

الاستهلال

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

قال تعالى في محكم تنزيله:

(قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ)

صدق الله العظيم

سورة البقرة الآية (٣٢)

DEDICATION

This thesis is dedicated to my parents,
my husband and to all other members of
my family.

ACKNOWLEDGEMENT

My thanks are to god who enabled me to do this work.

Furthermore I would like to extend my thanks to all who stood beside me to make this research, but I give my special thanks to my supervisor Dr: Fath Elrahman Ismael Khalifa for his valuable help and support.

المـسـ تـخـاصـ

مستقبل الاتصالات سوف يعتمد على الشبكات اللاسلكية نتيجة للتطور السريع للتكنولوجيا. لذا التقنيات اللذان تم اختيارهما لهذا المشروع هما تقنية البيئة المشتركة العالمية للوصول عبر المايكرويف وتقنية الشبكات اللاسلكية محلية النطاق وهما نماذج لشبكات غير لاسلكية.

في نظم الإتصالات الحديثة هنالك تحديات تواجه جودة خدمة الشبكات اللاسلكية تمثل في (التأخير الزمني، عدم التزامن، ضياع الحزم، الإنتاجية أو قدرة النظام).

جودة الحزمه تواجه مشاكل بزيادة عدد المستخدمين لذلك تحتاج لدراسة وتقدير تلك المشكلات بغية ايجاد حلول مناسبه لها .

الهدف من هذا المشروع هو تقييم اداء تقنية البيئة المشتركة العالمية للوصول عبر المايکرویف وتقنية الشبکات الالسلکیة محلیة النطاق من خلال عقد المؤتمرات عبر الفیدیو باستخدام تقدير ادوات هندسة الشبکات المثلی لمقارنة اداء ومقدرات الشبکتين وإیجاد الحل الأمثل.

في هذا البحث تم مقارنة تقنية البيئة المشتركة العالمية للوصول عبر المايكرويف وتقنية الشبكات الالكترونية محلية النطاق بالنسبة لمعاملات جوده خدمه عقد المؤتمرات عبر الفديو لتقدير الاداء بزياده عدد المستخدمين في كل مره مع تثبيت كل العوامل الأخرى.

نقطة التقديرات أثبتت أن الإنتاجية أو قدرة النظام زادت بنسبة (84.7%) وكانت نسبة فقدان البيانات في تقنية الشبكات الالسلكية محلية النطاق هي (٦٤.٤%) وفي تقنية البيئة المشتركة العالمية للوصول عبر المايكرويف هي (٩٢.٤%) وذلك عند زيادة عدد المستخدمين.

ABSTRACT

Due to the fast development of technology, future communication and transmission are going to depend upon wireless networks. So the two technologies chosen in this project (WiMAX and WiFi) are examples of typical wireless networks.

In today's wireless communication systems there are challenges regarding wireless networks quality of service (QoS) issues like delay, delay variation, packet loss and throughput. The (QoS) faces problems by increasing the number of users 'so there is need to study and evaluate those problems and find better solutions.

The aim of the project is to evaluate the performance of WiMAX /WIFI networks by streaming a videoconference on OPNET simulation program and compare between the performance and capabilities of the two networks to find the best solutions in maintaining and deploying them.

The two wireless networks are compared in different parameters for each one according to their reference model. The application used as main traffic is the videoconferencing in order to investigate the strength of each technology by increasing the number of users, other attributes in the simulation environment unchanged.

Simulation results show that throughput is higher in WiMAX by 84.7% as the number of users increased, the traffic loss in WiFi is (64.4%) while in WiMAX is (92.7%) when the number of users is increasing.

TABLE OF CONTENT

DEDICATION	II
ACKNOWLEDGEMENT	III
ABSTRACT IN ARABIC	IV
ABSTRACT	V
LIST OF CONTENTS	VI
LIST OF TABLES	IX
LIST OF FIGURES	X
LIST OF ABBREVIATION	XIV
1 INTRODUCTION	1
1.1 Preface	2
1.2 Problem Statement	3
1.3 Proposed Solution	3
1.4 Objectives	3
1.5 Methodology	3
1.6 Thesis Outlines	4
2 LITERATURE REVIEW	5
2.1 Overview of WiMAX	6
2.1.1 Uses of WiMAX	7

2.2 WiMAX Specifications	7
2.2.1 WiMAX Range	7
2.2.2 WiMAX Data Rates	8
2.2.3 WiMAX Cost	8
2.2.4 WiMAX Quality of Service (QoS)	9
2.3 WiMAX Design	9
2.3.1 Backhaul Connection	9
2.3.2 W[MAX Receiver	9
2.4 WIMAX Families	10
2.4.1 Fixed WiMAX	11
2.4.2 Mobile WiMAX	11
2.5 Advantages of WiMAX	12
2.5.1 More Flexibility and Security	12
2.5.2 WiMAX is Avey Efficient Radio Solution	12
2.6 Overview of WiFi Families	13
2.7 The Various Standards of WiFi	15
2.8 Range and Data Flow	17
2.9 Comparison of WiFi and WiMAX	18
2.10 Orthogonal Frequency-Division Multiplexing (OFDM)	19

2.10.1 Advantages of OFDM	21
2.10.2 Disadvantages of OFDM	22
2.11 Related Works	22
3 VIDEOCONFERENCE OVER WiFi/ WiMAX	25
3.1 Technology of Videoconference	26
3.2 Components Required For a Videoconferencing System	26
3.3 Types of videoconference System	27
3.4 Conferencing Layers	28
3.5 Multipoint Videoconference	29
3.5.1 Logical Components of Videoconference	29
3.6 Videoconferencing Models	30
3.7 Echo Cancellation	30
3.8 Technical and Other Issues for Videoconferencing	31
3.9 Equations of Quality of Service Parameters in Videoconference	33
3.9.1 Packet Loss	33
3.9.2 End to End Delay	33
3.9.3 Packet Delay Variance (Jitter)	33
3.9.4 Throughput	34
4 SIMULATION RESULTS AND DISCUSSION	35

4.1OPNET Simulation Modeler	36
5 CONCLUTION AND RECOMMENDATIONS	61
5.1 Conclusion	62
5.2 Recommendation	63
REFERENCE	64

LIST OF TABLES

Table No	Title	Page
Table (4-1)	General Environment & Simulation parameters	38
Table (4-2)	WiMax simulation parameters	40
Table (4-3)	WiFi simulation parameters	43
Table(4-4)	Server and Application (video conference) parameters	45
Table (4-5)	the result of simulation for all scenarios	65
Table (4-6)	the over load and traffic loss	66
Table (4-7)	Results of WiMAX VS WiFi networks	67

LIST OF FIGURES

Figure No	Title	Page
Figure (2-1)	WiMAX network diagram	6
Figure(2-2)	WiMAX data rates	8
Figure(2-3)	WiMAX Usage Scenarios	10
Figure(2-4)	The Wifi Network typical configuration	15
Figure(2-5)	OFDM and single carrier configuration	20
Figure(4-1)	Application configuration	37
Figure(4-2)	Profile configuration	38
Figure(4-3)	WiMAX system configuration	39
Figure(4-4)	The WiMAX base station configuration	40
Figure(4-5)	WiMAX Mobile station configuration	40
Figure(4-6)	WiFi access point configuration	42
Figure(4-7)	WiFi work station configuration	42
Figure(4-8)	Videoconference parameters	43
Figure(4-9)	WiFi Connection model	44
Figure(4-10)	WiMAX with One user Scenario	44
Figure(4-11)	Video packet delay variation WiMAX VS WiFi	45

Figure(4-12)	Video average end to end delay WiMAX VS WiFi	46
Figure(4-13)	Video traffic sent WiMAX VS WiFi	46
Figure(4-14)	Video traffic received WiMAX VS WiFi	47
Figure(4-15)	Delay in Physical layer WiMAX VS WiFi	47
Figure(4-16)	Load in Physical layer WiMAX VS WiFi	48
Figure(4-17)	Throughput in Physical layer WiMAX VS WiFi	48
Figure(4-18)	WiFi with five users scenario	49
Figure(4-19)	WiMAX with five users scenario	49
Figure(4-20)	Video packet delay variation WiMAX VS WiFi	50
Figure(4-21)	Video average end to end delay WiMAX VS WiFi	50
Figure(4-22)	Video traffic sent WiMAX VS WiFi	51
Figure(4-23)	Video traffic received WiMAX VS WiFi	51
Figure(4-24)	Physical layer average delay WiMax VS WiFi	52
Figure(4-25)	Physical layer Load WiMAX VS WiFi	53
Figure(4-26)	Physical layer Throughput WiMax VS WiFi	53
Figure(4-27)	WiFi with Ten users Scenario	54
Figure(4-28)	WiMAX with Ten users Scenario	54
Figure(4-29)	Video packet delay variation WiMAX VS WiFi	55
Figure(4-30)	Video average end to end delay WiMax VS WiFi	56
Figure(4-31)	Video traffic sent WiMax VS WiFi	56

Figure(4-32) Video traffic received WiMAX VS WiFi	57
Figure(4-33) Physical layer Delay WiMax VS WiFi	57
Figure(4-34) Physical layer Load WiMax VS WiFi	58
Figure(4-35) Physical layer Throughput WiMAX VS WiFi	58

ABBREVIATIONS

AES	Advanced Encryption Standard
AP	Access Point
AEC	Acoustic Echo Cancellation
BS	Base Station
CPE	Customer Premise Equipment
CPM	Continuous Presence Mode
DES	Data Encryption Standard
DSL	Digital Subscriber Line
EAP	Extensible Authentication Protocol
FDD	Frequency Division Duplexing
FDM	A frequency-Division Multiplexing
FDM	Frequency-Division Multiplexing
FFT	Fast Fourier Transform.
IEEE	Institute of Electrical and Electronics Engineer,
IP	Internet Protocol
ISI	Inter Symbol Interference
LAN	Local Area Network
LANs	Local Area Networks
LLC	layers Logical Link Control
LOS	Line-of-Sight
MAC	Media Access Control layer
MANs	Metropolitan Area Networks
MANs	Metropolitan Area Networks
MCU	Multipoint Control Unit

MCU	Multipoint Control Unit
MP	Multipoint Processors
MC	Multipoint Controller
NLOS	Non-line-of-sight
OFDM	Orthogonal Frequency Division Multiplexing
PAPR	Peak-to-Average-Power Ratio
PD	Packet Delay Variation
PDAs	Personal Digital Assistants
PDAs	Personal Digital Assistants
PHY	Physical layer
POTS	Plain Old Telephone System
QoS	Quality of Service
RTTP	Manages Real-Time Transport Protocols
RTTP	Real-Time Transport Protocols
SFNs	Single Frequency Networks
SS	Subscriber Stations
TDD	Time Division Duplexing
TOS	Type of Service
UDP	User Datagram Packets
VC	Videoconferencing
VAS	Voice – Activated Switch
VoD	Video On Demand
VUI	Videoconferencing User Interfaces
WCDMA	Wideband Code Division Multiple Access
WEP	Wireless Equivalent Privacy
WEP	Wireless Equivalent Privacy

Wi-Fi	Wireless Fidelity
WiMAX	Worldwide Interoperability for Microwave Access
WLAN	Wireless Local Area Network
WLAN	Wireless Local Area Network
3G	Third Generations
4G	Fourth Generation
E2E	End-To-End