الآية

(قُلْ إِنَّ صَلَاتِي وَنُسُكِي وَمَعْيَايَ

وَمُمَاتِي لِلَّهِ رَبِّ الْعَالَمِينَ)

سورة الأنعام الآية (162)

Dedication

This Research is lovingly dedicated to my respective parents who have been my constant source of inspiration. They have given me the drive and discipline to tackle any task with enthusiasm and determination without their love and support this project would not have been made possible.

Acknowledgement

First of all I have to thank A'llah for the accomplishment of planned objectives.

Additionally a special thanks to Dr. Giddani for his invaluable assistance and efforts.

Abstract

The continuous growth of electrical power demand especially in the developed countries has led to large and complex interconnected networks. A DC super grid is an evolved grid system that manages electricity flow in a sustainable manner. Using of DC system decrease transmission losses and enables connection of network with different frequencies.

This research investigates and simulates the creation and interconnection of four regional dc networks. Two scenarios are done during normal and outage conditions on Simulink Matlab software.

المستخلص

ان التزايد المستمر على طلب الكهرباء خاصة في الدول المتقدمة أدى الى تكوين شبكات كهربائية كبيرة ومعقدة. الشبكة العملاقة ذات الجهد المستمر هي عبارة عن شبكة مترابطة تقوم بتبادل الطاقة الكهربائية بين الشبكات الإقليمية. إستخدام نظام الجهد المستمر يقلل المفاقيد ويؤدي إلى إمكانية ربط شبكتين ذواتي تردد مختلف .

يقوم هذا البحث - مستخدما نظام المحاكاة- بتقييم شبكة ربط ذات جهد مستمر لربط أربع شبكات اقليمية. تم عمل سيناريوهين في حالة الوضع الطبيعي وفي حالة خروج جزء من الشبكة باستخدام برنامج الماتلاب .

TABLE OF CONTENTS

Number	Contents	Page		
	الآية	i		
	Dedication	ii		
	Acknowledgement	iii		
	Abstract	iv		
	المستخلص	V		
	Table of contents	vi		
	List of figures	viii		
	List of abbreviations	ix		
CHAPTER ONE				
INTRODUCTION				
1.1	Background	1		
1.2	Statement of problem	3		
1.3	Objectives	4		
1.4	Outlines of the thesis	4		
	CHAPTER TWO			
Interconnection of regional network				
2.1	Introduction	6		
2.2	HVAC Option	6		
2.3	HVDC Option	7		
2.4	Comparison of AC-DC transmission	9		
2.5	Problems of DC Transmission	11		
2.6	HVDC Topology	12		
2.7	VSC versus classical HVDC	13		
2.8	Operation of VSC-HVDC	13		
2.9	Modeling of the VSC-HVDC	15		
2.10	Control system strategy	16		
CHAPTER THREE				
Creation of DC Regional Network				
3.1	Introduction	18		
3.2	Components of DC system	19		
3.2.1	Power Converter	19		
3.2.2	Transformers	19		

20				
20				
20				
21				
21				
21				
24				
26				
27				
28				
30				
31				
31				
32				
33				
33				
CHAPTER FOUR				
ork				
ork 35				
35				
35 36				
35 36 37				
35 36 37 37				
35 36 37 37 38				
35 36 37 37 38 38				
35 36 37 37 38 38 38				
35 36 37 37 38 38 39 39				
35 36 37 37 38 38 39 39 41				
35 36 37 37 38 38 39 39 41				
35 36 37 37 38 38 39 39 41				
35 36 37 37 38 38 39 39 41 44				
35 36 37 37 38 38 39 39 41 44				

LIST OF FIGURES

Figure	Title	Page
2.1	HVDC topologies	12
2.2	(a)Equivalent circuit of the converter connected to an AC	14
	system. (b)phasor diagram	
3.1	(a)Two level converter. (b) Three level converter.	21
3.2	Sinusoidal pulse-width modulation (SPWM).	22
3.3	Simplified two-level inverter for high-power applications.	23
3.4	Direct control principle of VSC-HVDC.	25
3.5	Vector control scheme of VSC-HVDC.	26
3.6	Single line diagram representation of VSC.	32
3.7	General block diagram of inner current controller	33
3.8	Outer controller scheme	34
4.1	DC interconnected network.	36
4.2	Active power controller	37
4.3	DC voltage controller	38
4.4	AC voltage controller	38
4.5	The inner control	39
4.6	Power injection converter control system	40
4.7	Slack bus converter control system	40
4.8	Network1 active and reactive power at B1	42
4.9	Network1 active and reactive power at B2	42
4.10	Network1 active and reactive power at B3	43
4.11	Network1 active and reactive power at B4	43
4.12	Active power flow between VSC1 and VSC2	43
4.13	Active power flow between VSC1 and VSC3	44
4.14	Active power flow between VSC2 and VSC4	44
4.15	Active power flow between VSC3 and VSC4	44
4.16	Buses Voltages	45
4.17	Network1 active and reactive power at B1	46
4.18	Network2 active and reactive power at B2	46
4.19	Network3 active and reactive power at B3	46
4.20	Network4 active and reactive power at B4	47

LIST OF ABBREVIATIONS

HVAC	High Voltage Alternating Current
HVDC	High Voltage Direct Current
VSC	Voltage Source Converter
CSC	Current Source Converter
LCC	Line Commutated Converter
IGBT	Insulated Gate Bipolar Transistor
GTO	Gate turn-off Thyristor
PWM	Pulse Width Modulation
PI control	Proportional plus Integral control
AC/ac	Alternating current
DC/dc	Direct Current.
PLL	Phase Lock Loop.
SFO	Switching Frequency Optimal.
ENTSO	European Network of Transmission System Operators for Electricity.
UHV	Ultra High Voltage.
SIL	Surge Impedance Loading .
RES	Renewable Energy Sources.
СВ	Circuit Breaker.
PMU	Phasor Measurement Units.
STATCOM	Static Synchronous Compensator.
BESS	Battery Energy Storage System.
PCC	Point of Common Coupling.
SPWM	Sinusoidal Pulse Width Modulation.
INN	Intelligent Neural Network.