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               CHAPTER ONE 

                           INTRODUCTION 

1.1 General 
A servo control system is one of the most important and widely used forms of 

control system. Any machine or piece of equipment that has rotating parts 

will contain one or more servo control systems [1].  Automatic systems are 

common place in our daily life, they can be found in almost any electronic 

devices and appliances we use daily, starting from air conditioning systems, 

automatic doors, and automotive cruise control systems to more advanced 

technologies such as robotic arms, production lines and thousands of 

industrial and scientific applications. DC servomotors are one of the main 

components of automatic systems; any automatic system should have an 

actuator module that makes the system to actually perform its function [2]. 

The most common actuator used to perform this task is the DC servomotor. 

Historically, DC servomotors also played a vital role in the development of 

the computer’s disk drive system; which make them one of the most 

important components in our life that we cannot live without it. Due to their 

importance, the design of controllers for these systems has been an 

interesting area for researchers from all over the world. However, even with 

all of their useful applications and usage, servomotor systems still suffer from 

several non-linear behaviors and parameters affecting their performance, 

which may lead for the motor to require more complex controlling schemes, 

or having higher energy consumption and faulty functions in some cases [7]. 

For these purposes the controller design of DC servomotor system is an 

interesting area that still offers multiple topics for research. 
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1.2 Problem Statement 
The servomotor will be consider as a second-order system. The time response 

of an under damped second-order system to step input for certain terms are 

used to specify performance such as rise time, steady state error ,peak time 

maximum over shoot and settling time. The specification of response will be 

determine for an ideal second-order system by using theoretical laws and 

outputs of matlab.  

1.3 Objective 
The time response parameters are determined for investigation theoretically 

and practically of proportional derivative and integral- control individually 

and in combination on the closed loop response of servomotor by compared 

the theoretical results with matlab results   . 

1.4 Methodology 

 Study transient characteristics of a typical second order system and 

evaluate model or system responses using these specifications. 

 Analyze the effects of proportional- derivative- and integral- control 

individually and in combination on the closed loop response of motor 

    Solve a position control problem by calculating PID controller gains 

analytically and validate the control by monitoring the motor response 

for different desired trajectories. 

  Using mathematical method (Laplace equations) to build system 

model. 

 Using Matlab/Simulink software to simulate the model and determine 

the time response parameters 

1.5 The Layout 
This research consists of five chapters: chapter one represents the principles 

of the work , the reasons and motivation and also discuses the objectives and 
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outline Methodology of evaluation. chapter two discuses previos works, 

theoretical back ground of control systems, feedback control, design and 

compensation of circuits systems, performance specifications, automatic 

controllers, classifications of industrial controllers. Chapter three  represents 

the system Implementation of DC servo system and transient response 

specifications. chapter four presents the simulation and results. Finally 

chapter five is a conclusion and recommendations.  

 

 

 

 

 

 

                                

 
                 
                      HAPTER TWO  

 PREVIOS WORKS AND CONTROL SYSTEMS 

2.1 Introduction 
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Dr. Shereen F. Abd-Alkarim is about design and application of a fuzzy logic 

controller to DC-servomotor is investigated. The proposed strategy is 

intended to improve the performance of the original control system by use of 

a Fuzzy Logic Controller (FLC) as the motor load changes. Computer 

simulation demonstrates that FLC is effective in position control of a DC-

servomotor comparing with conventional one [1]. Dong-Seog Bae and Jang-

Myung Lee say This paper introduces a high-performance speed control 

system based on Artificial Neural Networks(ANN) to estimate unknown 

parameters of a DC servo motor. The goal of this research is to keep the rotor 

speed of the DC servo motor to follow an arbitrary selected trajectory. In 

detail, the aim is to obtain accurate trajectory control of the speed, specially 

when the motor and load parameters are unknown. By using an artificial 

neural network, we can acquire unknown nonlinear dynamics of the motor 

and the load. A trained neural network identifier combined with a reference 

model can be used to achieve the trajectory control. The performance of the 

identification and the control algorithm are evaluated through the simulation 

and experiment of nonlinear dynamics of the motor and the load using a 

typical DC servo motor model [2]. S.Mondi´e, R. Villafuerte and R. Garrido 

say this paper presents a tuning strategy for Proportional Retarded (PR) 

control laws in closed loop with second order systems and experimental 

results on the noise attenuation performance of a DC servomotor. The PR 

controller is compared with other commonly employed strategies for 

avoiding the time-derivative measurement in proportional derivative control 

laws. The experiments show that the PR controller combines good noise 

attenuation and tracking performance with a simple implementation [3]. 

2.2 Control Systems 
Control theories commonly used are classical control theory (a conventional 

control theory), modern control theory, and robust control theory [2]. 
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2.2.1 Feedback control 
 Feedback control refers to an operation that, in the presence of disturbances, 

tends to reduce the difference between the output of a system and some 

reference input and does so on the basis of this difference [3]. 

2.2.2 Feedback control systems  
A system that maintains a prescribed relationship between the output and the 

reference input by comparing them and using the difference as a means of 

control is called a feedback control system. An example would be a room 

temperature control system. By measuring the actual room temperature and 

comparing it with the reference temperature (desired temperature), the 

thermostat turns the heating or cooling equipment on or off in such a way as 

to ensure that the room temperature remains at a comfortable level regardless 

of outside conditions. Feedback control systems are not limited to 

engineering but can be found in various non engineering fields as well.  In 

fact, feedback performs a vital function: It makes the human body relatively 

insensitive to external disturbances, thus enabling it to function properly in a 

changing environment [2]. 

2.2.3 Open-loop control systems 

Those systems in which the output has no effect on the control action are 

called open-loop control systems. In other words, in an open loop control 

system the output is neither measured nor feedback for comparison with the 

input.  In any open-loop control system the output is not compared with the 

reference input. Thus, to each reference input there corresponds a fixed 

operating condition; as a result, the accuracy of the system depends on 

calibration. In the presence of disturbances, an open-loop control system will 

not perform the desired task. Open-loop control can be used, in practice, only 

if the relationship between the input and output is known and if there are 

neither internal nor external disturbances. Clearly, such systems are not 
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feedback control systems. Note that any control system that operates on a 

time basis is open loop. For instance, traffic control by means of signals 

operated on a time basis is example of open-loop control [2]. 

2.2.4 Closed-loop control systems  

Feedback control systems are often referred to as closed-loop control 

systems. In practice, the terms feedback control and closed-loop control are 

used interchangeably. In a closed-loop control system the actuating error 

signal, which is the difference between the input signal and the feedback 

signal (which may be the output signal itself or a function of the output signal 

and its derivatives and/or integrals), is fed to the controller so as to reduce the 

error and bring the output of the system to a desired value. The term closed-

loop control always implies the use of feedback control action in order to 

reduce system error [2]. 

 

2.2.5 Closed-loop versus open-loop control systems 
An advantage of the closed loop control system is the fact that the use of 

feedback makes the system response relatively insensitive to external 

disturbances and internal variations in system parameters. It is thus possible 

to use relatively in accurate and inexpensive components to obtain the 

accurate control of a given plant, whereas doing so is impossible in the open-

loop case. From the point of view of stability, the open-loop control system is 

easier to build because system stability is not a major problem. On the other 

hand, stability is a major problem in the closed-loop control system, which 

may tend to overcorrect errors and there by can cause oscillations of constant 

or changing amplitude. It should be emphasized that for systems in which the 

inputs are known ahead of time and in which there are no disturbances it is 

advisable to use open-loop control. Closed-loop control systems have 

advantages only when unpredictable disturbances and/or unpredictable 
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variations in system components are present. Note that the output power 

rating partially determines the cost, weight, and size of a control system. The 

number of components used in a closed-loop control system is more than that 

for a corresponding open-loop control system. Thus, the closed-loop control 

system is generally higher in cost and power. To decrease the required power 

of a system, open loop control may be used where applicable. A proper 

combination of open-loop and closed-loop controls is usually less expensive 

and will give satisfactory overall system performance. Therefore, it is 

worthwhile to summarize the advantages and disadvantages of using open-

loop control systems.  
The major advantages of open-loop control systems are as follows [2]: 

1. Simple construction and ease of maintenance. 

2. Less expensive than a corresponding closed-loop system. 

3. There is no stability problem. 

4. Convenient when output is hard to measure or measuring the output 

precisely is economically not feasible. (For example, in the washer system, it 

would be quite expensive to provide a device to measure the quality of the 

washer’s output, cleanliness of the clothes.)  

The major disadvantages of open-loop control systems are as follows: 

1. Disturbances and changes in calibration cause errors, and the output may 

be different from what is desired. 

2. To maintain the required quality in the output, recalibration is necessary 

from time to time. 

2.3 Design And Compensation of Circuits Systems 
Compensation is the modification of the system dynamics to satisfy the given 

specifications. The approaches  to control system design and compensation 

used in this research is The PID-based compensational approach to control 

systems design [2].   
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2.3.1 Performance specifications  
Control systems are designed to perform specific tasks. The requirements 

imposed on the control system are usually spelled out as performance 

specifications. The specifications may be given in terms of transient response 

requirements (such as the maximum overshoot and settling time in step 

response) and of steady-state requirements (such as steady-state error in 

following ramp input). The specifications of a control system must be given 

before the design process begins. For routine design problems, the 

performance specifications (which relate to accuracy, relative stability, and 

speed of response) may be given in terms of precise numerical values. In 

other cases they may be given partially in terms of precise numerical values 

and partially in terms of qualitative statements.  Generally, the performance 

specifications should not be more stringent than necessary to perform the 

given task. If the accuracy at steady-state operation is of prime importance in 

a given control system, then we should not require unnecessarily rigid 

performance specifications on the transient response, since such 

specifications will require expensive components. Remember that the most 

important part of control system design is to state the performance 

specifications precisely so that they will yield an optimal control system for 

the given purpose [2]. 

2.3.2 System compensation 
Setting the gain is the first step in adjusting the system for satisfactory 

performance. In many practical cases, however, the adjustment of the gain 

alone may not provide sufficient alteration of the system behavior to meet the 

given specifications. As is frequently the case, increasing the gain value will 

improve the steady-state behavior but will result in poor stability or even 

instability. It is then necessary to redesign the system (by modifying the 

structure or by incorporating additional devices or components) to alter the 
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overall behavior so that the system will behave as desired. Such a redesign or 

addition of a suitable device is called compensation. A device inserted into 

the system for the purpose of satisfying the specifications is called a 

compensator .The compensator compensates for deficient performance of the 

original system [2]. 

2.3.3 Design procedure 
The most time-consuming part of the work is the checking of the system 

performance by analysis with each adjustment of the parameters. The 

designer can use MATLAB or other available computer package to avoid 

much of the numerical drudgery necessary for this checking. Once a 

satisfactory mathematical model has been obtained, the designer must 

construct a prototype and test the open-loop system. If absolute stability of 

the closed loop is assured, the designer closes the loop and tests the 

performance of the resulting closed loop system. Because of the neglected 

loading effects among the components, nonlinearities, distributed parameters, 

and so on, which were not taken into consideration in the original design 

work, the actual performance of the prototype system will probably differ 

from the theoretical predictions. Thus the first design may not satisfy all the 

requirements on performance. The designer must adjust system parameters 

and make changes in the prototype until the system meets the specifications. 

In doing this, he or she must analyze each trial, and the results of the analysis 

must be incorporated into the next trial. The designer must see that the final 

system meets the performance specifications and, at the same time, is reliable 

and economical [2]. 

2.4 Automatic Controllers 
An automatic controller compares the actual value of the plant output with 

the reference input (desired value), determines the deviation, and produces a 

control signal that will reduce the deviation to zero or to a small value. The 
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manner in which the automatic controller produces the control signal is called 

the control action. Figure 2.1 is a block diagram of an industrial control 

system, which consists of an automatic controller, an actuator, a plant, and a 

sensor (measuring element) [2].  
 

 

 

 

 

 

                     

                                     

 

                                   Figure 2.1:  An automatic controller 

The controller detects the actuating error signal, which is usually at a very 

low power level, and amplifies it to a sufficiently high level. The output of an 

automatic controller is fed to an actuator, such as an electric motor, a 

hydraulic motor, or a pneumatic motor or valve. (The actuator is a power 

device that produces the input to the plant according to the control signal so 

that the output signal will approach the reference input signal). The sensor or 

measuring element is a device that converts the output variable into another 

suitable variable, such as a displacement, pressure, voltage, etc., that can be 

used to compare the output to the reference input signal. This element is in 

the feedback path of the closed-loop system. The set point of the controller 

must be converted to a reference input with the same units as the feedback 

signal from the sensor or measuring element. 

2.4.1 Classifications of industrial controllers 
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 Most industrial controllers may be classified according to their control 

actions as: 
1. Two-position or on–off controllers 

2. Proportional controllers 

3. Integral controllers 

4. Proportional-plus-integral controllers 

5. Proportional-plus-derivative controllers 

6. Proportional-plus-integral-plus-derivative controllers 

Most industrial controllers use electricity or pressurized fluid such as oil or 

air as power sources. Consequently, controllers may also be classified 

according to the kind of power employed in the operation, such as pneumatic 

controllers, hydraulic controllers, or electronic controllers .What kind of 

controller to use must be decided based on the nature of the plant and the 

operating conditions, including such considerations as safety, cost, 

availability, reliability, accuracy, weight, and size[4]. 

2.4.2 Two-position or on–off control action  
In a two-position control system, the actuating element has only two fixed 

positions, which are, in many cases, simply on and off. Two-position or on–

off control is relatively simple and inexpensive and, for this reason, is very 

widely used in both industrial and domestic control systems. Let the output 

signal from the controller be u(t) and the actuating error signal be e(t). 

In two-position control, the signal u(t) remains at either a maximum or 

minimum value, depending on whether the actuating error signal is positive 

or negative, so that: 

                                                                                                                                                              

U(t) = ଵܷ, for ݁(ݐ) > 0                                                                (2.1)                                                                      

        = ܷଶ, for ݁(ݐ) < 0                                                               (2.2)                                                                       
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where U1 and U2 are constants. The minimum value U2 is usually either zero 

or –U1. Two-position controllers are generally electrical devices, and an 

electric solenoid-operated valve is widely used in such controllers. Pneumatic 

proportional controllers with very high gains act as two-position controllers 

and are sometimes called pneumatic two position controllers. 

2.4.3 Proportional control action 
 For a controller with proportional control action, the relationship between 

the output of the controller u(t) and the actuating error signal  e(t) is:  

 

u(t) = ݇௣݁(ݐ)                                                            (2.3)                                                          
                                                                                                                                        

Or in Laplace-transformed quantities, 

              

 ௎(ௌ)
ா(ௌ)

=                                     ௉                                                             (2.4)ܭ

where Kp is termed the proportional gain. Whatever the actual mechanism 

may be and whatever the form of the operating power, the proportional 

controller is essentially an amplifier with an adjustable gain.  

2.4.4 Integral control action 
In a controller with integral control action, the value of the controller output 

u(t) is changed at a rate proportional to the actuating error signal e(t).That 

is: 

 

  ௗ௨(௧)
ௗ௧

=	݇௜݁(ݐ)                                                                (2.5)                           
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Or: 

 

(ݐ)ݑ	 = ݇௜ ∫ ௧ݐ݀(ݐ)݁
଴                                                              (2.6)                         

 

Where Ki is an adjustable constant .The transfer function of the integral 

controller is 

 

  ௎(ௌ)
ா(ௌ)

  =       ௄೔
௦

                                                                    (2.7)                                                              

 

2.4.5 Derivative control action 
A derivative controller adds a differential gain. This type of controller will 

now act as a virtual damper connected between your actual system and the 

imaginary ideal system that exerts corrective damping force on the actual 

system to maintain the desired trajectory at the velocity level. 

 

(ݐ)ݑ	 = ݇ௗ
ௗ௘(௧)
ௗ௧

                                                                   (2.8)   

 

where Kd is an adjustable constant. The transfer function of the integral 

controller is: 

 

 ௎(ௌ)
ா(ௌ)

=                             ௗܵ                                                                        (2.9)ܭ

 

 

2.4.6 Proportional-plus-integral control action 
The control action of a proportional plus- integral controller is defined by: 
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(ݐ)ݑ  = +(ݐ)݁݌݇
௞೛
்೔
	∫ ௧(ݐ)݁
଴                                                (2.10)                                          ݐ݀

Or the transfer function of the controller is 

 

 ௎(ௌ)
ா(ௌ)

	= k୮ 	ቀ1 +
ଵ
்೔ௌ
ቁ                                                         (2.11) 

 

where Ti is called the integral time. 

2.4.7 Proportional- plus-derivative control action  
The control action of a proportional plus- derivative controller is defined by: 

 

(ݐ)ݑ = +(ݐ)݁݌݇ ௉ܭ ௗܶ
ௗ௘(௧)
ௗ௧

                                               (2.12)                                               

 

And the transfer function is: 

 

 ௎(ௌ)
ா(ௌ)

	= ௉(1ܭ + ௗܶܵ)	                                                       (2.13)                                                         

 

Where Td is called the derivative time. 
2.4.8 Proportional plus integral plus derivative control action 
The combination of proportional control action, integral control action, and 

derivative control action termed proportional-plus-integral-plus-derivative 

control action. It has the advantages of each of the three individual control 

actions. The equation of a controller with this combined action is given by: 

 

(ݐ)ݑ = ݇௣݁(ݐ) +	
௞೛
்೔
∫ ௧(ݐ)݁
଴ ݐ݀ + ௉ܭ ௗܶ

ௗ௘(௧)
ௗ௧

	                       (2.14)                              
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Or the transfer function is: 

 

  ௎(ௌ)
ா(ௌ)

= ௉(1ܭ +
ଵ
்೔ௌ

+ ௗܶܵ)	                      (2.15)                                    

             
where Kp is the proportional gain, Ti is the integral time, and Td is the 

derivative time. The block diagram of a Proportional-plus-Integral plus-

Derivative(PID) controller is shown in Figure 2.2. 

 

 

 

 
                 Figure 2.2: Block diagram of PID controller  

2.5 Transient And Steady-State Response Analyze  
The time response of a control system consists of two parts: the transient 

response and the steady-state response. By transient response, we mean that 

which goes from the initial state to the final state. By steady-state response, 

we mean the manner in which the system output behaves as t approaches 

infinity. Thus the system response c(t) may be written as [5]:  

 

(ݐ)ܿ = ܿ௧௥ +	ܿ௦௦                                                                (2.16)                                 
 

where  the first term on the right-hand side of the equation is the transient 

response and the second term is the steady-state response. 

2.5.1Typical test signals  
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The commonly used test input signals are step functions, ramp functions, 

acceleration functions, impulse functions, sinusoidal functions, and white 

noise. In this research we use test signal step. With this test signal, 

mathematical and experimental analyses of control systems can be carried out 

easily, since the signal is very simple functions of time. Which of this typical 

input signal to use for analyzing system characteristics may be determined by 

the form of the input that the system will be subjected to most frequently 

under normal operation. If a system is subjected to sudden disturbances a step 

function of time may be a good test signal. Once a control system is designed 

on the basis of test signals, the performance of the system in response to 

actual inputs is generally satisfactory. The use of such test signal enables one 

to compare the performance of many systems on the same basis. 

2.5.2 Stability and steady state error  
In designing a control system, we must be able to predict the dynamic 

behavior of the system from a knowledge of the components. The most 

important characteristic of the dynamic behavior of a control system is 

absolute stability—that is, whether the system is stable or unstable. A control 

system is in equilibrium if, in the absence of any disturbance or input, the 

output stays in the same state. A linear time-invariant control system is stable 

if the output eventually comes back to its equilibrium state when the system 

is subjected to an initial condition. A linear time-invariant control system is 

critically stable if oscillations of the output continue forever. It is unstable if 

the output diverges without bound from its equilibrium state when the system 

is subjected to an initial condition. Actually, the output of a physical system 

may increase to a certain extent but may be limited by mechanical “stops” or 

the system may break down or become nonlinear after the output exceeds a 

certain magnitude so that the linear differential equations no longer apply. 

Important system behavior (other than absolute stability) to which we must 
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give careful consideration includes relative stability and steady-state error. 

Since a physical control system involves energy storage, the output of the 

system, when subjected to an input, cannot follow the input immediately but 

exhibits a transient response before a steady state can be reached. The 

transient response of a practical control system often exhibits damped 

oscillations before reaching a steady state. If the output of a system at steady 

state does not exactly agree with the input, the system is said to have steady 

state error. This error is indicative of the accuracy of the system. In analyzing 

a control system, we must examine transient-response behavior and steady-

state behavior.  

2.6 Steady-State Errors in Unity Feedback Control 

Systems 
Errors in a control system can be attributed to many factors. Changes in the 

reference input will cause unavoidable errors during transient periods and 

may also cause steady state errors. Imperfections in the system components, 

such as static friction, backlash, and amplifier drift, as well as aging or 

deterioration, will cause errors at steady state. We shall investigate a type of 

steady-state error that is caused by the incapability of a system to follow 

particular types of inputs. Any physical control system inherently suffers 

steady-state error in response to certain types of inputs. A system may have 

no steady-state error to a step input, but the same system may exhibit nonzero 

steady-state error to a ramp input. The only way we may be able to eliminate 

this error is to modify the system structure. Whether a given system will 

exhibit steady-state error for a given type of input depends on the type of 

open-loop transfer function of the system, to be discussed in what follows 

[6]. 

2.6.1 Classification of control systems  
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Control systems may be classified according to their ability to follow step 

inputs, ramp inputs, parabolic inputs, and so on. This is a reasonable 

classification scheme, because actual inputs may frequently be considered 

combinations of such inputs. The magnitudes of the steady-state errors due to 

these individual inputs are indicative of the goodness of the system. Consider 

the unity-feedback control system with the following open loop transfer 

function G(s)[7]: 

 

(ܵ)ܩ 	=	 ௄(்ೌ ௌାଵ)(்್ାଵ)…( ೘்ௌା	ଵ)
ௌಿ( భ்ௌାଵ)( మ்ௌାଵ)…( ೛்ௌା	ଵ)

                                                       (2.17)                                                                                                           

 
It involves the term ܵே	in the denominator, representing a pole of multiplicity 

N at the origin. The present classification scheme is based on the number of 

integrations indicated by the open-loop transfer function. A system is called 

type 0, type 1, type 2,…, if N=0, N=1, N=2,…, respectively. Note that this 

classification is different from that of the order of a system. As the type 

number is increased, accuracy is improved; however, increasing the type 

number aggravates the 

stability problem. A 

compromise between steady-

state accuracy and 

relative stability is always necessary. We shall see later that, if G(s) is 

written so that each term in the numerator and denominator, except the term 

SN, approaches unity as s approaches zero, then the open loop gain K is 

directly related to the steady-state error. 
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                                 Figure 2.3: Unity control system 

2.6.2 Steady state errors 
Consider the system shown in Figure 2.3. The closed-loop transfer function 

is: 

 

	஼(ௌ)
ோ(ௌ)

= ୋ(ୗ)
ଵାୋ(ୗ)

                                                                                   (2.18)                                                                                   

 

The transfer function between the error signal e(t) and the input signal r(t) 

is: 

 
ா(ௌ)
ோ(ௌ)

= 1 − ஼(ௌ)
ோ(ௌ)

= 	 ଵ
ଵାୋ(ୗ)

                                                                (2.19)                                                                                               

 

where the error e(t) is the difference between the input signal and the 

output signal. The final-value theorem provides a convenient way to find the 

steady-state performance of a stable system. Since E(s) is: 

 

(ܵ)ܧ = ଵ
ଵାୋ(ୗ)

	R(S)                                                                         (2.20)                                                

 

The steady-state error is: 

݁௦௦ = 	 lim௧→ஶ݁( (ݐ = 		 limௌ→଴(ݏ)ܧݏ= 	 limௌ→଴(
ௌோ(ௌ)
ଵାீ(ௌ)

) 		                        (2.21)                           

The static error constants defined in the following are figures of merit of 

control systems . The higher the constants, the smaller  the steady-state error. 

In a given system, the output may be the position, velocity, pressure, 
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temperature, or the like. The physical form of the output, however, is 

immaterial to the present analysis. Therefore, in what follows, we shall call 

the output “position” the rate of change of the output “velocity” and so on. 

This means that in a temperature control system “position” represents the 

output temperature, “velocity” represents the rate of change of the output 

temperature, and so on. 

2.6.3 Static position error constant   
The steady-state error of the system for a unit-step input is: 

 

݁௦௦ =	 limௌ→଴
ௌ

ଵାீ(ௌ)
ଵ
௦
= ଵ

ଵାீ(଴)
                                                               (2.22) 

The static position error constant Kp is defined by: 

݇௣= 	 limௌ→଴ܩ(ܵ) =                                                                    (2.23)                                                                    (0)ܩ

 

Thus, the steady-state error in terms of the static position error constant Kp is 

given by: 

 

݁௦௦ =
ଵ

ଵା୏ౌ
                                                                                       (2.24)                                                                                                                             

 

For a type 0 system we have: 

 

݇௣= 	 limௌ→଴
௄(்ೌ ௌାଵ)(்್ାଵ)…
( భ்ௌାଵ)( మ்ௌାଵ)…

=                                                                                                                  (2.25)                                                          ܭ

 

For a type 1 or higher system we set: 

 

݇௣= 	 limௌ→଴
௄(்ೌ ௌାଵ)(்್ାଵ)…
ௌಿ( భ்ௌାଵ)( మ்ௌାଵ)…

= ∞ , for ܰ ≥ 1                                      (2.26)                                                      
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Hence, for a type 0 system, the static position error constant is finite, while 

for a type 1 or higher system, Kp is infinite. For a unit-step input, the steady-

state error ess may be summarized as follows: 

 

݁௦௦ =
ଵ

ଵା୏
   , for type 0 systems                                                      (2.27)                                                                                                                          

 

݁௦௦ = 0      , for type 1 or higher systems                                      (2.28)                                                                                                          

 

From the foregoing analysis, it is seen that the response of a feedback control 

system to a step input involves a steady-state error if there is no integration in 

the feed forward path. If small errors for step inputs can be tolerated, then a 

type 0 system may be permissible, provided that the gain K is sufficiently 

large. If the gain K is too large, however, it is difficult to obtain reasonable 

relative stability. If zero steady-state error for a step input is desired, the type 

of the system must be one or higher. 

               

                    CHAPTER THREE 

              SYSTEM IMPLEMENTATION 

3.1 Aservo System  
Consider the servo system shown in Figure 3.1. The motor shown is a 

servomotor, a DC motor designed specifically to be used in a control system. 

The operation of this system is as follows: A pair of potentiometers acts as an 

error-measuring device. They convert the input and output positions into 

proportional electric signals. The command input signal determines the 

angular position r of the wiper arm of the input potentiometer. The angular 
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position r is the reference input to the system, and the electric potential of 

the arm is proportional to the angular position of the arm. The output shaft 

position determines the angular position c of the wiper arm of the output 

potentiometer. The difference between the input angular position r and the 

output angular position c is the error signal e, or: 

 

݁ = r − c                                                                                          (3.1)                                                                                                                            

 

The potential difference ݁௥ − ݁௖ = ݁௩ is the error voltage,   where er is 

proportional to r and ec is proportional to c; that is                  

݁௥ = k଴r , and ݁௖ = k଴c  where  K0 is a proportionality constant . The error 

voltage that appears at the potentiometer terminals is amplified by the 

amplifier whose gain constant is K1. The output voltage of this amplifier is 

applied to  the armature circuit of the DC motor. A fixed voltage is applied to 

the field winding. If an error exists, the motor develops a torque to rotate the 

output load in such a way as to reduce the error to zero. For constant field 

current, the torque developed by the motor is: 
 

ܶ =                                                                                 ଶ ݅௔                                                                                       (3.2)ܭ

 

where K2 is the motor torque constant and ia is the armature current. When 

the armature is rotating, a voltage proportional to the product of the flux and 

angular velocity is induced in the armature. For a constant flux, the induced 

voltage eb is directly proportional to the angular velocity or: 

 

	݁௕ = 3ܭ
ߠ݀

ݐ݀
                                                                    (3.3) 
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where eb is the back emf, K3 is the back emf constant of the motor, and θ is 

the angular displacement of the motor shaft [2]. 

 

 
                    Figure 3.1:  Schematic diagram of servo system 
We can obtain the transfer function between the motor shaft angular 

displacement ߠ and the error voltage ev. Obtain also a block diagram for this 

system and a simplified block diagram when La is negligible. The speed of an 

armature-controlled dc servomotor is controlled by the armature voltage ea. 

The armature voltage eୟ = Kଵe୴  is the output of the amplifier. The 

differential equation for the armature circuit is [2]: 

௔ܮ
ௗ݅ܽ
ௗ௧
	+ ܴ௔݅ܽ + ܾ݁ = ݁ܽ	                                                         (3.4)                                     

By substitution equation (3.3) in to (3.4) for	݁ܽ, we set: 

௔ܮ
ௗ݅ܽ
ௗ௧
+ ܴ௔݅ܽ + ଷܭ

ௗߠ
ௗ௧
=  (3.5)                                                           	ݒଵ݁ܭ

The equation for torque equilibrium is: 

଴ܬ
ௗమఏ
ௗ௧మ

+ ܾ଴
ௗߠ
ௗ௧
	= ܶ                                                                                                                     (3.6)		 		  ଶ݅ܽܭ		=
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where J0 is the inertia of the combination of the motor, load, and gear train 

referred to the motor shaft and b0 is the viscous-friction coefficient of the 

combination of the motor, load, and gear train referred to the motor shaft. By 

eliminating ia from Equations (3.5) and (3.6), we obtain: 

஘(ୗ)
୉౒(ୗ)

= ୏భ୏మ
ୗ(	୐౗ୗା	ୖ౗)(	୎బୗାୠబ)ା	୏మ୏యୗ

                                                       (3.7)                                                     

We assume that the gear ratio of the gear train is such that the output shaft 

rotates n times for each revolution of the motor shaft. Thus, 

(ݏ)ܥ = nθ(s)                                                                                    (3.8)                                                                         

The relationship among Ev(s), R(s), and C(s) is: 

(ݏ)௩ܧ = K଴[R(s) − 	C(s)] = K଴E(s)                                                   (3.9)                                                                                                                             

The block diagram of this system can be constructed from Equations (3.7), 

(3.8), and (3.9), as shown in Figure 3.2(a).The transfer function in the feed 

forward path of this system is: 

 

(ܵ)ܩ = େ(ୗ)஘(ୗ)୉౒(ୗ)
஘(ୗ)୉౒(ୗ)୉(ୗ)

= ୏బ୏భ୏మ୬
ୗ[(	୐౗ୗା	ୖ౗)(	୎బୗାୠబ)ା	୏మ୏య]

                                 (3.10)                          

 

When La is small, it can be neglected, and the transfer function G(s) in the 

feed forward path becomes as follows: 

(ܵ)ܩ = ୏బ୏భ୏మ୬
ୗ[ୖ౗(	୎బୗା	ୠ౗)ା	୏మ୏య]

= 	 ୏బ୏భ୏మ୬/ୖ౗
୎బୗమାቀ	ୠబା	

ేమేయ
౎౗

ቁୗ
                                   (3.11)                                                                                                                             

The term [+[ܾ଴ +  indicates that the back emf of the motor ݏ[(ଷ/ܴ௔ܭ	ଶܭ)

effectively increases the viscous friction of the system. The inertia J0 and 

viscous friction coefficient are referred to the motor shaft. When J0 and 
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ܾ଴ +  are multiplied by 1/n2, the inertia and viscous-friction (ଷ/ܴ௔ܭ	ଶܭ)

coefficient are expressed in terms of the output shaft . Introducing new 

parameters defined by [2]: 

ܬ = ଴/݊ଶܬ 	= Moment of inertia referred to the output shaft. 

ܤ = ቂ	ܾ଴ + ቀ௄మ௄య
ோೌ

ቁቃ /݊ଶ =Viscous-friction coefficient referred to the output 

shaft. 

ܭ =                                ଴KଵKଶ/ܴ݊௔ܭ

The transfer function G(s) given by Equation (3.11) can be simplified, 

yielding: 

(ܵ)ܩ = ୏
୎ୗమା୆ୗ

                                                                                  (3.12)                                                                

Or: 

(ܵ)ܩ = ୏ౣ
(୘ౣୗାଵ)

                                                                               (3.13)                                                            

Where:                                                                    

௠ܭ = ୏
୆
	 , T୫ = 	 ୎

୆
	= ୖ౗୎బ

(ୖ౗	ୠబା୏మ୏య)
	                                                     (3.14)                                               

 

The block diagram of the system shown in Figure 3.2(a) can thus be 

simplified as shown in Figure 3.2(b). 

    (a) block diagram for the system             (b) simplified block diagram                         

                    Figure 3.2: block diagram system and simplified 

Most important among the characteristics of servo motor is maximum 

acceleration obtainable. For a given available torque,the rotor moment of 
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inertia be minimum. Since the servo motor operates under continuously 

varing conditions ,acceleration and decelaration of the rotor occur from time 

to time. The servo motor must be able to obsorb mechanical energy as well as 

to generate it. The performance of the servo when used as brake should be 

satisfactory [2]. 

Let J ͫ  and Ь ͫ  be respectively, the moment on inertia and viscous- friction 

coefficient of the rotor , and let J ᴸ and Ь ᴸ  be, respectively, the moment on 

inertia and viscous- friction coefficient of gear train are either negligible or 

included in J ᴸ and Ь ᴸ  be, respectively. Then, the equivalent of inertia Jeq 

referred to the motor shaft and equivalent viscous- friction coefficient beq 

referred to the motor shaft can be written as [2]:  

 

௘௤ܬ = ௠ܬ 	+ ݊ଶJ୐                                                                                      (3.15)                                                                                                           

 

ܾ௘௤ = ܾ௠ 	+ ݊ଶb୐                                                                                      (3.16)                                                                                                    

 

Where n(n<1) is the gear ratio between the motor and load . If the ratio n is 

small and Jm ≫ ݊ଶJL then the moment of inertia of the load referred to motor 

shaft is neglible with respect to the rotor moment of inertia. Asimilar 

argument applies to the load friction. In general ,when the gear ratio n is 

small, the transfer function of the electrical servo motor may be obtained 

without taking in to account the load moment of inertia and friction. If neither 

Jm nor  ݊ଶJL  is negligibly small compared with other; however, then the 

equivalent moment of inertia Jeq must be used for evaluating the transfer 

function of the motor –load combination [2]. 

3.2 Second Order Systems 
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In this section, we shall obtain the response of a typical second-order control 

system to a step input. Here we consider a servo system as an example of a 

second-order system [2]. 

3.2.1 Servo as second order systems 
The servo system shown in Figure3.1 consists of a proportional controller 

and load elements (inertia and viscous-friction elements). Suppose that we 

wish to control the output position c in accordance with the input position r. 

The equation for the load elements is: 

 

C̈	ܬ + ܥ̇ܤ = T                                                                                 (3.17)                                                                                                                             

where T is the torque produced by the proportional controller whose gain is 

K. By taking Laplace transforms of both sides of this last equation, assuming 

the zero initial conditions, we obtain: 

(ܵ)ܥSଶ	ܬ + (ܵ)ܥܵܤ = T(S)                                                             (3.18)                                                                                                                             

So the transfer function between C(s) and T(s) is: 

஼(ௌ)
்(ௌ)

= ଵ
ୗ(	୎ୗା	୆	)

                                                                                 (3.19)                                                                             

By using this transfer function, Figure 3.1 can be redrawn as in Figure 3.2(a), 

which can be modified to that shown in Figure 3.2(b). The closed-loop 

transfer function is then obtained as: 

஼(ௌ)
ோ(ௌ)

= ୏
୎ୗమା	୆ୗା୏

=	 ୏/୎

ୗమା	ቀాెቁୗା
ే
ె 	
                                                           (3.20)                                                              

Such a system where the closed-loop transfer function possesses two poles is 

called a second-order system. Some second-order systems may involve one 

or two zeros [2]. 
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(a) Servo system 

 

 

 

 

(b)  Block diagram 

 

 

 

 

                                           (c) Simplified block 

                         Figure 3.3:  A Servo as second order system      

3.2.2 Step response of second-order system 
The closed-loop transfer function of the system shown in Figure 3.3(c) is: 
஼(ௌ)
ோ(ௌ)

= ୏
୎ୗమା	୆ୗା୏

                                                                               (3.21)                                                                                                                             

This can be rewritten as follows: 

஼(ௌ)
ோ(ௌ)

=
ే
ె

ቈ	ୗା	ామె	ା	ටቀ
ా
మెቁ

మ
ି	ేె 	቉	ቈ	ୗା	

ా
మె	ି	ටቀ

ా
మెቁ

మ
ି	ేె 	቉

                                           (3.22)                                       

The closed-loop poles are complex conjugates if ܤଶ − 	ܭܬ4 < 0 and they 

are real if   ܤଶ − 	ܭܬ4 ≥ 0. In the transient-response analysis, it is 

convenient to write: 
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௄
௃
= ߱௡ଶ,

஻
௃
= 	2ξ߱௡ =  (3.23)                                                                                   	ߪ2

where σ is called the attenuation, ω୬ is the un damped natural frequency, and 

ξ  the damping ratio of the system. The damping ratio ξ is the ratio of the 

actual damping β to the critical damping Bେ = 2ඥJK  or: 

 

஻  =ߦ
஻೎
= ஻

ଶ√௃௄
                                                                    (3.24)                                    

                                                                                                               

 

  

                            Figure 3.4: Second-order system 

In terms of ξ and ωn, the system shown in Figure 3.3(c) can be modified to 

that shown in Figure 3.4, and the closed-loop transfer function C(s)/R(s) 

given by Equation (3.23) can be written as follows: 

 
஼(ௌ)
ோ(ௌ)

= ன౤
మ

ୗమାଶஞன౤ୗା	ன౤
మ                                                                          (3.25)                                                                         

 
This form is called the standard form of the second-order system. The 

dynamic behavior of the second-order system can then be described in terms 

of two parameters ξ and ωn. If 0<ξ<1, the closed-loop poles are complex 

conjugates and lie in the left-half s plane. The system is then called under 

damped, and the transient response is oscillatory. If ξ=0, the transient 

response does not die out. If ξ=1, the system is called critically damped. Over 
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damped systems correspond to ξ>1. We shall now solve for the response of 

the system shown in Figure 3.3 to a unit-step input. We shall consider three 

different cases: the under damped (0<ξ<1), critically damped (ξ=1), and 

over damped (ξ>1) cases. 

(1) Underdamped case (0<ξ<1): In this case, C(s)/R(s) can be written as 

follows [2]: 

஼(ௌ)
ோ(ௌ)

= ன౤
మ

(ୗାஞன౤ା	୨னౚ)(ୗାஞன౤ି	୨னౚ)
                                                          (3.26)                                                       

 

where ωୢ = ω୬ඥ1 − ξଶ . The frequency ωd is called  the damped natural 

frequency. For a unit-step input, C(s) can be written as: 
 

஼(ௌ)
ோ(ௌ)

= ன౤
మ

൫ୗమାଶஞன౤ୗା	ன౤
మ൯ୗ

                                                                      (3.27)                                                                   

 

The inverse Laplace transform of Equation (3.27) can be obtained easily if 

C(s) is written in the following form: 

(ܵ)ܥ = 	 ଵ
ௌ
− ୗାଶஞன౤

ୗమାଶஞன౤ୗା	ன౤
మ	 =

ଵ
ௌ
−	 ௌାஞன౤	

(	ௌାஞன౤)	మାఠ೏
మ −	

ஞன౤
(	ௌାஞன౤)	మାఠ೏

మ          (3.28)                                                         

Referring to the Laplace transform table , it can be shown that:  

൤	 ௌାஞன౤	
(	ௌାஞன౤)	మାఠ೏

మ൨ = 	 ݁ିకఠ೙௧ cos߱ௗ(3.29)                                                   ݐ                                                                                                                             

൤	 னౚ	
(	ௌାஞன౤)	మାఠ೏

మ൨ = 	 ݁ିకఠ೙௧ sin߱ௗ(3.30)                                                    ݐ                           

Hence the inverse Laplace transform of Equation (3.27) is obtained as: 
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(ݐ)ܿ  = 	1 − ݁ିకఠ೙௧ ൬	cos߱ௗݐ +
క

ඥଵି	కమ
sin ߱ௗݐ൰ = 1 − ௘ష഍ഘ೙೟

ඥଵି	కమ
sin(߱ௗݐ +

tanିଵ ඥଵି	క
మ

క
)				  , for ݐ ≥ 0                                                             (3.31)                                               

From Equation (3.31), it can be seen that the frequency of transient 

oscillation is the damped natural frequency ωd and thus varies with the 

damping ratio ξ .The error signal for this system is the difference between the 

input and output and is [2]: 

 
(ݐ)ܥ = 1 − 	cos߱௡ ≤ for t  ,	ݐ 0                                                       (3.32)                                                                                                                              

(ݐ)݁ = (ݐ)ݎ − (ݐ)ܿ	 = 	 ݁ିకఠ೙௧ ൬	cos߱௡ݐ	 +
క

ඥଵି	కమ
	sin ߱ௗݐ൰,   

for  t ≥ 0                                                                                        (3.33)    
 

This error signal exhibits a damped sinusoidal oscillation. At steady state, or 

at t= ∞, no error exists between the input and output. If the damping ratio ξ is 

equal to zero, the response becomes un damped and oscillations continue 

indefinitely. The response c(t) for the zero damping case may be obtained by 

substituting ξ=0 in Equation (3.31), yielding: 

 

(ݐ)ܥ = 1 − 	cos߱௡ ≤ for t ,	ݐ 0                                                        (3.34)                                                                                                                             

 

Thus, from Equation (3.34), we see that ωn represents the un damped natural 

frequency of the system .That is, ωn is that frequency at which the system 

output would oscillate if the damping were decreased to zero. If the linear 

system has any amount of damping, the un damped natural frequency cannot 

be observed experimentally. The frequency that may be observed is the 
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damped natural frequency ωd, which is equal to ω୬ඥ1 − ξଶ. This frequency 

is always lower than the un damped natural frequency. An increase in ξ 

would reduce the damped natural frequency ωd. If ξ is increased beyond 

unity, the response becomes over damped and will not oscillate [2]. 

(2) Critically damped case (ξ=1): If the two poles of C(s)/R(s) are equal, the 

system is said to be a critically damped one. For a unit-step input, R(s)=1/s 

and C(s) can be written as: 

(ݏ)ܥ = ன౤
మ

(ୗା	ன౤)మୗ
                                                                              (3.35)                                                                                                                             

 

The inverse Laplace transform of Equation (3.٣٥) may be found as  

 
(ݐ)ܿ = 	 ݁ିఠ೙௧(	1 +	߱௡ݐ),  for  t ≥ 0                                                (3.36)                                                                                                                             

 

This result can also be obtained by letting ξ approach unity in Equation (3.31) 

and by using the following limit: 
 

 	lim
క→଴

ୱ୧୬ఠ೏௧
ඥଵି	కమ

= 	lim
క→଴

ୱ୧୬ఠ೙ඥଵି	కమ௧
ඥଵି	కమ

	= 	߱௡(3.37)                                             ݐ      

                                                                                                                                    

(3) Over damped case (ξ>1): In this case, the two poles of C(s)/R(s) are 

negative real and unequal. For a unit-step input, R(s)=1/s and C(s) can be 

written as: 
                                                                                                                  

(ݏ)ܥ = ன౤
మ

ቀୗାஞன౤ା	ன౤	ඥஞమି	ଵቁቀୗାஞன౤ି	ன౤	ඥஞమି	ଵ	ቁୗ	
                                     (3.38)                                                                                            

The inverse Laplace transform of Equation (3.38) is: 
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(ݐ)ܥ =

1 + ଵ
ଶ	ඥஞమି	ଵቀ	ஞା	ඥஞమି	ଵ	ቁ	

	eିቀ	ஞିඥஞ
మି	ଵ	ቁன౤୲ −

	 ଵ
ଶ	ඥஞమି	ଵቀ	ஞି	ඥஞమି	ଵ	ቁ	

	eିቀ	ஞିඥஞ
మି	ଵ	ቁன౤୲ = 1 +	 ன౤

ଶ	ඥஞమି	ଵ
	ቀ	ୣ

ష౩భ౪

ୱభ
− ୣష౩మ౪

ୱమ
	ቁ , for	t ≥

0			                                                                                                (3.39)                                                

                                                                                                                                                                                                

Where Sଵ= (ξ+ඥξଶ − 1 )߱௡ and Sଶ= (ξ −ඥξଶ − 1 )߱௡                                                   
Thus , the  response c(t) includes two decaying exponential terms. When ξ is 

appreciably greater than unity, one of the two decaying exponentials 

decreases much faster than the other, so the faster-decaying exponential term 

(which corresponds to a smaller time constant) may be neglected . That is, if 

–s2 is located very much closer to the jω axis than –s1 (which means │s2│ ≪ 

│s1│), then for an approximate solution we may neglect –s1.This is 

permissible because the effect of –s1 on the response is much smaller than 

that of –s2 , since the term involving s1 in Equation (3.39) decays much faster 

than the term involving s2 . Once the faster-decaying exponential term has 

disappeared, the response is similar to that of a first-order system, and 

C(s)/R(s) may be approximated by: 

஼(ௌ)
ோ(ௌ)

= ஞன౤ିன౤	ඥஞమିଵ
ୗାஞன౤ିன౤	ඥஞమିଵ	

= ௌమ
ௌା	ௌమ

                                                           (3.40)                                                                                                                             

This approximate form is a direct consequence of the fact that the initial 

values and final values of both the original C(s)/R(s) and the approximate one 

agree with each other. With the approximate transfer function C(s)/R(s), the 

unit-step response can be obtained as: 
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(ܵ)ܥ = ஞன౤ିன౤	ඥஞమିଵ
ቀୗାஞன౤ିன౤	ඥஞమିଵቁୗ	

                                                                (3.41)                                                                                                                             

The time response c(t) is then:          

 

(ݐ)ܿ = 1 −	݁ିቀకି	ඥక
మିଵ	ቁఠ೙௧	,  for t ≥ 0                                            (3.42)                                     

 

This gives an approximate unit-step response when one of the poles of 

C(s)/R(s) can be neglected. 

3.3 The Transient-Response Specifications 
Frequently, the performance characteristics of a control system are specified 

in terms of the transient response to a unit-step input, since it is easy to 

generate and is sufficiently drastic. If the response to a step input is known, it 

is mathematically possible to compute the response to any input. The 

transient response of a system to a unit-step input depends on the initial 

conditions. 
For convenience in comparing transient responses of various systems, it is a 

common practice to use the standard initial condition that the system is at rest 

initially with the output and all time derivatives thereof zero. Then the 

response characteristics of many systems can be easily compared. The 

transient response of a practical control system often exhibits damped 

oscillations before reaching steady state. In specifying the transient-response 

characteristics of a control system to a unit-step input, it is common to 

specify the following: 
1. Delay time, td. 

2. Rise time, tr. 

3. Peak time, tp. 

4. Maximum overshoot, Mp. 
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5. Settling time, ts. 

These specifications are defined in what follows and are shown graphically in 

Figure 3.4. 

1. Delay time: The delay time is the time required for the response to reach 

half the final value the very first time. 

2. Rise time: The rise time is the time required for the response to rise from 

10% to 90%, 5% to 95%, or 0% to 100% of its final value. For under damped 

second order systems, the 0% to 100% rise time is normally used. For over 

damped systems, the 10% to 90% rise time is commonly used. 

3. Peak time: The peak time is the time required for the response to reach the 

first peak of the overshoot. 

4. Maximum (percent) overshoot: The maximum overshoot is the maximum 

peak value of the response curve measured from unity. If the final steady-

state value of the response differs from unity, then it is common to use the 

maximum percent overshoot. It is defined by:   

 

௉ܯ =	
஼൫௧೛൯ି௖(ஶ)

௖(ஶ)
	× 100%                                                                (3.43)                                           

The amount of the maximum (percent) overshoot directly indicates the 

relative stability of the system. 

5. Settling time: The settling time is the time required for the response curve 

to reach and stay within a range about the final value of size specified by 

absolute percentage of the final value (usually 2% or 5%). The settling time 

is related to the largest time constant of the control system. Which percentage 

error criterion to use may be determined from the objectives of the system 

design in question. The time-domain specifications just given are quite 

important, since most control systems are time-domain systems; that is, they 

must exhibit acceptable time responses. This means that, the control system 

must be modified until the transient response is satisfactory [2].  
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                        Figure 3.5: Unit-step response curve 

Unit-step response curve showing td, tr ,tp, Mp, and ts . Note that not all these 

specifications necessarily apply to any given case. For example, for an over 

damped system, the terms peak time and maximum overshoot do not apply. 

For systems that yield steady-state errors for step inputs, this error must be 

kept within a specified percentage level. 3.3.1 A few comments  
Except for certain applications where oscillations cannot be tolerated, it is 

desirable that the transient response be sufficiently fast and be sufficiently 

damped .Thus, for a desirable transient response of a second-order system, 

the damping ratio must be between 0.4 and 0.8. Small values of ξ (that is, 

ξ<0.4) yield excessive overshoot in the transient response, and a system with 

a large value of ξ(that is, ξ>0.8) responds sluggishly. We shall see later that 

the maximum overshoot and the rise time conflict with each other. In other 

words, both the maximum overshoot and the rise time cannot be made 

smaller simultaneously. If one of them is made smaller, the other necessarily 

becomes larger [2]. 

3.3.2 Second-order systems specifications  
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In the following, we shall obtain the rise time, peak time, maximum 

overshoot, and settling time of the second-order system given by Equation 

(3.20). These values will be obtained in terms of ξ and ωn . 

The system is assumed to be under damped. 

(1) Rise time: Referring to Equation (3.25), we obtain the rise time  by letting 

c(tr) = 1, we have: 

(௥ݐ)ܿ = 1 = 1 − ݁ିకఠ೙௧ೝ	(cos߱ௗ ௥ + కݐ
ඥଵିకమ

sin ߱ௗ                           ௥)                      (3.44)ݐ

Since  ݁ିకఠ೙௧ೝ	 ≠ 0, we obtain from Equation (3.44) the following equation:  

cos߱ௗ ௥ + కݐ
ඥଵିకమ

sin ߱ௗ ௥ݐ = 0                                                        (3.45)                                                      

Since  ω୬ඥ1 − ξଶ =  ωୢ  and ߱ߦ௡=  , we have: 

tan߱ௗݐ௥	 =
ඥଵି	కమ

క
=	−	ఠ೏

ఙ
                                                              (3.46)                                                        

Thus, the rise time is: 

௥ݐ	 = 	
ଵ
ఠ೏
	tanିଵ ቀఠ೏

ିఙ
ቁ = 	గିఉ

ఠ೏
                                                            (3.47)                                                            

Where angle ߚ is defined in Figure 3.6 Clearly,  for a small value of tr , ωd 

must be large. 

   

 

                                   Figure 3.6:  Definition of the angle  ߚ  

(2) Peak time: Referring to Equation (3.25), we may obtain the peak time by 

differentiating c(t) with respect to time and letting this derivative equal zero.  
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ௗ௖
ௗ௧
= ௡݁ିకఠ೙௧߱ߦ	 ൬	cos߱௡ݐ	 +

క
ඥଵି	కమ

	sin ߱ௗݐ൰ + ݁ିకఠ೙௧ ൬	cos߱௡ݐ	 −

క
ඥଵି	కమ

	sin ߱ௗݐቁ                                                                               (3.48)                                                                               

 

Since and the cosine terms in this last equation cancel each other, dc/dt, 

evaluated at t=tp, can be simplified to: 

 

�ௗ௖
ௗ௧
ቚ ݐ = ௣ݐ = ൫sin ߱ௗݐ௣൯

ఠ೙

ඥଵି	కమ
	݁ିకఠ೙௧೛ = 0	                                      (3.49)                                   

This last equation yields the following equation: 

	sin߱ௗݐ௣ = 0	                                                                                 (3.50) 

  Or: 

߱ௗݐ௣ = 0	, ,	ߨ2,	ߨ ,	ߨ3 …                                                                   (3.51)                                                                                                                             

Since the peak time corresponds to the first peak overshoot  ߱ௗݐ௣ = ߨ. 

Hence: 

௣ = గݐ
ఠ೏

                                                                                            (3.52)                                        

The peak time corresponds to one-half cycle of the frequency of damped 

oscillation. 

(3) Maximum overshoot: The maximum overshoot occurs at the peak time or 

at t=tp=π/ωd. Assuming that the final value of the output is unity, Mp is 

obtained from Equation (3.25) as: 
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௉ܯ = 	ܿ൫ݐ௣൯ − 1 = ݁
ିకఠ೙൬

ഏ
ഘ೏

൰
൬	cos 	ߨ + క

ඥଵି	కమ
	sin ൰ߨ = ݁

ି൬ ഑
ഘ೏

൰
=

݁
ିቌ ഍

ටభష഍మ	
ቍగ

	                                                                                     (3.53)                                                 

   

The maximum percent overshoot is ݁
ି൬ ഑

ഘ೏
൰గ
× 100%. If the final value c(∞) 

of the output is not unity, then we need to use the following equation: 

 

௉ܯ =	
஼൫௧೛൯ି௖(ஶ)

௖(ஶ)
	× 100%                                                                (3.54)                                                                                                                         

 

(4) Settling time: For an under damped second-order system, the transient 

response is obtained from Equation (3.25) as: 

(ݐ)ܿ	 = 	 ௘
ష഍ഘ೙೟

ඥଵି	కమ
	sin ൬߱ௗݐ +	 tanିଵ

ඥଵିకమ

క
൰,  for t ≥ 0                           (3.55)                               

For convenience in comparing the responses of systems, we commonly 

define the settling time to be: 

௦ = 4T =   ସݐ
ఙ
   =    ସ

కఠ೙
 (2%	criterion)                                                (3.56)                                       

௦ = 3T =   ଷݐ 
ఙ
   =    ଷ

కఠ೙
 (5%	criterion)                                              (3.57)                             

Note that the settling time is inversely proportional to the product of the 

damping ratio and the un damped natural frequency of the system. Since the 

value of ξ is usually determined from the requirement of permissible 

maximum overshoot, the settling time is determined primarily by the un 

damped natural frequency ωn. This means that the duration of the transient 

period may be varied, without changing the maximum overshoot, by 

adjusting the un damped natural frequency ωn. From the preceding analysis, it 
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is evident that for rapid response ωn must be large. To limit the maximum 

overshoot Mp and to make the settling time small, the damping ratio ξ should 

not be too small [2].  

                 Table 3.1: Transient response specifications 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

3.4 Servo System with Velocity Feedback  
The derivative of the output signal can be used to improve system 

performance. In obtaining the derivative of the output position signal, it is 

desirable to use a tachometer instead of physically differentiating the output 

signal. Note that the differentiation amplifies noise effects. In fact, if 

discontinuous noises are present, differentiation amplifies the discontinuous 

noises more than the useful signal. For example, the output of a 

potentiometer is a discontinuous voltage signal because, as the potentiometer 
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brush is moving on the windings, voltages are induced in the switchover turns 

and thus generate transients. The output of the potentiometer therefore should 

not be followed by a differentiating element [1]. 

 

 

 

 

 

 

                          (a)Block diagram of the servo system 

 

 

 

 

 

  

                                   (b) simplified block diagram 

          Figure 3.7: Block diagram of the servo system and simplified 

The tachometer, a special dc generator, is frequently used to measure velocity 

without differentiation process. The output of a tachometer is proportional to 

the angular velocity of the motor. Consider the servo system shown in Figure 

3.7(a). In this device, the velocity signal, together with the positional signal, 

is fed back to the input to produce the actuating error signal. In any servo 

system, such a velocity signal can be easily generated by a tachometer. The 

block diagram shown in Figure 3.7(a) can be simplified, as shown in Figure 

3.7(b), giving: 
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஼(ௌ)
ோ(ௌ)

= ୏
୎ୗమା	(	୆ା୏୏౞)ୗା୏	

                                                                     (3.58)                                                                    

  

Comparing Equation (3.58) with Equation (3.25), notice that the velocity 

feedback has the effect of increasing damping. The damping ratio ξ becomes: 

 

ξ = ஻ା௞௞೓
ଶඥ௞௃

                                                                                   (3.59)                                    

The un damped natural frequency ߱௡ = ඥܬ/ܭ  is not affected by velocity 

feedback. Noting that the maximum overshoot for a unit-step input can be 

controlled by controlling the value of the damping ratio ξ, we can reduce the 

maximum overshoot by adjusting the velocity-feedback constant Kh so that ξ 

is between 0.4 and 0.7. It is important to remember that velocity feedback has 

the effect of increasing the damping ratio without affecting the un damped 

natural frequency of the system. 

                

 

 

 

 

 

                        CHAPTER FOUR 

          SIMULATION AND RESULTS  
4.1 DC Servomotor Model 
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Recalling the DC servomotor diagram from Figure 3.1, the closed –

loop transfer function of the DC servomotor for the position servo 

system can be shown below. Assume that the input and output of the 

system are the input shaft position and output shaft position, 

respectively. Assume the following numerical values for system 

constants are shown in Table 4.1.  

                 Table 4.1 DC servomotor parameter values  

r Angular displacement of the reference input shaft, radians 

c Angular displacement of output shaft, radians 

θ Angular displacement of motor shaft, radians 

K0 Gain of the potentiometric error detector = 24/π v/rad 

K1 Amplifier gain = 10 v/v 

ea Armature voltage, v 

eb Back emf, v  

Ra Armature –winding resistance =0.2Ω 

La Armature –winding inductance = negligible 

K3 Back emf constant =5.5×10-2 V-sec/rad 

K2 Motor  torque constant =6×10-5 N –m/A 

Jm Moment of inertia of motor referred to the motor shaft =10-5 kg-m2 

bm Viscous-friction coefficient of the motor referred to the motor shaft = 

negligible   

JL Moment of inertia of the load referred to the output shaft =  4.4×10-3 kg-m2 

bL Viscous-friction coefficient of the load referred to the output shaft= 4×10-2 N. 

m /rad/sec 

n Gear ratio N1/N2 =1/10 

ia Armature –winding current, A 
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To solve this problem we shall obtain the equivalent moment of inertia J0 and 

equivalent viscous coefficient b0 referred to the motor shaft are, respectively  

J଴ = J୫ +  nଶJ୐  = 10-5 + 4.4×10-5 = 5.4×10-5 

 

 b଴ = b୫ +  nଶb୐=  4×10-4 

 

Referring to the equation (3.11)  the transfer function can be written as 

follows:   

                    
େ(ୗ)
୉(ୗ)

 =     K୫/s(T୫s + 1)                                                                   (4.1)                                                                  

 

Where: 

K୫ = 	୏ో୏భ୏మ୬
ୖ౗ୠబା୏మ୏య

=7.64×10×61× 	10-5×0.1/(0.2×4×10-4+6×5.5×10-7)      = 

5.5  

T୫=		RୟJ଴/(Rୟb଴ + KଶKଷ)		= 0.2×5.5×10-5 /(0.2×4×10-4 + 6×5.5×10-7 ) =  

0.13 

Thus, 

C(S)/E(S) = 5.5/S(0.13S+1)                                                           (4.2)                                                          

By using equation (4.2), we can draw the block diagram of the system shown 

in figure below. 

 

 

R(S)   C(S) 

  

 

                   Figure 4.1: Block diagram of the system 

Then the closed loop transfer function as follows:  
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େ(ୗ)
ୖ(ୗ)

= G(S) = ସଶ.ଷ
ୗమା଻.଺ଽୗାସଶ.ଷ

                                                            (4.3)                                                        

 

By comparing the equation (4.3) with the general form of the second order 

equation (3.25) we obtain: 

ω2
n = 42.3,    thus     ωn =    6.5. 

2ξωn =7.69,   thus      ξ  =     0.6. 

Then the system specifications are: 

tr  =     ஠ିஒ
னୢ

 ,  where  β=tanିଵ ඥଵିஞ
మ

ஞ
 = 53.1 =0.93 rad/sec. 

ωd  = ωnඥ1 − ξଶ	 = 5.2. 

Then   tr  =0.425 sec. 

tp   =				
஠
னୢ

      =  0.604 sec. 

ts = ସ
ஞன୬

 = 1.026 sec, for (2% error). 

ts = ଷ
ஞன୬

 =  0.769 sec, for (5% error). 

Mp = e
ି஠( ಖ

ටభషಖమ
)

  = 0.095 ×100 = 9.5 %. 

ess=		limୗ→଴(
ୗୖ(ୗ)
ଵାୋ(ୗ)

)       =   0.023. 

Table 4.2 shows the time response parameters for system without controller. 

           

           Table 4.2: Time Response Results without controller 

Characteristics 

 

By calculation Directly From MATLAB 

              tr           0.425            0.282 

               ts            1.026              0.911 

               tp            0.604              0.599 
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              Mp             9.5%               10% 

              ess           0.023                  0 

 

Figure 4.2 shows the system time response, while Figure 4.3 shows the 

system simulation. 

 

 

 

 

            

 

          

                    Figure 4.2: System response without controller 

 

 

 

 

 

 

 

 

                    Figure 4.3 System simulation without controller 

4.1.1 Proportional control   
By using Proportional Control (Kp) the system can be shown below: 

 

R(S) C(S) 

 

 

ܵ
Kp 
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       Figure 4.4: block diagram of the system with P controller 

Then the closed loop transfer function as follows: 

 C(S)/R(S) = ସଶ.ଷ୩୮
ୗమା଻.଺ଽୗା(ସଶ.ଷା୩୮)

                                                          (4.4)                                               

 For kp = 2 and by comparing the Equation (4.3) with the general form of the 

second order Equation (3.25) we obtain: 

ω2
n = 44.3 ,   thus     ωn =    6.7. 

2ξωn =7.69,   thus      ξ  =     0.6. 

Then the system specifications are: 

tr  =     ஠ିஒ
னୢ

      where  β =tanିଵ ඥଵିஞ
మ

ஞ
 = 53.1 =0.93 rad/sec. 

߱ௗ  = ωnඥ1 − ξଶ	 = 5.4 

Then:    

 tr  =0.410 sec. 

tp   =				
஠
னୢ

      =  0.581 sec. 

ts = ସ
ஞன୬

 = 0.995 sec, for (2% error). 

ts = ଷ
ஞன୬

 =  0.746 sec, for (5% error). 

Mp = e
ି஠( ಖ

ටభషಖమ
)

  = 0.095 ×100 = 9.5 %. 

 ess=		limୗ→଴(
ୗୖ(ୗ)
ଵାୋ(ୗ)

)		=    0.008. 

For kp = 5 and by comparing the Equation (4.4) with the general form of the 

second order equation (3.25) we obtain: 

ω2
n = 47.3 ,   thus     ωn =    6.9. 

2ξωn =7.69,   thus      ξ  =     0.6. 

Then the system specifications are: 

tr  =     ஠ିஒ
னୢ

      where  β =tanିଵ ඥଵିஞ
మ

ஞ
 = 53.1 =0.93 rad/sec 
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߱ௗ  = ωnඥ1 − ξଶ	 = 5.5 

Then:    

 tr  =0.402 sec. 

tp   =				
஠
னୢ

      =  0.571 sec. 

ts = ସ
ஞன୬

 = 0.966 sec, for (2% error). 

ts = ଷ
ஞன୬

 =  0.725 sec, for (5% error). 

Mp = e
ି஠( ಖ

ටభషಖమ
)

  = 0.095 ×100 = 9.5 %. 

ess=		limୗ→଴(
ୗୖ(ୗ)
ଵାୋ(ୗ)

)			=  0.004. 

For kp = 10 and by comparing the Equation (4.4) with the general form of the 

second order Equation (3.25) we obtain: 

ω2
n = 52.3,    thus     ωn =    7.2. 

2ξωn =7.69,   thus      ξ  =     0.6. 

Then the system specifications are: 

tr  =     ஠ିஒ
னୢ

      where  β =tanିଵ ඥଵିஞ
మ

ஞ
 = 53.1 =0.93 rad/sec. 

߱ௗ  = ωnඥ1 − ξଶ	 = 5.8. 

Then:    

 tr  =0.381 sec. 

tp   =				
஠
னୢ

      =  0.542 sec. 

ts = ସ
ஞன୬

 = 0.926 sec,  for (2% error). 

ts = ଷ
ஞன୬

 =  0.694 sec, for (5% error). 

Mp = e
ି஠( ಖ

ටభషಖమ
)

  = 0.095 ×100 = 9.5 %. 

 ess=		limୗ→଴(
ୗୖ(ୗ)
ଵାୋ(ୗ)

)=     0.002. 

Figure 4.5 shows the system response when kp equal to two.  
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                      Figure 4.5: System response for kp=2 

Figure 4.6 shows the system response when kp equal to five while figure 4.7 

for kp equal to ten .  

 

                   

 

 

 

 

 

 

                     Figure 4.6: System response for kp=10 
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                    Figure 4.7: System response for kp=10            

Table 4.3 shows the values of performance criteria for different values of  kp. 

    Table 4.3: Time response results with proportional controller 

Parammet

ers 

KP = 2 KP = 5 KP = 10 

Calculati

on 

MATL

AB 

Calculati

on 

MATL

AB 

Calculati

on 

MATL

AB 

      tr 0.410 0.271 0.402 0.256 0.381 0.235 

      ts 0.965 0.886 0.966 0.851 0.926 0.8 

      tp 0.581 0.575 0.571 0.551 0.542 0515 

    Mp 9.5% 10.8% 9.5% 12% 9.5% 13% 

     ess 0.008 0.91 0.004 3.47 0.002 7.09 

Figure 4.8 shows the system simulation for kp equal to two. 

 

 

 

 

 

 

                         Figure 4.8: System simulation for kp = 2  
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Figure 4.9 shows the system simulation when kp equal to five, while figure 

4.10 for kp equal to ten .  

 

 

                  

 

 

 

 

 

 

                       Figure 4.9: System simulation for kp = 5  

 

 

                                                                                                                                      

 

 

 

 

 

 

                          Figure 4.10: System simulation for kp = 10  

4.1.2 PD control implementation 
By using PD Control Implementation the system can be shown below. 

 

 

 

        Figure 4.11: Block diagram of the system with PD controller 
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Then the closed loop transfer function as follows: 

 

 C(S)/R(S) = ସଶ.ଷ୏ౚୗାସଶ.ଷ୏ౌ
ୗమା(	଻.଺ଽାସଶ.ଷ୏ౚ	)ୗା(ସଶ.ଷାସଶ.ଷ୏ౌ)

                                 (4.5)                                 

 

For kd = 0.1 and KP =0.2 and by comparing the equation (4.5) with the 

general form of the second order equation (3.25) we obtain 

ω2
n = 42.3,    thus        ωn =    7.1. 

2ξωn =11.92,   thus      ξ  =     0.8. 

Then the system specifications are: 

tr  =     ஠ିஒ
னୢ

      where  β =tanିଵ ඥଵିஞ
మ

ஞ
 = 36.8 =0.64 rad/sec. 

ωd  = ωnඥ1 − ξଶ	 = 4.3. 

Then:    

 tr  =0.582 sec. 

tp   =				
஠
னୢ

      =  0.731 sec. 

ts = ସ
ஞன୬

 = 0.704 sec ,  for (2% error). 

ts = ଷ
ஞன୬

 =  0.528 sec, for (5% error). 

Mp = e
ି஠( ಖ

ටభషಖమ
)

  = 0.015 ×100 = 1.5 %. 

 ess=		limୗ→଴(
ୗୖ(ୗ)
ଵାୋ(ୗ)

)		=  0.167. 

Figure 4.12 shows the system response for kd equal to 0.1 and kp equal to 0.2. 
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       Figure 4.12: System response for kd= 0.1and KP =0.2  

Figure 4.13 shows the system simulation for kd equal to 0.1 and kp equal to 

0.2. 

 

              
      Figure 4.13: System simulation for kd = 0.1and KP =0.2  

For kd = 0.15  and KP =0.25 and by comparing the Equation (4.5) with the 

general form of the second order Equation (3.25) we obtain: 

ω2
n = 52.875,    thus     ωn =    7.3. 

2ξωn =14.035 ,  thus      ξ  =     0.9. 
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Then the system specifications are: 

tr  =     ஠ିஒ
னୢ

  ,    where  β =tanିଵ ඥଵିஞ
మ

ஞ
 = 25.8 =0.451 rad/sec. 

߱ௗ  = ωnඥ1 − ξଶ	 = 3.2. 

Then:    

 tr  =0.841 sec. 

tp   =				
஠
னୢ

      =  0.982 sec. 

ts = ସ
ஞன୬

 = 0.609 sec,   for (2% error). 

ts = ଷ
ஞன୬

 =  0.457 sec,  for (5% error). 

Mp = e
ି஠( ಖ

ටభషಖమ
)

  = 0.002 ×100 = 0.2 %. 

ess=		limୗ→଴(
ୗୖ(ୗ)
ଵାୋ(ୗ)

)		=   0.2. 

Figure 4.14 shows the system response for kd equal to 0.15 and kp equal to 

0.25, while Figure 4.15 shows the system simulation for kd equal to 0.15 and 

kp equal to 0.25. 

 

 

 

 

 

 

 

 

 

                   

       Figure 4.14: System response for kd = 0.15 and KP =0.25 
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         Figure 4.15 System simulation for kd = 0.15 and KP =0.25  

Table 4.4 shows the values of the performance criteria for different values of 

kd and kp. 

              Table 4.4: Time response results with PD controller 

Parammeters Kd =0.1, KP=0.2 Kd =0.15, KP=0.25 

Calculation MATLAB Calculation MATLAB 

        tr 0.582 0.0402 0.841 0.032 

       ts 0.704 0.76 0.609 0.922 

       tp 0.731 0.201 0.982 0.177 

      Mp 1.5% 84.7% 0.2% 96.7% 

      ess 0.167 0.833 0.2 0.8 

4.1.3 PI control implementation 
By using PI control implementation the system can be shown below. 

   

 

 

   Figure 4.16: Block diagram of the system with PI controller 

Then the closed loop transfer function as follows: 
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 C(S)/R(S) = ସଶ.ଷ୏ౌୗାସଶ.ଷ୏౅
ୗయା଻.଺ଽୗమା(ସଶ.ଷାସଶ.ଷ୏ౌ)ୗାସଶ.ଷ୏౅

                                  (4.6)                                 

 

For kI = 70 and KP =30 and there is no comparing the Equation (4.6) with the 

general form of the second order Equation (3.25), thus the third order. 

Figure 4.17 shows the system response for kI equal to 70 and kp equal to 30, 

while Figure 4.18 shows the system simulation for kI equal to 70 and kp equal 

to 30. 

 

 

 

 

 

 

 

 

                                  

            Figure 4.17: System response  for kI = 70 and KP =30 

 

 

 

 

 

 

 

 

     

            Figure 4.18: System simulation for kI = 70 and KP =30 
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Figure 4.19 shows the system response for kI equal to 30 and kp equal to 70, 

while Figure 4.20 shows the system simulation for kI equal to 30 and kp equal 

to 70. 

 

 

 

 

 

 

 

 

 

 

                 Figure 4.19: System response for kI = 30 and KP =70 

 

 

 

 

 

 

 

 

               

 

              Figure 4.20: System simulation for kI = 30 and KP =70 

Table 4.5 shows the values of the performance criteria for different values of 

kI and kp. 

           Table 4.5: Time response results with PI controller 
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Parammeters KI =70, KP=30 KI =30, KP=70 

MATLAB MATLAB 

               tr           0.0311           0.202 

               ts           1.41           1.16 

               tp           0.0872           0.0574 

              Mp           75.2%           78.8% 

              ess           0            0 

 

4.1.4 PID- control implementation 
Similar to PD control, PI, and PID control shall be implemented by 

combining proportional, derivative and integral control elements. Block 

representation of PID control is given in Figure 4.21 below.  

 

 

 

    Figure 4.21: Block diagram of the system with PID controller 

Then the closed loop transfer function as follows: 

 

 C(S)/R(S) = ସଶ.ଷ୏ౚୗమାସଶ.ଷ୏ౌୗାସଶ.ଷ୏౅
ୗయା(଻.଺ଽାସଶ.ଷ୏ౚ)ୗమା(ସଶ.ଷାସଶ.ଷ୏ౌ)ୗାସଶ.ଷ୏౅

                         (4.7)                        

 

For kI = 30 and KP =70 and Kୢ= 20 there is no comparing the Equation (4.7) 

with the general form of the second order Equation (3.25),thus the third 

order.  

Figure 4.22 shows the system response for kI equal to 30,  kp equal to 70, and 

kd equal to 20, while Figure 4.23 shows the system simulation for kI equal to 

30, kp equal to 70 and kd equal to 20. 

ܭ
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Figure4.22: System response result for kI=30, KP=70 and kd=20 

 
 Figure 4.23: System simulation for kI = 30, KP =70, and Kd=20 

Figure 4.24 shows the system response for kI equal to 300,  kp equal to 350, 

and kd equal to 50, while Figure 4.25 shows the system simulation for kI 

equal to 300, kp equal to 350 and kd equal to 50. 
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    Figure 4.24 System response for kI = 300, KP =350 and Kd=50 

                       

 

    

 

 

 

 

 

 

 

   Figure 4.25: System Simulation for kI = 300,KP =350 and Kd=50 

Figure 4.26 shows the system response for kI equal to 350,  kp equal to 400, 

and kd equal to 50, while Figure 4.27 shows the system simulation for kI 

equal to 350, kp equal to 400 and kd equal to 50. 
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Figure 4.26: System response for kI = 350, KP =400 and Kd=50  

 

 
Figure 4.27: System Simulation for kI = 350, KP =400 and Kd=50 

Table 4.6 shows the values of the performance criteria for different values of 

kI, kp , and kd. 
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          Table 4.6:Time response results with PID controller 

Para

mme

ters 

KI   = 30, KP = 70 ,   

kd=20 

KI = 300, KP=350 , 

kd =50 

KI =350, KP=400 , 

kd =50 

MATLAB MATLAB MATLAB 

tr 0.00264 0.00104 0.00104 

ts 0.00493 0.00186 0.00185 

tp 0.012 0.0045 0.0045 

Mp 0% 0% 0.00493% 

ess 0 0 0 

 

4.2 Final  Results 
For a given desired transient specification, calculate a PID control gain based 

on step input response . Given a second order system response, these 

parameters can be calculated and responses for different inputs can be 

compared with directly from MATLAB. So once we give the values of tr, ts, 

td, tp and Mp, then the transient response represented on Figure 4.2 - 4.27 can 

be completely specified. Nevertheless, in most real applications, desired 

values of these parameters would be given and the objective will be to design 

controllers that can meet the requirements. Some desirable characteristics in 

addition of requiring a dynamic system to be stable, the system should 

possess: 

 Faster and “instantaneous” response. 

 Minimal overshoot above the desired value (i.e., relatively stable). 

 A bility to reach and remain close to the desired reference value in the 

minimum time possible. 

We will use these parameters to analyze the DC motor system under different 

form of controls and optimize the controller gains to achieve desired 

performance by end of this session.  For implementation( KP=2, KP =5,and 
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KP =10) we give the values of tr, ts, td, tp and Mp shows in Table 4.3 that 

compared with calculated values but we note that when the value of  kp 

increasing the difference of values of specifications values calculated and 

directly from MATLAB are increasing then the best value of kp is as kp=2 

and (kp< 2 ).  

And for implementation PD and for (kd =0.1 ,kp =0.2 and kd =0.15,kp =0.25)  

we give the values of tr, ts, td, tp and Mp show in Table 4.4  that compared with 

calculated values, but we note that when the values of kd and kp  increasing 

the difference of values of specifications calculated and Directly From 

MATLAB are increasing then the best values of kd and kp are ( kd=0.1, kd 

< 0.1) and (kp = 0.2, kp< 0.2 ). 

From two cases above the values directly from MATLAB cannot be typically 

to the values calculated because the MATLAB programe is very a ccurated 

and sensitive to the numbers intered for it but the calculated values depend on 

the approximation estimated, also we note that the relative increasing and 

deceasing for the values from MATLAB not constant but randomly 

compared with the calculated values to add constant factor to the equations of 

specifications to be basic law. For KI and PID there is no comparing is 

possible because the system becomes third order equation. 
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٥.1 Conclusion 
The PID controller performance was consistent with old trials of controlling 

this type of motors, the change in system’s parameters does not yield any 

change in the technique used to tune the PID controller for, but changes the 

performance of the PID. The PID controller cannot be improved further, 

since the tuning results were the best to get the output shown on Figure 4.22 

up to 4.27. The tuning results for the PID controller were best match for the 

system performance and the ability to build such a controller. The PID 

controller can be used with servomotors that are not components of very 

efficient systems or time critical systems, since they will require high power 

to operate them and may lead to failure in their function due to the high 

power used by the controller. The PID controller has been tuned to get the 

best response possible from the system, the values obtained for the PID 

parameters values are: KP = 350. KI = 300 and KD = 50. From these values 

we need to build a controller that consumes more power due to the 

proportional parameter value. Even though, this controller can be built, due to 

high gain value this controller may not be the best solution to our system, 

taking into consideration the power ratings of the motor; which may not be 

able to withstand this value of input voltage. 

 

 

٥.٢ Recommendations 
No further can be done with the PID controller, since the tuning of the 

controller parameters resulted in the best match of performance and real 

implementation. While how to compare the higher order systems with the 

second order systems to find the performance specifications.  
 



٦٥ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 
[1] Nise, Norman S., “Control Systems Engineering”, Fifth Edition, 2008. 

[2] Ogata, K, “Modern Control engineering”, Fourth Edition. McGraw Hill., 

2005. 

[3] Owen, Edward L., “ Origins of servomotor”, August 2002. 

[4] Mayr, Otto, “The Origins of feedback control”, MIT Press, 1970. 



٦٦ 
 

[5] Hugh Jack, “Dynamic System Modeling and Control”, 2004. 

[6] Graham C. Goodwin, Stefan F.Graeb, Mario E. Salgado, “Control System 

Design”, 2000. 

[7] U. A. Bakshi, M. V. Bakshi, “Modern Control Theory”,  First Edition, 

2008. 


