69
4.1 Parking availability and gate control system implementation 4.1.1 Parking and gate control system hardware implementation 4.1.1.1 Entrance gate implementation 4.1.1.2 Exit gate implementation	69 69 69
4.1 Parking availability and gate control system implementation 4.1.1 Parking and gate control system hardware implementation 4.1.1.1 Entrance gate implementation 4.1.1.2 Exit gate implementation 4.1.1.3 Parking structure implementation	69 69 69 69 70
4.1 Parking availability and gate control system implementation 4.1.1 Parking and gate control system hardware implementation 4.1.1.1 Entrance gate implementation 4.1.1.2 Exit gate implementation 4.1.1.3 Parking structure implementation 4.2 HMI software	69 69 69 70 71
4.1 Parking availability and gate control system implementation 4.1.1 Parking and gate control system hardware implementation 4.1.1.1 Entrance gate implementation 4.1.1.2 Exit gate implementation 4.1.1.3 Parking structure implementation 4.2 HMI software 4.2.1 System status	69 69 69 70 71 71

4.2.3 Slot status and parking levels	73
4.2.3.1 Slot-1 and parking levels	73
4.2.3.2 Slot-2 and parking levels	74
4.2.3.3 Slot-3 and parking levels	75
4.2.3.4 Slot-4 and parking levels	76
4.2.3.5 Slot-5 and parking levels	77
4.2.3.6 Slot-6 and parking levels	78
4.2.2.7.01 + 6 11 1 1 1 1 1 1	70
4.2.3.7 Slot-6, parking levels and exit gate	79
CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS	81
CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS	81
CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 5.1 Conclusions	81
CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 5.1 Conclusions 5.2 Recommendations	81 81 82

LIST OF FIGURES AND PICTURE	
Figure (2.1): PLC internal architecture	10
Figure (2.2): PLC input levels	13
Figure (2.3): PLC output levels	13
Figure (2.4): Input/output interface	14
Figure (2.5): Input/output interface	15
Figure (2.6): Open Frame PLC	17
Figure (2.7): Shoebox-Style PLCs	18
Figure (2.8): Modularized PLC	18
Figure (2.9): Programmer Connected to PLC	22
Figure (2.10): Standard IEC 61131 languages associated with PLC programing	23
Figure (2.11): Scanning the adder program	24
Figure (2.12): A ladder rung	25
Figure (2.13): Notation: (a) Mitsubishi, (b) Siemens, (c) Allen-Bradley, (d) Telemecanique	26
Figure (2.14): Conventional DC motor action	35
Figure (3.1): parking and gate control system structure	38
Figure (3.2): Siemens SIMATIC S7-300-CPU315-2 PN/DP	40
Figure (3.3): Power supply module PS 307-2A	44
Figure (3.4): Digital input module SM 321; DI 16 x DC 24V	45

Figure (3.5): Digital output module SM 322- DI 16 x DC 24V	45
Figure (3.6): Entrance gate	48
Figure (3.7): Proximity Switch LJ12A3-4-Z/BY	49
Figure (3.8): Led indicator 24V DC	50
Figure (3.9): Limit switch	51
Figure (3.10): Exit gate	52
Figure (3.11): WinCC flexible software	53
Figure (3.12): Ladder program network NO.1	56
Figure (3.13): Ladder program network NO.2-3-4	58
Figure (3.14): Ladder program network NO.5	59
Figure (3.15): Led indicator welcome parking NO.6	60
Figure (3.16): Led indicator welcome parking NO.7	62
Figure (3.17): T4 (NO) ON delay timer network NO.10	64
Figure (3.18): illustrate the network NO.11-12	65
Figure (3.19): led indicator slots networks	67
Figure (3.20): MOV and CMP instructions network NO.20-21	68
Picture (4.1): Parking structure implementation	70
Picture (4.2): Start pushbutton at stop mode	71
Picture (4.3): Stop pushbutton at running mode	72
Picture (4.4): Entrance and exit gate	73
Picture (4.5): Slot-1 and parking levels	74
Picture (4.6): Slot-2 and parking levels	75

Picture (4.7): Slot-3 and parking levels	76
Picture (4.8): Slot-4 and parking levels	77
Picture (4.9): Slot-5 and parking levels	78
Picture (4.10): Slot-6 and parking levels	79
Picture (4.11): Slot-6, parking levels and exit gate	80

LIST OF TABLES	
Table (3.1): CPU315-2 PN/DP features	43
Table (2.2): Table (3.2): Model input addresses	46
Table (2.3): Table (3.3): Model output addresses	47