CHAPTER ONE

INTRODUCTION
1.1 General

A servo control system is one of the most important and widely used forms of
control system. Any machine or piece of equipment that has rotating parts
will contain one or more servo control systems [1]. Automatic systems are
common place in our daily life, they can be found in almost any electronic
devices and appliances we use daily, starting from air conditioning systems,
automatic doors, and automotive cruise control systems to more advanced
technologies such as robotic arms, production lines and thousands of
industrial and scientific applications. DC servomotors are one of the main
components of automatic systems; any automatic system should have an
actuator module that makes the system to actually perform its function [2].
The most common actuator used to perform this task is the DC servomotor.
Historically, DC servomotors also played a vital role in the development of
the computer’s disk drive system; which make them one of the most
important components in our life that we cannot live without it. Due to their
importance, the design of controllers for these systems has been an
interesting area for researchers from all over the world. However, even with
all of their useful applications and usage, servomotor systems still suffer from
several non-linear behaviors and parameters affecting their performance,
which may lead for the motor to require more complex controlling schemes,
or having higher energy consumption and faulty functions in some cases [7].
For these purposes the controller design of DC servomotor system is an

interesting area that still offers multiple topics for research.



1.2 Problem Statement

The servomotor will be consider as a second-order system. The time response
of an under damped second-order system to step input for certain terms are
used to specify performance such as rise time, steady state error ,peak time
maximum over shoot and settling time. The specification of response will be
determine for an ideal second-order system by using theoretical laws and

outputs of matlab.

1.3 Objective

The time response parameters are determined for investigation theoretically
and practically of proportional derivative and integral- control individually
and in combination on the closed loop response of servomotor by compared

the theoretical results with matlab results

1.4 Methodology

e Study transient characteristics of a typical second order system and
evaluate model or system responses using these specifications.

e Analyze the effects of proportional- derivative- and integral- control
individually and in combination on the closed loop response of motor

e  Solve a position control problem by calculating PID controller gains
analytically and validate the control by monitoring the motor response
for different desired trajectories.

e Using mathematical method (Laplace equations) to build system
model.

e Using Matlab/Simulink software to simulate the model and determine

the time response parameters

1.5 The Layout

This research consists of five chapters: chapter one represents the principles

of the work , the reasons and motivation and also discuses the objectives and



outline Methodology of evaluation. chapter two discuses previos works,
theoretical back ground of control systems, feedback control, design and
compensation of circuits systems, performance specifications, automatic
controllers, classifications of industrial controllers. Chapter three represents
the system Implementation of DC servo system and transient response
specifications. chapter four presents the simulation and results. Finally

chapter five is a conclusion and recommendations.

HAPTER TWO
PREVIOS WORKS AND CONTROL SYSTEMS

2.1 Introduction



Dr. Shereen F. Abd-Alkarim is about design and application of a fuzzy logic
controller to DC-servomotor is investigated. The proposed strategy 1is
intended to improve the performance of the original control system by use of
a Fuzzy Logic Controller (FLC) as the motor load changes. Computer
simulation demonstrates that FLC is effective in position control of a DC-
servomotor comparing with conventional one [1]. Dong-Seog Bae and Jang-
Myung Lee say This paper introduces a high-performance speed control
system based on Artificial Neural Networks(ANN) to estimate unknown
parameters of a DC servo motor. The goal of this research is to keep the rotor
speed of the DC servo motor to follow an arbitrary selected trajectory. In
detail, the aim is to obtain accurate trajectory control of the speed, specially
when the motor and load parameters are unknown. By using an artificial
neural network, we can acquire unknown nonlinear dynamics of the motor
and the load. A trained neural network identifier combined with a reference
model can be used to achieve the trajectory control. The performance of the
identification and the control algorithm are evaluated through the simulation
and experiment of nonlinear dynamics of the motor and the load using a
typical DC servo motor model [2]. S.Mondi’e, R. Villafuerte and R. Garrido
say this paper presents a tuning strategy for Proportional Retarded (PR)
control laws in closed loop with second order systems and experimental
results on the noise attenuation performance of a DC servomotor. The PR
controller is compared with other commonly employed strategies for
avoiding the time-derivative measurement in proportional derivative control
laws. The experiments show that the PR controller combines good noise

attenuation and tracking performance with a simple implementation [3].
2.2 Control Systems

Control theories commonly used are classical control theory (a conventional

control theory), modern control theory, and robust control theory [2].



2.2.1 Feedback control

Feedback control refers to an operation that, in the presence of disturbances,
tends to reduce the difference between the output of a system and some
reference input and does so on the basis of this difference [3].

2.2.2 Feedback control systems

A system that maintains a prescribed relationship between the output and the
reference input by comparing them and using the difference as a means of
control 1s called a feedback control system. An example would be a room
temperature control system. By measuring the actual room temperature and
comparing it with the reference temperature (desired temperature), the
thermostat turns the heating or cooling equipment on or off in such a way as
to ensure that the room temperature remains at a comfortable level regardless
of outside conditions. Feedback control systems are not limited to
engineering but can be found in various non engineering fields as well. In
fact, feedback performs a vital function: It makes the human body relatively
insensitive to external disturbances, thus enabling it to function properly in a
changing environment [2].

2.2.3 Open-loop control systems

Those systems in which the output has no effect on the control action are
called open-loop control systems. In other words, in an open loop control
system the output is neither measured nor feedback for comparison with the
input. In any open-loop control system the output is not compared with the
reference input. Thus, to each reference input there corresponds a fixed
operating condition; as a result, the accuracy of the system depends on
calibration. In the presence of disturbances, an open-loop control system will
not perform the desired task. Open-loop control can be used, in practice, only
if the relationship between the input and output is known and if there are

neither internal nor external disturbances. Clearly, such systems are not



feedback control systems. Note that any control system that operates on a
time basis is open loop. For instance, traffic control by means of signals
operated on a time basis is example of open-loop control [2].

2.2.4 Closed-loop control systems

Feedback control systems are often referred to as closed-loop control
systems. In practice, the terms feedback control and closed-loop control are
used interchangeably. In a closed-loop control system the actuating error
signal, which is the difference between the input signal and the feedback
signal (which may be the output signal itself or a function of the output signal
and its derivatives and/or integrals), is fed to the controller so as to reduce the
error and bring the output of the system to a desired value. The term closed-
loop control always implies the use of feedback control action in order to

reduce system error [2].

2.2.5 Closed-loop versus open-loop control systems

An advantage of the closed loop control system is the fact that the use of
feedback makes the system response relatively insensitive to external
disturbances and internal variations in system parameters. It is thus possible
to use relatively in accurate and inexpensive components to obtain the
accurate control of a given plant, whereas doing so is impossible in the open-
loop case. From the point of view of stability, the open-loop control system is
easier to build because system stability is not a major problem. On the other
hand, stability is a major problem in the closed-loop control system, which
may tend to overcorrect errors and there by can cause oscillations of constant
or changing amplitude. It should be emphasized that for systems in which the
inputs are known ahead of time and in which there are no disturbances it is
advisable to use open-loop control. Closed-loop control systems have

advantages only when unpredictable disturbances and/or unpredictable



variations in system components are present. Note that the output power
rating partially determines the cost, weight, and size of a control system. The
number of components used in a closed-loop control system is more than that
for a corresponding open-loop control system. Thus, the closed-loop control
system is generally higher in cost and power. To decrease the required power
of a system, open loop control may be used where applicable. A proper
combination of open-loop and closed-loop controls is usually less expensive
and will give satisfactory overall system performance. Therefore, it is
worthwhile to summarize the advantages and disadvantages of using open-
loop control systems.

The major advantages of open-loop control systems are as follows [2]:

1. Simple construction and ease of maintenance.

2. Less expensive than a corresponding closed-loop system.

3. There is no stability problem.

4. Convenient when output is hard to measure or measuring the output
precisely is economically not feasible. (For example, in the washer system, it
would be quite expensive to provide a device to measure the quality of the
washer’s output, cleanliness of the clothes.)

The major disadvantages of open-loop control systems are as follows:

1. Disturbances and changes in calibration cause errors, and the output may
be different from what is desired.

2. To maintain the required quality in the output, recalibration is necessary

from time to time.

2.3 Design And Compensation of Circuits Systems

Compensation is the modification of the system dynamics to satisfy the given
specifications. The approaches to control system design and compensation
used in this research is The PID-based compensational approach to control

systems design [2].
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2.3.1 Performance specifications

Control systems are designed to perform specific tasks. The requirements
imposed on the control system are usually spelled out as performance
specifications. The specifications may be given in terms of transient response
requirements (such as the maximum overshoot and settling time in step
response) and of steady-state requirements (such as steady-state error in
following ramp input). The specifications of a control system must be given
before the design process begins. For routine design problems, the
performance specifications (which relate to accuracy, relative stability, and
speed of response) may be given in terms of precise numerical values. In
other cases they may be given partially in terms of precise numerical values
and partially in terms of qualitative statements. Generally, the performance
specifications should not be more stringent than necessary to perform the
given task. If the accuracy at steady-state operation is of prime importance in
a given control system, then we should not require unnecessarily rigid
performance specifications on the transient response, since such
specifications will require expensive components. Remember that the most
important part of control system design is to state the performance
specifications precisely so that they will yield an optimal control system for
the given purpose [2].

2.3.2 System compensation

Setting the gain is the first step in adjusting the system for satisfactory
performance. In many practical cases, however, the adjustment of the gain
alone may not provide sufficient alteration of the system behavior to meet the
given specifications. As is frequently the case, increasing the gain value will
improve the steady-state behavior but will result in poor stability or even
instability. It is then necessary to redesign the system (by modifying the

structure or by incorporating additional devices or components) to alter the



overall behavior so that the system will behave as desired. Such a redesign or
addition of a suitable device is called compensation. A device inserted into
the system for the purpose of satisfying the specifications is called a
compensator .The compensator compensates for deficient performance of the
original system [2].

2.3.3 Design procedure

The most time-consuming part of the work is the checking of the system
performance by analysis with each adjustment of the parameters. The
designer can use MATLAB or other available computer package to avoid
much of the numerical drudgery necessary for this checking. Once a
satisfactory mathematical model has been obtained, the designer must
construct a prototype and test the open-loop system. If absolute stability of
the closed loop is assured, the designer closes the loop and tests the
performance of the resulting closed loop system. Because of the neglected
loading effects among the components, nonlinearities, distributed parameters,
and so on, which were not taken into consideration in the original design
work, the actual performance of the prototype system will probably differ
from the theoretical predictions. Thus the first design may not satisfy all the
requirements on performance. The designer must adjust system parameters
and make changes in the prototype until the system meets the specifications.
In doing this, he or she must analyze each trial, and the results of the analysis
must be incorporated into the next trial. The designer must see that the final
system meets the performance specifications and, at the same time, is reliable

and economical [2].
2.4 Automatic Controllers

An automatic controller compares the actual value of the plant output with
the reference input (desired value), determines the deviation, and produces a

control signal that will reduce the deviation to zero or to a small value. The



manner in which the automatic controller produces the control signal is called
the control action. Figure 2.1 is a block diagram of an industrial control
system, which consists of an automatic controller, an actuator, a plant, and a

sensor (measuring element) [2].
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Figure 2.1: An automatic controller
The controller detects the actuating error signal, which is usually at a very
low power level, and amplifies it to a sufficiently high level. The output of an
automatic controller is fed to an actuator, such as an electric motor, a
hydraulic motor, or a pneumatic motor or valve. (The actuator is a power
device that produces the input to the plant according to the control signal so
that the output signal will approach the reference input signal). The sensor or
measuring element is a device that converts the output variable into another
suitable variable, such as a displacement, pressure, voltage, etc., that can be
used to compare the output to the reference input signal. This element is in
the feedback path of the closed-loop system. The set point of the controller
must be converted to a reference input with the same units as the feedback

signal from the sensor or measuring element.

2.4.1 Classifications of industrial controllers



Most industrial controllers may be classified according to their control
actions as:

1. Two-position or on—off controllers

2. Proportional controllers

3. Integral controllers

4. Proportional-plus-integral controllers

5. Proportional-plus-derivative controllers

6. Proportional-plus-integral-plus-derivative controllers

Most industrial controllers use electricity or pressurized fluid such as oil or
air as power sources. Consequently, controllers may also be classified
according to the kind of power employed in the operation, such as pneumatic
controllers, hydraulic controllers, or electronic controllers .What kind of
controller to use must be decided based on the nature of the plant and the
operating conditions, including such considerations as safety, cost,
availability, reliability, accuracy, weight, and size[4].

2.4.2 Two-position or on—off control action

In a two-position control system, the actuating element has only two fixed
positions, which are, in many cases, simply on and off. Two-position or on—
off control is relatively simple and inexpensive and, for this reason, is very
widely used in both industrial and domestic control systems. Let the output
signal from the controller be u(t) and the actuating error signal be e(t).

In two-position control, the signal u(t) remains at either a maximum or
minimum value, depending on whether the actuating error signal is positive

or negative, so that:

U(t) = Uy, fore(t) >0 (2.1)

= U,, fore(t) <0 (2.2)
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where U, and U, are constants. The minimum value U, is usually either zero
or -U,. Two-position controllers are generally electrical devices, and an
electric solenoid-operated valve is widely used in such controllers. Pneumatic
proportional controllers with very high gains act as two-position controllers
and are sometimes called pneumatic two position controllers.

2.4.3 Proportional control action

For a controller with proportional control action, the relationship between

the output of the controller u(t) and the actuating error signal e (t) is:

u(t) = kye(t) (2.3)
Or in Laplace-transformed quantities,

ues) _

% = Kp (2.4)

where K is termed the proportional gain. Whatever the actual mechanism
may be and whatever the form of the operating power, the proportional
controller is essentially an amplifier with an adjustable gain.

2.4.4 Integral control action

In a controller with integral control action, the value of the controller output
u(t) is changed at a rate proportional to the actuating error signal e (t) .That

1S:

du(t) _
—= = kie(t) (2.5)
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Or:

u(t) = k; [ e(t)dt (2.6)

Where K, is an adjustable constant .The transfer function of the integral

controller 1s

ves) _ K
265) . (2.7)

2.4.5 Derivative control action

A derivative controller adds a differential gain. This type of controller will
now act as a virtual damper connected between your actual system and the
imaginary ideal system that exerts corrective damping force on the actual

system to maintain the desired trajectory at the velocity level.

de(t)

u(t) = kg It

(2.8)

where K, is an adjustable constant. The transfer function of the integral

controller is:

ues) _
b = KaS 2.9)

2.4.6 Proportional-plus-integral control action

The control action of a proportional plus- integral controller is defined by:

VY



u(t) = kye(t) + ’;—p [Fe(t) dt (2.10)

Or the transfer function of the controller 1s

us) 1
e =kp (1 + Tis) 2.11)

where T; is called the integral time.
2.4.7 Proportional- plus-derivative control action

The control action of a proportional plus- derivative controller is defined by:

de(t)

u(t) = kpe(t) + KpT, Tt (2.12)
And the transfer function is:

ue _

ES) Kp(l + TdS) (2.13)

Where T is called the derivative time.

2.4.8 Proportional plus integral plus derivative control action
The combination of proportional control action, integral control action, and
derivative control action termed proportional-plus-integral-plus-derivative
control action. It has the advantages of each of the three individual control

actions. The equation of a controller with this combined action is given by:

de(t)
dt

u(t) = kye(t) + ';—’i’fot e(t) dt + KpT, (2.14)

)¢



Or the transfer function is:

U(s) 1

where K, 1is the proportional gain, T; is the integral time, and T, is the
derivative time. The block diagram of a Proportional-plus-Integral plus-

Derivative(PID) controller is shown in Figure 2.2.

Els) Kl +Tis+ T; Tas%) Lis)
= T

-

Figure 2.2: Block diagram of PID controller
2.5 Transient And Steady-State Response Analyze

The time response of a control system consists of two parts: the transient
response and the steady-state response. By transient response, we mean that
which goes from the initial state to the final state. By steady-state response,
we mean the manner in which the system output behaves as t approaches

infinity. Thus the system response c(t) may be written as [5]:
c(t) =cy + Co (2.16)
where the first term on the right-hand side of the equation is the transient

response and the second term is the steady-state response.

2.5.1Typical test signals

Yo



The commonly used test input signals are step functions, ramp functions,
acceleration functions, impulse functions, sinusoidal functions, and white
noise. In this research we use test signal step. With this test signal,
mathematical and experimental analyses of control systems can be carried out
easily, since the signal is very simple functions of time. Which of this typical
input signal to use for analyzing system characteristics may be determined by
the form of the input that the system will be subjected to most frequently
under normal operation. If a system is subjected to sudden disturbances a step
function of time may be a good test signal. Once a control system is designed
on the basis of test signals, the performance of the system in response to
actual inputs is generally satisfactory. The use of such test signal enables one

to compare the performance of many systems on the same basis.
2.5.2 Stability and steady state error

In designing a control system, we must be able to predict the dynamic
behavior of the system from a knowledge of the components. The most
important characteristic of the dynamic behavior of a control system is
absolute stability—that is, whether the system is stable or unstable. A control
system 1is in equilibrium if, in the absence of any disturbance or input, the
output stays in the same state. A linear time-invariant control system is stable
if the output eventually comes back to its equilibrium state when the system
is subjected to an initial condition. A linear time-invariant control system is
critically stable if oscillations of the output continue forever. It is unstable if
the output diverges without bound from its equilibrium state when the system
is subjected to an initial condition. Actually, the output of a physical system
may increase to a certain extent but may be limited by mechanical “stops” or
the system may break down or become nonlinear after the output exceeds a
certain magnitude so that the linear differential equations no longer apply.

Important system behavior (other than absolute stability) to which we must

1



give careful consideration includes relative stability and steady-state error.
Since a physical control system involves energy storage, the output of the
system, when subjected to an input, cannot follow the input immediately but
exhibits a transient response before a steady state can be reached. The
transient response of a practical control system often exhibits damped
oscillations before reaching a steady state. If the output of a system at steady
state does not exactly agree with the input, the system is said to have steady
state error. This error is indicative of the accuracy of the system. In analyzing
a control system, we must examine transient-response behavior and steady-

state behavior.

2.6 Steady-State Errors in Unity Feedback Control
Systems

Errors in a control system can be attributed to many factors. Changes in the
reference input will cause unavoidable errors during transient periods and
may also cause steady state errors. Imperfections in the system components,
such as static friction, backlash, and amplifier drift, as well as aging or
deterioration, will cause errors at steady state. We shall investigate a type of
steady-state error that is caused by the incapability of a system to follow
particular types of inputs. Any physical control system inherently suffers
steady-state error in response to certain types of inputs. A system may have
no steady-state error to a step input, but the same system may exhibit nonzero
steady-state error to a ramp input. The only way we may be able to eliminate
this error is to modify the system structure. Whether a given system will
exhibit steady-state error for a given type of input depends on the type of
open-loop transfer function of the system, to be discussed in what follows
[6].

2.6.1 Classification of control systems
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Control systems may be classified according to their ability to follow step
inputs, ramp inputs, parabolic inputs, and so on. This is a reasonable
classification scheme, because actual inputs may frequently be considered
combinations of such inputs. The magnitudes of the steady-state errors due to
these individual inputs are indicative of the goodness of the system. Consider
the unity-feedback control system with the following open loop transfer

function G (s) [7]:

K(TyS+1)(Tp+1)...(Tpy, S+ 1)
SN(TyS+1)(T2S+1)...(TpS+ 1)

G(S) = (2.17)

It involves the term SV in the denominator, representing a pole of multiplicity
N at the origin. The present classification scheme is based on the number of
integrations indicated by the open-loop transfer function. A system is called
type 0, type 1, type 2,..., if N=0, N=1, N=2, ..., respectively. Note that this
classification is different from that of the order of a system. As the type

number is increased, accuracy is improved; however, increasing the type

number R E(s) Cls) aggravates the
o Gis)

stability & problem. A

compromise between steady-

state accuracy and

relative stability is always necessary. We shall see later that, if G(s) is
written so that each term in the numerator and denominator, except the term
S", approaches unity as s approaches zero, then the open loop gain K is

directly related to the steady-state error.
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Figure 2.3: Unity control system
2.6.2 Steady state errors

Consider the system shown in Figure 2.3. The closed-loop transfer function

1S:

c(S) _ G(S)
R(S)  1+G(S)

(2.18)

The transfer function between the error signal e (t) and the input signal r (t)

1S:

ES) _ , € _ 1
R(S) 1 R(S)  1+G(S) (2.19)

where the error e(t) is the difference between the input signal and the
output signal. The final-value theorem provides a convenient way to find the

steady-state performance of a stable system. Since E (s) is:

1
1+G(S)

E(S) = R(S) (2.20)

The steady-state error is:

. _ . SR(S)
ess = limine(t) = limg_oSE(s) = _15-13(1)(1+G(S)

) (2.21)

The static error constants defined in the following are figures of merit of
control systems . The higher the constants, the smaller the steady-state error.

In a given system, the output may be the position, velocity, pressure,

R



temperature, or the like. The physical form of the output, however, is
immaterial to the present analysis. Therefore, in what follows, we shall call
the output “position” the rate of change of the output “velocity” and so on.
This means that in a temperature control system “position” represents the
output temperature, “velocity” represents the rate of change of the output

temperature, and so on.
2.6.3 Static position error constant

The steady-state error of the system for a unit-step input is:

s 1 1

€ss = lim 1+G(S) s 1+G(0) (2.22)
The static position error constant K| is defined by:
ky,= !51_13(1) G(S) =G(0) (2.23)

Thus, the steady-state error in terms of the static position error constant K, is

given by:
1

€ss = Trks (2.24)
For a type 0 system we have:

_ K(TpS+1)(Tp+1)...
ey = §—0 (T S+D(T,S+1)... (2.25)
For a type 1 or higher system we set:

_ K(TpS+1)(Tp+1)...
kp = ?_r}(l) SN S+ DDS D for V=1 (2.26)



Hence, for a type 0 system, the static position error constant is finite, while

for a type 1 or higher system, K is infinite. For a unit-step input, the steady-

state error eg; may be summarized as follows:

Egg = 1+LK , for type 0 systems (2.27)

ess =0, for type 1 or higher systems (2.28)

From the foregoing analysis, it is seen that the response of a feedback control
system to a step input involves a steady-state error if there is no integration in
the feed forward path. If small errors for step inputs can be tolerated, then a
type 0 system may be permissible, provided that the gain K is sufficiently
large. If the gain K is too large, however, it is difficult to obtain reasonable

relative stability. If zero steady-state error for a step input is desired, the type

of the system must be one or higher.

CHAPTER THREE
SYSTEM IMPLEMENTATION
3.1 Aservo System

Consider the servo system shown in Figure 3.1. The motor shown is a
servomotor, a DC motor designed specifically to be used in a control system.
The operation of this system is as follows: A pair of potentiometers acts as an
error-measuring device. They convert the input and output positions into
proportional electric signals. The command input signal determines the

angular position r of the wiper arm of the input potentiometer. The angular
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position r is the reference input to the system, and the electric potential of
the arm is proportional to the angular position of the arm. The output shaft
position determines the angular position ¢ of the wiper arm of the output
potentiometer. The difference between the input angular position r and the

output angular position ¢ is the error signal e, or:

e=r—c (3.1)

The potential difference e, — e, = e, is the error voltage, where e, is
proportional to r and e, is proportional to c¢; that s

e, = Kkor , and e, = koc where K|, is a proportionality constant . The error

voltage that appears at the potentiometer terminals is amplified by the
amplifier whose gain constant is K;. The output voltage of this amplifier is
applied to the armature circuit of the DC motor. A fixed voltage is applied to
the field winding. If an error exists, the motor develops a torque to rotate the
output load in such a way as to reduce the error to zero. For constant field

current, the torque developed by the motor is:
T=K,i, (3.2)
where K, is the motor torque constant and 1, is the armature current. When

the armature is rotating, a voltage proportional to the product of the flux and

angular velocity is induced in the armature. For a constant flux, the induced

voltage e, is directly proportional to the angular velocity or:

e, = K. % (3.3)
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where ey, 1s the back emf, K; is the back emf constant of the motor, and 6 is

the angular displacement of the motor shaft [2].

Reference input ~ Input potentiometer

train
(a)

Figure 3.1: Schematic diagram of servo system
We can obtain the transfer function between the motor shaft angular
displacement 6 and the error voltage e,. Obtain also a block diagram for this
system and a simplified block diagram when L, is negligible. The speed of an
armature-controlled dc servomotor is controlled by the armature voltage e,.
The armature voltage e, = Kye, 1is the output of the amplifier. The

differential equation for the armature circuit is [2]:

L
@ at

+ Ryl +ep, =¢, (3.4)

By substitution equation (3.3) in to (3.4) for e,, we set:

dig

. do
Lo 2+ Rolq + K3 = Ky, (3.5)

The equation for torque equilibrium is:

daze do .
]OF + bo_ == T == Kzla (36)
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where Jj is the inertia of the combination of the motor, load, and gear train
referred to the motor shaft and b, is the viscous-friction coefficient of the
combination of the motor, load, and gear train referred to the motor shaft. By

eliminating i, from Equations (3.5) and (3.6), we obtain:

0(s) K1K;
Ev(S)  S(LaS+Ry)(JoS+bo)+ KK3S

(3.7)

We assume that the gear ratio of the gear train is such that the output shaft
rotates n times for each revolution of the motor shaft. Thus,

C(s) = n8b(s) (3.8)
The relationship among E(s), R(s), and C(s) is:
E,(s) = Ko[R(s) — C(s)] = KoE(s) (3.9)

The block diagram of this system can be constructed from Equations (3.7),
(3.8), and (3.9), as shown 1n Figure 3.2(a).The transfer function in the feed

forward path of this system is:

8(S)Ey(S)E(S)  S[(LaS+ Ra)(JoS+bg)+ K, Ks]

G(S) = (3.10)

When L, is small, it can be neglected, and the transfer function G(s) in the

feed forward path becomes as follows:

KoK;:Kpn _ K¢K;K;n/R,
[Ra(JoS+ba)+ KzKs] — Jos2+( o+ “252)s
a

G(S) = (3.11)

The term [+[by + (K, K3/R,)]s indicates that the back emf of the motor
effectively increases the viscous friction of the system. The inertia J, and

viscous friction coefficient are referred to the motor shaft. When J, and
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by + (K, K3/R,) are multiplied by 1/n’, the inertia and viscous-friction
coefficient are expressed in terms of the output shaft . Introducing new

parameters defined by [2]:

] =Jo/n?* = Moment of inertia referred to the output shaft.

K, K3
Ra

B = [bo + ( )] /n?* =Viscous-friction coefficient referred to the output
shaft.
K = KoKle/nRa

The transfer function G(s) given by Equation (3.11) can be simplified,

yielding:
K
G(S) = 157455 (3.12)
Or:
Km
G(S) = TS+D) (3.13)
Where:
_K _J _ RaJo
Km = B’ Tm = B (Rybo+K,Kz) (3.14)

The block diagram of the system shown in Figure 3.2(a) can thus be
simplified as shown in Figure 3.2(b).

Rix) Eis) ; Es) Kk Hs) Cis) Rix) K Ci=)
—;-@_V Ky SLgw + Bg) (S5 + b)) + KaKys . i —_(-g)-p stz + )

(a) block diagram for the system (b) simplified block diagram

Figure 3.2: block diagram system and simplified
Most important among the characteristics of servo motor is maximum

acceleration obtainable. For a given available torque,the rotor moment of
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inertia be minimum. Since the servo motor operates under continuously
varing conditions ,acceleration and decelaration of the rotor occur from time
to time. The servo motor must be able to obsorb mechanical energy as well as
to generate it. The performance of the servo when used as brake should be
satisfactory [2].

Let J. and b. be respectively, the moment on inertia and viscous- friction
coefficient of the rotor , and let J. and b . be, respectively, the moment on
inertia and viscous- friction coefficient of gear train are either negligible or
included in J . and b . be, respectively. Then, the equivalent of inertia Jeq
referred to the motor shaft and equivalent viscous- friction coefficient bgq

referred to the motor shaft can be written as [2]:

Jeq =Jm + nZIL (3.15)
beq = by, +n?by (3.16)

Where n(n<1) is the gear ratio between the motor and load . If the ratio n is
small and J,, > n?J; then the moment of inertia of the load referred to motor
shaft is neglible with respect to the rotor moment of inertia. Asimilar
argument applies to the load friction. In general ,when the gear ratio n is
small, the transfer function of the electrical servo motor may be obtained
without taking in to account the load moment of inertia and friction. If neither
Jn nor n?J_ is negligibly small compared with other; however, then the
equivalent moment of inertia Jo; must be used for evaluating the transfer

function of the motor —load combination [2].

3.2 Second Order Systems
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In this section, we shall obtain the response of a typical second-order control

system to a step input. Here we consider a servo system as an example of a

second-order system [2].

3.2.1 Servo as second order systems

The servo system shown in Figure3.1 consists of a proportional controller
and load elements (inertia and viscous-friction elements). Suppose that we
wish to control the output position ¢ in accordance with the input position r.

The equation for the load elements is:

JC+BC=T (3.17)
where T is the torque produced by the proportional controller whose gain is

K. By taking Laplace transforms of both sides of this last equation, assuming

the zero initial conditions, we obtain:
] S%2C(S) + BSC(S) = T(S) (3.18)

So the transfer function between C(s) and T(s) is:

cs) 1
T(S)  S(JS+B)

(3.19)

By using this transfer function, Figure 3.1 can be redrawn as in Figure 3.2(a),
which can be modified to that shown in Figure 3.2(b). The closed-loop
transfer function is then obtained as:

c(S) _ K _ K/]
R(S) JS2+BS+K  s24 (?)SJ,%

(3.20)

Such a system where the closed-loop transfer function possesses two poles is
called a second-order system. Some second-order systems may involve one

or two zeros [2].
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(a) Servo system

Ris) Tis) 1 Cis)
g @ o w5 + )

(b) Block diagram

Ris) K Cix)
C ; s + H) ‘

|

(c) Simplified block

Figure 3.3: A Servo as second order system
3.2.2 Step response of second-order system

The closed-loop transfer function of the system shown in Figure 3.3(¢) is:

c(S) K
R(S)  JS?+BS+K (3.21)
This can be rewritten as follows:

(S) 7
c(S ]

= (3.22)
R(S) B B\2 K B B\? K
statG) T[St G -7

2] 2]

The closed-loop poles are complex conjugates if B> — 4JK < 0 and they

are real if B?—4JK > 0. In the transient-response analysis, it is

convenient to write:
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= w2, ? = 2tw, = 20 (3.23)

~Ix

where o is called the attenuation, w,, is the un damped natural frequency, and

¢ the damping ratio of the system. The damping ratio & is the ratio of the

actual damping f to the critical damping B¢ = 2,/JK or:

= 2=_5 (3.24)

R(s) E(s) 7 Cl#)
: @ > ®n o
S5+ 2éw,)

Figure 3.4: Second-order system
In terms of § and w,, the system shown in Figure 3.3(c) can be modified to
that shown in Figure 3.4, and the closed-loop transfer function C(s)/R(s)

given by Equation (3.23) can be written as follows:

c(s) _ w§
R(S)  S2+28w,S+ w2

(3.25)

This form is called the standard form of the second-order system. The

dynamic behavior of the second-order system can then be described in terms

of two parameters & and w,. If 0<E<1, the closed-loop poles are complex
conjugates and lie in the left-half s plane. The system is then called under
damped, and the transient response is oscillatory. If &£=0, the transient

response does not die out. If =1, the system is called critically damped. Over
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damped systems correspond to {>1. We shall now solve for the response of
the system shown in Figure 3.3 to a unit-step input. We shall consider three
different cases: the under damped (0<&<1), critically damped (¢=1), and
over damped (E>1) cases.

(1) Underdamped case (0<€<1): In this case, C(s)/R(s) can be written as
follows [2]:

c(s) _ w?
R(S) ~ (S+Ewn+ jwg)(S+Ewn—jwq) (3.26)

where wq = wy+/1 — & . The frequency mq is called the damped natural

frequency. For a unit-step input, C(s) can be written as:

c(s) _ w?
R(S) ~ (S2+2EwnS+ w2)S (3.27)

The inverse Laplace transform of Equation (3.27) can be obtained easily if

C(s) is written in the following form:

C(S) _ 1 S+28w, _ 1 S+Ewp, _ Ewn (328)

s S2+28w S+ w3 S N (S+8wp) 2+w3  (S+Ewy) 2+ w3

Referring to the Laplace transform table , it can be shown that:

S+E(,l)n | _ _Ewnt
| Grtenzia?) = © cos wyt (3.29)
(OF] | _ _Ewnt .
| Grton ezl = © sin wyt (3.30)

Hence the inverse Laplace transform of Equation (3.27) is obtained as:



—Swnt
C(t) = 1- e—fwnt < coswgt + \/%Sin (l)dt) =1- Jl——EZSin(wdt +
[1_ £2
tan—llTE) ,fort =0 3.31)

From Equation (3.31), it can be seen that the frequency of transient
oscillation is the damped natural frequency ®, and thus varies with the

damping ratio & .The error signal for this system is the difference between the

input and output and is [2]:

C(t) =1- cosw,t, fort=0 (3.32)
_ '3 .

e(t) =r(t) — c(t) = e $@nt < CoS wyt +Jﬁ sin wdt),

for t=0 (3.33)

This error signal exhibits a damped sinusoidal oscillation. At steady state, or
at t= 0o, no error exists between the input and output. If the damping ratio & is
equal to zero, the response becomes un damped and oscillations continue
indefinitely. The response c(t) for the zero damping case may be obtained by

substituting &=0 in Equation (3.31), yielding:

C(t)=1— cosw,t,fort=0 (3.34)

Thus, from Equation (3.34), we see that ®, represents the un damped natural

frequency of the system .That is, ®, 1is that frequency at which the system
output would oscillate if the damping were decreased to zero. If the linear
system has any amount of damping, the un damped natural frequency cannot

be observed experimentally. The frequency that may be observed is the
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damped natural frequency ®,, which is equal to w,+/1 — €. This frequency
is always lower than the un damped natural frequency. An increase in &
would reduce the damped natural frequency o, If § is increased beyond

unity, the response becomes over damped and will not oscillate [2].

(2) Critically damped case (£=1): If the two poles of C(s)/R(s) are equal, the
system is said to be a critically damped one. For a unit-step input, R(s)=1/s

and C(s) can be written as:

wd

C(S) - (S+ wp)2S

(3.35)
The inverse Laplace transform of Equation (3.Y°) may be found as

c(t) = e (1 + w,t), for t=0 (3.36)

This result can also be obtained by letting & approach unity in Equation (3.31)
and by using the following limit:

. sinwgt . sinwp1-8%t
Im A= Im— e = @t (3:37)

(3) Over damped case (&>1): In this case, the two poles of C(s)/R(s) are
negative real and unequal. For a unit-step input, R(s)=1/s and C(s) can be

written as:

wd

C(S) - (S+Ewn+ Wy E2— 1)(S+Ewn— wp V-1 )S

(3.38)

The inverse Laplace transform of Equation (3.38) is:
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C(t) =

1 - E—\/m wpt
+2 E2_1(]5_{_\/m) e ( )
1 ~(&-VE—1)ont _ w,  (esit  esat
2B 1(5-Ve-1) | ( Jrt= 1+ zm( s S )'f‘”‘t2
0 (3.39)

Where S;= (EH/E2 -1 )w, and S,= ¢ —-J/2-1 )w,
Thus , the response c(t) includes two decaying exponential terms. When & is
appreciably greater than unity, one of the two decaying exponentials
decreases much faster than the other, so the faster-decaying exponential term
(which corresponds to a smaller time constant) may be neglected . That is, if
-s, 1s located very much closer to the jo axis than -s; (which means | S2 | K
| S | ), then for an approximate solution we may neglect -s;.This is

permissible because the effect of -s; on the response is much smaller than

that of -s; , since the term involving s, in Equation (3.39) decays much faster
than the term involving s, . Once the faster-decaying exponential term has
disappeared, the response is similar to that of a first-order system, and

C(s)/R(s) may be approximated by:

c(S) _ Ewp—wp v/ §2-1 _ 5

R(S) S+Ewp—opE2-1  S+5, (3.40)
This approximate form is a direct consequence of the fact that the initial
values and final values of both the original C(s)/R(s) and the approximate one
agree with each other. With the approximate transfer function C(s)/R(s), the

unit-step response can be obtained as:
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_ §wp—wp \/EZ_l
€)= (srtan—on yEo1)s (3.41)

The time response c(t) is then:

c(®) =1— e =V T)ont o> (3.42)

This gives an approximate unit-step response when one of the poles of

C(s)/R(s) can be neglected.

3.3 The Transient-Response Specifications

Frequently, the performance characteristics of a control system are specified
in terms of the transient response to a unit-step input, since it is easy to
generate and is sufficiently drastic. If the response to a step input is known, it
is mathematically possible to compute the response to any input. The
transient response of a system to a unit-step input depends on the initial
conditions.

For convenience in comparing transient responses of various systems, it is a
common practice to use the standard initial condition that the system is at rest
initially with the output and all time derivatives thereof zero. Then the
response characteristics of many systems can be easily compared. The
transient response of a practical control system often exhibits damped
oscillations before reaching steady state. In specifying the transient-response
characteristics of a control system to a unit-step input, it is common to
specify the following:

1. Delay time, tg.

2. Rise time, t,.

3. Peak time, t,,.

4. Maximum overshoot, M;.
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5. Settling time, t;.

These specifications are defined in what follows and are shown graphically in
Figure 3.4.

1. Delay time: The delay time is the time required for the response to reach
half the final value the very first time.

2. Rise time: The rise time is the time required for the response to rise from
10% to 90%, 5% to 95%, or 0% to 100% of its final value. For under damped
second order systems, the 0% to 100% rise time 1s normally used. For over
damped systems, the 10% to 90% rise time is commonly used.

3. Peak time: The peak time is the time required for the response to reach the
first peak of the overshoot.

4. Maximum (percent) overshoot: The maximum overshoot is the maximum
peak value of the response curve measured from unity. If the final steady-
state value of the response differs from unity, then it is common to use the

maximum percent overshoot. It is defined by:

_ C(tp)—c()
(o)

The amount of the maximum (percent) overshoot directly indicates the

Mp X 100% (3.43)

relative stability of the system.

5. Settling time: The settling time is the time required for the response curve
to reach and stay within a range about the final value of size specified by
absolute percentage of the final value (usually 2% or 5%). The settling time
is related to the largest time constant of the control system. Which percentage
error criterion to use may be determined from the objectives of the system
design in question. The time-domain specifications just given are quite
important, since most control systems are time-domain systems; that is, they
must exhibit acceptable time responses. This means that, the control system

must be modified until the transient response is satisfactory [2].
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Figure 3.5: Unit-step response curve

Unit-step response curve showing tg, t; ,t,, My, and t; . Note that not all these
specifications necessarily apply to any given case. For example, for an over
damped system, the terms peak time and maximum overshoot do not apply.
For systems that yield steady-state errors for step inputs, this error must be
kept within a specified percentage level. 3.3.1 A few comments

Except for certain applications where oscillations cannot be tolerated, it is
desirable that the transient response be sufficiently fast and be sufficiently
damped .Thus, for a desirable transient response of a second-order system,
the damping ratio must be between 0.4 and 0.8. Small values of & (that is,
£<0.4) yield excessive overshoot in the transient response, and a system with
a large value of &(that 1s, £>0.8) responds sluggishly. We shall see later that
the maximum overshoot and the rise time conflict with each other. In other
words, both the maximum overshoot and the rise time cannot be made
smaller simultaneously. If one of them is made smaller, the other necessarily

becomes larger [2].

3.3.2 Second-order systems specifications
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In the following, we shall obtain the rise time, peak time, maximum
overshoot, and settling time of the second-order system given by Equation
(3.20). These values will be obtained in terms of § and ®,, .

The system is assumed to be under damped.

(1) Rise time: Referring to Equation (3.25), we obtain the rise time by letting

c(t;)) = 1, we have:

c(t,) =1=1—e$@ntr(coswy t, + (3.44)

'3 .
\/?52 SIn Wy tr)

Since e~$®nlr % 0, we obtain from Equation (3.44) the following equation:

coswgy t, + —_sin wagtr =0 (3.45)

Since wpy/1—& = wq and éw,= , we have:

_£z2
tanwyt, = 175 = — % (3.46)

Thus, the rise time is:

t, = — tan~? (&) Sl (3.47)

wq -0

Where angle f is defined in Figure 3.6 Clearly, for a small value of t. , ®q

ﬁ—_— ey
s T |
m = L ! _.-’:\\

must be large. e ‘[

— L] o«

———

e
Figure 3.6: Definition of the angle f
(2) Peak time: Referring to Equation (3.25), we may obtain the peak time by

differentiating c(t) with respect to time and letting this derivative equal zero.
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dc _ 3 . _

- = Swpe Swnt < coswyt + == sin wdt) + e~ S@nt < coSs wyt —
i 3.48
e sin wdt) (3.48)

Since and the cosine terms in this last equation cancel each other, dc/dt,

evaluated at t=t,, can be simplified to:

dc
dt

: wn _ .
t =t, = (sin wdtp)\/l_—fz e~$@nlp = ( (3.49)

This last equation yields the following equation:

sinwgt, =0 (3.50)
Or:
wgt, =0,m,2m,3m, ... (3.51)

Since the peak time corresponds to the first peak overshoot wyt, = .

Hence:
-
t, = s (3.52)

The peak time corresponds to one-half cycle of the frequency of damped
oscillation.

(3) Maximum overshoot: The maximum overshoot occurs at the peak time or
at t=t,=m/wg. Assuming that the final value of the output is unity, M, is

obtained from Equation (3.25) as:
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{15)
e W (3.53)

g

The maximum percent overshoot is e_(‘*’_d)n X 100%. If the final value c(0)

of the output is not unity, then we need to use the following equation:

_ Cltp)=c(=0)

Mp c(o)

x 100% (3.54)

(4) Settling time: For an under damped second-order system, the transient

response 1s obtained from Equation (3.25) as:

e_fw‘nt

c(t) = —

sin (wdt + tan~?! —“1’;"(2), fort >0 (3.55)

For convenience in comparing the responses of systems, we commonly

define the settling time to be:

4 4 o
t; =4T = s " Ton (2% criterion) (3.56)
t,=3T= > = — (5% criterion) (3.57)

s o Ewy )

Note that the settling time is inversely proportional to the product of the
damping ratio and the un damped natural frequency of the system. Since the
value of & is usually determined from the requirement of permissible
maximum overshoot, the settling time is determined primarily by the un
damped natural frequency w,. This means that the duration of the transient
period may be varied, without changing the maximum overshoot, by

adjusting the un damped natural frequency w,. From the preceding analysis, it
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is evident that for rapid response ®, must be large. To limit the maximum

overshoot Mp and to make the settling time small, the damping ratio & should

not be too small [2].

Table 3.1: Transient response specifications

Parameter Syvmbol (unit) Formula
n—p :
g W here
)
. | AfL—43
Rise Time tr(s) B = tan” —F
Wy =wAy1-7272
_.En-
Maximum Overshoot M,(%) J1-2
e - x 100
Delay Time t4(5) 1+0.7¢
_ _ ) ,4 (2 % setting time)
Settling Time 1,(5) £Wn
= (5 % settling time)
Ly -
~al Time £ T
Peak Time p(s) -
Steady State Error €xy [lim; —s oo Y] — ¥

des

3.4 Servo System with Velocity Feedback

The derivative of the output signal can be used to improve

system

performance. In obtaining the derivative of the output position signal, it is

desirable to use a tachometer instead of physically differentiating the output

signal. Note that the differentiation amplifies noise effects. In fact, if

discontinuous noises are present, differentiation amplifies the discontinuous

noises more than the wuseful signal. For example, the output of a

potentiometer is a discontinuous voltage signal because, as the potentiometer



brush is moving on the windings, voltages are induced in the switchover turns
and thus generate transients. The output of the potentiometer therefore should

not be followed by a differentiating element [1].

Ris) K l Cl(s)
— ()~ 7 :

K.‘J

(a)Block diagram of the servo system

R(s) K Cls)
— s(Js + B + KK})

(b) simplified block diagram
Figure 3.7: Block diagram of the servo system and simplified
The tachometer, a special dc generator, is frequently used to measure velocity
without differentiation process. The output of a tachometer is proportional to
the angular velocity of the motor. Consider the servo system shown in Figure
3.7(a). In this device, the velocity signal, together with the positional signal,
is fed back to the input to produce the actuating error signal. In any servo
system, such a velocity signal can be easily generated by a tachometer. The
block diagram shown in Figure 3.7(a) can be simplified, as shown in Figure

3.7(b), giving:
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cs) K
R(S)  JS2+ (B+KKy)S+K

(3.58)

Comparing Equation (3.58) with Equation (3.25), notice that the velocity

feedback has the effect of increasing damping. The damping ratio § becomes:

__ B+kkyp,

g 2./k]
The un damped natural frequency w, = /K /] is not affected by velocity

(3.59)

feedback. Noting that the maximum overshoot for a unit-step input can be
controlled by controlling the value of the damping ratio &, we can reduce the
maximum overshoot by adjusting the velocity-feedback constant K;, so that §
is between 0.4 and 0.7. It is important to remember that velocity feedback has
the effect of increasing the damping ratio without affecting the un damped

natural frequency of the system.

CHAPTER FOUR
SIMULATION AND RESULTS
4.1 DC Servomotor Model
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Recalling the DC servomotor diagram from Figure 3.1, the closed —
loop transfer function of the DC servomotor for the position servo
system can be shown below. Assume that the input and output of the
system are the input shaft position and output shaft position,
respectively. Assume the following numerical values for system
constants are shown in Table 4.1.

Table 4.1 DC servomotor parameter values

r | Angular displacement of the reference input shaft, radians

¢ | Angular displacement of output shaft, radians

0 | Angular displacement of motor shaft, radians

Ko | Gain of the potentiometric error detector = 24/n v/rad

K, | Amplifier gain =10 v/v

e, | Armature voltage, v

e, | Backemf, v

R, | Armature —winding resistance =0.2€)

L, | Armature —winding inductance = negligible

K; | Back emf constant =5.5x 107 V-sec/rad

K, | Motor torque constant =6X 10° N —-m/A

Jm | Moment of inertia of motor referred to the motor shaft =107 kg-m”

b, | Viscous-friction coefficient of the motor referred to the motor shaft

negligible

J. | Moment of inertia of the load referred to the output shaft = 4.4x10~ kg-m”

br | Viscous-friction coefficient of the load referred to the output shaft= 4x 10 N.

m /rad/sec

n | Gear ratio N1/N2 =1/10

i, | Armature —winding current, A
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To solve this problem we shall obtain the equivalent moment of inertia JO and
equivalent viscous coefficient b0 referred to the motor shaft are, respectively
Jo=Jm + n%J; =10+ 4.4x10-5=5.4x10"

by = by, + nby = 4x10-4

Referring to the equation (3.11) the transfer function can be written as

follows:

C(S)

15~ Ku/s(Tms+1) (4.1)

Where:

K, = 0Kkl 5 c4s10x61x 10°%0.1/(0.2x4x 1074+6X5.5%107) =
Rabo+K, Ks

5.5

T= RaJo/(Rabg + K;K3) = 0.2x5.5%x107 /(0.2x4x10™ + 6x5.5x107 ) =
0.13

Thus,

C(S)/E(S) = 5.5/5(0.13S+1) (4.2)

By using equation (4.2), we can draw the block diagram of the system shown

in figure below.

R(S) » C(S)

Figure 4.1: Block diagram of the system

Then the closed loop transfer function as follows:
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c®) 42.3

R(S) - G(S) - S2+7.69S+42.3

(4.3)

By comparing the equation (4.3) with the general form of the second order
equation (3.25) we obtain:

0, = 42.3, thus w,= 6.5.

28w, =7.69, thus & = 0.6.

Then the system specifications are:

n-B
wd ’

t, = where [3=tan_1 —1;22 = 53.1 =0.93 rad/sec.

wd =n,/1—8 =52,
Then t, =0.425 sec.

t, = —5 = 0.604 sec.
ts = 2 —1.026 sec, for (2% error).
Eon
3
ts = Ton = 0.769 sec, for (5% error).
~m(==)
_¥2
My=e V™% =0.095x100=9.5%.
Y SR(S) _
Css— hms_>0(—1+G(S)) 0.023.

Table 4.2 shows the time response parameters for system without controller.

Table 4.2: Time Response Results without controller

Characteristics By calculation Directly From MATLAB
t, 0.425 0.282
ts 1.026 0.911
ty 0.604 0.599

$ 0




M, 9.5% 10%

€ss 0.023 0

Figure 4.2 shows the system time response, while Figure 4.3 shows the

system simulation.
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Figure 4.3 System simulation without controller

4.1.1 Proportional control

By using Proportional Control (K,) the system can be shown below:

R(S) C(S)

— Kp L T

¢




Figure 4.4: block diagram of the system with P controller

Then the closed loop transfer function as follows:

C(S)/RES) =5

For k, = 2 and by comparing the Equation (4.3) with the general form of the

42.3kp
+7.695+(42.3+kp)

(4.4)

second order Equation (3.25) we obtain:
o,=443, thus on= 6.7.
28w, =7.69, thus & = 0.6.

Then the system specifications are:

— [1_€2
t, = nw—f where 3 =tan ! 1TE = 53.1 =0.93 rad/sec.
Wgqg = Opy/ 1-— EZ =54
Then:
t, =0.410 sec.
= l =
b = —3 0.581 sec.

ts = 2 —0.995 sec, for (2% error).
Eon

ts = Ewin = 0.746 sec, for (5% error).
(=)
My=e V™% =0.095x100=9.5%.
L SR(S) | _
Css— llms_>0(—1+G(S)) 0.008.

For k, = 5 and by comparing the Equation (4.4) with the general form of the
second order equation (3.25) we obtain:

0>, =473 , thus ®,= 6.9.

28w, =7.69, thus & = 0.6.

Then the system specifications are:

t, = nw;f where 3 =tan ! —1;22 = 53.1 =0.93 rad/sec

¢V



Wgq =0)m/1 - EZ =5.5

Then:

t, =0.402 sec.
= l =

b = —3 0.571 sec.

ts = 2 —0.966 sec, for (2% error).
Eon

ts = = — 0725 sec, for (5% error).
Eon

(=)

My=e V"% =0.095x100=9.5%.
. SR(S)

Ces™ llmsﬁo(m) = 0.004.

For k, = 10 and by comparing the Equation (4.4) with the general form of the
second order Equation (3.25) we obtain:

0, = 52.3, thus ow,= 7.2.

28w, =7.69, thus & = 0.6.

Then the system specifications are:

— [1_%2
t, = nw—f where f3 =tan ! 1TE =53.1 =0.93 rad/sec.
Wgqg = Opy/ 1-— EZ =5.8.
Then:
t, =0.381 sec.
= l =
b = — 0.542 sec.
ts = 2 —0.926 sec, for (2% error).
Eon
ts = = = 0.694 sec, for (5% error).
Eon

My=e V"% =0.095x100=19.5%.

SR(S)

222 = 0,002
1+G(S)

ess— limg_,(

Figure 4.5 shows the system response when k;, equal to two.
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Figure 4.6 shows the system response when k;, equal to five while figure 4.7

for k, equal to ten .
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>> ceni=i1 7.6y 84.317
>> step(numi,denl);

Impltud

>> numz=z11.3;
>> den2=[1 7.69 47.317
>> step(num2, den2)
>> nums=az3;
>> den3=f1 7.69 52.317
>> step(nums, dens)

vetans =
num1-0%.G;

Select a tle to view details den2—[1 7.65 47.31:

Figure 4.6: System response for k,=10
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Figure 4.7: System response for k,=10

Table 4.3 shows the values of performance criteria for different values of k.

Table 4.3: Time response results with proportional controller

Parammet | Kp =2 Kp=5 Ky=10
ers Calculati | MATL | Calculati | MATL | Calculati | MATL
on AB on AB on AB
t. 0.410 0.271 0.402 0.256 0.381 0.235
ts 0.965 0.886 0.966 0.851 0.926 0.8
t, 0.581 0.575 0.571 0.551 0.542 0515
M, 9.5% 10.8% | 9.5% 12% 9.5% 13%
€ss 0.008 0.91 0.004 3.47 0.002 7.09

Figure 4.8 shows the system simulation for k, equal to two.
SRR —————

EUED|0s

R

Figure 4.8: System simulation for k, = 2



Figure 4.9 shows the system simulation when k, equal to five, while figure
4.10 for k,, equal to ten .
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Figure 4.9: System simulation for k, = 5
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Figure 4.10: System simulation for kp = 10

4.1.2 PD control implementation

By using PD Control Implementation the system can be shown below.

Figure 4.11: Block diagram of the system with PD controller

A 4
v

o)



Then the closed loop transfer function as follows:

B 42.3K4S+42.3Kp
C(S)/R(S) = S2+(7.69+42.3Kq )S+(42.3+42.3Kp)

(4.5)

For kg = 0.1 and Kp =0.2 and by comparing the equation (4.5) with the
general form of the second order equation (3.25) we obtain

0, = 42.3, thus o,= 7.1.

2w, =11.92, thus & = 0.8.

Then the system specifications are:

t, = nw;f where f3 =tan ! —1;22 = 36.8 =0.64 rad/sec.
wd =n,/1—8 =43,
Then:
t, =0.582 sec.
= l =
b = —3 0.731 sec.

(=)

My=e V™% =0.015x100=1.5%.
. SR(S)

Css™ llmsﬁo(m) = 0.167.

Figure 4.12 shows the system response for kg equal to 0.1 and k, equal to 0.2.
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Figure 4.12: System response for kg= 0.1and Kp =0.2
Figure 4.13 shows the system simulation for k4 equal to 0.1 and k, equal to

0.2.
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Figure 4.13: System simulation for kg = 0.1and Kp =0.2

For kg = 0.15 and Kp =0.25 and by comparing the Equation (4.5) with the
general form of the second order Equation (3.25) we obtain:

0, = 52.875, thus o,= 7.3.

28w, =14.035, thus & = 0.9.



Then the system specifications are:

— [1_52
t, = nw—(f ,  Where [3=tan_11TE =25.8=0.451 rad/sec.

Wgq =(Dm/1—§2 =32
Then:
t, =0.841 sec.

t, = — = 0.982 sec.
w

ts = 2 =0.609 sec, for (2% error).
Ewn

ts = Ewin = 0.457 sec, for (5% error).
(=)
M,=e \@ =0.002 x100 = 0.2 %.
SR(S)

Ces™ hms_>0(1+G(S)) = 0.2.

Figure 4.14 shows the system response for kg equal to 0.15 and k, equal to
0.25, while Figure 4.15 shows the system simulation for k4 equal to 0.15 and
k, equal to 0.25.
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Figure 4.14: System response for kg = 0.15 and Kp =0.25
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Figure 4.15 System simulation for kg = 0.15 and Kp =0.25
Table 4.4 shows the values of the performance criteria for different values of
kq and k..

Table 4.4: Time response results with PD controller

Parammeters | Kd =0.1, KP=0.2 Kd =0.15, KP=0.25
Calculation | MATLAB | Calculation | MATLAB
t, 0.582 0.0402 0.841 0.032
t 0.704 0.76 0.609 0.922
ty 0.731 0.201 0.982 0.177
M, 1.5% 84.7% 0.2% 96.7%
Css 0.167 0.833 0.2 0.8

4.1.3 PI control implementation

By using PI control implementation the system can be shown below.

Figure 4.16: Block diagram of the system with PI controller

Then the closed loop transfer function as follows:

o0




_ 42.3KpS+42.3K;
CO)/RE) = S3+47.69S2+(42.3+42.3Kp)S+42.3K; (4.6)

For kI = 70 and KP =30 and there is no comparing the Equation (4.6) with the
general form of the second order Equation (3.25), thus the third order.
Figure 4.17 shows the system response for k; equal to 70 and k, equal to 30,

while Figure 4.18 shows the system simulation for k; equal to 70 and k, equal

to 30.
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Figure 4.18: System simulation for k; = 70 and Kp =30
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Figure 4.19 shows the system response for k; equal to 30 and k, equal to 70,
while Figure 4.20 shows the system simulation for k; equal to 30 and k,, equal

to 70.
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Figure 4.20: System simulation for k; = 30 and Kp =70
Table 4.5 shows the values of the performance criteria for different values of
k; and k.

Table 4.5: Time response results with PI controller
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Parammeters K; =70, Kp=30 K;=30, Kp=70
MATLAB MATLAB
t, 0.0311 0.202
ts 1.41 1.16
t, 0.0872 0.0574
M, 75.2% 78.8%
Ces 0 0

4.1.4 PID- control implementation
Similar to PD control, PI, and PID control shall be implemented by
combining proportional, derivative and integral control elements. Block

representation of PID control is given in Figure 4.21 below.

?ﬁ

Figure 4.21: Block diagram of the system with PID controller

A 4

Then the closed loop transfer function as follows:

42.3K4S%+42.3KpS+42.3K;
S3+(7.69+42.3K4)S%+(42.3+42.3Kp)S+42.3K;

C(S)/R(S) = 4.7)

For k; = 30 and Kp =70 and K4= 20 there is no comparing the Equation (4.7)
with the general form of the second order Equation (3.25),thus the third
order.

Figure 4.22 shows the system response for k; equal to 30, k, equal to 70, and
kd equal to 20, while Figure 4.23 shows the system simulation for k; equal to
30, k, equal to 70 and k4 equal to 20.
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Figure 4.24 shows the system response for k; equal to 300, k, equal to 350,

and kg equal to 50, while Figure 4.25 shows the system simulation for k;

equal to 300, k;, equal to 350 and ky equal to 50.
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Figure 4.24 System response for k; = 300, Kp =350 and K4=50
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Figure 4.25: System Simulation for k; = 300,Kp =350 and K4=50
Figure 4.26 shows the system response for k; equal to 350, k, equal to 400,
and kg equal to 50, while Figure 4.27 shows the system simulation for k;

equal to 350, k;, equal to 400 and k4 equal to 50.
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Figure 4.27: System Simulation for k; = 350, Kp =400 and K4=50

Table 4.6 shows the values of the performance criteria for different values of

ki, k , and kq.
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Table 4.6:Time response results with PID controller

Para |K; =30, Kp =70, | K; =300, Kp=350, | K; =350, Kp=400 ,
mme | k=20 kq =50 kq =50

ters | MATLAB MATLAB MATLAB

t, 0.00264 0.00104 0.00104

t 0.00493 0.00186 0.00185

ty 0.012 0.0045 0.0045

M, |[0% 0% 0.00493%

€ss 0 0 0

4.2 Final Results

For a given desired transient specification, calculate a PID control gain based
on step input response . Given a second order system response, these
parameters can be calculated and responses for different inputs can be
compared with directly from MATLAB. So once we give the values of t,, t;,
tq, t, and M,, then the transient response represented on Figure 4.2 - 4.27 can
be completely specified. Nevertheless, in most real applications, desired
values of these parameters would be given and the objective will be to design
controllers that can meet the requirements. Some desirable characteristics in
addition of requiring a dynamic system to be stable, the system should
possess:

e Faster and “instantaneous” response.

e Minimal overshoot above the desired value (i.e., relatively stable).

e A bility to reach and remain close to the desired reference value in the

minimum time possible.

We will use these parameters to analyze the DC motor system under different

form of controls and optimize the controller gains to achieve desired

performance by end of this session. For implementation( Kp=2, Kp =5,and
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Kp =10) we give the values of t,, t;, t4, t, and M, shows in Table 4.3 that
compared with calculated values but we note that when the value of k,
increasing the difference of values of specifications values calculated and
directly from MATLAB are increasing then the best value of k; is as k,=2
and (k,< 2).

And for implementation PD and for (kg =0.1 ,k, =0.2 and k4 =0.15,k, =0.25)
we give the values of t,, t,, ty, t, and M, show in Table 4.4 that compared with
calculated values, but we note that when the values of kd and kp increasing
the difference of values of specifications calculated and Directly From
MATLAB are increasing then the best values of k4 and k, are ( k0.1, kg
< 0.1) and (k, = 0.2, k,< 0.2).

From two cases above the values directly from MATLAB cannot be typically
to the values calculated because the MATLAB programe is very a ccurated
and sensitive to the numbers intered for it but the calculated values depend on
the approximation estimated, also we note that the relative increasing and
deceasing for the values from MATLAB not constant but randomly
compared with the calculated values to add constant factor to the equations of
specifications to be basic law. For K; and PID there is no comparing is

possible because the system becomes third order equation.

CHAPTER FIVE
CONCLUSION AND RECOMMENDATIOMS
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©.1 Conclusion

The PID controller performance was consistent with old trials of controlling
this type of motors, the change in system’s parameters does not yield any
change in the technique used to tune the PID controller for, but changes the
performance of the PID. The PID controller cannot be improved further,
since the tuning results were the best to get the output shown on Figure 4.22
up to 4.27. The tuning results for the PID controller were best match for the
system performance and the ability to build such a controller. The PID
controller can be used with servomotors that are not components of very
efficient systems or time critical systems, since they will require high power
to operate them and may lead to failure in their function due to the high
power used by the controller. The PID controller has been tuned to get the
best response possible from the system, the values obtained for the PID
parameters values are: KP = 350. KI = 300 and KD = 50. From these values
we need to build a controller that consumes more power due to the
proportional parameter value. Even though, this controller can be built, due to
high gain value this controller may not be the best solution to our system,
taking into consideration the power ratings of the motor; which may not be

able to withstand this value of input voltage.

¢.Y Recommendations

No further can be done with the PID controller, since the tuning of the
controller parameters resulted in the best match of performance and real
implementation. While how to compare the higher order systems with the

second order systems to find the performance specifications.
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