Chapter 1
Sampling Theorem and Average Sampling

Some examples are presented to show the generality of the sampling theorem. Index
Terms - Fourier transform, generating function, sampling, shift-invariant subspace,
Zak transform . Regular and irregular average sampling theorems for spline subspaces
are obtained .
Section(1.1) Shift-Invariant Subspace and Sampling Theorem

A fundamental question in signal processing is how to represent a signal in terms of
a discrete sequence. Shannon’s popular sampling theorem states that finite energy
band-limited signals are completely characterized by their samples values. Realizing
that the Shannon interpolating function sinc(t) = sin(t)/t is in fact a scaling
function of an MRA, Walter [268] found a sampling theorem for a class of wavelet
subspaces. Suppose ¢(t) is a continuous orthonormal scaling function of an MRA
{Volmez SUCh that | (2)| < O((1 + |t])~17%) for some £ > 0.

Let ¢*(w) = Y, p(n)e™™®  Walter showed that there is an S(t) € V, such that

fO= ) fFmse—n (1)

Nnez

holds for any f(t) € V, if¢* # 0. Following Walter’s [268] work, Janssen [233]
studied the shift sampling case by using the Zak-transform. Xia and Zhang [277]
discussed the so-called sampling property (S(t) = ¢(t)). Walter [294], Xia [295],
and Chen-Itoh [288], [289] studied the more general case “oversampling.” Chen et
al. [285], [287], Chen and Itoh [286], Liu [255], and Liu and Walter [234] even
studied irregular sampling in wavelet subspaces. Furthermore, Aldroubi and Unser
[282],[283],[284], [291] studied the sampling procedure in shift invariant subspaces.
They established a more comprehensive sampling theory for shift-invariant
subspaces. One of their important result states that when ¢(t) (€ L?(R)) is a
generating function, the orthogonal projection g, (t) of a function g(t) € L?>(R) on
the shift-invariant subspace V,(¢) is given by

95(©) = D (g0, $— (e — m) @)

nez

where {¢(.—n)} is the biorthogonal basis of {¢(.— n)}, in Vo (¢), and (.,.) is the

L*(R)-inner product. They then found that the ¢(t)can be replaced by an
interpolating generating function S(t) if

b(0) € L(R)NIZ(R), zgﬁ(w 4+ 2kn) # 0,and the Fourier
k

transform ¢ (w ) of ¢(t) satisfies |p(0)| < 0((1 + |w|)™*7¢ for some & > 0 (see
[284]). In fact, these constraints are related to those of Walter sampling theorem

due to the fact z d(w + 2kn) = ¢*(—w) insome sense.
K
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Our purpose in this correspondence is to find a weaker constraint on the generating
function ¢(t) such that a formula similar to (1) [or(2) with interpolating generating
function S(t) instead of ¢(t)] holdsfor any function f(t) in the shift-invariant
subspaces V,(¢). We find a condition for (1) that is sufficient and necessary. In
thisway, we are able to remove the continuity and regularity constraintsimposed on
the generating function ¢(t) by Walter [268] or imposedon its Fourier transform
@ (w) by Aldroubi and Unser [284]. We also make a case to show the generality of
our result in Section .We now introduce some notations used in this correspondence.
Fora measurable subset E ¢ R, |E| denotes the measure of E. For a measurable
function f(t), we write

Ilf ®llo = sup ]Rgnf |f (D) (3)
|E|=0 ROE
lf ®llo = |Ei'?—f0 sup |f ()] (4)
=0 ROE
1 teE
xe(t) = {0 otherwise . ®)

Suppose an L*(R) function ¢(t) is such that the sampling {¢(n)},, makes sense
and {¢(n)}, € [*.Then,the seriesz $(n)e~* converges to an L*[0, 2]
n

function ¢*(w) in L?[0, 27] sense. Let us now consider the shift-invariant subspace
sequence {V; (qb)}j generated by ¢ (t)

Vi(g) = {Z (27t — k): {ci}i € lz} c L*(R). (6)
k
For f(t) =ch¢(t— k) € V() ,welet f(n) = zck(,b(n— K .
k k

Then ,{f(n)}, (¢ 1) is well defined since {c;};, and {¢(k)}, are both [?
sequences. In fact, f(n) as the Fourier coefficients of the L[0, 2] function

d*(w) Z ce " tends to 0 at infinity by the Riemann- Lebesgue Lemma.
K

Generally, {¢(t — k)}, may not be a Riesz basis of V,(¢). It is shown that
{¢p(t — k)} is a Riesz basis of V;(¢) if and only if

0 < [lGg(l, = [lGp(a]l,, < (7)
1

2
holds, where G4 (w) = ( Z|g5(a) + 2kn)|2> ,and ¢(w) is the Fourier
K

transform of ¢ (t)defined by ¢(w) = qub(t)e‘i“’t dt. If ¢(t) satisfies (7), it is
called a generating function (see [284]).

Theorem(1.1.1)[272] : Suppose ¢(t) € L>(R) is a generating function such that
the sampling {¢(n)},, makes sense, and {¢(n)},, € I?. Then, there is an
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S(t) € Vy(¢p) such that

O =) FmSE—n) , for f(t) €Vo(@) ®)
holds in the L?(R) sen;e if and only if
5 € 0.2 9)

holds. In this case, S(w) = ¢(w)/P*(w) holds fora.e.w € R.
Proof : Step 1—Sufficiency : Assume % € L?[0,2m]. Then ,

¢*(w)
¢*(w) # 0holds fora.e. w € R, and there is a {c,}; € [? such that
1 z -
~ = c et (10)
¢ (w) ¥

k
holds in the L2[0, 2] sense. Let F(w) = ¢(w)/p*(w) . Then

o [[$@)
lilF(a))l dw _H!‘qs*(w) dw

2T ~ 2
B Zk|¢(w + 2kn)| g
— — > W
¢*(w)|

21

1
<G | =
Of |6+ (w)]”

It is easy to see F(w) € L?*(R) due to (7). Hence, we can take the Fourier inverse of
F(w) in L2(R) denoted by S(t) ,i.e. , we derive

0

dw .

A b (w)
S = = 11
(@) o (11
or
pw) = S(w)p*(w). (12)
Take inverse Fourier transform on both sides of (11) and refer to (10)
S(t) = zckqb(t — k). (13)
k

Formula (13) implies S(t) € V,(¢) [due to the fact that {¢p(t — k)} is a Riesz basis
of Vy(¢p)]. Forany f(t) € Vy(¢), there is a {a,}, € I?

such that f(t) = Z a,$(t —k) . Then

k
f@)= $@) ) age (14)
k

— (@*(w)z ake_ik“’>§(a)) ) (15)
K
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Therefore, f(t) = X f(k)S(t — k).
Step 2—Necessity: On the contrary, if there is an S(t) € V,(¢) such that (8) holds in
the L2(R) sense, then

B =) $mS(t— ) (16)

holds in the L2(R) sense. By taking the Fourier transform on both sides
of (16),we obtain ¢(w) = ¢*(w)S(w) . (17)
Equation (17) implies that supp¢(w) < supp ¢*(w) holds for ae. w € R,
i.e., supp p(w + 2km) < supp*(w) holds for all k € z and for a.e. w € R
because ¢*(w) is 2m periodic. Meanwhile
Usupp d(w+2kn) = R (18)

k
holds except for a zero measure subset of R . Otherwise, there is a measurable subset

6 with measure |6| # 0 such that
§cR 9Usupp¢3(w+2kn) . (19)
k

Then,¢(w + 2k ) = 0 holds forany w € & and forall k € z. Hence
1

2
Gy(w) = ( Z|q3(w 4 2k7t)|2> =0 (20)
k

holds for any w € &. However, Gg(w) # 0 holds fora.e. w € R. It forces (18) to
hold for a.e. w € R. Therefore
supp ¢*(w) U supp ¢(w + 2km ) (21)
k

holds fora.e. w € R,i.e.,¢*(w) # 0forae. w € R.Formula(17) is now
rewritten to be

plw) _
—2 = S(w). 22
5@ (w) (22)

Since S(w) € L?(R) [due to S(w) € L?(R)], we derive
~ 2 2T ~ 2
>f b (w) dw:j Zel¢w + 2km)|”
0

) 1¢*(@) é*(w)|°
21 1 2
> (|G3 (w) f - dw . (23)
” ¢ ”00 b*(w)
From (7) and (23), we conclude that — € L?[0, 2] holds. This completes the

¢*(w)
proof.
If ¢ (t) satisfies the conditions of the Walter sampling theorem or the proposition of
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I
| —




Aldroubi and Unser, there must be a constant C > 1 such that C~1 <

¢*(w)| < C.

Obviously , ﬁ € L*[0, 2] c L?[0, 2x]. Therefore, the Walter sampling theorem

and the Aldroubi and Unser proposition can be obtained as a corollary of our theorem
(refer to Examples (1.1.3), (1.1.3) ,(1.1.5)). A related problem is the study of
truncation error and aliasing error. We do not estimate them here and refer to Walter,
Unser and Daubechies [292] and Chen and Itoh [288], [289].As done by Janssen
[233] for Walter’s sampling theorem, Chen et al. [287] for the irregular sampling
theorem, and Chen and Itoh [288] for the over sampling theorem, the shift-sampling
theorem for shift-invariant subspace can be obtained by using the Zak transform.
Suppose ¢(t) € L?(R)is such that the sampling {¢(c + n)},, makes sense, and
{¢(0 +n)}, € 1*> forsome o € [0,1). Then, the Zak transform Z (o, w) of ¢(t) is

defined by
Zy(o,w) = Z dp(n +o)e @, (24)

A generating function ¢ (t)may not satisfy ﬁ € L?[0, 2] but may satisfy

L _e1? [0, 2 ]for some ¢ € [0,1) . Then, it can be dealt with by the shift-

Zy(o,w)
sampling theorem (see Example (1.1.6)).We now present the shift-sampling theorem
without proof (since it is very close to the previous).

Theorem(1.1.2)[272] : Suppose ¢(t) € L?(R) is a generating function such that
the sampling {¢(c + n)},, makes sense , and {¢(c + n)},, € [* for some o € [0,1).
Then, there isan S, (t) € V,(¢) such that

FO =) f( +0)S,(e= ), for (&) € Vo(9) (25)

holds in the L2(R) sense if and only if

m S LZ [0, 27'[] (26)

holds. In this case , S(w) = ¢(w)/Zy(0, w) holds forae. w € R.

Since the Haar function is not continuous and Shannon’s sinc function is not regular
enough, they can not be covered by Walter’s sampling theorem. Since the Fourier
transform of the Haar function is not regular enough and the Fourier transform of the
Shannon function is not continuous, they are covered by [284], although we should
note that there is no such restriction for the more general sampling theorems
presented in [291]. Both functions are covered by our sampling theorem (see
Examples (1.1.3) and (1.1.4)).

Example(1.1.3)[272] :Haar function ¢(t) = xo1)- The piecewise continuity of

¢ (t) implies that the sampling {¢(n)},, makes sense. &v*iw) = 1 € L?[0, 2m] implies

that our sampling theorem can be applied and S(t) = xpo 1)

( < )
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Example(1.1.4)[272] : Shannon function ¢(t) = sinnt/nt. The continuity of

¢(t) implies that the sampling {¢p(n)},, makes sense. <7>*( = = 1 € L?[0, 2r] implies
that our sampling theorem can be applied , and S(t) = sinnt/mt .The following
Example (1.1.5) shows that there exists a generating function ¢(t) such that

¢ Pz ( ;= = [0, 2] holds. It implies
that our sampling theorem is substantlally more general than Walter sampling

theorem.
Example(1.1.5)[272]: For a positive number s < 1/2,take ¢(t) as the Fourier

inverse of ¢ (w) defined by

-1, w € [—4m, —2m)
- 1 € [-2m,0)
= 27
¢ (@) w’, w € [0,2m) (27)
0 otherwise .

Then, Gy (@) x[02my = (2 + w)Y/2.

Obviously, V2 < Gop(w) = 2+ w25)§ . Therefore , ¢(t) is a generating function.
The fact ¢ (w) € L*(R)implies that ¢(t) is continuous. Then , the

sampling {¢(n)},,makes sense. Since ¢*(w) = Z d(w + 2km) in L2[0,27] ,

we derive qlA)*(a)))([O,Zn) = wS. However , ¢*(w)— 0 as w — 0F (a.e.).
Hence, neither Walter’s sampling theorem nor Aldroubi and Unser’s Proposition can
be applied to deal with the ¢(t) [since both of them require the condition €t <
¢*(w) < C forsome C > 1]. However w5 € L2[0, 2r] implies that our sampling
theorem is available. The S(w) is given by

—(w + 4m)~7, w € [—4m, —2m)
A (w + 2m)~5, w € [-2m,0)
S = 28
@ =97 ue02m (28)
0, otherwise.

The following Example (1.1.6) (by [233]) shows the usefulness of shift-sampling
theorem. It is also very interesting to find some works on centered spline
interpolating in [271] , [290].

Example(1.1.6)[272] : B-spline of order 2 scaling function

t2 6t —2t2 -3 B-v° —)2
N,(t) = = Xlo, (6 + > X2 (@) + X[2,3) (D). (29)

N,(t)isa generatmg function (see [249]).

N3 (w) = e (e + 1)1/2 implies that 1/N; (w) = 2/e*“(e'® + 1) is notan
L?[0, 2] function.

However,1/Zy (1/2,w) = 8/(1 + 6e' + e?*) € L?[0, 2rr] implies that the

( 1
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shift-sampling theorem is available. The §1/2 (w) Is given by
o\ 2
— e @ . .
T) /(1 + 6e™ + e2iv). (30)

31((1)) = 8(
2
Section(1.2) Spline Subspace and Average Sampling
Sampling theory is one of the most powerful results in signal analysis. The objective
of sampling is to reconstruct a signal from its samples. For example, if f is band-
limited to [—Q, Q], then f is uniquely determined and can be reconstructed by its
samples at x;,, = km/Q, which is the classical Shannon sampling theorem. Although
the assumption that a signal is band-limited is eminently useful, it is not always
realistic since a band-limited signal is of infinite duration. Thus, it is natural to
investigate other signal classes for which a sampling theorem holds. A simple model
Is to consider shift-invariant subspaces, e.g., wavelet subspaces, which generalize the
space of band-limited signals. In fact, there have been many results concerning the
sampling in shift invariant subspaces for both regular and irregular sampling
(see[240,243,254,257,268,270,271,272,273,274,275,276,277 ]). In particular, for the
spline subspace Vy = { XyezCk@n (. — cx):{ck} € £2) generated by ¢y = x[o1] *
... * X10,1] (N convolutions) , N = 1, it was shown that for any

Fevuf= 1 (k+ o) 56k,

kez
where

Oy (w)

Sreaow (k + Ta D) emtko

In [243,254], Aldroubi , Grochenig and Liu studied irregular sampling in spline
subspaces . In practice , measured sampled values may not be values of a signal f
precisely at times x;, , but only local averages of f near x; . Specifically, measured
sampled values are

S(w) =

() = f F e (x)dx,

for some collection of averaging functions u,(x) , k € z, which satisfy the following
properties:
)

)
suppuy € [xk — 5 Xk + E] ,Ug(x) =0, and fuk(x)dx = 1.

It is clear that from local averages one should obtain at least a good approximation
of the original signal if b is small enough. Wiley, Butzer and Lei studied the
approximation error when local averages are used as sampled values [278,279].
Furthermore, Feichtinger and Grijchenig [280,281] proved that a signal is uniquely
determined Dby its local averages under certain conditions. We study the
reconstruction of functions in spline subspaces from local averages.

——
~
| —




We show that every f € Vy, is uniquely determined by its local averages on the

intervals [xk —% , X + %] for certain sampling points {x;}.

Definition (1.2.1)[269] :The Fourier transform and the Zak transform of
f € L*(R) is defined by

f(w) = ff(x)e‘ix“’dx and Zf(x,w) = Zf(x+k)e‘”“",
R

kez
respectively. Recall that a family of functions {f,, : k € z} in a Hilbert space # is

called a frame if there exist two positive constants A and B such that

ANFIZ < Y 1 fl? < BIFIZ

kez
for every f € H. The numbers A and B are called the lower and upper frame bounds,

respectively. A frame that ceases to be a frame when any one of its elements is
removed is called an exact frame. It is well known that exact frames and Riesz bases
are identical. First, we study average sampling with regular sampling points.
Lemma (1.2.2)[269] : Let V, be a closed subspace of L?(R) and {@(.— k) :
k € z} be a frame for V, with bounds A and B. Suppose that ¢ is continuous and
Ykezlo(x — k)|? < L < 4oo. Then for any frame {S, : k € z} of

Vo z:lSk(x)l2 is bounded on R.
kez

Proof : Let {¢(.— k) : k € z} be the dual frame of {¢(.— k) : k € z}. Then for
any f €Vy, f(x) = Yref, d(.—k))p(x — k). Therefore,

L
I£I% < sup ) [, 5C— N Y oG = Ol <5 IIfII

kez kez
Suppose that {S,(x): k € z} is of upper frame bound M .Thenforanyx € R,

D IS = sup | 5

kez kez
2
|
= sup — Crok
lellz=1 4 |[ &
z 2
_ LM
<

This completes the proof.
Theorem (1.2.3)[269] : Let S(w) = (@n(w))/(Zy,,,(N/2,)). Then
{S(.— k)} is a Riesz basis for Vyy and forany f € Vy ,

F&) = D (ful=I0)SE = k) (31)

kez
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where u(x) = x[n/2-1,n/2(x) and the convergence is both in L?(R) and uniform on
R.

Proof : Let gn(w) = ($n(®))/ Tkealdn(® + 2km)|? and

h(w) = Z,,,, (ga)) é,v(w). Then {on(.—k)} and @y(.— k)} are dual Riesz
bases for Vy. Since Z,,, . . (N/2,w) has no zero on [—m, ] (see [271,249]), it is easy
to check that {h(.— k)} and {S(. — k)} are also dual Riesz bases for V. On the other
hand, for any f € Vy , suppose that f(w) = C(w) + @y (w) for some C(w) =
Y ez Ci " F® € L?[—m, m]. Then

1T
(f,h(.—k)) = o f f(w)h(w)e ™ dw

400
1 7 N = ikw
= | C@Pn @)y, (5.0) Bu@e ™ do

400

— 1 C 7 N ika)d

“on ) (@) de
N

= E Cn§0N+1(§+k—Tl>

Nnez

1
N
=chJgoN (§+k—n—x>dx
Nnez 0
1
N
=.[f(§+k—x)dx

0
=(fiu(—k).
Hence, forany f € Vy ,

FO) = Y (FhC=INSG = k) = ) (fru(—kISCx = k).

kez kez
By Lemma (1.2.2) , the above series is convergent uniformly on R.

Theorem (1.2.4)[269] : Suppose that {x;} is a real sequence such that
0 <a<xky —xp+1/< B < 1, for some two constants a and . Then there is
a frame {S;} for V) suchthatforany f € Vy ,

) = ) (fu (=25,

kez
Where u(x) = x[-1/2,1/21(x) and the convergence is both in L*(R) and uniform on

R.
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Proof : By [249] ,{¢y(.—k): k € z} is a Riesz basis for V, with bounds
Ay = Xil@y (m + 2km)|? and By = 1. Suppose that {@y (.— k) : k € z} is the dual
Riesz basis of {¢y (.— k) : k € z}. Define

ay) = ) gy (= W@y (v -n). (32)
Nnez
Then q(x,y) is well defined for each q(x,y) € R?,q(x,.) € Vy,and f(x) =

XE+1/2

(f,q(x,.))forany f € Vy (see[275]). Put h,(x) = ka—1/2 q(x,y) dx . By
(32), hy, € Vy .Forany f € Vy we have
+00 Xp+1/2
o= [ foray | aGmdx
—o0 xXp—1/2
Xk+1/2 4o
- [ | rovaGryyx (33)

Xg—1/2 —oo
XE+1/2
= f f(x)dx
Xg—1/2
where Fubini’s theorem is used. Suppose that f(x) = Y ,ez cnoy (x —n) and
g(x) = YnezCn@n+1(x —n) for some {c,,} € £ .Then

Xp+1/2 Xp+1/2
f f(x)dx =z Cn J oy (x —n)dx
Xp—1/2 nez Xp—1/2
1
1
=Z cnf<pN<xk+§—n—t)dt (34)
nez 0
1
=3 upun (1)
Nnez
1
=9(x+3),

By [243], there exist two constants C;, C, > 0 depending only on N and {x;} such

that
, 1
Cillgll; < z |g (xk + 5)
kez

Since {oy ((— k) : k € z}and {¢py,1 (.— k) : k € z} are Riesz bases for V and
Vn+1 , respectively, we have
Anllcllz < lIf113 < Bylicll (36)

2

< Gligll (35)

and
Aynallclls < llgll5 < Bysallell3 (37)

10
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Putting (33),(34),(35) (36) (37) together, we have
D1 < I B < L )

kez
Hence, { h;,) is a frame for VN . Let {S;} be the dual frame.

Then forany F € Vy,

FOO = ) (FhdSe) = D (fru (= 1))

kez kez
By Lemma (1.2.2) , the above series is convergent uniformly on R.

11
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Chapter 2
Channeled Sampling and Sampling Theorems
First, we give asingle channel sample formula in V; , which extends results by

G. G. Walter and W. Chen and S. Itoh. We then find necessary and sufficient
conditions for two-channel sampling formula to hold in V;. We show that some
subspaces may not have a regular point. We also present a reconstruction algorithm
which is slightly different from the known one but is more efficient. We study the
aliasing error and prove that every smooth square integrable function can be
approximated by its sampling series .
Section(2.1) Translation Invariant Subspaces and Channeled Sampling

The classical Whittaker-Shannon-Kotel’nikov (WSK) sampling theorem [264] states
that if a signal f(t) with finite energy is band-limited with the bandwidth r, then it
can be completely reconstructed from its discrete values by the formula

oo

f©O = ) f

n=—o
which converges both in L?2(R) and uniformly on R, which has been extended in
many directions (see [244], [265] and [267]). In 1992, G. G. Walter [268] developed
a sampling theorem in wavelet subspaces, noticing that the sampling function
sinmt/mt in the WSK theorem is a scaling function of a multi resolution analysis. He
assumed that the scaling function ¢(t) is a continuous real valued function with
o) = 0(|t|"1"%)(e > 0) for |t| large, which does not hold for sinmt/mt.
Following G. G. Walter’s work, A. J. E. M. Janssen [233] used the Zak transform to
generalize Walter’s work. Later, W. Chen and S. Itoh [263] extended Walter’s result
by requiring only the condition {¢(n)} € [ on the scaling function without any
decaying property. However, there were some gaps in the proof of the main result in
[263].

We first re-examine the results in [263] and then extend it to single and double
channel sampling formulas in the translation invariant subspaces of a multi resolution
analysis.

Definition (2.1.1)[262] : A function ¢(t) € L?>(R) is called a scaling function
of a multi resolution analysis (MRA in short) {V]} if the closed subspaces V; of L*(R),
V, = span{¢(2/t — k):k € z}, j €z

satisfy the following properties ,

(i) ~cV.,cV,cV.;

(i) UV = I*(R) ;

(iv) f(t) € V;if and onlyif f(2t) € Vjyq ;

(v) {¢(t — k): k € z} isaRiesz basis of /.

Then {¢(2/t — k): k € z}becomes (iii) NV = {0} ;

sint(t — n)
n(t — n)

12
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(a Riesz basis of V; for each j). The wavelet subspace W; is defined to be the
orthogonal complement of V; in V;,; so that V;,; = V;@W; . Then there exists a
wavelet ¥(¢) € L*(R) that induces a Riesz basis {y(2/t —k):k € z} of W; .
Moreover, {¢(2/t — k), (27t — k): k € z} forms a Riesz basis of V;,, . For any
¢(t) € L2(R), we let

) 1 7 .
F@)IO = $©O = f s(Oe-Edt  and

PP U U
F (¢)(t>—ﬁl B(E)e ™ dg

be the Fourier and inverse Fourier transforms of ¢(t) and ¢ (&) respectively. For a
measurable function f(t) onaset X c R, we let

IF@llo = sup inf 1F @] and If Ol = nf suplf O

be the essential infimum of |f(t)| on X and the essential supremum of |f(t)|on X
respectively.

Proposition (2.1.2)[262] : (see [231]) Let ¢(t) € L?*(R). Then

(i) {¢p(t— k):k € =z}isaBessel sequence if and only if there is a constant B > 0
such that

Z|q3(f + 2k7‘[)|2 < B, a.e. in [0,27];
K

(ii) {¢p(t — k): k € =z}is aRiesz sequence if and only if there are constants
B = A > 0such that

A SZ|¢3(E + 2k7r)|2 < B, a.e. in [027n].
k

We call A and B lower and upper Riesz bounds for a Riesz sequence {¢(t — k): k € z}
respectively. For later use we give a corollary of Proposition (2.1.2) .

Corollary (2.1.3)[262] : Let ¢(t) € L*>(R),M(§) € L*(R), and

_ 1 (. .
C@)er= F(PM)0 = j $EOM(©)e € de .Then

() {C(¢p)(t — k): k € =z} is aBessel sequence if {¢p(t — k): k € z}is a Bessel
sequence.

(ii) {C(¢p)(t — k): k € =z} isaRieszsequence if {¢p(t — k): k € z}is aRiesz
sequence and [|M(&)]|, > O.

Proof : (i) Let {¢(t — k): k € z} be a Bessel sequence with

Z|<]3(5 + 2k7t)|2 < B, a.e. in [02m].
K
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Then
Z|c’($)(f + 2km)|’ =z|¢3(f + 2km)M(E + 2km)|’
k k

< > 16 + 26| IMOIZ < BIMEI , a.e. in [027]
k

sothat {C(¢p)(t — k): k € z} is a Bessel sequence by Proposition (2.1.2).
(ii) Let {¢p(t — k): k € =z} be a Riesz sequence with bounds A and B. Then, as in (i)
we have

AIMOI < Y [C@E + 2km)|’

k
= Y 166 + 2kmM( + 2km)|’ < BIMEIE
k

sothat {C(¢)(t — k): k € =z} is a Riesz sequence by Proposition (2.1.2).

In this section we give a single channel sampling in V,, which extends results in G.
G. Walter [268] and W. Chen and S. Itoh [263].

Lemma (2.1.4)[262]: [231] Let ¢(t) € L2(R) be such that {¢p(t — k): k € z} is a
Bessel sequence. Then, for any {c,} € I?, Y, c,¢(t — k) converges in L?(R) and

F (Z e (t — k)) = Z ce ™ p(E) = (2 Cke_ik€> B () .

k k k
Let F* be the discrete Fourier transform on [P (p = 1, 2) defined by

F*{ci D) = Z ce ™ Then, F*({c,}) (&) belongs to C[0,2r]or L?[0,2r] if
k
{c,} € I* or 1? respectively. We denote F*({¢p(k)}) (&) by ¢*(&) for ¢(¢) € [2(R)
when ¢ (k) (k € z) are well defined.

Lemma (2.1.5)[262] : If {a,}, {b,} € 1%, and F*({a,}) (&) € L*[0,2] , then

{z ajbk_j} € ? and

J

F*{arDOF {beH(E) = F* <{Z ajbk—j}> &).

J
Proof : Since F*({a, ) (&) € L*[0,2r] and F*({b, ) (&) € L?[0,2m],
F*{ar DE)F*({b D) (&) € L?][0,21] .Hence we can expand
F*({ar ) (EF*({b ) (&) into its Fourier series ¥, c,e "™ in L?[0,21] , where

1 .
cn = (F {a D (OF (b (@), e ™) 12(0,2n]
1 . — . .

( 1
{ ¥ )




1 : - .
= % (Z ake_lkf ’ Z bn—ke_lkfh2 [0,2] — Z anbn—k
k k

k
by Parseval’s identity. Hence the conclusion follows.

Theorem(2.1.6)[262] : Suppose that ¢ (t)is a scaling function for an MRA {V;}

such that ¢(n)’s are well defined and {¢p(n)} € (2. Then, there exists S(t) €V,
such that {S(t — n) : n € z}is aRiesz basis of V, and

IGE Zf(n)S(t— nin P®,  fOE 7V, ()

)
(@)’

<)

if and only if 0 < _ < oo. In this case, we have S(¢) =

'e~)
—

< oo.Then

= Zk Cke_ikf be its

Proof : Assume 0 <

1 1
<! 2 hat ——
@] S o e in [0,2m] sothat = 3 (E)

Fourier series, where {c,} € [? and set F(¢) = Z:((?) Then F(§) € L*(R) and

F§) = (Z cke-“‘f> @ =) (e ™6 (©)

k k
by Lemma (2.1.4) . Hence S(t) = F~1(F)(t) = X, cxd(t — k) € V,. Now, we
16)
(&)’

€ [0,27]. Let ——

show that {S(t — k) : k € z}is a Riesz sequence. Since S(§) = , we have

where A4 and B¢ are Riesz bounds for {¢p(t — k) : k € z}. Hence {S(t— k) : k € z}

is a Riesz sequence by Proposition (2.1.2) (ii). For any
f(t) =Y crdp(t — k) € V, where {a,} € [%, we have by Lemma (2.1.4),

& = (Z aye ¢ ) AGKE (Z aye ¢ ) (DS

? a.e. in [0,2m]

k k
(Z ake_ikf> (&) = z f(m)e~m¢ (2)
Where {f(t) =X\ clz(kqb(t—k)} € 12 by temma (2.1.5) . Hence
f© = (Z f(n)e-inf> 5 = ) (rme m5@) 3

by Lemma (2.1.4) since {S(t — k) : k € z}is a Riesz sequence. Thus we have (1)
by taking inverse Fourier transform on (3). Then
span{S(t— k) : k € z} = V,sothat{S(t — k) : k € z}isaRiesz
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basis of ;. Conversely assume that there exists S(t) € V, such that {S(t — k) :
: #€z is a Riesz basis of /0and (1) holds. In particular gz=#£@nS5¢—7 so that

B © =) (pme ™) = (2 f(n)e—l'"f) SO =FO© . @

n
Hence

Y1 + 2km|* = g @I Y |8 + 26em)|”
k k

where (A, By) and (AS, BS) are Riesz bounds for {¢(t — k) : k € z}and

2 <
BS

{S(t— k): k € z}respectively. Thus 0 < [[¢* ()|, < [|p (|, < .
If {p(n)} € 1%, then ¢*(&) = ¢*(£ + 2m) € C[0,2m] so that
16°©Oll, = min|¢* @] and 6", = max|¢*(D]-

Hence we have:

Corollary (2.1.7)[262] : Suppose that ¢(t) is a scaling function for an MRA
{V;} such that ¢(n)’s are well defined and {¢(n)} € I*. Then there exists S(¢) € V,
such that {S(t — k) : k € z}is aRiesz basis of Vyand (1) holds if and only if
¢*(£) # 0in [0,27]. In [268], G. Walter requires that ¢ (t) is a continuous on R
and ¢(t) = 0(|t]"1¢)(e > 0) for |¢t| large. Then {¢(n)} € I* so that the results in
[268] is a special case of Corollary (2.1.7) . On the other hand , W.Chen and S. Itoh
[263] claimed: under the same hypothesis as in Theorem (2.1.6) , there exists

S(t) € V, with which (1) holds if and only if ¢*(&)~* € L?[0,2r]. However,there
are some gaps in the argumentsin [263]. In the proof of sufficiency for Theorem 1 in
[263], (Xx are™™¢ )$* (&) belongs to L1[0,27] but not necessarily in L[0,27]

$* (@], < o) sothat {f ()} = {Zx axp(n — k)} € I and the (2)
becomes only a formal Fourier series expansion of a function in L1[0,27] (see [263]).
Even if ¢* (&)~ € L?[0,2m] and ||$*(£)|| . < oo, (2) holds but (3) may not hold

since {S(t — k) : k € z} is not a Bessel sequence unless [|*(£)|| > 0. Also, in

the proof of necessity, we may not have (4) unless {S(t — k) : k € z}isaRiesz
sequence.We may extend Theorem (2.1.6) by the same reasoning to a single channel
sampling as:

Theorem (2.1.8)[262] : Let M(&) be a measurable function on R such that

0 < [IM®O)lo < IIM(E)|lo < oo.Suppose that ¢(t) is a scaling function for an
MRA {V;} such that C(¢)(n)’s are well defined and {C(¢)(n)} € [* where

(unless |
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C(P)(t) := F~L(PM)(t): Then, there exists S(t) € V, suchthat {S(t— k): k € z}
Is a Riesz basis of I/, and

f(©) =ZC(f)(n)S(t— n) in L*(R), f(t)eV, (5)
; 71¢3)

c(P)
Is continuous on R and

< oo. In this case, we have S(§) =

if and only if 0 < ||C(¢)*

O < |lct@y|
Example (2.1.9)[262]: Shannon function ¢(t) = —

{p(n)} = {8no} € I*.Since $*(§) = 1on [0,2m] but [p(t)| = O(lt|™") for [¢|~"
large, the WSK sampling theorem is not covered by [263] or [268] but follows
Corollary (2.1.7).

Example (2.1.10)[262] : Let ¢(t) be the continuous scaling function
considered by Chen and Itoh (Example 3 in [263]) such that

sinmt

-1, —4nr < & < —2m,
~ )1, —2n<é<K 0,
¢(€)_ ES' 0S€<27T,

0, otherwise

with0 < s < % . Then we can easily see that ¢(n) = 0 (%) for

In| large so that {¢(n)} € [?\I*.Even though ¢* (§) = &Son [0,27]
sothat ¢* (§) € L[0,2r]and ¢ (§)~" € L?[0,2],|[¢* ()|, = O so that we
cannot expect a sampling formula from ¢ (t) suggested either by Theorem (2.1.6).
Example (2.1.11)[262] : Let M(§) = e~ with0 < a < 1 so that

1= |le7™ ||, = [le**]||_,, and ¢(t) ascaling function Then c(¢)(t) = ¢(t - a)
and {¢p(n — a)} € I*sothat Zy(a, &) = Y, p(n — a)e~ "¢ € [2[0,27]. Hence if
0 <||IZp(@ |, = [Z4(a O < oo, then we obtain the
shift-sampling f(t) = Y, f(n— a)S(t — n).

We let ¢(t) be a scaling function for an MRA {V;} and ¥ (¢) the associated wavelet.
Let M, (&) and M, (&) be in L*(R) and C;(f)(t) = F~L(fM;)(t) fori = 1,2 and

f(t) € L*(R).
Assume that C;(¢)(n)’s and C;(y)(n)’s are well defined and {C;(¢)(n)} and
{C;()(n)}arein 2. Let

An(© = ) G@me™, Ap@) = ) C@)me

An(©) = ) CAMe™ @) = ) GEIme ™™,

n

and A($): = [A ()] | _ . Then Ay (§) € L?[0,2r]and A; () = A;(§ + 2m).

2
Lj
We always assume that ||4;;(§)|| < oo fori,j = 1,2 and detA(§) = O a.e.
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in [0,2] . Set A"1(&) = B(¢) = [Bij(f)]ijzl.Then B(¢) = B(& + 2m) is well
defined a.e. in R.
Lemma (2.1.12)[262] : Let 2, 5(¢) and 4, 5(¢) be eigenvalues of
B($)B(&) with 1, 5(§) < A,5(5) . If |ldetA(E)lo > 0, then

0 < ”/11,3(5)”0 < ”/12,3(5)”00 < .
Proof : Since B(§)B(&)* is nonsingular Hermitian a.e. in [0,27],

0 <A15(8) < 2,5(8) a.e. in [0,2m].
Since A;;($) € L”[0,2r] and ||detA(S)llp > 0, all entries of B(¢) and so
B(&)B(&€)* arealsoin L*[0,2m] so that the characteristic equation of B(§)B(&)* is
of the form A(&)2 + f(E)A(E) + g(&) = 0 where f(&) and g(&) are real-valued
functions in L*[0,2m] .

Hence 0 < ||2,5(8)||_ < oo.Since
Mp(§)A2p(8) = det[B(§)B(E)] = |detA(§)|?,
ldetAOIIZ < 2,5 25(8) < lldetA)o? a.e. in [0,27]
so that
ldet A1 [225O ) < 215 < A5(9)
< |25, a.e in [02n].

For any ¢p(t) € L?(R),

2T
190 = 6l = [ D16 + 2km]* at
0 k

sothat {p(¢ + 2km)}, € I*forae.in[0,27].
Definition(2.1.13)[262] : For any ¢(t) and 1(¢t) in L?(R) , we call

Z|$(§ + 2km)|” z B(& + 2km)P(E + 2km)
k

GE¢) = Ak—A R
Z B + 2km)P(E + 2km) Zhb(f + 2km)|*
k k

the Gramian of {¢, y }, which is well defined a.e. in [0,27].

Then as a Hermitian matrix , G (£) has real eigenvalues.
Theorem(2.1.14)[262] : In[266] let A,, G (&) and A,, G (&) be eigenvalues of
the Gramian G (&)of {¢p, ¥ } such that A,, G(&) < A5, G(8).

Then {¢(t — k), Y(t — k) : k € z}isaRiesz sequence if and only if there are
constants B = A > 0 such that

A< 1,G(8) <1,,G(§) < Ba.e. in [0,2m]. (6)
: Fi(9] _ €3]
Lemma (2.1.15)[262] : Set [Fz(f) = B(%) Lﬁ(e‘)] on R. If ||detA(&)]l, > 0,

( 1
| 8 )



then F;(¢) € L2(R),S;(t) = FY(F)() € Vyfori = 1,2,and {S;(t—n): i =
1, 2 and n € zis a Riesz sequence.

Proof :Since B;;(¢) € L”(R), F;(§) = B;1(§)$ (&) + B ()Y () € L*(R) for

i = 1,2.8ince B;;(§) = B;;(§ + 2m) € L*[0,2m], we may expand B;;(£) into its
Fourier series B;;(§) = Xy bijxe~*¢ Where {b;;;} € [?. Then by Lemma (2.1.4),

R = (Z by e ¢ ) E©) + (Z biz e ik ) 76
k k
= (b ™ BE) + bize HH(D)
so that ‘

S0 = FUEN® = ) (bt = 1) + baup(t =) € V, .

k
Let

z|51(5 + 2km)|” z 8, (£ + 2km)S, (€ + 2km) 1|
S(E) k

|z S, (€ + 2km)S, (€ + 2km) Zk:|§2(5 + 2km)|* J|

be the Gramian of {S1, 8.} and 4, 5(§) < A,5(8) the eigenvalues of S(&). Then we

have by periodicity of B(§), S(&) = B(&)G(E)B(&)*. Let Us(é) and Ui (&) be
unitary matrices, which diagonalize S(¢) and G (&)respectively,i.e. ,

11,5(8) )
S(f) = US(f) - 0 /12,5(5)] US({)
and
_ [A1,6(§) 0 .
G(&) = Uc(f)_ 0 /12,(;(5)] Ug(§)".
Then
A1,5(8) 0 A1,6(6) 0 \
[ 0 Az,s@)] R@[ Az,(,-(a]R@
where
RE) = U BEOUE = [ 72
so that
215() = 2 6(O)IR11(OI? + 2,6(E)IR12(OI* (7)
Ap5(&) = A6 (O)IR11(O)* + A36(E)R2 (O . (8)

On the other hand,
R(E) R(E)" = Us(§)*B(§)B(§)"Us($)

1,B 0
S GEGI AN [T CHENC

( 1
{1 ¥ )




where Ug (§) is the unitary matrix such that

AlB
s = upo) |40 0l

with 2, 5(8) < 2,5(8). Set Us(§)*Up(§) = [Dy; (5)]?},21 which is also a unitary

matrix. Then we have from diagonal entries of both sides of (9),
IR11 ()17 + [R12(DI? = A1,5(DID11(I? + 22,5 D12 (D17, (10)
IR21 ()N + [R22 (D)1 = 41,5(D) D21 (D)I? + A2, (§) D22 ()17 . (11)
Then we have from (6), (7), (8), (11) and (11)
/11,5(5) = Al,G('S)(lRll('S)lz + |R12(€)|2) = /11,6(5)/11,3(5) a.e. in [0,2m],
Aps(§) = AZ,G(E)(|R21($;)|2 + Ry ()17 = A2,6(E)A25(€) a.e. in [0,27],
since |Dy1(§)I? + [D12(ON* = D217 + [Dy(O)|* = 1la.e. in [0,27].
Hence

0 < [A1s@| 5@, < A5 < A5©)

< ||/12'G(€)||oo||/12'3(€)”oo < la.e. in [0,2m]
by Lemma (2.1.12) sothat {S;(t — n) : i = 1,2 and n € z}is a Riesz sequence
by Theorem (2.1.14) .
Theorem (2.1.16)[262] :Under the above setting, there exist
S;(t) eVy(i = 1,2)suchthat {S;(t — n): i = 1,2 and n € z}is a Riesz basis
of I/; for which two-channel sampling formula

FO =) GAOMSIE= M+ ) GINMS,E-n),eV, (12)
holds if andnonly if ||detA(&)|ly > Orgn [0,27]. In this case
Si®) = F7 (Bu(©PE) + B(OP@) (©) for i = 1,2 (13)

Proof : Assume ||detA(&)|l, > 0 on [0,2x] and define S;(t) by (13). Then
Si(t) eVi(i = 1,2)and {S;(t — n):i = 1,2and n € z}is aRiesz sequence by
Lemma (2.1.15) . Forany f(t) €V,

FO =) cpblt— ) + ) bt = B (14

k k
where {c; .}, €1*fori = 1,2since {¢(t — k),P(t —k) : kn € z}isaRiesz

basis for V;. Applying the bounded linear operator C;(.) to (14) gives
G = ) enpCl@(E = )+ ) o)t — ). (15)
k

k
On the other hand, we have by Lemma (2.1.4)

f(f) = (Z C1,ke_ik€> 95(5) + (Z Cz,ke_ikSC)l/;(f)

k k
Since
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¢®12A@4&®)

(&) $,(O)]°
f(&) = KZ C1,ke_ik€> A (6) + (Z Cz,ke_ik(f) A21(€)] $,(8)
k k
+ (1, e_ikS()Alz(s;) + < C2, e_iksc)Azz(f)] §2
(e 2.

= z (Z cLxCi(P)(n— k) + z 2. G () (n — k)) e ™5, (8)
K

n k
+§X§hﬂ%@@—m+§}méwmhk0fw$®
n k k

=) GOMETESE) + ) G, (16)

by (15), where {C;(f)(n)} €1? (i = 1,2) by Lemma (2.1.5) . Taking inverse
Fourier transform on (16) gives (12), which implies

V, = span{S;(t — n):i =1,2 andn € z} so that {S;(t — n):i =1,2 andn € z}
is a Riesz basis of V;. Conversely assume that there exist S;(t) € V; (i = 1,2) such
that {S;(t— n):i =1,2 andn € z} is a Riesz basis of V; and (12) holds. In
particular,

DO =) G@MSE= W+ D GAMSE—n),

B =) GEMSE— M+ ) GEHMWSE— ).

By taking Fourier transform and using Lemma (2.1.4) , we have
(/3(6)] _ Fl(f)
sl = Olsel
We then have as in the proof of Lemma (2.1.15)
G(§) = A)SAEG)",
where G (&) and S(&) are Gramians of {¢, y¥}and {S;, S, } respectively. Hence
detG(§) = det S(&)|detA(¢)]? so that
, _detG(§)  A6(D)A6(8) _ 468

et = 0ot 5@ ™ Ts®ros@® = Tos(®)?
where 1, () < 1,5(8) and 4, 5(&) < 4, 5(&)are eigenvalues of G(&) and S(€)
respectively. Therefore,

a.e. in [0,27],

|detA(§)] 2/11'6(6) > ”ALG(SHO a.e. in [0,2m]

A25(E) |25
so that ||detA(¢)]l, > 0 since both ¢(t — n),Y(t — n): n € zand

( 1
1 2 )



{S;(t — n):i =1,2 and n € z} are Riesz sequences.
Example (2.1.17)[262] : For Haar orthogonal system ¢(t) = xpo,1)(t) and
1

Y(t) = X[O’E)(t) — X[l'l)(t)' Let M;(&) = 1and M,(¢) = e witho < a < -.
Then €1(P)(®) = xjo1)(®), C2(P)(®) = X0t — @), CL(P)(E) = X[O’%)(t) - X[%,l)(t)

N

and C;(W)() = x[o2)(t = @ = x[1,)(E~ @) Then AE) = E e__i;] 50

that |detA(&)| = 2, which satisfies the condition of Theorem (2.1.16) . Hence we
have a sampling formula

O =) fmSit=m) + ) f(r= a)Sy(t = n)
Corollary (2.1.18)[296] : If {a,}, {ax + €} € 12, and F*{a,}) () € L*[0,27] , then

{Z aj(ax_; + ek_j)} € [> and

J

F (@D OF (ax + D@ = F* ({2 aj(ag-; + ek_,-)}> ©.

]
Proof : Since F*({a,}) (&) € L°[0,2x] and F*({a, + €, }) (&) € L?[0,27],
F*{a D) F*{ay + €, (E) € L?[0,2m] . Hence we can expand
F*{aD(OF*{ay + €. 1) (&) into its Fourier series ¥, c,e "™in L2[0,27] , where

1 ;
cn = (F {aD(F ({ax + e D), e™"™) 2[0,.2n]

1 . - . .
= E<Z ake_lkf ) <z(ak + €p)e lkf) e_m§>L2[0,2T[]
k k

1 ik ik
= E(Z(ak + €x e :Z(a n—k T €n-r)e )LZ[O,ZTE] = Z an(Ap-i + €n—g)
k k

k

by Parseval’s identity. Hence the conclusion follows.
Corollary (2.1.19)[296] : Suppose 4, () and 4,1 5(£) are eigenvalues of

B()? With A, 5(8) < Any15(8) . If lldetA(®)llo > 0, then

0 < ||/1n,B(€)||O < ||/'1n+1,13(<f)||Oo < 00,
Proof : Since B(&)? is nonsingular Hermitian a.e. in [0,27],

0 <A,5(8) £ 24415() a.e. in [0,2m].
Since A4;;(§) € L*[0,2r] and [|detA(§)ll, > 0, all entries of B(¢) and so B(§)?
are also in L®[0,2m] so that the characteristic equation of B(¢)? s of the form
A%+ F(OAE) + g(&) = 0where f(&) and g(&) are real-valued functions in
L2[0,2] . Hence 0 < ||Ap415(8)|| < 0. Since

Anp(§)Anr1,5(§) = det[B(OB(E)'] = |detA(§)|™?,

( 1
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ldetA(ON < Anp(§)Ans15(8) < lldetA(©)I5* a.e. in [0,27]
so that

1det AN |23 15O, < np(®) < Anrrs(E)

< ||)ln+1'B(f)||oo a.e. in [0,27].
For any ¢(t) € L?(R),

2T
11z = [16ll2 j B¢ + 2km)[* d
0

sothat {#(¢ + 2km)}, € I*forae.in [O,Zn].

Section(2.2) Multivariate Shift Invariant and Sampling Theorems
We consider shift invariant subspaces of L?(R%) of the form
Vo = span{p(- —A,):n € z}, (17)
where ¢ € L2(R%) and Aisad x d matrix, detA # 0.Fix some x, € R<. If there
isaframe {S(- — 4,)) : n € z%} for V, such thatforany f € V,,

FE)= ) flro + ADSG = Ax) (18)

n ezl
where the convergence is both in L2(R%) and pointwisely on R¢, then we say that x,

Is a regular point for V, and the (regular) sampling theorem holds on V,. Note that a
function in L?(R%) is only defined almost everywhere. For the sampled values
f(xo, + A,) to make sense, we require that f be continuous near x, + A,,. Similarly,
we can consider irregular sampling, i.e., x, + A,is replaced by x, + A, + a,, for
some a,, € R% satisfying ||a,|l. < &,V¥n.Now some problems arise:

(i) Does every V, of the form (17) have a regular point?

(i1) Characterize all regular points for given V.

(ii1) Find conditions for the irregular sampling theorem to hold.

There are many results concerning the last two problems. For example, see [242,
243, 244, 250, 251, 252, 233, 255, 234, 240]. Most of them are focused on univariate
functions.

We study the sampling theorem for multivariate functions. We first prove that every
subspace V, of the form (17) must have a frame like

{(- —A4,): n € z%) for some € V,. Then we give an equivalent condition for f
to be continuous near sampling points x, + A,,. We give a characterization of
regular points for V; and give a representation of S(x). Also, we illustrate that there is
some shift invariant subspace which has no regular point. We study irregular
sampling for V,, and show that if the generating function ¢ satisfies some conditions,
then we can find some § > 0 such that every f € V, can bereconstructed from
irregular sampled values f(x, + A, + a,) provided ||a, || < &. Our result covers
many of known ones, such as Kadec’s 1/4-theorem and some results in [233, 257,
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240]. We also present a reconstruction algorithm which is slightly different from the
known one but more efficient.

Definition (2.2.1)[241] : A stands for some fixed d X d matrix with det A # 0.
The Fourier transform and the Zak transform of f € L?(R%) are defined

by f(@) = [paf()e 7% dx and

(Zaf)(x, ) = Z fx + Ay)e 2 Anw) respectively.

nezd
We call a function f is Az%-periodic if f = f(- + 4,,),ae,n € z<.

[fiﬁ](w) = Z f(w + A ") §(w + A7'n),where A7t is the
nezd

inverse of A, the transpose of A. E;, = {w : [ ¢, $](w) > 0}.
Example (2.2.2)[241]; Let ¢(x) = 22 thenV, = {f: suppf < [-1/2,1/2] }.

Since (Z¢)(x, w) = e?™%(Z¢p)(w, —x) thanks to Lemma (2.2.11), it is easy to
check that |(Z¢p)(x,w)| = 1,a.e.

Example (2.2.3)[241] : Subspaces generated by centered B-splines defined by

5 () = (sinnw)m+1

P (@) = | — :

or equivalently , ¢, = x[—1/2,1/2] * * * * * X[-1/2,1/2] (M convolutions).

Let V;,, = span{¢,,(- —n): n € z }. It can be shown (see [249, 240]) that

{p(- —n): n €z} is a Riesz basis for 1}, and (Z¢,,)(0, w) has no zero on R.
Therefore, 0 is a regular point. On the other hand, since ¢,,, is symmetric with respect

m=1,

tox = 0, itis easy to see that (Zgbm)(%,n) = 0. Hence x = %is not a regular point
(see [233]).
Example (2.2.4)[241] :
rx+1, -1 < x < -3/4,
—x —1/2, -3/4 < x < 1/2,
x+1/2, -1/2 < x £ 1/4,
Let p(x) =1 —x, —1/4< x <1/4,
x —1/2,1/4 < x < 3/4,
1-x,3/4< x <1,
\ 0, otherwise.

t o(x)

-
—1 1

Then{¢ (- —n) : n € z }is an orthogonal basis for the space V it spans . On the
other hand, it is easy to check that
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(—x(l — ™), 0 < x <1/4,
(Z26)(x, ) ={ (x — 1/2)(1 - ezz::) 1/4 < x
(x —1/2)(1 + e ) 1/2 < x
L1 — x)(1 +e2™),3/4< x < 1.
Hence (Z¢)(x,0) = 0for0 < x <1/2and (Z¢)(x,m) = 0 for
1/2 < x < 1.Therefore,V, has no regular point.
Lemma(2.2.5)[241]: Suppose that ¢ € L2(R%) and V, = span{¢(- — 4,):n € z9}.
(i) {p(- — A,):n € z%} is a frame for V, with bounds C; and C, if and only if
Cixey,(w) < |detA| ™[ ¢, Pl(w) < Coxeqy(w), a.e.
Moreover , {¢p(- — A,):n € z%}is a Riesz basis for V, if and only if the above
inequalities are satisfied with E, = R4,
(i) {p(- — 4,):n € z%} is a Bessel sequence with upper bound C, if and only if
|detA|" [ $, Pl (w) < Coxp,(w),a.e.
Lemma (2.2.6)[241] : Suppose that {¢p(- — A,,):n € z%}is a frame for V, .
Let

1/2,

<
< 3/4,

Sw) = {f(w)/[ ¢, <13](<_v), w € Ey,
) otherwise.

Then {| detA|p(- — A,):n € z%} is the dual frame of {¢p(- — 4,):n € z¢}.
Lemma (2.2.7)[241] : Let ¢ € L?>(R%) and V, be defined by (17). Then we
have

Vo = {f € L>(RY) : f(w) = C(w) d(w), C(w) is A~tz% — periodic}. (19)
Moreover, there is some 1y € V, such that {{y(- — 4,)):n € z%} is a frame for V.
Lemma (2.2.8)[241] : Suppose that {¢p(- — A,):n € z%} is a frame for some
V,. Fix some x, € R% and § > 0. Then the following two assertions are equivalent:
(i) For any {c,: n € z%} € £2,Y ,ac,d(x — A,) converges pointwisely to a
function continuous on
E =Upepalx:llx—x5—Anll <6 }.
(ii) @ is continuous on E and SUpjj x—y, [l..<6 2n ez 1P (x — Ap)|? < .
Proof : (i)=(ii). Obviously, ¢ is continuous on E. Since Y, ¢ ,a c,p(x — A,) is
convergent forany {c,, : n € z%} € £2, we have

Z Ib(x — A2 < +oo,Vx € E.

n e z4
Define

Ayc = Z c,p(x — A,), Ve = {c,: n € z%} € 2,
n €zd
Then A, is a bounded linear functional on £2 with the norm
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/2
(Z 6 (x - An)|2> .

n e z4
Note that for fixed c, A,.c is continuous on x, + [—6,5]%, we have

sup |A,c| < +oo.

| x=x0llo<6
By the Banach-Steinhaus theorem, sup ||A,c|| < +oo. Consequently ,
| x—xolleo<8

sup E |p(x — A,)|? < .
| x—%ollooss 4,
NnNez

(if)=(i). By the Cauchy inequality, Y., c ,a c,p(x — A,) is convergent uniformly on
E for any ¢ € £2. Now the conclusion follows.

Lemma (2.2.9)[241] : Suppose that ¢ is continuous and

Yo eqd|lPp(x — Ap)|? is bounded on R%. Then we have for any x € R% and almost
every w € RNE, , (Zy¢)(x,w) = 0.

Proof: LetC(w) = 1 — xg,(w) = Xpeq cpe 2 An®) Then

C(w)p(w) = 0.Therefore ,

chqb(x—An):O, vx € RY .

n e zd
It follows that
f |(Zad) (6, )2 deo = j 1C (@) 21(Zah) (x, @) 2 deo
A~t[-1/2,1/2]%\E4 A~t[-1/2,1/2]4
2
= | detA|™ Z Z cp(x+ A, — A)| = o.
mezdlnezd

Hence (Z,¢)(x,w) = 0 for almost every w € A‘t[—1/2,1/2]d\E¢. Now the
conclusion follows since (Z,¢)(x, w) is A~tz%-periodic with respect to w.

Lemma (2.2.10)[241]: Let {¢(- — 4,) : n € z%} and {S,, : n € z%} be two frames
for some V. Suppose that ¢ is continuous and ¥, c,a|p(x —A)|? <L < oo,
Then S,,(x) is continuous and ¥, ¢ ,a |S,(x)|? is bounded on R<.

Proof : Let {| detd|¢(- — 4,) : n € z%} be the dual frame of {¢(- — 4,): n € z%}.
Forany f € V,, we have

f= Z | detA|(f, (- —A,))p(- —A,) .By Lemma (2.2.8), f is continuous. Moreover,

FEOR < Y [(f 1 detdlgC — A" Y 1pCx- An))?
nLEZd nezd
<oIfIE,  ve2me

where C; is the lower frame bound of {¢(- — 4,)) : n € z%}. Let C,

( 1
| 2% )




be the upper frame bound of {S,, : n € z%}. Then

2 2

Z 1S, (x)|> = sup Z CpSp(x)| < sup i Z CnSn
—, lell=1| &=, lell=1 C1 || &<, )
- LG, v
<< .
Lemma (2.2.11)[241] : Forany f € L?>(R%), we have
(Zaf)(x, ) = 220 detA|"H(Z,-¢f ) (w, —x), a.e. (20)

Proof : By the Poisson summation formula (see [253]), we have

D (A = [detd™ > f(a7n),vf € SRY,

nezd n e z4
where S(R%) is the Schwartz class which consists of infinitely continuously

differentiable functions with rapidly decaying at the infinity. Substituting
f(- +x)e 2m+x0) for £, we get

Z f(An +x) e—iZn(An+x,a)) — | detA|_1 Z ]’c‘(A—tn + w)eiZn(A‘tn,x).
nezd nezd

Now (20) follows. Since S(R%) is dense in L2(R%), (20) holds for any f € L2(R%).
Lemma (2.2.12)[241] : Suppose that ¢ € L?(R%) and

Vo = span{¢p(- —A,): n € z%}. Then{¢p(- — A4,) : n € z%}is a frame for 1,
with bounds C; and C, if and only if

@ < [ @@ dx < Gre, @), ae
Alo,1]4
Also , {¢p(- — A,) : n € z%} is Bessel sequence if and only if the right hand
inequality holds.

Proof : By Lemma (2.2.11), we have

|(Zad) (x, 0)|? dx = j | detA|2|(Zs-eP)(w, —x)|* dx
A[0,1]¢ Af0,1]¢
= | detA|"'[ ¢, ¢ J(w).
Now the conclusion follows from Lemma (2.2.5) .
Theorem (2.2.13)[241] : Let {¢p(- — A4,) : n € z%} be a frame for some V.
Suppose that ¢ is continuous and ¥, ..« |p(x — Ay)| is bounded on R%. Then x, is a
regular point for v, if and only if there are two positive constants ¢; and C, such that

C1’XE¢((‘)) < |Zag(xp, w)| < CZIXE¢((‘))'a' €. (21)
If (2.1) is satisfied , let
5'((1)) _ {GB((U)/ZMP(?CO; w) , w € Ey, (22)
0, otherwise.

Then(18) holds and the convergence is both in 22(R%) and uniform on R%,

( 1
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Proof : Suppose that x, is a regular point. Then there is a frame {S(- —4,): n € z%}
for V, such that

FO)= ) fo+ ASCe- Ay, Vf € V.

nezd
In particular,

D) = ) Pl + A)SE — An).

nezd
Hence

P (®) = (Za®)(x0, w)S(w).
Therefore, [ §, pl(w) = [(Z49) (%0, @)|*[S, S](w).Now (21) follows by Lemmas
(2.2.5) and (2.2.9). Next we prove the sufficiency. Let S(w) be defined by (22) and

S(w) = {S(a))ZAclJ(xo,w)/[(P ,$l(w), @ € Eg, (23)
, otherwise.
Then

B.élw 1
|Z46p(x0, w)|? [S:', §] (w)
By Lemma (2.2.5), (2.2.6) and (2.2.7) , {S(- —4,): n € z%}and

{| detA|S(- — A,) : n € z%} are a pair of dual frames for V, . For any
f = Y egacnd( —A4,) € V,, we have

(f 1detAl3C = a) = | C@d(@)] detalS(@)e @ do
= | detA| j C()[P, S](w)e2@4n®) gy

A~t[-1/2,1/2]4

[5‘,5']((0) =

, (A)EE¢

= | detd| J (Zs9) (x0, w)e2@HAn®) dg

A~t[-1/2,1/2]4

- Z (X + A, — A)

= T+ A,
Hence
FG)= ) (f,|detdISC = AD)SGr—A) = > flro + A)SC = An),

The uniform convergence follows by Lemma (2.2.10).
Let us introduce the multi-index [253]: I; = {(iy, - - ,ig): iy = 0 or 1},
a = (a11'°°fad)Iai = 0,|a| = a1+... +ad7xa :xfl ‘.‘x;(d'

XPAY(x) = xBf(x) =20 x4 f (%), and
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%f(x). We write D*f simply when there is no confusion . When

Dyf(x) =

x1Oxy
we write D*f , we mean that D%f exists almost every where in the classical sense
and for any8 = (B, -+, Bg)with 8; = a;fori # kand B, = a, — 1> 0 ,DAf
is locally absolutely continuous on almost all straight lines parallel to the k-th
coordinate axis.

In the following, we give two criteria on irregular sampling and an algorithm to
reconstruct a function from irregular sampled values, which is slightly different from
known results but more efficient in some cases.

Example (2.2.14)[241] : Subspace of bandlimited functions given in Example
(2.2.2) .Since (Z¢)(x, w) = e?™*(Z¢)(w, —x), it is easy to

checkthat (Z¢)(x,w) = 1,Z¢p")(x,w) = 2nw,a.e.,|w|] < 1/2.
So the condition € > 0in (26) is equivalent to § < i, which is just the kadec’s 1/4-
theorem.
Lemma(2.2.15)[241]: Let f € LZ(R%) be such that D¥f € L>(R%) . Then

et - f@= Y [0+ od
“EId{O}Ey,a
where x,y € R% and E,, = {€ R?: 0 < t; < apyy O gy <t < O}isan
|a|-dimensional rectangle.

Lemma (2.2.16)[241]: If f is differentiable on [a, b], f, fo € L?[a, b] and there
iIssome ¢ € [a, b] suchthat f(c) = 0, then

4 A2

7T2

b b

jlf(x)l2 dx < Jlf’(x)lzdx,where A= max{c-a,b — c}.

a a

Lemma (2.2.17)[241]: Suppose that E is a rectangle in R¢ with side lengths
a = (ay, --,ag)and D*f € L*(E) forany a € I, .Then for any

lal 4@

y = O v € BIf = fOlley < ). IDFlle).
a€elg\{0}
Proof : Letly, = {(iy,--,ig) € Ig: i =0, p > k}and
Af(xX) = fV1 Vi Xk+1 - 5 Xq), 1 < k < d. It suffices to prove the
following inequality.
le| q
If = af Dl < ). IDfllge) 1 < k < d. (24)

a€lq\{0}

Fork = 1, we have

If = Af DI, = f f (e Xar - %) = FO %, x| dx
E

( 1
{1 2 )




a1+b1

= fdxz o dxg f |f (e, x0,++,xq) — (Y1, X2, 'rxd)lzdxl

(F is some measurable subset of R*~* ,and b; < y; < a; + b;.)
a1+b1

4a1 0
jdxz s dxy f |6_x1

by
4a1 2
j|6x1

where Lemma (2.2.16) Is used. Hence (24) holds for k = 1. Suppose that (24) holds
forsome1 <k < d.Then

dx;

x| ,a
Mif e < If e + 1f - Afllzey < ) o IDF ).
a€lq\{0}

A similar argument shows that
2

2 4‘11(+1
IAKf = Agr flgs < |a FOmeee Vier Kirns e %) dx
Xk+1

4aK+1 d ?
= %14, f .
Uy axk+1 LZ(E)
Hence
”f - Ak+1f”L2(E) < ”f - Akf”LZ(E) + ”AKf_AK+1f”L2(E)
< Y D e+ 2 Y 2 f
= || L2 (E) z ||
O.’Eld‘k\{O} n T aEId,k\{O} n axk+1 LZ(E)
2lalga
— a
= ) o ID e -

a€lg k+1{0}

By induction, (24) holds forany 1 <k <d.

Theorem (2.2.18)[241] : Let {¢p(- — A,) : n € z%} be a frame for some V, .
Suppose that D*¢ € L?(R%),Va € I, and

|(ZyD*p)(x,w)| < L, < +0, a.e. Let x, be a regular point and (21) be satisfied
for some C{,C; > 0. If § > 0 is such that one of the following conditions is
satisfied,

a= ) 2l <, (25)
a € 14\{0}
or
Y la
1 45\'*
_ 2 _ ik
€= wlenbfd) ((25)01 f |(Zgdp) (x + xo, w)] dxw) Z <n> L, >0, (26)
[-6,6]¢ a € 13\{0}

( 1
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then for any sequence {a,, : n € z%} c R< satisfying |la, |l < §,Vn,thereisa
frame {S,, : n € z%} for V, such that

FE) = ) fGo+ An +a)Sa(0), 27)

n ezd
where the convergence is both in L2(R%) and uniform on R¢,

Proof: Let ¢ be defined as in Lemma (2.2.6). Set
ary) = ) | detAlp(x — AP0 — Ay).

n ez

Then q(x, y) is well-defined on R?¢, due to Lemma (2.2.10). Note that

fx) = {f,q(x))
We need only to show that {q(x, + A4,, + a,,’) : n € z%} is a frame for V. In fact
, if it is the case, then (27) holds with {S,, : n € z%} being the dual frame and the
uniform convergence follows by Lemma (2.2.10) . For any f € V,, let
¢, = | detA|{f, (- —A,)). Then

C(w) = z c e 2ran ) = [f$] (w) = 0 a.e.on R* E, and

n ez

1 1
— Iz < llcll5 = E lenl? < —If 115
CZ Cl

nezd

where C;and C, are the frame bounds for {¢(- — 4,,)) : n € z% }.First, we assume
(25) is satisfied. By Lemma (2.2.15), we have

1/2
( D If G + At @) = flxo + An>|2>

n e z4
o\ 1/2

(Df)(x9 + A, + x)dx
nezd |a€lg\{0} E,, o
oy 1/2

< Z j(D“f)(xO + A, + x)dx

a€clg\{0} \n E za

1/2

sl fl(D“f)(xo + Ay + x)|*dx

aerd\{O} n'e zd Esq

(E5,(Z = {x : —ak5 < Xk < ak5})

1/2
2 slal J J |detA| - |(Z4D*f)(xo + x, w)|* dw dx
aclg\{0}

Esq A7t[-1/2,1/2]4
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_ <5Id|
aclqg\{0} Esq A7t[-1/2,1/2]4
< z 2lal/2glalL, ic|l,

a€ly\{0}
=Alclly -
Since
D I + AI =
n ez
| detA| J |C(w)(Z4D*f)(xg, @)|? dw = C1’2||c||§,
A"t[-1/2,1/2]4
we have
: o (€1 =)?
If(xo + Ap +a)l? = (€] —2)?|lcllf =2 ——— C 115 .
nezd 2

Similarly we can prove that

D I + An+an)l? <

nezd
Hence {q(x, + A, + a,, *): n € z%}isaframe for V.

Next we assume that (26) is satisfied. Put E, = x, + 4,, + [-5,6]¢
(2.2.17), we have

(C{ +2)?

ol 1

1/2
Z 5 j Q) = F(xo + Au+ )P dx
nezd
o\ 1/2
1 as\1“
<| 2 @l 2. (&) WS,
n € z4 a€lg\{0}
1 45 !
—_— a
< G5y 2, 10 s,
OCEId\{O} nezd
1 45 ol . ,
= G5 2. [ D 1000+ x+ AP dx
aEId\{O} -5,6]4nezd

NGz

ac€l \{0}

|detA|"/? 46 lal (

[- 66]dE0

1/2
|detA| - |C(w)(Z,D*D)(xo + x, )| dw dx)

|(Z,D*f)(x + xo, w)|? dxdw

(28)

(29)

(30)

(31)

. By Lemma
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1/2

|detA|1/2 45 |et| ) 2

T (28 f f |C(@)(ZaD*$)(x + X0, w)|* dxdew
Id\{O} [=8,6]4 EO

4 la|
< > (—) Lallell, (E® = A7([-1/21/2]%.
a€lq\{0} "
= Aq [cll;
On the other hand, we see from (26) that

Z (25)d f|f(x)|2dx = (ZW f Z If (o + x + A,)|? dx

n € z4 [-5,8]dn€ezd
(25)d j JldetA| |(Zaf) (x + X0, 0)|* dw dx
[-6,8]¢ E°
1
~ (26)4 j J'de“‘l |C(w)(Zyp) (x + %9, w)|? dw dx
[-8,6]¢ EO
> (e+ Ap)%llcll
Hence
1/2
( > UG+ Ag+ an)|2>
n € z4
1/2
N ( Z 26)7 f'f(x” An +an)|2dx>
n e z4

1/2
:<Z 26)¢ j'f(x)‘(f(") flxo + An +an))|2dx>

- (jlf(x) — flxo + A, + an)lzdx>
En

N

(25),1 f FOIP dx>

ne

1

> z (25)dj|f(x)|2dx> _< “ (26)d Jlf(x) fxo + A, +a)|2dx>

nezd

\
/

= gllcll; = —||F||2 :
1/2
2
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Proposition (2.2.19)[241] : [see 251] Suppose that {¢, : n € z} is a frame
for some Hilbert space H with bounds A and B. Let p be a constant such that

0 <p< %. Forany f € H, define
Sf= ) (fobudbn.  fo=SI,

nez4

fi = fier + S —ficd) . k21,
Thenlimy e fi, = fand ||If — fill < v ¥ kfk, where
Yy = max {|1 — pA|,|1 — pB|} < 1.The relaxation parameter p plays an important
role in the above algorithm. If we know the exact value of the frame bounds, then
p = 2/(A+ B) is the best choice since is minimized in this case. For Theorem
(2.2.18), the operator S can be defined by

SHE =p ) flo+ An + a)aC + Ay + %),

nezd
I _ A)2
If (25) is satisfied, the frame bounds for {q(x, + 4, + a,,"),n € z%}are %
2
I _ A2 I AN\2 I ,N\2
and {2221 S0 we can choose p=2/ ((C1 S Ay ) which leads to
Cl CZ Cl

_ G(G +4)% = C1(C{ —A)?

YT GG A+ €y (C—a)?

In the above algorithm, the functions q(x, + A4, + a,,-) are still irregular. So we

have to compute them one by one. On the other hand, the decaying factor is close to

1if C,/C, or C;/C/ is very large, which corresponds to a very slow convergence rate.
Section(2.3) An Aspect of the Sampling Theorem

The sampling theorem shows that a function satisfying certain conditions can be

reconstructed from a sequence of sampled values. For example, the classical Shannon

sampling theorem says that for each

Fe By = {f € P®:suppf < [-7 7]}

(32)

sinmm(x - k)

O O

k=—o

where the convergence is both in L2(R) and uniform on R, and the Fourier transform
is defined by

f@ = [ f@em dx.

sin x

Let Y(x) = . Then {y(- =k) : k € =z} is an orthonormal basis for B,,,, a
X /

shift invariant subspace of L?(R). A natural extension of the classical Shannon
sampling theorem is to study the sampling theorem in shift invariant subspaces of
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L*(R). Recall that {¢p, : k € z} c L?(R) is a frame for the closed subspace V it
spans, if there are two positive numbers A and B such that

AlFIZ < ) (K. didl> < BIFIZ Vf €V,

kez
A and B are called the lower and upper frame bounds, respectively. In this case,

f € Vifand only if there is some {c,} € #?suchthat f = Y, @y, Where the
convergence is in L?(R). We refer to [239] for an overview on frames and Riesz
bases. In particular, if ¢, = ¢(- —k), then V is called a shift invariant subspace
generated by ¢. Now a natural question arises: characterize the shift invariant
subspace V generated by ¢ € L?(R) such that the sampling theorem holds, i.e. there
isaframe {(- — k) : k € z}for V such that

fE) =) fUpa-k ,  VfEV,

kez
where the convergence is both in L2(R) and uniform on R. Since functions in L?(R)

are only defined almost everywhere, for the sampled values to make sense, we
require that every function in V be continuous.

Many authors have contributed to this topic. For example, see [228, 229,
232,233,234,235,236,237,238]. In particular, we proved the following result.
Proposition (2.3.1)[226] : (see [240]) Suppose that ¢ € L?(R) and
{¢(-—k): k €z} is a frame for the space V it spans. Then the following two
assertions are equivalent:

(1) XYkezCk®(x — k) converges pointwisely to a continuous function for any
{ck :+ k € z} € £? andthereisaframe {y(- — k) : k € z} for V such that

f&) =) fUpG-k),  VfeV,

kez
where the convergence is both in L?(R) and uniform on R.

(ii) ¢ is continuous, Y ,e, |9 (x — k)|? is bounded on R and
Axg, (@) < 1(Z4)(0, w)| < Bxg,(®), a.e.
for some constants A,B > 0, where

(Z)(x, ) = qu(x b k)e~2mike

kez
is the Zak transform of ¢ and

E¢={w € R:Z|¢3(w + n)2 >0
nez

Definition (2.3.2)[226] : A closed subspace V in LZ(R) is called a sampling
space if there is a frame { (- —k): k € z} for V such that Y ,c,c ¥ (x —k)
converges pointwisely to a continuous function for any {c, : k € z} € £? and
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fE) =) fUpGa-k, VfevV,

kez
where the convergence is both in L2 (R)and uniform on R.

By Proposition (2.3.1), many sampling spaces can be given. First, we point out that
a sampling space may not have a Riesz basis of the form {¢(- —n) : n € z}. To see
this, let Y(w) = X[-1/a1/4) AV = By . Forany f € V < By,,,we have

DG+ WP =NfIB < +oo

nez
and
1/4 1/2
f(n) — j f‘(w)eiZnnw do = f f(w)eiZme dow .
-1/4 -1/2
Hence
fw) =) fme@me = % fnyf(w)ezme.
Nnez Nnez
Therefore,

) =) o - ).

Nnez

Since Ynealp(x + n)I? = [[Yll3 and Tnealf ()12 = |If I, the above series
converges uniformly on R. Hence V' is a sampling space. However, forany ¢ € V,
Yoez| d(w+n)|> = 0 a.e.on[1/4,1/2]. Consequently, {¢p(- —n) : n € z}
cannot be a Riesz basis for .

Proposition (2.3.3)[226]: (see [240]) Suppose ¥ € L2(R). Then the
following two assertions are equivalent.

(i) For any {cy : k € z} € £, Yrec, cW(x — k) converges pointwisely to a
continuous function.

(if) Y is continuous and Y, e, W (x — k)| < L < oo for some constant L.

Proposition (2.3.4)[226] : Suppose that {x,: k € z},{y, : k € z} € £? and
X(a)) — z xke—Zm'ka) Y (w) — Z yke—Znika)

kez kez
are their Fourier transforms, respectively. Then
2 1/2
YD xna] = | K@y @rdo.
nez lkez —-1/2

When one side of the above equation is finite, the Fourier transform of

CENM =) By i X(@Y (@),

kez
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Proposition (2.3.5)[226]: (see [230], [231]) Suppose that 3 € L?(R) and
V =span{y(- —k) : k € z}. Then {3 (- —k) : k € z} is a frame for V with bounds A
and B if and only if

A, @) < D (@ + WP < Big, @), ae.

Nez

Moreover, {(- — k) : k € z}is aRiesz basis for V if R\E,, has measure 0 .

Theorem (2.3.6)[226] : Let VV be a sampling space. Then there is a sampling
space U such that V < U and U has a Riesz basis of the form

{¢(- —m): n € z}.

Proof : Let {i;(- —n) : n € z} be aframe for V and A and B be the lower and
upper frame bounds, respectively. By Proposition (2.3.1) ,

L =sup ) |[P;(x — n)|*> < 4+ . (33)
x€R =

Puti,(w) = 1 — xp, (w)for|w| < 1/2and 0 for others. Letp = p; + 1.
Then we have

N id@ + mE =Y Wi+ wF + Y W+ nF,  ae,

Nnez Nez nez
But
~ 2
Axg,, (@) Szhbl(w + n)|” < By, (@), ae
Nnez
D@ + = 1= x5, @),  ae
nez
Hence

min{4, 1} Sz |p(w + n)|? < max{B,1} , a.e.
Nnez

It follows from Proposition ( 2.3.5) that {¢ (- —n) : n € z}is a Riesz basis for the
space U it spans.
Next we show that U is a sampling space. Since y, € By, , we have

D el = W = llll3 < +oo . (34)

Nnez

By (33) and (34), we have Y ,c, |9 (x + n)|? < L' < oo.Hence, Y e cnd(x + n)
converges uniformly on R for any {c, : n € z} € £2. Onthe other hand, for any
f € U, there is some {c,, : n € z} € £%such that

f=) cndl+m)Let fi= i +m).fo= ) bl +m)

Nez Nez Nnez
and C(w) = Y,ezChe 2™ Then we have
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1

2 2
£ = [ f@e™ do = [ c@i@e do. 35)
2 2
Hence
fo) = C@)ho(@) = ) fome 2™ (@), ae. (36)
Therefore, "
o) = ) Sy (x- ). (37)

nez
Since both sides are continuous, the above equation holds for any x € R. On the

other hand, we see from (36) that Y,,c, f>(n)e ™ = 0 a.e.on E,, . Hence

D R —m =0, ae. (38)

Nnez
Again, the above equation holds for any x € R since both sides are continuous.

Now we see from (37) and (38) that
L) =) LG -m + i (c—m) = Y feG-n). (39

Nnez Nez

By (37, D ILmIE = A} < +e.

Nnez
Hence the series in (39) is convergent both in L2(R) and uniformly on R . Similarly

we can prove that

LD =) AWE-n) (40)

Nnez
where the convergence is both in L?(R) and uniform on R . Hence

fx) = fi(x) + f2(%) =zf(n)¢(x —n)

nez
with the same convergence. Consequently, U is a sampling space.At last, let us prove

that V c U.Forany f € V,thereissome C;(w) € L?*[—1/2,1/2] such that

f(w) = C(w)P;(w). Let C(w) = C;(w) * Xy, (W). Then we have

f(@) = C(@P1(0) = C(@)P1(w) +Php(w)) = C(w)P(w). Hence f € U.
This completes the proof.

Theorem (2.3.7)[226] : Suppose that f € L?(R) and f € L'(R). If there are
two positive numbers A and B such that

Zf(w + n)

Nnez

A SZW + n)|? ,a.e. (41)

Nnez

and
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2

2
(Z F(w + n)|> <B Zf(w + )| Lae (42)
Nnez Nez
then f belongs to some sampling space.
Proof : Since f € L'(R), we have
1/2 n+1/2
| D@ +mido=3" [ 1@ do= j F(@)] do <o
-1/2 Nnez NEZ n— 1/2

Thus ¥,,c, | f(w + n)| is convergent pointwisely almost everywhere. And so are the

series Ypez |f (@ +n)|and Yy, If (0 +n)|.

Since f € LY(R), f(x) is continuous. For any k € Z, we have
1

2mikw — 2mikw
Flk) = j Fw)e2mw dgy = fl ; Flw + n) - e?mke g, (43)
Note that } e, f(w + n) € LZ[—1;2, 1/2], thanks to (41). We have
(Zf)(0, w) =Z fw+n), ae (44)

On the other hand, since "

1/2

[ Dt + mprdo = f|f<w)|2 dow < o,

it

we have

F(w) =z|f(w + n)|2 € L[-1/2,1/2].

nez
Now we can rewrite inequalities (41) and (42) in the following form.

AZH(O,0) < F(w) < (Zlﬂw +m)| )

< B|(Z;)€?O, w)|? a.e. (45)
Let
Er={w € R: (Zf)(0,w) # 0} (46)
f(@)/Zf)(0,0), wEe Ef,
— 11
Y@ =1 1, we [_5 2)\Ef, (47)
0 otherwise

Since (Zf) (0, w) has period 1, the set E is shift invariant, i.e.
Ef = Efyp ={w + k: w € E}foreachk €Z.
By (47) , we have
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(Znea If (@ + )]

€ E; N [_1 1)
Z|1/3(w+n)|={ ZHOw)| “° 57 )
1

= 1. we [—E,%)\Ef. (48)

11
F@)/IZHO P oe B n|-2.3),

D 1w + ) = Ly

nez 1 , weE |—=,=
It follows from (45) that
Z [W(w + n)| < max{1,VB } , a.e. (50)

Nnez
and

z |P(w + n)|?> < max{1,B} , a.e. (51)

nez
Hence ¢ € L*(R) n L?(R).By (45) and (49), we have
min{1,A4} < Z |P(w + n)|? < max{1,B} , a.e.

Nnez

Therefore , {y(- — k): k € z}is a Riesz basis for the subspace V it spans .
On the other hand, since ¢ € L*(R) , v is continuous . For eachx € Rand k € z,
we have

w(x + k) — jlp"(w)ezmxw . e2mikw 4,

1/2
— j zlp"(w +n)e2nix(w+n) . e2mkw gy (52)
—-1/2 Nez
Since
ZIﬁ(w + n)e?mx(@in)f < Z |P(w + n)|,
Nnez Nnez

we see from (50) that as a function of w ,
Yoers W(w + n)e?mix(@+n) ¢ j21_1 /2 1/2]. It follows from (52) that
1/2

D I+ ) =

kez -1/2
Thus every function in V' is continuous. Moreover, forany g € V, there is some
{ck} € [?such that

90 = ) - k), (53)

kez

2

Z P(w + n)e?™* @M dy < max{1, B} < .

Nnez

40

——
| —




where the convergence is both in L2(R) and uniform on R. By setting x = 0 in (52)
, Wwe get

EZWO0) = ) Pe ™ = X @ + )

kez Nez

But ¥,c,¥(w+n) = 1 a.e. ,thanks to (44). Therefore ,(Zy)(0,w) = 1 ,a.e. Thus
for g € v givenby (83), g(n) = Trcxp(n- k) ,¥n € z.By Proposition(2.3.4),

(Z9)(0,w) = C(w)(ZYP)(0,w) = C(w), (54)
where C(w) = z ce 2™k®  Hence c, = g(k)foranyk € z and
kez

9g(x) =Dkez g(K)W(x — k).Therefore,V is a sampling space. Moreover, since
f(w) = (Zf)(0,w)P(w), we have f € V. This completes the proof.
Example(2.3.8)[226]: Suppose that supp f < [—1/2,1/2]. Then for

w € [-1/2,1/2) the series in (41) and (42) contain only one term forn = 0,
respectively. Thus (41) and (42) are satisfied for A = B = 1. Moreover, defined

by (47) satisfies
11
P(w) ={1' we|-33).
0, otherwise. (55)
Hence
1/2
WO = j 20 g =sin X
i X
and
o) = Y fo e —
£ n(x — k)

This is the classical Shannon sampling theorem.

. ; K
Example (2.3.9)[226]:If k > 2, f(w) = (SLZZ“’) , then all series in (41)
and (42) in Theorem (2.3.7) are continuous functions with no zeros. Thus in this case
(41) and (42) are satisfied for some A,B > 0.

Example(2.3.10)[226]: Let {c;}, be a sequence of positive numbers,
Ykez € < o,and h(w) be a continuous function with period 1 and h(0) = 0. Let

A 1 1
f(w) = ch(w), we[k——,k +§] , ke z.

2
o (Z c)

> @+

Nez

Forany w € [-1/2,1/2), we have

Zf(w+n) =h(w)ch,

Nnez Nnez
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Y@+l = Py

Nnez Nez

<2|f<w + n)|2>2 = |h(w)/? (Z cn)z.

Nnez nez

Let

_ Ynez Cn

B Xnezcn)?
Then (41) and (42) in Theorem (2.3.7) are satisfied. In other words, f belongs to
some sampling space. However , since

Fw) = ) If (@ + mf

nez
Is continuous and has zeros, {f (- — k) : k € Z} itself is not a frame for the closed

space it spans.

A B=1.
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Chapter 3
Reconstruction in Multiply Generated Shift-Invariant Spaces with Symmetric
Averaging Functions
The problem of reconstructing a function f from a set of nonuniforml distributed,
weighted-average sampled values {fRdf(x)l,[ij(x) dx: j €]} is studied in the

context of shift-invariant subspaces of L? (R%) generated by p-frames. The special
but important case where the weighted-average sampled values are of the

form{fRdf(x)l/z( . — x]-) dx: j € J}is also studied. We show that every square

integrable function can be approximated by its average sampling series. As special
cases we also obtain new error bounds for regular sampling. Examples are given. In
fact, any shift-invariant space V,, with a stable generator ¢ is the range space of a

bounded one-to-one linear operator T between L2(0, 1) and L?(R). Thus, regular and
irregular sampling formulas in V,, are obtained by transforming, via T, expansions in
L?(0, 1) with respect to some appropriate Riesz bases .
Section(3.1)Nonuniform Average Sampling
The reconstruction of a function £ on R from its samples {f (xj) : j €]}, where J is

a countable index set, is a common task in many applications in signal or image
processing. The sampling set X = {x; : j € ] } is often nonuniform and prevents the

use of standard methods from Fourier analysis. For example, the loss of data packets
during transmission through the Internet or from satellites can be viewed as a
nonuniform Sampling / reconstruction problem. In geophysical exploration, the
Earth’s magnetic field is measured by a combination of airborne, fast-moving
acquisition devices, as well as scattered stationary devices resulting in highly
nonuniform sampling patterns, and a huge data set. The goal is to reconstruct the
magnetic field and use it to reveal geological features. In the sampling and
reconstruction problem, the function f is usually assumed to belong to a shift-
invariant space of the form

V(@) ={Z Dt =) = (@) € P@E= 1ol (D)
=1 kezd
Where & = (¢4,...,¢,) is called the generator of V. If r=1,d =1, p=2, and
¢(x) = sin(mx)/m x, then V2(¢) is the classical space of band-limited functions
often used as a model in sampling theory (see [201], [208], [214], [221], [224]).
However, since band-limited functions are analytic, they have infinite support, thus
local errors may propagate, and the reconstruction algorithms can be computationally
inefficient. Moreover, many applied problems impose different a priori constraints on
the type of functions. For this reason, the sampling and reconstruction problems have
been investigated in spline subspaces [200], [211], [219], wavelet subspaces [151],
[154], [200], [204], [206],[207], [212], [214], [215], [224], and general shift-invariant
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spaces [135], [197], [198], [201], [222]. The assumption that the sample values
{f(x;) : j € ]} can be measured exactly is not always valid. To take into account
the characteristics of the acquisition devices , a weighted-average value in the
neighborhood of x; is assumed. This means that the sampled data is of the form

9= | £ 0 dx | @)
]Rd

Where fRd I/ij = 1. Each function l/Jx,- reflects the characteristic of the sampling

device used to measure the average sampling value of f in the neighborhood of x; .

One of the goals of a sampling theory is to find conditions on the sampling set
X ={x;j: j € ]} such that a small change in the function f produces a small

change in the sample values {ng 1 j € ]}, and such that f can be reconstructed

from {ng : j € J} exactly and in a stable way. Equivalently, we must find
conditions on X such that

oliflly < | )

XjEX
where gx; are defined by (2) and where c,, and C,, are positive constants independent

1
p

gD ) < Glfle 3

of f . Another important goal in sampling theory is to find fast algorithms for
reconstructing the function f from its sample values.
When the sampling set is uniform, the weighted-average sampling and reconstruction
problem has been studied in [220] for the particular case where the functionals in (2)
are of the form vy, =9 (.—x;) (ie., a single device v is used to obtain all the
measurements) , the sampling is critical (i.e., no oversampling), and in (1) p =
2,r = 1l,andd = 1.

The case of uniform sampling with multiple devices has been studied by Sun and

Zhou [217], under the assumption that

o o

Define the Fourier transform f of an integrable function f by

f(&) = j f(t)e**™ dt . For nonuniform sampling, Grochenig [211] proved

that if  |xj;; — x| < 6 <V2/2,then any band-limited function f with
supp(f) c [—%,%] IS uniquely determined from its averages (f,ll)xj>, provided

that (4) holds. He also showed that f can be reconstructed by iterative algorithms.
Sun and Zhou [218] also studied average sampling under assumption (4) and
l/)x,-( -+ x;) even and nondecreasing on [0, §/2]. They gave density conditions on
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X under which f satisfies (3) and derived frame algorithms for the reconstruction.
They also gave bounds on the error of reconstruction when a nonband-limited
function is reconstructed by the frame algorithms. In [219], Sun and Zhou showed
that if the maximal gap between consecutive sampling points is smaller than a
characteristic length, then a function in a spline subspace is uniquely determined from
local averages obtained from averaging functions satisfying (4). For p = 2 and
r = 1in (1), Aldroubi gave conditions on the density of X and the diameter of the
support of the sampling functionals l/)xj, under which a function f can be
reconstructed by iterative approximation-projection algorithms (A-P algorithms for
short) [196]. In [196], estimates were also derived for the convergence rates of the A-
P algorithms in terms of the generating function ¢ and the diameter of the support of
the functionals Py, - I should be noted that A-P algorithms are not frame algorithms
and do not require knowledge of the frames associated with {,; : x; € X}. A-P
algorithms are robust, their convergence is geometric, and they perform optimally
even if the samples are corrupted by noise [135] ,[196],[197].

We will consider the sampling problem in V, (®), where {¢;( - — j):j €
z%,i = 1,...,r} is a p-frame for V, (®), i.e., there exists a positive constant A
(depending on & and p) such that

T

a0l < Y| [ Feogitr - ax < Allflls f € %@ )
Z\

=1 jezd /P
We also assume that

& = (¢q,...,0,) EWUNT) Jiie, P, eWY,i = 1,...,1. (6)
Under these conditions, the space 1, (®) in (1) is well defined and it is a closed linear
subspace of L? (R%) (see [197]). For this case, the well-posedness sampling condition

(3) can then be written as
1/p

ellflr < | D 1) | < Cliflln.f € W (@), )

ijX
which is similar to a frame condition.However, the set {¢xj : x; € X} does not
necessarily form a frame for V, (®) since the functions 1, ,x; € X, are not
necessarily in 1, (®).The sampling theory in such spaces is new, since all previous
results consider spaces in which r = 1 (single generator) , and assume {¢( - —
j):j € z%} to be a Riesz basis, instead of a (possibly redundant) frame.

Moreover, for average sampling in shift-invariant spaces, only the case p = 2 has
been considered so far [196].
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We show that a function f € V, (®) can be reconstructed from its average samples
by an iterative A-P algorithm, provided that the sampling set X satisfies a density
condition that depends on @ and the set {l/)xj : x; € X}.Our results treat the case of
averaging functions in which the only requirement is that supp l/Jx,- Is compact for
each x; € X (Theorem (3.1.8)). But we also treat the important case where l/Jx,- =
Y( - —x;) for each x; € X (Theorem (3.1.7)).However , for this case, we do not
assume that v has compact support. We prove that the A-P algorithms converge even
if the samples are corrupted by noise and that the reconstruction result is optimal in
some sense (Theorem (3.1.9)). and , we present estimates for the rate of convergence
of the A-P algorithms of Theorems (3.1.7) and (3.1.8) in terms of the generator & and
the sampling functions {lllx,- 1 xj € X}.

For the sampling problem we need to impose regularity requirements on the space
V, (®).Wiener amalgam spaces are useful in this context and they are defined as
follows: A measurable function f belongs to
W(P),1 < p < oo,ifitsatisfies

1/p
Ifllwary = ( 2 ess sup{|f (x + k)[P : x €0, 1]d}) < . 8)
k€ zd
If p = oo, a measurable function f belongs to W (L™ ) if it satisfies
Ifllwas) = lim fesssup{lf(x + k)| : x €[0,1]%}} < co. 9)

In this case, W (L*) coincides with L*(R%). Endowed with this norm ,W (LP)
becomes a Banach space [208], [209]. The subspace of continuous functions
Wo(LP)= W(C,LP ) c W(LP) is a closed subspace of W(L? ) and thus also a
Banach space [208], [209]. We have the following inclusions between the various
spaces:

Wo(LP) € Wo(L9) ¢ W(L1) c LY(RY),1 < p < q < . (10)
The following convolution relations hold for 1 < p < o [196]:
(@) Iff € LP(RY)and g € W(L*),thenf » g € W(LP)and

If * gllwary < Clifllellgllwesy - (11)

(i) If ¢ = (cx) € P(zH and p € W(L'), then

Z ced(+ — k) € W(IP) and

kezd
> ad( = k)

kezd

< llclleeli®limery - (12)

w(LP)

(i) If f € LP(RY)andg € W(L!), then the sequence d = (d,) defined by
d, = fRdf (x)g(x - k) dx,k € z%,belongs to #7(z%) and
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dller < lIf e llgllwery - (13)
In addition to the requirement that the generator & of V,(®) satisfies (12) and (13) ,
we also require ¢; ,i = 1,...,r, to be continuous. Thus, together, the requirements
are that & satisfies (12) and belongs to Wy(LH)") (here W,(LY)™) denotes the
Cartesian product Wy (L) x - - -« x Wy(L') of r copies of W, (L) ). With these
requirements, it is well known that the space V,(®) is a space of continuous LP-
functions and we have the following properties [135], [199]:
(i) The space V,(®) is a closed linear subspace of LP(]R{") and there exists a
positive constant B (depending on & and p) such that

r
By < _inf  Mllelle < Bllfllo v f € (@), (14
f=Zi=1 i*'ci o
where ¢; *' ¢; = z cupi( + — K)and ¢; = (cy) € ¢P(z%).
kezd
(ii) The space V,(®) is a closed linear subspace of W,(LP) and we have the norm

equivalence ||fll.» = |Ifllweey -
(iii) There exists ¢, ..., ¢, € Wo(LY) n V,(®) such that, for every f € V,(P),

T

f= 2 DB =i == ) i (- = D)il - = ). (15)

(=1 jezd =1 jezd
Hence the operator P, defined by
T
Pf =) D UfE (=Dt - —)).f elP(RY), (16)
i=1 jezd

is a bounded projection from L7 (R% ) onto V, (®).
(iv)IfX = {x;: j € ]} isseparated, i.e., i_rqltfl‘ |x; — x;| >0, then
y)
1/p

Z IFG)IP | < Cliflle forall f €V (®). (17)

ijX
We will assume throughout that the sampling set X is separated and that the sampling
functionals z,bx]. satisfy the following properties:

< oo, and

Vol
W) fpaths = L

Fast approximation-projection (A-P) iterative algorithms for the reconstruction of
functions from their samples have been introduced by Feichtinger and Gréchenig for
the case of band-limited functions [210]. These schemes have been extended by
Aldroubi and Feichtinger to general shift-invariant spaces [197]. We will develop the

(i) sup |
J
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theory of fast A-P iterative reconstruction schemes for the case of average sampling.
First, we need to introduce the notion of y -density useful in this regard.

Definition(3.1.1)[195]: AsetX = {x; : j € ] }isy,-dense in RY if
R? = U;B, (x;) forevery y > y, , (18)
where B, (x;) are balls centered at x; and with radius y .

This definition implies that the distance of any sampling point to its next neighbor
isat most 2y,. Thus, strictly speaking, y, is the inverse of a density, i.e., if y,
increases ,the number of points per unit cube decreases. A special but important case
for average sampling is when the sampling functions Py, are obtained by translation

of a single function . Thus, ¢xj = P( - —x; ) and the weighted samples are of the
form 9x; = (f,¥( - — x;)). For this case, the iterative algorithm that we develop
uses a quasi-reconstruction operator Ay, in the iteration scheme. To define this
operator, we start from a partition of unity {f;};¢; defined as follows:
Definition(3.1.2)[195]: A bounded uniform partition of unity (BUPU) associated
with {B, (x;)};e; is a set of functions {f;} ¢, that satisfy:

(i) 0<pB; <1,Vje],

(ii) suppB; < B, (x;),and

(i) TjeBi=1.
The operator Ay , is then defined by

Avaf = D (FaCe = 508 = D (F = D) By (19)
IS j€Jl

where Y, ( +) = (1/a®)yY( - /a) and where P (x) = P,(—x). Obviously the
quasi-reconstruction operator Ay ,f does not belong to the space V,(®P). However,
we can use this operator in an A-P iterative scheme to reconstruct the exact function
f € V,(®) as follows:

Lemma (3.1.3)[195]:Let ¢ € Wo(L') and let f = Y. crp(.—k) where
c = (cx) € £P(z%). Then
(i) the oscillation (or modulus of continuity)

osc(f)(x) = sup |f(x +y) — f (x)| belongs to W(L?),
llylsy

(ii) the oscillation osc, (¢) satisfies
losc, (@)l 2) < €' DllPllws - (20)
where C'(y,d) < [2y + 4]%and
||OSCV(¢)”W(L1) -0 asy = 0,
(iii) the oscillation osc, ( f*) satisfies
”05CV(¢)”W(LP) < ”C“gp”OSCyd)”W(Ll) forall c ¢P. (21)
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In particular, ||osc, (¢)|| -0 as y - 0.

w(LP)
Lemma(3.1.4)[195]: Let X be any sampling set with y -density y (X), let
{B; : j € ] }beaBUPU associated with X (see Definition (3.1.2)), and let
¢ € Wy(LY). Then there exists a constant C = C(y, d) such that for any
f=Yrckd( - — k), we have

1Qxf e < 1Qxfllwary < CO DICN @l Pllwn¥ ¢ = (ck) € €7 (z?),
where the constant C(y,d) < ([2y +4]% + 1) does not depend explicitly on the
sampling set X or on the partition of unity in definition (19). Here [t] denotes the
smallest integer greater than or equal to t.
Proof: Let f = Y, c,d( © — k) where c = (ci) € €P(z%) and (see [135] ,[197] ).
From (12), we have f € W(LP) and

£ - ) fx)8 @

IS

1f(x) = (QxH )| =

£ B =) FEBM

JjeJ] S

<@ — f B

S
<) 05, (N0
j€Jl
< 056, () ) f;(x) = 056, ()
JEJ
From this pointwise estimate and Lemma (3.1.3) , we get that
If = Quflwary < llose, (N, < CHllose, Bl 0 (22)

Thus using (12), (20), and (22), we obtain

1Qxfllwary < If — @xfllwary + If llwery

< ([2y + 41% + DIIClleellpllw - (23)

Lemma (3.1.5)[195]: Letyp € L'(R?) such that [ ,1(x) dx = 1, and define
Y,( ) =a*P( - /a) where a > 0 is any positive real number. Then, for every
¢ € WU, ¢ — ¢ *Pallwgy » 0asa— 0%,
Proof :We will estimate the W (L')-norm of ¢p% = ¢ - ¢ * Y7 . Since
Jpa®(®) dx = land P, (x) = a~%P(x/a), we have

P¢(x) = ¢(x) — ¢* Ya(x) = f((l')(x) — ¢(x + D)) ha(t) dt.
R4

Therefore
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e ()| < j 600~ d(x + DllYa(®)] dt
]Rd

=< J + f >|¢(X)— d(x + )l (t)]dt
lti<1 ej=1

By direct computations, we have

ollwey = Y. s [ 196 = G+ Ollva(@lde

x€k+[0,1)4

kezd [t|=1
<> f( sup [p(0)| +  sup |¢<x+t>|)|¢a<t>|dt
x€k+[0,1)4 x€k+[0,1)4
kezd |t|>1
< j (||¢||W<L1)+Z sup |¢(x+t)|>|wa(t>|dt
to1 kEZdXEk+[0’1)d
< 1+ 2900lwey | ba®lde
[t]=1
<+ 2909lvay | b ©lde, (25)
[t|=za—1

and

Illvay = [ Y swp 196 = 9 + Ollwa(o)lde

|t|]<1 kezd x€k+[01)4

< [ Y sw osquptolpa@ld

|t|<1 kezd x€k+[0,1)4

= f ||osc|t|¢(x)||W(L1)|1,ba(t)|dt= I. (26)

It]<1
By Lemma (3.1.3), for any ¢ > 0, there exists §, > 0 such that

||OSC$¢(’C)”W(L1) < e Vs <6,.
Write
I =< f + f )||osc|t|¢>(x)||W(L1)|1/Ja(t)|dt =L+1,. (27)
Itiss 8o <|t|<1
Then

I < ¢ f Ye(Oldt < ellWlly |




and

b | lloscgp@llyan bl de
12(£]26,
< loscid@llwasy | W) ds =0 as a - 0%

Is|26o /a

By (27),1 — 0asa — 0%.Combining (24), (25), and (26), we have

||¢allw(L1) = “Illlw(Ll) + ”Izllw(Ll) -0 as a - 0.
Lemma (3.1.6)[195]: Let P be a bounded projection from L? (R%) onto V;, ().
Then there exist y, > 0 and a, > 0 such that for every separated y -dense set X
with y < y, and for every positive a < a,, the operator I — PAy , is a contraction
on V(@) .
Proof :

Let f = ZZcikgbi( - — k) € V,(P).We have

i=1 k
| f = PAxafll,, = f = PQxf + PQxf — PAxaf|
IPf = PQxfllr + ||PQxf — PAxaf||,»

IPllopCllf = @xflle +11Qxf — Qx(f * Ya)llLr).  (28)
Using (22) and the upper bound inequality of (14), the first term of the last inequality
in (28) can be estimated as follows:

If —Qxfll,r < lIf — QXf”W(LP) <B g?g”oscy(qbi)nw(ﬁ) Wfllr . (29)
The second term ||Qxf — Qx(f *y)|l» can be estimated as follows. Write
ol =¢; — ¢;*; for i = 1,...,7.Since each ¢p; € Wy(LY) and ¢ € L', (11)
implies that ¢ € W, (L'). Noting that

uf = Qx(f * ) = Qs (ZZ Cued?( + = k)>,
i=1 k

and using Lemma (3.1.4) , we obtain
or (YD cutt - -0)
i=1 k W (LP)

< Cly,d)y; = 1||Ci”{’p”¢lq“W(L1) .

<
<

1Qxf — Qx(f *Y)llr <

Hence, by (14),
10xf = Qu(f *¥dlw < C, DBIf e maxlipfllwesy:  (30)
By combining (28), (29), and (30), we get
If = PAxafll < IPllop (maxllose, (@0l )

+([2y + 41+ 1) maxliofllwey) Bllfllr . (31)

( 1
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Let ¢ > 0 be any positive real number. Using Lemma (3.1.3)(ii), we may choose y,
so small so that max||osc,(¢)|. . < e/2for ally < y,. Then, by Lemma
1<is<r w(L")
(3.1.5) , we may choose a, so small that
([2y, + 414+ 1) {2{35§||¢?||W(L1) < g/2forall a < a,. Therefore, we can choose
Yo and a, so that, foranyy < y,anda < a,, we have
If = PAxa fI| < BellPllopliflle forall f € V,(®). (32)
To get a contraction, we choose Bel|P||,, < 1.
Theorem (3.1.7)[195]: Let® be in W, (L)), let 1 be a function in W(L!)
such that fRdv,b = 1, and let P be a bounded projection from LP onto V,,(®). Then
there exists a density y = y (®,¢) > 0and a, > 0 such that any f € V,(&) can
be recovered from its weighted average samples {(f,y,(* —x;)): j € J}onany
y -dense set X = {x;: j € J} and forany 0 < a < a,, by the following A-P
iterative algorithm:
{fl = PAxof
for1 = PAxo(f — )+ fo -
In this case, the iterate fn converges to f uniformly and also in the W(LP) - and
LP — norms. Moreover, the convergence is geometri ¢, that is,
If — falle < IIf — fn“W(LP) < Ca™||f - f1||W(LP)
forsomea = a(y,a,®,¥) < land C; < oo.
Proof: Lete, = f — f, be the error after n iterations of algorithm (33). Then the
sequence e,, satisfies the recursion
ent1 = f = for1 = - fo— PAxa(f- fo) = (1 - PAX,a)en . (34)
Using Lemma (3.1.6) , we may choose y, and a, so small that
| 1- PAX,a||0p = a < 1.Therefore, by (34), we obtain

lentallr < allenllrr (35)

(33)

and
lenllr < a™ legll,r -

Thus |leyll,p = 0 as n — oo. Since, for V,(®P), the W(LP)- and LP-norms are
equivalent, the inequality above also holds in the W (L?)- norm and the proof is
completed.

Theorem (3.1.7) treats the case of a single averaging function vy, shifted to the
points {x; } for obtaining the measurements (f,,( -+ — x;)).
In practice, this is the situation when a single measuring device is used to obtain the
discrete data. For this case ,y, is what is called the impulse response of the
measuring device. More generally, we can allow the
averaging function 1/ij to depend on the point x;. Thus, the averaging functions can

be described by the infinite vector = (¥x,)jey - FOr this case, and under some

( 1
l %2 )



uniformity on the size of the averaging functions 1y, , We can recover the function f
exactly by using the quasi-reconstruction operator
Af = ) (F)B) (36)
JeJj
in the following A-P iterative algorithm:

Theorem (3.1.8)[195]: Let @ be in W,(L)(™), let P be a bounded projection
from LP onto V},(®) ,and let the averaging sampling functional

Sy, € W (L) satisfy

f]Rdl/JXj = 1 and fRd lljx]
exists a density y =y (®,M) >0 and ay = ag(P,M) >0 suchthatif x ={x;:j e J}
is separated and y -dense in R? , and if the average sampling functionals Py, satisfy

< M, where M > 0 is independent of x; . Then there

suppx; € x; + [—a,a]® for some 0 < a < ay, then any f € V,(®) can be
recovered from its weighted-average samples {(f, szj) : j € ] }by the following

iterative algorithm:
fi= PAxf ,
U = P CF — F 4 £ &7

In this case, the iterate fn converges to f uniformly and also in the W (LP)- and LP-
norms. Moreover, the convergence is geometric, that is,
If = fullee < NIf = fallwary < Ga®llf = fillwqr) for some
a = a(y,a,®,M) < land C; < oo.
Proof : Let f = Y7 Ykcipi ( © — k) € V,(P). We have
||f - PAXf”LP = ||f — PQxf + PQxf — PAxf |
< [[Pf — PQxfllr + [IPQxf — PAxfllr»
< WPllopllf = @x fllr + 11Qx f — AxfllLr) - (38)
The second term||Qx f — Axf|l,» of the last inequality can be estimated as follows:
Write f; = Ypcipi( © — k)fori = 1,...,r.Clearly,
fi € (@) fori = 1,...,rand f = Xi_,fi.For each f;, we have the following
pointwise estimate:

> (R~ ) B

J

|(Qx fi — Axf)(X)| =

> e = £ |5
R4

J

<> [IfG) - o)l

J R4

Py, (8] a2 (0
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ZOSca(ﬁ () j [, (61 dEB; ()

<M Z 05ca () () ()

< MZ(Z cilosca($) (5 — k)) . (39
I K

From this pointwise estimate and Lemma (3.1.4) it follows that
10xf; — Axfillr < MC(y, d)llc;llerlloscq (@)l ry-Thus we conclude that
T

loxf = Axflly < MCG,d) ) llcllerllosca(@llw - Hence,by (14),
i=1
10xf = Axfllw < MC(y, DBIf | maxllosca(@llwery-  (40)
By combining (29), (38), and (40) we get

If = PAxfllw < IIPllop (max|losc, @D, s,
x max|losca($D)lhyer) Bllf Il -

The rest of the proof is similar to the last part of the proof of Lemma (3.1.6).
Let ¢ > 0 be any positive real number. Using Lemma (3.1. 3)(ii), we may choose y,

so small so that max,<;<,|losc, (¢))|| < ¢/2 for all y < y,. Then we may

+ M([2y + 414+ 1)

wyh —
choose a, so small that M([2y, + 4]% + 1) max; g lloscy (@) lyry < €/2 for
all y < y,. Therefore, we can choose y, and a, so that for any y < y, and
y < Yo ,We have

If — PAxflle < BellPllopllflle for all f € V(@) . (41)
To get a contraction, we choose Be||P||,, < 1.
In practice, the sampled data is often corrupted by noise. Moreover, the assumption
that the function f belongs to some specific space V,(®) is often an idealization.
Thus, it is important to know whether the A-P algorithms (33) and (37) still converge
under nonideal circumstances. To investigate these situations, we only assume that
the data f' = {f/ : j € J} belong to €2, but we do not assume that f' = {f/ : j € J}
are local averages of a function f € V,(®). For this case we use the initialization

fi= Pox{fj} = P| D f1B; | € h(®), (42)
jEj]
where {f; : j € ] }isthe BUPU in definition (19). Algorithm (33) becomes
fn+1 = fl + (I - PAX,a)fn ) (4‘3)

and algorithm (37) becomes
fn+1 fl + (I - PAX)fn (4‘4)

( 1
L > )




Theorem(3.1.9)[195]: Under the same assumptions as in Theorem (3.1.7),
algorithm (43), with the initialization (42), converges to a function f, € V,(®) which
satisfies P(Axqfw — Qx{f;/} = 0.Correspondingly, under the assumptions of Theorem
(3.1.8), algorithm (44) converges to a function f, € V,(®) which satisfies
P(Axfe — Qxlff}) = 0.
Proof: By Lemma (3.1.6), the operator I — PAy, is a contraction on V,(®). It
follows that the sequence of functions f,, in (43) is convergent to a function f,, in
V,(®). By taking the limits of both sides of (43), and using (42), we get

P(Axafe — QX{fj, H =0.
The proof of the second part of Theorem(3.1.9) is almost identical, except using the
contractive property of the operator I — PAy on V,(®).
Theorem(3.1.10)[195]: Assume that & and satisfy the conditions of
Theorem (3.1.7) , and that |V¢;| € W (L) foreveryi = .,rand
Ylli, = f [W(®)||t]" dt < coforsome 0 < n < 1. Then the convergence rate
a in Theorem (3.1.7) satisfies

a < BlIPllop (3% maxllIVilllwes + (6% + Da?lpll,

a a
X ((1+ 29) max|l$illwqy + 3 gglllv@lllwm))),

where B is the upper bound constant in (14). We have a corresponding result for the
situation in Theorem (3.1.8).
Proof : Consider ¢ and ¢¢ as in Lemma (3.1.5) . Assume further that [V | € W (L').

Let us first estimate oscs ()W (L) for0 < § < 1. Note that
1
dpx +y)— dx) = jy *Vp(x + sy)ds.

0
Therefore

60 +3) = #CO1 = [IlIT4Ce + )| < Iyl sup (x4 59) |

which leads to the following estimate to oscs(¢):

oscs(¢)(x) = SUPIfb(x +¥) = ¢(x)]

< sup ly| sup |[Vgp(x + )] < 6 sup|V¢(x + t)|.
lylsé eIy

Thus, for every k € z%,

sup oscs(p)(x) < sup dsup |V¢ (x + t)|
x€k+[0,1)4 x€k+[0,1)% |y|<é

<4& sup |V¢(y)|.

y€Ek+[-1,2)4
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Hence,

loses@lhwasy = ). sup oscs(x) <8 > sup _[Vy()

e x€k+[0,1)4 = a4 YEK+[-1,2)¢

<30 sup V)l = 3961, (45)

¥ y€k+[0,1)4
Next we estimate the W (L*)-norm of % = ¢ - ¢ = . By (26) and (45),
Malhwesy < [ 3400 1951l 0 e (O] de

ti=1

= 3 01Tyllly 0y | TelaOl de

ltj<1

= 3d|||v¢|||w@1)“ f BIVIGIR: 2 (46)

|t|<sa—1
Combining (24), (25), and (46), we obtain the following estimate for the W (L')-norm
of ¢%:

16%lwan < (4 + 29llhwas j (O] de

|t|lcsa—1

+3d|||v¢|||W(L1)a j BIVIGIN:? (47)

|t|<a=—1

If ¥l = Jpa PO dt < ooforsome0 < n < 1 ,then, by (47),
19 lwan < @ + 29lllwanaWllay +341Vsll, 0 a" 1]l
= a"((@ + 29lpllwan) + 3|Vl ll,, 2 ¥l (48)

The desired result in Theorem(3.1.10) then follows from(31),(45),and (48).
Theorem (3.1.11)[195]: Assume that @ and ¥y = Wy, )]e] satisfy the

conditions of Theorem (3.1.8) and that |V¢;| € W (L) foreveryi = 1,...,7.Then
the convergence rate a in Theorem (3.1.8) satisfies
a < 3BIIPllop(r + M(6* + Da)max/l|Villlw, (49)

where B is the upper bound constant in (14) and M is the upper bound in Theorem
(3.1.8).
Section(3.2)Average Sampling in Shift Invariant Subspaces

The sampling theory says that if a function f(x) satisfies certain conditions, then it
is uniquely determined and can be reconstructed from its sampled values at a
sequence of sampling points {x;: k € z}, i.e., there exist some functions S, (x) such
that
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F0)= ) FrISG0.

kez
For example, every band-limited function

f€B,={f: suppf c [—0,2]} can be reconstructed by the formula
Flx) = Z (/) (sin(Qx - km))/(2x - ko).

kez
This is the classical Shannon sampling theorem. Although the assumption that a

function is band-limited is eminently useful, it is not always realistic since a band-
limited function is of infinite duration. Thus, it is natural to investigate other function
classes for which a sampling theorem holds. A simple model is to consider shift-
invariant subspaces, which generalize the space of band-limited functions and have
the form

Vo = span{¢(- —k): k € z}
for some generating function ¢ (x). In fact, there have been many results concerning
the sampling in shift-invariant subspaces for both regular and irregular sampling, see
[135,140, 150,154,157,159,263,162,169,176,178,179,182,183,191,192,194].
For physical reasons, e.g., the inertia of the measurement apparatus, measured
sampled values obtained in practice may not be values of a function f precisely at
times x;, , but only local averages of f near x, .Specifically, measured sampled values
are

(f ) = f f o) da

for some collection of averaging functions u, (x), k € z, which satisfy the following
properties:
)

)
suppu, < [xk — %k +§],uk(x) > 0,and fuk(x) dx = 1.

Observe that the averaging procedure is allowed to vary form point to point.

It is clear that from local averages one should obtain at least a good approximation
of the original function if & is small enough. Wiley [193], Butzer and Lei [166,167]
studied the approximation error when local averages are used as sampled values.
Furthermore, Grochenig [174] proved that if sampling points x; satisfy

0<Xpyg— X <6 <— ,

then every f € B, is uniquely determined and can be reconstructed by local
averages (f, u,) around x,, . Specifically, there are some functions S (x) € B, such
that

FG) = D (fu)Si(0. (50)

kez

In [166], Feichtinger and Gréchenig proved that if
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T
6 = sup(Xg+1 — Xp) <7,
kez

0
then every f € B, is uniquely determined by
Yk
/0= ye) | FOddx with v, = O + yen)/2
Yk-1

and can be reconstructed with a formula similar to (50). If u,(x) are taken to be
translations of a generating function, i.e., u,(x) = u(x — x;) for some averaging
function u(x), then the average sampling procedure can be viewed as prefiltering,
which is widely studied in literature. In [161,162,191], Aldroubi and Unser studied
the reconstruction of signals by means of prefiltering and sampling in more general
sense.

In [184,186,189], we studied average sampling in shift invariant subspaces with
arbitrary averaging functions and gave the optimal upper bound for the support length
of averaging functions for some special cases. In [156,158,160], Aldroubi,
Feichtinger, Sun and Tang studied density conditions on sampling points and fast
iterative reconstruction algorithms, for which the performance were analyzed when
the data were corrupted by noise. We study the reconstruction of functions in shift
invariant subspaces from local averages with equally spaced sampling points and
symmetric averaging functions. Specifically, the averaging function u,(x) Iis
symmetric with respect to x = x; and nonincreasing on [xi,x;, + 6/2]. A simple

example is
1

U (x) = 5_kX[xk—5k/2,xk+6k/2](x)rO < 6 < 6.
We present an average sampling theorem and give explicit error bounds for the
aliasing error and the truncation error. Since the classical point sampling can be
viewed as a special case of average sampling, i.e., uy(x) are & —functions
concentrated at x; , our results also give new error bounds for regular sampling. At
the end of section, we give some examples.
The Fourier transform and the Zak transform of f € L?(R) are defined by

f(w)= | fx)e™®®dx and Zf(x,w) = flx + ke ke,
/ 2
respectively;

[f,g‘](a)) = zf(w +2km)§(w + 2km).
kez
We call u(x) an averaging function if u(x) > 0,u(x) € L*(R) and fRu(x) dx = 1.
Recall that a family of functions {¢,: k € z} belonging to a Hilbert space H is said
to be a frame if there exist positive constants A and B such that A|f]*? <
Yz I, di)? < B|If||? for every f € 3. The numbers A and B are called the
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lower and upper frame bounds, respectively. {¢,: k € z} is said to be a Riesz basis
for H if it is complete in H and there are positive constants A and B such that for any

Z Ck Pk 2

kez 2

A frame that ceases to be a frame when any one of its elements is removed is said to
be an exact frame. It is well known that exact frames and Riesz bases are identical.
Let {¢py: k € z} be a frame for some Hilbert space . The frame operator S is
defined by

c = {cp:k € z} €% A|cl)} < < B|c]|3.

Sf =D (f. 00, Vf €

kez
It can be proved that S is a bounded, invertible, and self-adjoint operator on H. Let

¢r =S 1¢,. Then {¢p,: k € z} is also a frame for 7, called the dual frame of
{¢i: k € z}.Foranyfe H, we have

=D f0d = ) (B

kez kez

We refer to [142,152] for details on the frame theory.
Proposition(3.2.1)[155]: (see [175]). If f(x) is differentiable on [a,b],
f.f' € L?*[a,b],and f(a)f(b) 0, then

J'fm'zdx < —(b - a)zflf ()12 dx.

Lemma(3. 2. 2)[155].If f (x) is differentiable on [a, b], f, f' € L?[a, b] and there
issome ¢ € [a,b] suchthat f (c) = 0, then
b

b
462
Jirrar <= [iF @i ar,

where § = max{c — a,b —c}.

Proposition (3.2.3)[155]: Let f be an integrable function on [a, b] and let
F(x)= f;f(t) dt,|F(x)| < M(x — a) for a <x < b (M a positive constant);
furthermore, let g be a nonnegative, nonincreasing and integrable function. Then

[rwge ax <m [ geax

Lemma(3.2.4)[155]: Let {¢p(- —n):n € =z} be a Riesz basis for some V, c
L*(R). Suppose that ¢ is locally absolutely continuous and ¢’ € L?(R). Then for
any {c,:n € z} € £?, f = Y, c,cn®(- —n) is locally absolutely continuous and
f’(X) = ZnEz Cnd)’(x - n) a.e.

Proof : Forany {c,:n € z} € £?anda < b, we have

( 1
L > )




b 1/2 1/2
[ Dlendrcx = mp2 da <j<z |cn|2> (Zw'(x— n)|2> dx

1/2

1/2
(2 |Cn|2> (b — a)'/? jzlqb (x — n)|?dx < 400,

a MNEzZ

thanks to ¢ € L*(R). Hence Y,c,c,¢ (x —n) is both absolutely convergent
almost everywhere and convergent in L![a, b] forany a < b.

Similarly, Y,ezcn® (x —n) is convergent almost everywhere. Suppose that
YnezCn® x (xo —n) is convergent for some x,. Then for any x € R, we have

> @G == po - )= [ Y a'c — myd.

Nnez X0 nez
Hence f(x) = YnezCnd(x —n) is well defined on R. Moreover, the above equation
also implies that f is locally absolutely continuous and

f'(x) =20n¢’(x — n) a.e.

Nnez
This completes the proof .

Theorem(3.2.5)[155]: Let {¢(-—n):n € z} be a Riesz basis for V, with
bounds A and B. Suppose that ¢ is locally absolutely continuous,
¢' € L*(R), |Zy'(x,w)| < L,a.e, and there are two positive constants C; and C;,
such that

< |Zp(0,w)| < C; ace. (51)
Let {ux(x): k € z} be a sequence of averaging functions such that
supp ug C [k — g, k + é],uK(x + k) is even and nonincreasing on [0, g].

If0 < § <X thereisaframe {Sx(x):k € z} for V, such that forany f € V,,
)= ) (S, (52)

kez
where the convergence is both in L?(R) and uniformon R.

Proof: Forany f € V, , there is some ¢ = {c,:k € z} € £2 such that
f (X)) =YnezCn® (x — n). By the definition of Riesz basis, we have

1 1
ZIFIE < Hlell3 = ) leal? < £ IIfIB:

Nnez

By Lemma (3.2.4), f is locally absolutely continuous and
f'(x) = Ypezcn®'(x —n) a.e. By Proposition (3. 2.1), forany 0 < x < g,
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X X 5/2
f|f(t+k>— FOI de <4—’sz|f'(t F I dt <@f F(¢ +0)l2dt - x
0 - n2 0 _-nzo |

It follows from Proposition (3. 2.3) that
s

j FO+K) — FUOPw(x + k)dx
0

5/2 5/2 5/2

<§f |f' (x +k)|2dxf u,(x + k) dx =ij If'(x + k)|*dx
—_ 77:2 k 7‘[2 .

0 0 0
A similar argument shows that

0 5 0
j|f(x+k) ~ OO x + Bdx = f|f'(x + )2 dx.
6 6

2 2

Hence
s 2
2
D = FGP = | [(FGc+10 = £ welx + Ry
kez kez _g
s s
2 5 2
< Z jlf(x + k) — f(k)|?up(x + k)dx < Z = Jlf’(x+ k)|? dx
kez k)
2

=
m
N

|

2

dx

z cnd'(x + k — n)

Nnez

Il
=IN| o,
g—_ﬁbq%ru

[>
=
m
N

Il
«:]N|°0
N
Sk

A
j |C(@)Zy (x, )| dwdx
—TT

2L2
LPllel dx = —=lell3 ,

2

IA
= | o,

where C(w) = Yje, e *“ . But

DGR =D g (k=m)

kez kezlnez

2

T
1 2 2 2
= 7 | [C(@)Zy (0, w)|" dw = CEllcll3.
-

]
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Therefore,

Sl > (6= 22 el =+ (c— ) .

Similar arguments show that

S Wl > 2 (e, + 2 e

kez
Let @i, (x) be the orthogonal projection of u, (x) onto V,, . Then

(f, 1) = (f,ug) forany f € V,. It follows that

1 SL\® o, 1 SL\*
=(c- =) g skZKf.ukn <z(e+=)
EZ

Consequently, { i (x): k € z} is a frame for V,. Let {Sy(x): k € z} be the dual
frame. Then forany f € V, ,

) = ) (F IS0 = ) (fiudSx).

kez kez
To prove the uniform convergence,we need only to show that ¥, ¢, |Skx(x)|? is

bounded on R . Since

|Zp(x, 0) — Z4 (0, w)| < < L|x|,we have

x
j |Z¢41,a0|dt
0

|Zy(x, w)| < L|x| + C,. It follows that for [x| < 1/2 (and thus for any x € R),

2

VA
Zlqb(x - 01 = o ||z @) do < (§+ cz) . (53)
kez -

Hence, for any

f0) =) ad-1 €V,

kez
2 2 2 L 21 2
IFI5 < sup Y 1gexr = R Ilell3 < (5+ G ) £ IIFIE.
x kez
Therefore,
1/2
L/2+ C,
Z|5k(x)|2 = sup chsk(x) S sup ——— chsk
= lell=1 | &= lel.=1 VA || & ,
Since {S,(x): k € =z} is a frame for V, with upper bound B/(C; — 8L/m)?, we have
1/2 (%+ c,)VB
lek(x)lz < F——,Vx € R. (54)
kez (Cl'—7?)VZ
This completes the proof.
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Proposition (3.2.6)[155] : Suppose that ¢ € L?>(R) and
Vo = span{¢(- —m): n € z}. Then {¢p(- —m):n € z} is a Riesz basis for V; with
bounds A and B if and only if

A< |[dd](w< B ae. (55)

Moreover, if the above inequalities hold and let
Bw) = 2| (56)

(6, ](@)

then { ¢(- —k): k € =z} is the dual Riesz basis of {¢p(- — k): k € z} with bounds%

and %. Consequently,

)= D (fbC —R)F - ), Vf €V,

kez

Lemma (3.2.7)[155]:Let the hypotheses be as in Theorem(3. 2.5) . Moreover,
suppose that ¢ satisfies the first order Strang—Fix condition [181],i.e.,

$(2km) =8, k € z,and xp(x) € L>(R). LetV, = {f: f(h-) € Vy}and P,
be the orthogonal projection operator from L2(R) onto V}, . If f,f’' € V,,, then

IF = Puflls < (54 T IRpCOIE)If Iz

G~ Pl < (14 =) 17l
h 2 = T[\/Z 2

Proof : Define qS as in (56). By Proposition (3.1.6), it is easy to check that
(h"2¢(-/h — k):k € z} and {h"Y2¢p(-/h — k):k € z} are dual Riesz bases
for },, . Hence
_ 1 1 - /X
PN = Y (frb (5 k) (z- k)
kez
and

~ ~ 2k = =
P.f) (@) = z f(a) + Tﬂ)qb(hw + 2km)d(hw). (57)

kez
For any |w| < m, we have

1= $@d@)| = Y |d@ + 26m|* /[ 6,6 |w)

k+0
2

/[ ¢ ](w)

=) jqu'(f + 2km) dé

k+0 1o

o fZIqb ¢ + 2km)[* d (by (55))

Z
“ K#0
1 NIIG _ 2m 2
< lwl- 1[I, = — lol-llxpCollz - (58)

( 1
| 5 )




Noting that

|p(w)|”
[ 6.6 (@) ™

0 < Plw)p(w) = (59)

we see from (58) that

|f@) (1 - ) g
< f F@)|* |1t - ¢w) $(hw)|2dw + f ()| do

|a)|<1t/h |w|>1/h
2

. h .
<—||x¢(x)||§h2|w| J|wf(w)|2dw+F f|wf(w)|2dw

<
|w|sm/h |lw|>m/h
2 87T3 4 2 112
< h* =z llx@llz +— JlIFl2 - (60)
A
On the other hand, by setting f; (@) = f (@) — f(@)X[-r/nr/n(w), We have

+ 00

|

— 00

2

zf(w n %)qﬁ(hw + 2km)é(hao)

k=0

+oo 2
= f Zfl (w + @) b(hw + 2km)d(hw)| dw
_;o/h kez ,
_ j Zfl <a) + %) $(ho + 2kn)| [ 6,8 | (hw)dw
_Z;Z kez
) 6,6 100 | 3.3 (hordo
—m/h K€z
_ f (@] do < f |wf(w)|2-z—zdw s%hzuf'u% . (61)
|w|>T/h lw|>m/h

Putting (57), (60), and (61) together, we have

1
If = Pufllz = \/——Il(f = PufYll

— |[F@ (1- $rrrn) - > f(w+ %) B (hw + 21§ (ho)

k=0

2

2
< h( o IO I,
Next we prove the second inequality. By [163],

z @' (w + 2km)et?km*

kez

|Z¢r(x, a))| = a.e.

( 1
| % )



Hence

[6.6')@) = ) |$'(@ +2km)|’ j|z¢ o) dx < 12 .

kez

By (56), it is easy to see that [¢’, ¢'](w) = (6", d'](w)/I[ &, p1(w)|? . Hence,
> @ + 2kmdo + 2km)|” = [, (@)
¢’ ¢’

kez

It follows that

R km\ =
f — ) ¢(hw + 2km) ¢ (hw)
_[o wkzio <w+ h) w + 2KTT w

i 2km\ = P
_ _j/h% kz@;ﬂ (a) + T) $(ho + 2km)| [$,8] (hw)dw
<1f (o + 29[ 14 3l@—
IEET-URN Toalor”
SAL—; f 71 (@) do (by (55))

|w|>m/h

- f lof (@) do <—I|f I3 -

|w|>7'r/h

On the other hand, we see from (59) that
|07(@) (1- 30)3) )| < lwF @2 = V2rlf I

Hence
1

N(F = Puf )z = Nex lw(f = Prf) ()l

1 = 2
= |07 (1- 3(h)3(h0)) wz ( ) b (hw + 2km)d (hw)
k#0 2
L
<(1+ m)llf Iy .

Theorem (3.2.8)[257] : Let the hypotheses be as in Theorem (3.2.5). Moreover,
suppose that ¢(2km) = ;.o and xqb(x) € L*(R). Let

BN = (5 e (G (62)

kez

( 1
1 % )



(i) If f is locally absolutely continuous and f € L?(R), then
If = Rufllz < Chlif'll2, (63)

VB 2 2m
C = (1 +T/> (— + lexqb(x)llﬁ)

(1 + &VB (1+ L)
- 8L/mV2 A/l
(i) If u, € L?(R) and ||uk||2 S M < 400 , k € z ,then
Jmllf = Rufll;= 0, Vf € L*(R) .
1/2
Proof: Let aq;, = f f(x + k)dx .Then

~1/2
5/2 1/2 2

it -ad =Y | | [ (a+0-fo + o+ kdydx
kez kez -8/2 -1/2
6/2 1/2x-y

- z f J j 'y + k + t)dtug(x + k) dydx
k€z|-§/2 -1/2 0
5/2 1/2 |x-y]

j j f If'(v + k + t)|*dt|x — y|lup(x + k) dydx
kez—-§/2 -1/2 —|x—y]|
§/2 1/2 (1+8)/2

1 145
j j j F' + k + O dtug(x + k) dydx
kEZ ~§/2 -1/2 ~(146)/2

52
G

where

2

Noting that
1/2

Dlakiz <y [ 1fee + 0P ax = 1f13

kez kez -1/2
we have

1+ 6 2
D If ol < (Ifll; + —==17'Ne) (64)

Since {S,(x): k € z}is a frame for V, with upper bound

B
CE

we have
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2
= h
2

B

kez
< e (ARl + 2 IR )l
= (€, -68L/m)? 2 i
Tl I
(G -oL/mE T\ :
LetV, = {f : f(h-) € V,}and P, be the orthogonal projection operator form
L?*(R) onto V,. Then R, P, = P, and so
If = Rufllz < \If = Pufllz + IR(f — Puf)ll2
VB (1+6)VB
<(14+———"7— —P + : — P fll,.
( T /n) If = Pufla + - s I = Po) £l

Now (63) follows from Lemma (3.2.7) . Next we prove (ii). Forany f € L?(R) , we
have

2
IRnfI3 =

PNATACHIENE

kez

D () uSe)

kez

2

2

/2 /2
DYl <Y [ If +oFdx | e+ oPdx
kez kez —-§5/2 -6/2
5/2
<M [ Yl + 0P dx < MIsIIAS |
-5/2 kez

where [§] = min{n:n > §,n € z}. Similarly to (i) we can prove that
If —Pufll, < C'Ilf —Pyfll, , where C'is a constant independent of h. By the
wavelet theory (see [177]), we know that ||f — P,f|l, = 0 as h — 0. Therefore,
lim;_ollf — P,fll, = 0. This completes the proof.
In practice we can handle only finite sums. The error made by cutting off infinite
sums is the truncation error. Specifically, it is defined by

M) = F) = D, 1Si(®)

|k|sN

For the truncation error, we have
Theorem (3.2.9)[257]: Let the hypotheses be as in Theorem (3.2.5). Then for
any f € V,,we have f € L*(R) and

VB 146
ITfl: < g7 (Iar 1, + =~ lewar 11, (65)
(L/2+ C,)VB 1+6 ,
ITufle < oo M(nm,gfuz + = llewof 1) (66)

where 7y 5 : L*(R) = L*(R) is defined by

( 1
L 5 )




o
(s ) () ={f @), k2N -5,
0, otherwise .
Proof : Forany f € V,, thereissome c = {c,: k € z} € ¢? such that
f (X)) = YrezCe® X (x —k). By Lemma (3.2.4), f is locally absolutely continuous
and f'(x) = YkezCr®'(x — k) a.e. Thus

DG+ miE=)

Nnez Nnez

2

Z cd'(x+n—k)

kez

T
! 2 2 2
= o= | 1C@)Zy (x| do < Plcll3a.e.
-1

Therefore, f' € L2(R) . Similarly to (64) we can prove that

1+46
D 1wl = (lewof 1, + —=llenssl,)

|kI>N
Now the conclusion follows by (54) and the fact that {S; (x): k € z} is a frame for V,
with upper bound B/(C; - 6L/7t)2.
Theorem (3.2.10)[155]:Let the hypotheses be as in Theorem (3.2.5). Put
S(w) = $(w)/Z4 (0, w) and

(Tnf)(x) = f(x) — z f)S(x — k).

|k|=N

2

Then
VB 1 :
Imafle < g (sl + Zlienasl,)
1 !
1T fleo < Co(lEwafll, + —llewarll,)

where Tty ; is defined as in Theorem (3.1.9) and C, is a constant determined in the
proof.
Proof : By [256], forany f € V,,
FGO =) fUOSE- ).
kez
Let a, = ["/% f(x + k) dx. Then ¥, 2 < |lenaf]|2- By Lemma (3.2.2
kK = _1/2f(x ) dx. k>N Akl® < T f 5+ DY (3.2.2),
it is easy to see that
1 2
z If (k) — axl® < p“TN,lf I5 -
|k|>N
Hence,
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1 2
Y@l < (lewafl, + ~llevar’ll,) -
Ik[>N
Since [S,5](w) = [ ¢, Pl(w)/1Z4(0,w)|*{S(- —k):k € z} has an upper frame
bound B/C# , thanks to Proposition (3.1.6). Hence

VB 1
ITufl = || > FG0SC =i|| < T (lnafll, + Zlenas ).

|k|>N
On the other hand, by (53), Zk €z |q>(x — k)|? is bounded on R and

Cé = supIS(x —k|? = sup— jIZS(x w)|? dw

|Z¢(x w)lz
—_— < o0
SupZ” leci)(o w)lz

Hence
1/2

1/2
ITufllo < | D 1£GOP sup<2|s<x - k>|2)

|k[>N kez

1 !
< 6 ([ewafll, + Zllewarl,)-
The proof is over.
Example (3.2.11)[155] : Subspaces generated by the centered B-

splines ¢,, defined by ¢,,(w) = (sinm/Z)mH

m mn w/2 ’
It was shown that {¢,,(- — k): k € z} is a Riesz basis for the subspace Vo(m) it
spans and Z (0, w) has no zero on [—m, ] for any m = 1 (see[170]). Therefore ¢,

meets the requirements of Theorem (3. 2.5). Since

m=1.

, 1/2
1Zgr(x, )| =[1— €| <2 and ¢y, (x) = _1/2¢§n-1 (x — D)dt,
we have
1/2
LM = sup|Z¢7rn(x,a))| = sup f Zy (x—tw)dt|< 2,m= 1
x,w X,w 12

Let ™ = min <z [Z4, (0, w)| . By Theorem (3.2.5), every f € v,™ is uniquely
determined by its local averages (f,u;)for any sequence of symmetric averaging
functions {u (x): k € z} satisfying

suppuy, C [k —nC™ /4 , k + mC™ /4. In Table 1, we give the

69
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values of 7¢™ /2 form < 8.

Example (3.2.12)[155] : Let ¢(x) = sinmx/mx. Then
Vo= B, = {f: supp f c [—m, m]}. Itis easy to check that
C; = C, = 1and L = m. Hence (52) holds for

1
u,(x) = (6—]) [k__ 5k](x) 0 <8 <6 <1,
which is just [187]. We refer to [187,188] for more results on average sampling for
band-limited functions.

Corollary (3.2.13)[296]: Let the hypotheses be as in Theorem (3.2.5). Then for
any f; € V,,we have fj € L*(R) and

1+6
DIl < & M Zumju + == lafy

JEZ JEZL

,Zz: " (C 5L/)\/_ZZ nslill, T ; Tvesfi

where Ty 5 : L*(R) — L*(R) is defined by

o
@, k=N
¥ (w0 = ;E) e

JEZ 0

, otherwise .
Proof : Forany f; € V,, thereissome c = {c,: k € z} € £*such that

Yierfi (x) = XkezCk® X (x —k). By Lemma (3.2.4), f; is locally absolutely
continuous and ¥ jez f;' (x) = Ykez ck®’(x — k) a.e. Thus

VLTS |

nez jez nez

ZCRQb’(x +n—k)

kez
1 2 2 2
= o | [C@Zy(x0)| do < PlclBae.

-7
Therefore, f;" € L?(R) . Similarly to (64) we can prove that

> Sl <( Yllewssil, + ”5Z||mf, I,

|k|>N jEZ JEZ JEZ
Now the conclusion follows by (54) and the fact that {S; (x): k € z} is a frame for V,

with upper bound B/(C, - 6L/n)2.
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Section(3.3) Riesz Bases in L2(0,1) Related to Sampling
The Whittaker—Shannon—Kotel’nikov sampling theorem states that any function f
in the classical Paley—Wiener space PW,,,

PWrn = f € L*(R) n C(R): supp f € [-m, ],

I.e., bandlimited to [—m, ], may be reconstructed from its samples {f (n)},e, On the
integers as

F@®= ) fasinet-n) (67)
n=—o

where sinc denotes the cardinal sine function , sinc(t) = sin nt/mt .
This theorem and its numerous offspring have been proved in many different ways,
e.g., using Fourier expansions, the Poisson summation formula, contour integrals, etc.
(see [145,153). But the most elegant proof is probably the one due to Hardy [144],
using that the Fourier transform F is an isometry between PW, and L?[—m, m]. For
any f € PW,, one has
—-iwt

V2m

so any value f(t,) of f is the inner product in L?[—m, 7] of f and the complex
exponential e~inW /\/2m. The key point in Hardy’s proof is that an expansion
converging in L*[—m,m] is transformed by F~1! into another expansion which
converges in the topology of PW, . This implies, in particular, that it converges
absolutely and uniformly on R. Recall that the Paley—Wiener space PW, is a
reproducing kernel Hilbert space (RKHS) whose reproducing kernel is k(t,s) =
sinc(t — s). This technique has been coined in [145] as the Fourier duality in
Paley-Wiener spaces. Thus, expanding f with respect to the orthonormal basis
{e™™ /\[21 },,e, and transforming by F~1 we obtain the Shannon sampling formula
(67). An irregular sampling formula in PW,, at a sequence {t,, },,c, Of real points may
be obtained by perturbating the orthonormal basis {e =" /v/2m },,c, in such a way
that the sequence of complex exponentials {e ~‘n% /A/2m },,c, forms a Riesz basis for
PW,, . This is the case if, for instance, the sequence {t,},c; € R verifies the Kadec
condition: sup,¢, |t, — n| < 1/4. Moreover, the Paley—Wiener—Levinson sampling
theorem states that any function f € PW, can be recovered from its samples
{f (t,) }nez Dy means of the Lagrange-type interpolation series

- G(t)
f= nZoof ) G- o

where G stands for the infinite product

>L2[—TE,TL’] ) tE R )

R S PN
FO = mf FWyeWt aw = (f,
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G(t) = (¢ — to)ﬁ(1-ti)(1-ti) [143].
5 S G

On the other hand, the Paley—Wiener space PW, is a particular case of a shift-
invariant space, i.e., a closed subspace in L?(R) generated by the integer shifts of a
single function ¢ € L?(R) . Whenever the sequence

{dp(- —n)}ne, forms, at least, a frame sequence in L2(R) (i.e., it is a frame for its
closed linear span), the corresponding shift-invariant space can be described as

Vo ={2 and(- 1) {an} € ﬂ(z)} .

Nnez
The generator ¢ is stable if the sequence {{¢(- — n)}ye, is a Riesz basis for V. For

PW,. , a stable generator is ¢ = sinc.Wavelet subspaces are important examples of
shift-invariant spaces generated by the scaling function of the corresponding
multiresolution analysis. See [137,138,149] for the general theory of shift-invariant
spaces and their applications. In addition, sampling theory in shift-invariant spaces
and, in particular, in wavelet subspaces has been largely studied in the recent years.
Let us cite, for instance, the works of Aldroubi and Grochenig [135], Aldroubi and
Unser [136], Chen, Itoh and Shiki [140,141], Janssen [147], Sun and Zhou [150,154],
or Walter [148,151] among others. The main aim in this section is to show that the
Fourier duality for Paley—Wiener spaces can be generalized to the case of a shift-
invariant space V, with a stable generator ¢. To this end, we define a bounded one-
to-one linear operator T between L2(0,1) and L?(R) as
T : L?(0,1) — L*(R)

F — f such that f(¢t) = (F,K)2¢01) »
where the kernel transform t € R — K, € L?(0,1) is given by the Zak transform
of ¢ namely, K, (x) = Zg (t,x) , a.e.x € (0,1). Recall that the Zak transform of
f € L?(R) is formally defined as

EHEW) = ) f (E+ me ™™ W € R

nez
The shift-invariant space V, coincides with the range space of . Thus, sampling

expansions in V, can be seen as transformed expansions via T of expansions in
L?(0, 1) with respect to appropriate Riesz bases. Taking into account the definition of

T , these bases should have the particular form {Ktn}neZ . Taking the sampling points

{t, = a+ n},e,, We obtain the regular sampling in Vy, whereas perturbing this

sequence as {t, = a + n + 8,},ex We obtain the irregular sampling. Let
¢ € L*(R) be a stable generator for the shift-invariant space

Ve ={Z ap( —): (a} € @) C L(R)

Nnez

( 1
L 72 )




I.e., the sequence {¢(- — n)}ne,1S @ Riesz basis for V. A Riesz basis in a separable
Hilbert space is the image of an orthonormal basis by means of a bounded invertible
operator. Recall that the sequence {¢(- —n)},.,IS @ Riesz sequence, i.e., a Riesz
basis for V, if and only if

0 < [Pllo = lIPlle <0,
where ||@||, denotes the essential infimum of the function
dW) = ez | P(wW +K)|? in [0,1],and ||®|l, it's essential supremum.
Furthermore, ||®]|, and ||®|| are the optimal Riesz bounds [142]. We assume along
the section that, for each t € R, the series Y,,c, |¢(t — n)|? converges. Thus, by
using the Riesz’ subsequence theorem [142] we can choose the point wise
lim f(t) = Y,eza,0(t —n)foreacht € R, asthe representative element of the
class ¥ ,e,a,0(- —n) in L2(R). Moreover, if ¢ is a continuous function and the
series Y,z |9 (t —n)|*converges uniformly in compact subsets of R, we can take
any f € Vgas a continuous function in R. Besides, V, is a RKHS since the

evaluation functionals are bounded in V. Indeed, for each fixed t € R we have

1
FOP <= loC-mF IfI* . fe v, (68)

121l

where we have used Cauchy—Schwartz’s inequality in f(t) = Y.,z @, ®(t —n), and
the Riesz basis condition

12llo ) lanl? < UFIZ < 19l ) lanl?,  f € Vy .

Nnez Nnez
Inequality (68) shows that convergence in the L?(R)-norm implies pointwise

convergence in R. The convergence is uniform in subsets of the real line where
||Kt||iz(0’1) = Y.z |®(t —n)|? is bounded. The reproducing kernel of Vg is given
by k(t,s) = X, (t —n)@*(s —n) where the sequence {¢*(- —n)},e, denotes
the dual Riesz basis of {¢(- —n)},e,. Recall that the function ¢* has Fourier
transform ¢* = ¢ /& [136].

Foreach t € R, consider the function K, € L?(0,1) defined by the Fourier series

K, = qu(t + n)e2mnx

Nnez

Notice that K;(x) = Zz(t,x) a.e. x € (0,1), where Z denotes the Zak transform
of ¢ . See [143,146] for properties and uses of the Zak transform. Thus, for each
F € L?(0,1) we can define the function
f:R — C,
t — f (@)= (F,Ke)iz(01)-
If we denote by T the linear transform which maps F € L?(0,1) into f,i.e,T (F) =
f, then we can identify the range space of T as the shift-invariant V,

i.e., T(L?(0,1)) =V, . Indeed, for F € L?(0,1) we have that

( 1
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TCYO] = (F, K)oy = Y (F e ™) o bt +1) ¢ € R,

Nnez
which belongs to V. Furthermore, for each f € V, there exists a sequence {a,} €

£2(z) such that f = Y,c,a,0( +n)inL?(R). Since {e ?™"*} .. is an
orthonormal basis in L?(0,1), there exists a function F € L?(0,1) such that
(F,e‘Z”i"x)Lz(O'l) = a, forevery n € z. Hence, T(F) = f . Moreover, the following
result holds:

Theorem (3.3.1)[134]: The mapping T is an invertible bounded operator
between L?(0,1) and V, .

Proof: The operator T is bijective since it maps the orthonormal basis {e~2""*}, .,
in L2(0, 1)into the Riesz basis {¢p(t + n)},ep IN Vg . Concerning the continuity, for
F € L%(0,1), we have

2

1T N2 gy =

D (R, 2 0 BE +1)

Nnez

L*(R)
_ominxy |2
<@l ) [(F, €727 [* = 0l IF 2o

nez
where we have used the upper Riesz basis condition for {¢(.+ n)},e, . Having in

mind the periodicity relations of the Zak transform, the function K, satisfies
Keym(x) = e?™M*K, (x)inL?(0,1), where t € Rand m € z.Now, for f € V,
consider F = T~1(f) € L?(0,1). Foreachn € zwe have

T[F(x)ezmnx](t) = (F(‘)ezmn':Kt ('))LZ(O,l) = (F, Kt—n>L2(0,1) = f(t—n).
Since T is a bounded invertible operator, the sequence {f (t — n)},e, IS a Riesz basis
for V,, if and only if {F(x)e®™™*},, is a Riesz basis for L?(0,1). The following
theorem which can be found in [139] gives a characterization of Bessel sequences,
Riesz bases and frames in L?(0, 1)having the form {F(x)e?™"*}, ., . From now on,
IF |l (respectively ||F||,) will denote the essential supremum (respectively infimum)
of |F|in (0,1).
Theorem(3.3.2)[134]:Given a function F € L?(0,1), the following results
hold:

(i) The sequence {F(x)e?™"*} .. is a Bessel sequence in L2(0, 1) if and only if the
function F satisfies ||F||o, < o0.

(i) The sequence {F(x)e?™"*}, ., is a Riesz basis for L2(0,1) if and only if the
function F satisfies 0 < [|F|lg < ||Fll < 0. In this case, the optimal Riesz
bounds of {F(x)e?™"*}, ., are ||F||2 and ||F||%.

(iii) The sequence {F(x)e?™"*}, ., is a frame in L?(0,1) if and only if is a Riesz
basis for L*(0, 1).Thus we have the following corollary in V.
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Corollary(3.3.3)[134]: Given a function g € V,, consider G = T™*(g) €
L*(0,1) . Then, the sequence {g(t — n)},e, is a Riesz basis for V if and only if
0 < lIGllp < lIGlle < oo
Regular sampling in V, arises by considering appropriate Riesz bases in L*(0,1) .
Namely, for a fixed a € [0, 1), the regular samples at {a + n},c, of f € V are
given by f(a +n) = (F,Kgn)izo1) = (F, K€*™) 201y, n € 7, Where F =
T=1(f).The sequence {K,(x)e?™*} ., in L[?>(0,1) has the biorthonormal
sequence {e?™™ /K (x)}n,e, Provided 1/K, € L?(0,1). Hence, stable regular
sampling in V, reduces to studying whenever the sequence (K, (x)e?™*} . is a
Riesz basis for L?(0,1), and this depends on the function K, as stated in Theorem
(3.3.2).Expanding F = T~1(f ) with respect to the Riesz basis{e?™"™* /K, (x)}nez »
via the invertible bounded operator T,we obtain a regular sampling formula for f.
Lemma (3.3.4)[134]: Given a € [0,1), there exists a function S, € V
satisfying the interpolation condition S,(a +n) = &, 4, Where n € z, if and only if
the function 1/K, belongs to L2(0,1) . Inthiscase S, = T (1/ K,) .
Proof: Assume that there exists a function S, € V,, satisfying the interpolation
condition S, (a +n) = 8,0, Wheren € z. For F, = T~(S,) we have
Sqa(a + n) = (F, Ka+n)L2(0,1) = <Fa»ezninxKa>L2(0,1)
1
- [ R@RGe ™™ dx = b,
0

which implies that F,(x)K,(x) = 1a.e. in (0,1), and consequently the function
1/K, belongs to L2(0, 1). Conversely, if 1/K, is in L?(0, 1), we define

S,= T (1/K,).Forn € zitsatisfies

1 .
Sa(a + n) = (E_;Ka+n)L2(0,1) =(1, eanx>L2(0’1) = b0 -
a

Thus we can characterize stable regular sampling in V, .
Theorem (3.3.5)[134]: Consider a € [0, 1) such that the function
1/K, € L?(0,1). The following conditions are equivalent:
00 < [[Kallo = lIKglleo < o0
(ii) There exists a Riesz basis {S;}ne, for Vg such that, for each f € V , we have
then pointwise expansion

£t = zf(a+ mMS.(£),t € R.

Nnez
Furthermore, in this case the sampling functions are S, (t) =S,(t —n), where

S, = T(1/ K,). The sampling series converges in the L?(R)-norm sense, absolutely
and uniformly in subsets of R where K; is bounded.
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Proof: First we prove that (i) implies (ii). Consider S, = T(1/ K,). Condition (i)
implies that 0 < |1/ Kyllo < 111/ K,4lle < o and , as a consequence, Corollary
(3.3.3) gives that {S,(t — n)},e, Is a Riesz basis for V. For each f € Vg, there
exists a sequence {a, }ne; iN £2(z) such that f (t) = Y,e; a,S,(t — n) where the
convergence is also point wise for each t € R since Vy is @ RKHS. Taking ¢ =
a + m, and using the interpolatory condition S,(a +n) = 6,,, we obtain that
A, = f(a+m)foranym € z.
Conversely, assume that the condition (ii) holds.Taking f(t) = S,(t-m),m € z,
we obtain that S,,(t) = S,(t — m) and , as a consequence, {S,(t — n)},ez IS @
Riesz basis for V. Since S, =T(1/ K,), Corollary (3.3.3) gives condition (i).
Absolute convergence comes from the inconditional character of a Riesz basis. The
uniform convergence is a standard result in the setting of the RKHS theory.
A straightforward calculation gives the Fourier transform of Sa. Indeed,

: s sw) :
Sa(W) = T(l/ Ka)(W) = W a.e.iIn R

Usually, one may consider irregular sampling as a perturbation of the regular
sampling. In the present setting, we can try to recover any function f € Vg from its
perturbed samples {f(a +n + 6,)}nez, Where a € [0,1)and {6,}nez 1S @
sequence in (—1,1). Sincef(a +n+ 6,) = (F,Kgyn+s,)12001) 1 € Z, Where
F = T7'(f) € L*(0,1),a challenge problem is to prove that {Kyin4s, neziS @
Riesz basis for L2(0, 1).

One possibility is to use a perturbation technique on the Riesz basis {K, 1, }nez =
{K,(x)e?™*} .. which gives the sequence of regular samples {f(a + n)},ec, As
a consequence, we need a perturbation result for those Riesz bases in L?(0,1)
appearing in Theorem (3.3.2).

For an infinite matrix M = {m,, ;}n e, defining a bounded operator in #%(z) we
denote its operator norm as ||M||, = Sup”C”[z(Z):l||MC||{;2(Z) :

Theorem (3.3.6)[134]: Let F = Y e, are”2™** be in L?(0,1) such that
0 < |IFllo € lIFllee < 0. Let {E,},e, be a sequence of functions in L2(0,1) with
Fourier expansions F, = Yic,ar(n)e 2™%* n € z Suppose that the infinite
matrix D = {d, x }n ke, With entries dy, , = a,_,(n) —a,_,,nk € z, satisfies the
condition ||D||, < ||F|lo. Then, the sequence {F,(x)e?™"*}, ., is a Riesz basis for
12(0,1).

Proof :To this end we use the following result on perturbation of Riesz bases in a
Hilbert space H which can be found in [142]: let {f;.}x=, be a Riesz basis for ' with
Riesz bounds A, B, and let {g,}r-,be a sequence in H. If there exists a constant
R < A such that
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D K= g NP <RIfIF,  for each f €%,
k=1

then {g) }r-.is a Riesz basis for 7. For any f = ¥;c, ¢, 2™/* in L?(0, 1) we have

Zl(Fn(x)eZEinx _ F(x)eZninx’f>|2
nez 5

_ 2 (E(ak(n) _ ak)ezm(n—k)x’z & e2miix)

nez | kez J€EZ
2 2
= z Z(an—k(n) — An_)Ck| = Z Z Ak Ck
nez lkez nez lkez

=D cllZ, < 11D IZNFI? -
Taking into account that in our case A = ||F||3, we obtain that {F,(x)e?™"*}, ., is a
Riesz basis for L2(0, 1).
As a consequence of the above perturbation theorem in L?(0,1),we obtain an
irregular sampling result in V.

Theorem (3.3.7)[134]: Given a € [0,1) such that

0 < [IKyllo < IKgllo < 0. Let A= {5,}ne, e asequence in (—1,1)

such that the infinite matrix Dy = {d,, j}n ke WhoSE entries are given by
dpr = ¢(a +n —k +6,)— ¢p(a +n— k), nk € z,

satisfies [[Dall; < [|Kqllo - Then, there exists a Riesz basis {S;,},¢, for V such that

any function f € V4 can be expanded as

[0 =Zf(a + n+6)S,(t), tER.

Nnez
The convergence of the series is absolute and uniform in subsets of R where ||K,]|| is

bounded. Also, it converges in the L?(R) —norm sense.
Proof :Applying Theorem (3.3.6) to
K,(x) = ng(a + k)e~?™k*  and

kez

Kais,(x) = z dp(a +k +6,)e ?™*  ne z,

kez
we obtain that {K,.s ™™ ey = {Kg+n+s,nez i @ Riesz basis for L2(0,1).

Denote by {G,,},e its dual Riesz basis. Now, given f € V, , we expand the function
F=T7Y(f) € L*(0,1) with respect to {G,, },e, - Thus,
F = ) (FKamis)ion Gn = ) f@ +n+8,)Gy in 2(0,1),

Nnez nez

77

——
| —



Applying the operator T , we get
f = Z fla +n+68,)T(G,) in L*(R).

nez
Furthermore, since T is an invertible bounded operator, the sequence

{Sn = T(Gpn)}nez is a Riesz basis for V. The pointwise convergence properties of
the series come out as in Theorem (3.3.5).

The next result yields a uniform bound of the norm ||D,||, regardless the sequence
A= {Sp}nezIn[a,B] < [-1,1].
Theorem (3.3.8)[134]: For any sequence A = {8,},,¢, in [, 8] the following
inequality holds:

IDallz = sup |¢(a +n +dy) —¢p(a +n)l. (69)

(dn)elap] £t

Proof : Assume that the second term in the above inequality is finite. Otherwise, the
inequality trivially holds. Forany ¢ = {cx}xez € £(z) we have

2
IDacliZzy = D D dnec] < D7D ldnil el [ 115 |

nez lkez nezl,jez

e+ g
= D 1allg 1Y Idnl Iy | < " 25T d )

ljez Nez ljez Nez
= D1l ) lduilldny | S sup( D Il ldn | [Tl
lez jnez j ez

< sup <Z | )Z o lellZegy

nez jez

Having in mind that
Dldngl = Y |da+j =k +8)—da+j - k)
JjEZ =

ZZ|¢(CL +n+ 6n+k) —¢(Cl + Tl)l ’

Nnez
we obtain the desired result.

A comment about the second term in (69) is in order. Namely, looking for an
estimation of the ratio between Y, l¢p(a+ n+ d,)—¢(a+ n)| and
(sup,, |d,|)* for a fixed 1 > 0,led Chen et al. to introduce in [6] the classes of
functions L2 [a, B]. Next we give a particular example when Theorem (3.3.8) works.
Namely, suppose that the stable generator ¢ € C(R) and for some £ > 0 it

satisfies ¢’ (t) = 0(|t|-<1+f>) as |t| » . Then, it is easy to prove that, for§ € (0,1],
M i (6) = :é: "M <My (1) < oo,
o' () kgggglcb()l o' (1)

where I, (8) denotes the interval [a + k — §,a + k + §].

( 1
L 7® )




Corollary (3.3.9)[134]: Let ¢ € C}(R) be a stable generator such that
M4 (8) < oo, where § = sup|d,|. Then, the condition § M4/ (6) < [|Kqllo implies

nez
the existence of a Riesz basis {S,,},e, for Vg such that any function in this space can

be expanded as

f(t)=Zf(a +n+6,)S,(t), tER.

Nnez
The convergence in the series is absolute and uniform in subsets of R where K, is

bounded. It converges also in the L2(R)-norm sense.
Proof : The mean value theorem gives
sup Zlqb(a +n+ dy)— ¢la + n)| <My (6) .
(dn)c[-6,6]1 4
Theorem (3.3.7) concludes the proof.
Corollary (3.3.10)[296]: Given 0 < € < 1, there exists a function S;_. € V,
satisfying the interpolation condition S;_.(n —€) = 8,9, where n € z, if and only
if the function 1/K;_, belongs to L2(0,1) . Inthiscase S;_. = T (1/ K;_,) .
Proof: Assume that there exists a function S;_, € Vy satisfying the interpolation
condition §;_.(n —€) = 8,0, Wheren € z. For F;_. = T~(S;_) we have
Si-e(m—€) = (Fi_¢, Kn-e)iz01) = (F1—e»€2ninxK1—e)L2(o,1)
1
— [ PR Ge ™ dx = 6y,
0
which implies that F,_.(x)K;_.(x) = 1a.e. in (0,1), and consequently the
function 1/K;_. belongs to L?(0, 1). Conversely, if 1/K;_. is in L?(0, 1), we define
Si—e =T (1/K,_.).Forn € zitsatisfies

Si—e(n—¢) = (K_:Kn—ehz(o,n = (1;92mnx>L2(o,1) = Opp -
1-€

Thus we can characterize stable regular sampling in V .
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Chapter 4

Dual Frames in L?(0, 1) and Multivariate Generalized Sampling

Involved samples are expressed as the frame coefficients of an appropriate function
in L2(0, 1) with respect to some particular frame in L?(0, 1). Since any shift-invariant
space with stable generator is the image of L?(0, 1) by means of a bounded invertible
operator, our generalized sampling is derived from some dual frame expansions in
1?(0,1). An L?(R%) theory involving the frame theory is exhibited.Sampling
formulas which are frame expansions for the shift-invariant space are obtained. In the
case of overcomplete frame formulas, the search of reconstruction functions with
prescribed good properties is allowed.Finally,approximation schemes using these
generalized sampling formulas are included.
Section(4.1) Generalized Sampling in Shift-Invariant Spaces

Suppose that s linear-time invariant systems (filters) £;,j = 1,2,...,s, are defined

on a shift-invariant space V of L*(RR)

Ve = {f (©) =) and(t = m: {an} € @),

nez
where the function ¢ € L?(R) is a stable generator for V,,. The main aim in this work

is to recover any function f € V, by means of a stable sampling formula. More
precisely, Dby wusing a frame expansion which involves the samples
{(£;f )} nesj=12,.s» Where the sampling period r € N necessarily satisfies
r <s. Whenever s > r we are in the oversampling case. The advantages of the
oversampling technique in practical applications are well-known (see [119], [125] or
[130]).

This problem goes back to [126] where a sampling formula is given, which allows
to recover a bandlimited function f by using the sequence of samples
{(£;if )(sn)}neg,j=1,2,..s» Which involves s filtered versions of . Note that, according
to the Whittaker—Shannon—Kotel’nikov sampling theorem, the space of functions
bandlimited to an interval [—o,a], i.e., the classical Paley—Wiener space PW, =
{f € L>(R) n C(R): sup f S [~o,0c]},where f stands for the Fourier transform
fw)= f_oooo f (e 2™ dt , is an example of a shift-invariant space where the
generator is a scaled version of the cardinal sine function sinct = sin wt/mt.
Wavelet subspaces are also important examples of shift-invariant spaces.

Papoulis’ result has been extended to a general shift-invariant space by using the
filter banks technique. Concretely [85] extended Papoulis’ result for some important
particular [107, 131] extended it in the general case.
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The case where the number of channels s is larger than the sampling period 7, i.e.,
the oversampling case, has been also considered in [85] by means of an example. In
[132] studied this general setting for classical bandlimited functions.

We propose a new approach involving the theory of frames in a separable Hilbert
space . Recall that a sequence {f,} is a frame for H if there exist two constants
A,B > 0 (frame bounds) such that

AIFIZ < ) 1SS BISIP forall  f €3t
k

Given a frame {f}.} for H the representation property of any vector f € H as a series
f = X ckfi 1s retained, but, unlike the case of Riesz bases, the uniqueness of this
representation (for over complete frames) is sacrificed. Suitable frame coefficients ¢,
which depend continuously and linearly on f are obtained by using the dual frames
{gr} of {fi}, 1.e,, {gi} Iis another frame for H such that f =Y, (f,gx) fx =
Yilf, fi) g for each f € H. For more details on the frame theory see the superb
monograph [82] and references therein.

The shift-invariant space V, is the image of L*(0,1) by means of the isomorphism
T : L*(0,1) - V,, which maps the orthonormal basis {e 2"}, ., for L*(0, 1) onto
the Riesz basis {¢(t — n)},e, fOr V.

Our starting point is to write the samples {(£;f ) (") }nez j=1,2,..s s the frame
coefficients with respect to a particular frame in L2 (0, 1) of the function
F = 771 f € L?(0,1). Searching for its dual frames we obtain those expansions
Thus, applying the isomorphism T to the above frame expansions of F we will obtain
sampling expansions for f = T F in V, involving its samples
{(Ljf)(rn)}nEz,j=1,2 ..... S*

The use of several different dual frames allow us to obtain a variety of
reconstruction functions. Thus we can try to find some reconstruction functions with
“good properties.” For instance, following an idea in [85], those with compact
support. All these steps will be carried out throughout the remaining sections. Let
¢ € L*(R) be a stable generator for the shift-invariant space

Ve ={Z anp( —n): {an} € (@)} © P(R),

Nez
i.e., the sequence {¢(- — n)} e, is a Riesz basis for V. A Riesz basis in a separable

Hilbert space is the image of an orthonormal basis by means of a bounded invertible
operator. Recall that the sequence {¢(- — n)},e, IS @ Riesz sequence, i.e., a Riesz
basis for V,, if and only if 0 < [|@]|y < [|@]les < 0,
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Where ||®||, denotes the essential infimum of the function @(W) = ¥y, | (W + k)|?
in (0,1), and ||®|| it's essential supremum. Furthermore, ||®]|, and ||®]|,are the
optimal Riesz bounds [82].

We assume throughout the section that the functions in the shift-invariant space V,
are continuous on R. Equivalently, that the generator ¢ is continuous on R and the
function Y., |¢(t —n)|? is uniformly bounded on R (see [113]). Thus, any
f € V, isdefined on R as the pointwise sumf (t) = Ynezan@(t —n).

Besides, Vg is a reproducing kernel Hilbert space (RKHS) since the evaluation
functionals are bounded in V.Indeed, for each fixed t € R we have

2
FOF <o D 166 =wF.f € vy (D)

where we have used Cauchy—Schwartz’s inequality in f (t) = Y,ezanP(t — n),
and the Riesz basis condition

12l ) lanl? < IfIP < 191l ) lanl?,f € Vi

nez Nnez
Inequality (1) shows that convergence in the L?(R)-norm implies pointwise

convergence which is uniform on R.The reproducing kernel of Vy is given by
k(t,s) = Y,e,0(t — n)@*(s —n) where the sequence {¢*(- —n)},,, denotes the
dual Riesz basis of {¢ (- —n)},c,. Recall that the function ¢* has Fourier transform
®* = ¢/ [115].0n the other hand, the space Vy is the image of L?(0,1) by means
of the isomorphism 7 :12(0,1) - Ve which maps the orthonormal basis

{e~2mnWy ., for L2(0, 1) onto the Riesz basis {¢ (t —n)}ye, for Vy, (see [120]), ie. ,
(T F)(®) = D (F(),e™M) 20 1(¢ = 1), F € 12(0,1)

nez

Notice that for each F € L?(0, 1) the function f = T F is given by
f @) =(F,K)p201),t € R.The kernel transform te€ R - K, € L?(0,1) is
defined as K;(x) = Z(t, x), where Zg4 denotes the Zak transform of ¢. Recall that
the Zak transform of f € L*(R) is formally defined in R? as (Zf)(t, W) =
ez f(t +n)e 2™V See [92] for properties and uses of the Zak transform.

The following shifting property of 77 will be used later: For F € L?(0,1),r € N
and n € z we have

T[F()e 2™ |(t) = T [F](t —rn),t € R. (2)

We close this section citing [81,116,127] for the general theory of shift-invariant
spaces and their applications. Whenever the generator ¢ is a B-spline, the
corresponding shift-invariant space has been proved to be very fruitful in signal
processing applications [80]. Besides, sampling in shift-invariant spaces has been a
topic largely studied in recent years, see, for instance, the papers by Aldroubi and
Groéchenig [78], Aldroubi and Unser [115], Chen et al. [117], Janssen [124], Sun and
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Zhou [128], or Walter [120]. Average sampling in shift-invariant spaces is also an
important topic related to generalized sampling (see, for instance, [114] or [129] and
references therein) . Throughout the section we distinguish two types of linear-time
invariant system L:

(a) The impulse response [ of L belongs to L'(R) n L*(R). Thus, for any f € V,
we have

N =1f 1O = [ f U= dx = (FO, 00 = Dz t € R

where @ (t) = I(—t). Notice that Lf is a continuous and bounded function in L?(R).
(b) The impulse response [ has the form [ = YN_, ¢, 6™ (t + dy), where §®
denotes the kth derivative of the Dirac delta and ¢, , d;, are constants for k =

0,1,...,N.Foreach f € V, we have
N

LAHOO =) af® +d) , tER.
k=0

In this case we also assume that @) exists on R, and Y,c, [T (t — n)|? is
uniformly bounded on R for each k = 0,1,...,N.Given a linear-time invariant
system L of the type (a) or (b), next lemma assures that, for each fixed t € R, the
Zak transform (ZLy)(t, W) = Yo, Ly (t +n)e > W defines a function in
12(0,1).

Lemma(4.1.1)[89]: Let £ be a linear-time invariant system of the type (a) or (b)
above. Forany t € R the sequence {(Ly)(t + n)}n € z belongs to £*(z).

Proof :Whenever £ is of the type (b), the result trivially holds. Assume that £ is a
system of the type (a) with impulse response L. Then, forany t € R we have

%} 2

L)t +n)| =Z jl(x)qb(t +n-x)dx

oo_oo 10\?
2
< j(le(x)gb(t +n—x)|2> dx
_Oo .
2
< jll(x)l(Zlqb(t +n—x)|2> dx | < MJ|lI%,

where M = sup,er Ymezld(x — n)|?, and we have used a version of the
Minkowski inequality for integrals [122]. Now, consider s linear-time invariant
systems £;,j = 1,2,...,s, of the type (a), (b), or both. For notational ease we
choose t = 0 without loss of generality. The apparently more general set of samples
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{L;f (rn+ ¢ )}nez’j:l’2 _____ . Wheree; € Rforj = 1,2,...,s, is reduced to the case

considered here by taking the appropriate shifted systems.For j = 1,2,...,s, the
function g; in L?(0, 1) defined by

g(W) = ) £ pme ™ = (2£,¢)(0,W) , 3)
Nnez

plays an important role throughout this section. Indeed, next lemma gives an

expression for the samples {£;f (rn)} , which involves the functions

nez,j=1,2,.,s

gj,j = 1,2,...,sand the function F = T~'f in L?(0,1):
Lemma(4.1.2)[89]: Let f be a function in V, such that f = T F where
F € L?(0,1).Foreveryj = 1,2,...,s, we have
(Lif )an) =(F(),g; (De > ™) 201y , M E Z. (4)
Proof : Assume that £; is a filter of the type (a). For each n € z we have
(Lif )an) =(f (D, 9; ¢ =) 2Ry

= ) (FO ™) 201 ¢ = k), 05 C =rm)zqay

k€Z

= Y (PO, e ) 201y Ly — K.
K€L
Parseval’s equality and a change in the summation index gives

(Lif )rm) = (F(), Z £;(rn - k)e 2Ky 5 o

keZ
= (F(-),g_j (')e_znim'hz(o,n-
Assume now that £; is a filter of the type (b). Under our hypotheses on £; we have
that f®(t) =3 1exF(), 72 ) 201y p®(t —1). Hence, for each n € z, one
gets

N
(L;if )rn) = z cf® (rn + dy)
k=0
N
= ) ) F (e 00¢®(rn + di =D
k=0 lez
N
= (F(-),z o z d®(rn + d, - De 2™ 201y
k=0 lez

= <F(')'g_j (')e_zmm'hz(o,n-
Observe that, under appropriate hypotheses, the Poisson summation formula gives a
different expression for the functions g; . For instance, assuming that

Ynezl LW +n)| € L*(0,1), one has

84

——
| —




g;(W) = Z LoW +n) = z LW + )W + n) in[2(0,1),  (5)

NEZ NeEz

where we have used that ; € L'(R) n L*(R) when £; is a system of the type (a).
Lemma (4.1.2) leads us to study when the sequence {a; (-) e-2mirmy j=1,2,.s (OF

.....

j = 1,2,...,s, is a Bessel sequence or a frame for L?(0, 1).To this end, associated
with the functions a;,j = 1,2,...,s, we introduce the s X r matrix function
defined for w € (0,1) as

) w(wel) oa(w e 2))
AW) = aZ(:W) az(W.+;) az(WJrT;l)
\as(W) as (W + %) ( e W + r;l))

] [aj (v ;1 ]iii',é',::::i '

and its related constants
ay = essinf Ay [A"(W)AW)],  Ba = eSS Sup Ayay [A"(W)AW)],

we(0,1/7) wEe(0,1/7)
where A*(W) denotes the transpose conjugate of the matrix A(W), and A,,;,
(respectively, Amax) the smallest (respectively, the largest) eigenvalue of the positive
semi definite matrix A*(W)A(W). Observe that 0 < a, < B, < oo. Notice that in

the definition of the matrix A(W) we are considering the 1-periodic extensions of the
involved functions a;,j = 1,2,...,s.

Lemma (4.1.3)[89]: Let a; be in L*(0,1) for j = 1,2,...,s and let A(W)be
its associated matrix. Then:

.....

.....

0 < a, < B, <oo.. Inthis case, the optimal frame bounds are a,/r and B, /7.
Proof : Notice that the equivalence between the spectral and the Frobenius norms
(see [123]) gives a; € L*(0,1) for j = 1,2,...,s if and only if g, <oo. For
p = rors,L15(0,1/r) denotes the space of the functions H = [hy,..., h,]" such
that
1/7" P
2 .
1115z 0,1/ =f HW)12dw = ) k]| .,y <0, where [HOW)? is
0 j=1
the Euclidean norm of H(W) in CP. Forany F € L?(0,1) we have

( 1
1 & )




(FC),a; ()€™ ™) 200 1y
1/r

k-1 k-1 P
=f Zaj(W+ )F(W+ )e"”r“ amw.
] r r
0 =

T

_ T
Denote F(W) = [F(W),F(w + %)F (W + 71)] , Whenever
A(W)F(W) € L2(0,1/r), we obtain

S

D Y HFO.E Qe ™) 2|
j=1nez
S o+ (5

k=1

S 2

)

j=1

L?(0,1/7)
1 11/r
= ;”A(')F(')“ig(o,l/r) == j F*OW)A* (W)AW)F(W) dW.  (6)
0

If B4, < oo then, foreach F € L2(0,1), we have
1/r

f F*(W)A*(W)YAW)F(W) dW < BallFllZz01/m = BallFllZ201y »

0
Bessel bound is less than or equal to B8,/r. Let K < 4. Then, there exists a set
N < (0,1/r) of positive measure such that A,,,,[A*"(W)A(W)] = K for W €
Ng. Let F € L?(0,1) such that its associated vector function F(W) is 0 if W €
(0,1/r) \2x and F(W) is an eigenvector of norm 1 associated with the largest
eigenvalue of A*(W)A(W) if W € Q. We have that A(W)F(W) € L%(0,1/r)
and, using (6), we obtain

s 1/r
B o 2 1 K
Z Zl(p‘()’ aj(.)eZﬂlrn )L2(0,1)| > ;f KIFOW)|?2dW = =~ ||F||§2(0,1).
j=1nez 0

.....

L?(0,1), and if B, < oo then the optimal Bessel bound is B,/r. This completes the
proof of (i).To prove part (ii) of the Lemma, assume first that 0 < a, < B, < oo.

.....

L?(0,1). Moreover, using (64) and the Rayleigh-Ritz theorem (see [123]), for each
F € L*(0,1) we obtain

S
_ - 2 _ Ay 2 _ aa 2
ZZ|<F(.>,a,.<.)e2m Jizonl =~ IF0n = —— IFlE ),

j=1nez
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Hence, the sequence {a@;(-)e®™ ™ },e; j=1,.siS @ frame for L2(0,1) with optimal
lower frame bound bigger or equal that a4 /7. Conversely, if {aj(-)ezm’r”'}nez,jﬂ,_",s
is a frame for L?(0,1) we know by part (i) that 8, < oo. In order to prove that
a, > 0, consider any constant K > a,. Then, there exists a set 2, < (0,1/r) with
positive measure such that A,,,;,[A*(W)A(W)] < K for W € Q. Let F € L?>(0,1)
such that its associated vector function F(W) isO0ifw € (0,1/r) \2x and F(W) is
an eigenvector of norm 1 associated with the smallest eigenvalue of A*(W)A(W) if
w € f2. Since F is bounded, we have that A(W)F (W) € L2(0,1/r). From (6) we
get

1/r

ZZ|<F<>a,()ezm>Lzm)| j FOEAW = ZFIEsg

j=1nez

Denoting by A the optimal lower frame bound of {@;(De*™ ™} ,j=1,..s,we

nez’
have obtained that K/r > A for each K > a,. Thus a,/r = A and consequently,

a, > 0. Moreover, under the hypotheses of part (ii) we deduce that a,/r and ,/r
are the optimal frame bounds.

In order to complete the statement of Lemma (4.1.3),it is worth mentioning that one
can also prove that the sequence {dj(-)ez”im‘}nez, j=1,..s IS @ Riesz basis for L?(0,1)
if and only if it is a frame for L?(0,1) and r = s. Consider the functions g;,j =
1,2,...,s,givenin (3), and its related matrix G. It is worth to point out that, Lemmas
(4.1.2), (4.1.3), and the isomorphism T'gives the following result: There exist two
constants 0 < A < B such that

AIFIZ < ) Y |5fam|’ < BIFIP for all f €V, ™)

nez j=1
if and only if 0 < a; < B; < oo. Equation (7) coincides with the definition of
stable uniform averaging sampler given by Aldroubi and co-workers in [105]. In
[105] a necessary and sufficient condition for (7) is given for a shift-invariant space
with several generators. That condition is equivalent to this given above as one can
easily check.

The main aim in this section is to recover any function f in the shift-invariant space
Vg from its samples {(L;f )("M)}nez,j=1,2,.,s By means of a stable sampling formula,
I.e., the sampling formula will be an expansion with respect to an appropriate frame
for V. Having in mind Lemma (4.1.2),foreachj = 1,2,...,s we have

(L, f )rm) —<Z (+ D) g (- +7) e ™ ) zom ez

where f = T F. Assummg that g; € L”(0,1), for each j = 1,2,...,s, we obtain
that
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| - k ky
rZ(Ljf )(rn)e 2TV = z F (W + ;) gj (W + ;) in L?(0,1/7).
nez k=0

The above expansions also hold in L?(0, 1) by considering the 1-periodic extensions

of Fand g;,j = 1,2,...,s. Thus we have the matrix expression
:
inL*0,1), (8)

CGOW)F(W) =71 Lif rnye 2minW Lsf )(rn)e—2minr
f 2 w f 2 W

Nez Nnez

k-1
where G(W) = [g;(W +T)]j:1,2,...,s,k:1,2 ..... - and

T

_ T
F(W) = [F(W),F(W + 1r),...,F(W + 71)] . In order to recover F, assume

that there exists a vector [a;(W),...,as(W)] with entries in L*(0,1) such that
[a,(W),...,a;(W)]G(W) = [1,0,...,0] a.e.in (0,1).

As it will be proved later (see Theorem (4.2.2) below), a necessary and sufficient
condition for the existence of such a vector (not necessarily unique) is that a; > 0. If
we left multiply (8) by [a; (W),...,as(W)] we get

I

FW) = rlai(W),...,as(W)] [Z (LifH)rmye W, ., Z (Ls)Hrmye=2mm W

=r z a; (W) Z(Ljf )(rn)e—ZTEinTW — 2 E(Ljf )(rn)aj (W)e—Znian )
Jj=1 nez nez j=1

in the L?(0, 1)-sense. Finally, the isomorphism T gives

S
f@= rZZ(Ljf)(rn)(Taj)(t -rn) in Vg,
nez j=1

where we have used (2). In addition, much more can be said about the above
sampling expansion. In fact, the following result holds:
Theorem (4.1.4)[89]: Assume that g; € L*(0,1) for j = 1,2,...,s. If there exists
a vector [a; (W), ..., a,(W)] with entries in L* (0, 1)such that

[a,(W),...,a,(W)]G(W) = [1,0,...,0]a.e. in (0,1) (9)
then, for each f € Vg, we have

S
f() = ZZ(Ljf)(rn)Sj(t— rn),t € R, (10)
nez j=1
where S; = rTa;,j = 1,...,s. Moreover, the sequence {S;(¢t — rn)}nez’jﬂ’z’_ws Is

a frame for V;; with frame bounds ra,||®|l, and 76, ||®||.. The convergence of the
series in (10) is in the L?(R) sense, absolute and uniformon P .
Proof : Given f €, consider F = T7-1f in L?(0, 1). Above we have proved that

FOW) = 1) Y (F O, 85 (e M) 001y ;(W)e ™M in 12(0,1). (1)

nez j=1
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Bessel sequences for L2(0, 1) satisfying the representation property (11). In [82] we
obtain that they are dual frames for L2(0,1).Next, applying the isomorphism T to
(11) one gets the sampling expansion (10) in V,, where S; =rTa;,j =1,2,...,s.
Moreover, the sequence {S;(t — 1M)} e, j=12,.,s 1S @ frame for V. From Lemma (4.1.3)
Hence, ray |77 2|72 = raul|@llo and rB4lIT ||? = B4l Pl are frame bounds
for {S;(- =}z j = 1.2,..,5 = (Tlra; (De ™™ Phey jorz,..s (se€ [82]).
Point wise convergence in the sampling series is absolute due to the unconditional
convergence of a frame expansion. The uniform convergence on R is a consequence
of (11). Notice that the frame bounds in Theorem (4.1.4) are optimal whenever
{¢(- —n)},e, is an orthonormal basis for V, because, in this case, T is an unitary
operator. In the general case, the optimal frame bounds could be computed
orthonormalizing the Riesz basis {¢p(- —n)},, 8 {P(- — 1)}, » Where the
orthonormal generator ¢ has Fourier transform q§ = ¢ /@ (see [82]), and using
(5).The functions S; forj = 1,2,...,s are determined from the Fourier
coefficients of a; with respect to the orthonormal basis {€*™™},,c, . Indeed,

S0 = (T ) (O = 7 ) (g0, e ™) 21y Bt - ). (12)

The Fourier transform in (12) gives $; (W) = ra;(W)¢p(W),j = 1,2,...,s, where
we have used [82].Observe that condition (9) is equivalent to AT(W)G(W) = I, a.e.
in (0,1). In particular, this matrix equality implies that rank[G(W)] = r a.e. in
(0,1) and, as a consequence, necessarily s = r. In the next result we give a
characterization of the existence of a sampling formula like (10). It is also proved that
Theorem (4.1.4) provides all these formulas.

Theorem (4.1.5)[89]: Assume that g; € L*(0,1) for j = 1,2,...,s. Then the
following statements are equivalent:

(i) There exists a frame for V,having the form {S;(t — rn)}nez j=1,2,..s Such that for

each f € Vg,

f = Z z(Ljf )(rn)Sj(- —rn) in L*(R), (13)

nez j=1
(if) ag > 0. If these equ]ivalent conditions hold, the reconstruction functions are
given by S; = rTa; , where the functions a; € L*(0,1),j = 1,2,...,s, satisfy
AT W)G(W) = I, a.e.in (0,1).
Proof: First, assume that {S; (t — rM)}ney =12, IS @ frame for Vs for which
formula (13) holds. Applying the isomorphism 7~ to (13) we get
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S
F(W) = TZZ(Ljf)(rn)aj(W)e_Z”imw in L?(0,1),
nez j=1
where ra; = T71S;,j = 1,2,...,s. The sequence {ra;(W)e 2™"mW} i1, 518

a frame for L?(0, 1) and therefore, the functions a; € L*(0, 1). Since
S

F(W) = rz Z(p(.),g—j(,)e—zmrn-hz(o’l) aj (W)e—zmnrw ’
j=1nez
and {g; (e 2™}, e 12 s IS @ Bessel sequence for L%(0,1), we obtain that the

.....

frames for L2(0,1) (see [82]). In particular, according to Lemma (4.1.3), we deduce
that ag > 0. This proves (ii). Besides, for each F;, F, € L?(0,1) we have [82]:

(F1, F2)12(0,1) =ZZ<F1('), a; (1)e 2T 20 13 (e T, By (D) 20,1y (14)

j=1nez
Having in mind that

r—1 k I
(Fl(.)’aj(.)e—Zmrn-)LZ(o’l) — (Z F, < + ?> a; ( + F)’ e—Zmnr->L2(0,1/r) ’
k=0
r—1
= —2mirn- — (p—2minr: k k
(gj(e ()2 = (e :Z F, '+; 9j ’+; )12(0.1/7) »
k=0
Parseval’s equality allows us to write the right-hand side in (14) as
S r—1 k ) k r—1 k k
D QR+ D)al +7) R+ D)a(+ Fheenn
j=1 k=0 k=0
1/r 1/r

- | RomamgienRwydw = | FL a4 w)GnFm) dw.
0 0

Since the left-hand side in (14) equals fol/rFf(W)Fz(W) dW, we obtain that
ATW)G(W) = I a.e. in (0,1).Conversely, assume that a; > 0. Hence, the
inverse matrix [G * (W) G(W)]™! exists a.e. in (0,1). Consider the firstrow
[a;(W),...,as(W)] of the pseudo-inverse matrix

GT(W) = [6*(W) GW)]1G*(W) of G(W). Its entries a; are essentially
bounded in (0, 1) since the functions g; and det™[G*(W)G(W)] are essentially
bounded in (0,1). From GT(W)G(W) = I, we obtain that
[a,(W),...,a;(W)]G(W) = [1,0,...,0]ae. in (0,1). Thus, (i) comes out by
using Theorem (4.1.4) .

When ever the functions g; are continuous on R, the condition a; > 0 is equivalent

to det[G*(W)(w)G(w)] # OonR. It can be proved that the first row
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[a,(W),...,a,(W)] of the pseudo-inverse matrix GT(W)gives precisely the
canonical  dual  frame  {ra;()e "™ },czj=12.s Of the  frame
{gj(-)e‘Z’Tl"’"‘}nEZJ-ZL2 ,,,,, s . Other suitable solutions for (9) are given by the first row
of the matrix GT(W) + UW)[I, — G(W)GT(W)], where U(W) is any r X s matrix
function with entries in L*(0,1). When ever r = swe are in the Riesz bases
setting, and the following result holds:

Corollary (4.1.6)[89]: Assume that r = s and a; > 0. Then, there exists a
unique frame {S;(t — sn)}nezj=12,,s for Vi for which the sampling formula (13)
holds. In this case, this frame is a Riesz basis for V,with Riesz bounds s||®||,/f and
s||®|lw/ag . Moreover, the functions a;,j = 1,2,...,s, form the first row of the
matrix G~1. The functions S;,j = 1,2,...,s, satisfy the interpolation property
(L£;S;)(sn) = §,06,0, Where j,l = 1,2,...,sandn € z.

Proof : In this case, the unique solution of [a,(W),...,a,(W)]cG(W) = [1,0,...,0] IS
given by the first row of GT = G~1. By using that G(W)G~1*(W) = I, we obtain

(sa; (e 2™, g, (')e_znims'hz(o,n

1
= sjaj(W)gl(W)eZ”i(m‘n)SW dw

s—1

k k ,
Z a <W + E) g1 (W + E) e2mim-—m)sW gy
k=0

- 61’]' 5n’m.

=S

O\mn—xo

.....

{g"j (,)e—zmm-}nezj:lz Jare biorthogonal. Hence [82], they form a pair of

biorthogonal Riesz bases. The Riesz bounds for {S;(¢ _m)}nem=1z , follow from

Theorem (4.1.4) having in mind that, in this case, a,; = agf4 = 1.

Finally, sampling formula (13) for S; gives

Si(t) = Ynez 2i-1(L£:S; )(sn)S; (¢t - sn). The uniqueness of the coefficients of an
expansion with respect to a Riesz basis implies (£,S;)(sn) = 8,6, -

First, recall that {¢p(- — n)},,c, is a frame sequence with bounds 0 < A < B < oo,
i.e.,a frame for its closed linear span , if and only if A< @(W) < Ba.e.in
(0,1)\ N, where N = {w € (0,1): (W) = 0} [82]. In this case, T is a bounded
surjective operator from L?(0,1) onto V,,. For any f = TF € V, we have f =
F¢ .Since ¢(w + n) = Oae.inNandn € z, we deduce that TF, = TF,, where
F,,F, € 1?(0,1), if and only if F; = F, in L2((0,1) \ N). Under the new hypothesis
[a,(W),...,a,(W)]G(W) =[1,0,...,0] a.e.in (0,1)\N, the sampling result (10)
in Theorem (4.1.4) also holds. One can check that the proof in Theorem (4.1.4)

( 1
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applies, having in mind that the operator 7 : L2((0, 1)\ N) >V, defined for
F(W) if W € (0,1)\N,
0if W € N,

is an isomorphism satisfying the shifting property (2). In this case, the sequence
{Sj(t — ™)}negj=1,2,.s» Where S; = riT"aj J = 1,2,...,s, is also a frame for V.
Notice that the function g; defined in (3) is nothing but the Zak transform (z£;¢)(0,").
As in Lemma (4.1.2), one can prove for any f € V, that (£;f )(rn +&n) =
(F(), (ZL;p)(en,)e 2™ M) 2 o where F = T71f . and {en},e, € R. As a
consequence, stable generalized irregular sampling in V, depends on whether the

F € 1?((0,1)\N) asTF = TF,where F(W) = {

.....

can be seen as a perturbation of the frame {(Z£,¢)(0, W)e 2™ W}, o ii14 s
appearing in Theorem (4.1.4). Hence, by using similar techniques as those in [120],
the theory on perturbation of frames (see [82]) yields generalized irregular sampling
in the shift-invariant space V, for suitable error sequences {en},c,. This is work in
progress and will appear elsewhere [121].

In the over sampling setting, i.e., s > r, Theorem (4.1.4) allows us different
choices for the vector a(W) := [a,(W),...,a,(W)] and consequently, different
reconstruction functions S; . One may use this flexibility in order to obtain
appropriate sampling functions S;. For instance, if the generator ¢ and the impulse
responses of the linear-time invariant systems £; have compact support, the functions
g; are trigonometric polynomials and we can choose a(W) in order to obtain
sampling functions S; with compact support (which involves low computational
complexities and avoids truncation errors). We illustrate this assertion in the case of
cubic splines:

The cubic B-spline is defined as N, = N; * N; * N; * N;, where N;denotes the
characteristic function of the interval (0, 1). It is known that N, is a stable generator
for the cubic splines in L*(R) with nodes at the integers (see[118]). Consider the
s = 3 linear-time invariant systems defined as

x+% x+§ x+1
Lf () = f £ (©dt Lof () = j £ (©)dt, Lf (x) = f £ (0 de,

and the sampling period r = 2. Denoting by
gj(z) = Zngb(n)z" ,G(2) = [gj(ze 2™ *=D/MY o1,

Nnez k=1,2,..,r
if there exists a vector b(z) := [b1(2), b,(2), b3(z)] whose entries are polynomials,
and such that b(z)G(z) = [z!,0] for some non-negative integer |, then the vector

a(w) = e?™kWh(e=2mW) \whose entries are trigonometric polynomials, satisfies

( 1
1 9 )




a(W)G(W) = [1,0]. Thus we have obtained reconstruction functions S; with
compact support (see (12)). In particular, solving a linear system of 12 equations
with 12 unknowns we find a vector b(z) whose entries are polynomials of degree 3,
satisfying b(z)G(z) = [z 0]. The corresponding sampling functions §; ,j = 1,2,3,
are

S;(t) = 4187 1[—5395N,(t + 1) + 22687N,(t) + 188N, (t — 1) — 705N, (t — 2)],

S,(t) = 41871[7943N,(t + 1) — 41438N,(t) — 892N, (t — 1) + 3345N, (¢t — 2)],

S3(t) = 4187 [—1750N,(t + 1) + 21715N,(t) + 1160N,(t — 1) — 4350N,(t — 2)].
The associated sampling formula for f € 1}, reads:

F© =) [Laf @mSi( = 20) + Lof 2mIS,(E = 2n) + Lsf (2m)S3(¢ = 2n)],

Nnez
t € R ,uniformlyonR .

Section(4.2) Shift-Invariant Spaces and its Approximation Properties
The classical Whittaker—Shannon—Kotel’nikov sampling theorem states that any

function f band-limited to [—-1/2,1/2],i.e.,

f@ = f_li/zz FW)e?™ W qw,t € R, may be reconstructed from its sequence of

samples {f (n)}ne, as

£t = Z F(n) sinc(t —n),t € R,
n=-—oo
where sinc denotes the cardinal sin function, sinc(t) = sinmt/mt. Thus, the Paley—
Wiener space of functions band-limited to [—1/2,1/2] is generated by the integer
shifts of the sinc function. The WSK sampling formula has its counterpart in d
dimensions. It reads:

f) = Z f(@)sinc(t; — ay)...sinc(ty — ag),t = (tq,...,t;) € RY,
aezd
where now the function f is band-limited to the d-dimensional cube

[—1/2,1/2]%,i.e, f@= J f (x)e?™x't dx t € R
[-1/2,1/2]%

Although Shannon’s sampling theory has had an enormous impact, it has a number of
problems, as pointed out by Unser in [80,106]: It relies on the use of ideal filters; the
band-limited hypothesis is in contradiction with the idea of a finite duration signal;
the band-limiting operation generates Gibbs oscillations; and finally, the sinc function
has a very slow decay, which makes computation in the signal domain very
inefficient. Besides, in several dimensions it is also inefficient to assume that a
multidimensional signal is band-limited to a d-dimensional interval.
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Moreover, many applied problems impose different a priori constraints on the type
of functions. For this reason, sampling and reconstruction problems have been
investigated in spline spaces, wavelet spaces, and general shift-invariant spaces. See,
for instance, [78,106,113] and the references therein. In many practical applications,
signals are assumed to belong to some shift-invariant space of the form
Vi =span{¢(t — a):a € z?} where the function ¢ in L?(R?) is called the
generator of Vdf . Assuming that ¢ € LZ(R%) is a stable generator, i.e., the sequence
{p(t — a)}, 4 IS aRiesz basis for Vdf, the shift-invariant space V(ﬁ can be described
as

Vi = { Z a,d(t —a): {a,} € £2(z)} c L2(RY). (15)

a €z
On the other hand, in many common situations the available data are samples of

some filtered versions of the signal itself. This leads to generalized sampling (or
average sampling following some recent authors [105]) in Vq,f: Suppose that s linear

time-invariant systems (filters) £;,j = 1,2,...,s, are defined on the shift-invariant
subspace Vqﬁ of L2(R%). In mathematical terms we are dealing with (continuous)
operators which commute with shifts. The goal is to recover any function f in qu
from an appropriate subsequence of the set of samples {(£;f )(@)}eze j=12..s » BY

means of a sampling formula which is a frame expansion in V(f. Recall that a

sequence { f,,} is a frame for a separable Hilbert space H if there exist two constants
A,B > 0 (frame bounds) such that Al flI? < X, f:)? < Bl flI? for all
f € H.Given a frame { f,,} for H the representation property of any vector f € H as
a series f =Y., cufn 1S retained, but, unlike the case of Riesz bases, the uniqueness
of this representation (for over complete frames) is sacrificed. Suitable frame
coefficients c,, which depend continuously and linearly on f are obtained by using
the dual frames {g,,} of { f,,}, i.e., {g,,} is another frame for H such that
fF=2f,9n) fn = 20lf, fn) gn Tor each f € H. For more details on the frame
theory see the superb monograph [82] and the references therein.

Under appropriate hypotheses, any function in a shift-invariant space in L2(R%) can
be recovered from its samples in the lattice z% of R? (see [103]). If we sample the
function on the sub-lattice Mz%, where M denotes a matrix of integer entries with
positive determinant, we are using the sampling rate 1/(detM) and, roughly
speaking, we will need the generalized samples {(L;f )(Ma)},epe j=12, s from
s = detM linear systems L; for the recovery of f . The one-dimensional case has
been treated in [85,89,107]: Under suitable hypotheses, we can recover any function

in Vq§ from the sequence of generalized samples {(L;f ("n)}nez j=1,2,.s » Where the

94

——
| —




number of channels is s >r € N. In this work we obtain, in the light of the
L% (R%)-theory, sampling formulas for qu of the type

£ = (detM)Z 2 (Lif YM)S;(t — Ma),t € R, (16)
j=1 aezd

where the sequence of reconstruction functions {S;(- —Ma)} forms a

acz? j=1,2,.,s
frame for the shift-invariant space Vdf. To this end, first observe that the shift-
invariant space V;; is the image of L[0, 1)¢ under the isomorphism T,, : L[0,1)¢ -
Vs, which maps the orthonormal basis {e~2mia'xy ., for L2[0,1)¢ onto the Riesz
basis {p(t — @)} eqa fOr V.

Next we express the generalized samples {(£;f )(Ma)}

QEZ

aezd j=12,.s &5 the inner

products of the function F = Td,‘l f € L?[0,1)% with respect to a particular frame
in L2[0,1)%. Searching for its dual frames we obtain those expansions for F in
L7[0,1)%having the samples {(£;f )(Ma)} ez =15, @S the frame coefficients.
These frame expansions have precisely the form

S
F = (detM)z Z (Lif )(Ma)d; ()e~?™aM'x in [2[0,1)¢,  (17)
j=1 aezd
where the functions d; € L*[0, 1D%,j = 1,2,...,s, are obtained by solving a matrix
equation
[dy(x),...,ds(x)]G(x) = [1,0,...,0] a.e.in [0,1)%, (18)
where G(x) is an s x (detM) matrix of functions defined in [0,1)¢ (the so-called
modulation matrix in the filter-bank jargon) which only depends on the generator ¢
and on the systems L;,j = 1,2,...,s (see (26) infra). Finally, applying the
isomorphism Ty to the frame expansion (17) for F we will obtain the aforesaid
sampling expansions for f = T F in V(g ,where S; = Tyd;,j = 1,2,...,s. Besides,
the perturbation theory for frames gives generalized irregular sampling for
appropriate sequences of perturbed generalized samples

{L;f Y (Ma + gj'a)}aezd,j=1,2,...,s'

Moreover, in the oversampling case, i.e., whenever s > detM, we are dealing with
overcomplete frames and several different dual frames allow us to obtain a variety of
reconstruction functions. Thus we can try to find some reconstruction functions
S;,j = 1,2,...,s, with “good properties”, such as compact support, exponential
decay, etc. As one can see in the present section, this relies on the search of solutions
of (18) with prescribed properties. From a mathematical point of view, this is
equivalent to solving (18) whenever the entries of the matrix function G (x) belong to
a prescribed algebra of functions .
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This section shows that a generalized sampling formula like (16) allows to construct
an L?(R%)-approximation scheme as follows: For a suitable smooth function f (in a
Sobolev space), consider the operator I" , formally defined as

S
(FF)(E) = (detM)Z Z (L;f YMa)S;(t — Ma),t € RY.

j=1 aezd
The aim is to obtain a good approximation of f by means of the scaled operator I'"
given by I' = o,I'ayp, , where oy f = f(-/h),h > 0.
For f in an appropriate Sobolev space we obtain an estimation for the L?-
approximation error of the type ||[I'*f — f||, = O(h")as h - 0*, where r € N
denotes the approximation order which coincides with the order of the Strang—Fix
conditions satisfied by the generator ¢.

Looking for an estimation like the one above with respect to the L*-norm leads to
extend the sampling formula (16) to the larger space Vg = {span,«¢(t — a): a € z}.
Thus, for any function f in an appropriate Sobolev space, we obtain an analogous
estimation for the L*-approximation error: Namely, ||[r'*f — f|| = o(h")as h » 0F
where now the approximation order r depends both on the order of the Strang—Fix
conditions satisfied by the generator ¢, and on the greatest order of the partial
derivatives appearing in the systems L;, if any.

We introduce the needed preliminaries on the shift-invariant space Vq,f, on the linear
time-invariant systems £; , and on the lattices in z¢ in order to derive a generalized
sampling theory in Vq,f. Moreover, we study some sequences in L2[0, 1) which play a
crucial role in what follows. Let ¢ € L?(R%)be a stable generator for the shift-
invariant space

Vi = {2 ab( = @): {aglgere € @D} F(RY),

aezd
I.e., the sequence {¢(- — @)} ,c,a IS a Riesz basis for Vdf. A Riesz basis in a separable

Hilbert space is the image of an orthonormal basis by means of a bounded invertible
operator. Recall that the sequence {¢(- — @)} ,c,a IS a Riesz sequence in L*(R%),
i.e., a Riesz basis for Vdf if and only if 0 < ||®@|| < ||®l < o0, Where ||®]|, denotes
the essential infimum of the function @(W) = }.5c,a lp(w + B)|?in [0,1)¢, and

@] it's essential supremum. Furthermore, ||®]||, and ||®||. are the optimal Riesz
bounds [82].
Besides, Vq,f Is a reproducing kernel Hilbert space (RKHS) since the evaluation

functionals are bounded in qu . Indeed, for each fixed t € R% we have

JGIRE % D et~ f eV, (19)

aczd
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where we have used Cauchy—Schwartz’s inequality on f(t) = Y cd AeP(t — @),
and the Riesz basis condition

12l ) lael® <IFIP <@l ) lagl?,f € VE .

aezd aczd
Inequality (19) shows that convergence in the L2(R%)-norm implies pointwise

convergence which is uniform on R%.The reproducing kernel of Vqﬁ IS given by
k(t,s) = Yaeza (t — @)*(s - @) where the sequence {¢*(- —a)},c,¢ denotes the
dual Riesz basis of {¢ (- —a)},. 4. Recall that the Fourier transform of the function
P is P* = % On the other hand, the space Vqﬁ is the image of L?[0,1)¢ by means of
the isomorphism 7y : L?[0,1)¢ - Vdf which maps the orthonormal basis
{em2mia’x}  for 12[0,1)% onto the Riesz basis {¢(t -a)} _ , for V. For
F € I?[0,1)% we have (T3F )(t) = Tpera F(@)gp(t-a),t € R?, where F(a),
a € z%, are the Fourier coefficients of F , i.e., for each a € z¢,
F(a) = f[o’l)dF(x)eZ”i“T" dx. Notice that any function f = T, F in V§ , where
F € L2[0,1)%, can be expressed as f (t) = (F,Zy(t,)) 201yt € R?, where Z,,
denotes the Zak transform of ¢. Recall that the Zak transform of f € L2(R%) is
formally defined in R2* as (Zf)(t,x) = Xgeuaf(t + B)e ?™Fx See [92] for
properties and uses of the Zak transform. The following shifting property of 73 will
be used later: For F € L?[0,1)% and a € z% we have

Ty[F (Ve 2™e"|(t) = Ty[F 1(t —a),t € R? . (20)
We consider s linear time-invariant systems £; in L*(R%) such that £;f = h; * f,
j = 1,2,...,s, of the following types:
(@) The impulse response h; of L; belongs to LY(RY) n L2(R%). Thus, for any
f € Vg we have

QEZ

L)@ = [f*+h 1) = ff(x)hj(t — x)dx,t € R%
R4

(b) The impulse response h; is a linear combination of partial derivatives of shifted
delta functionals, i.e.,

(Lif )(®) = z ¢ DPf(t +d;p ), te R

|BI=N;

If there is a system of this type, we also assume that ¥, |DPdp(t —a)|? is
uniformly bounded on R¢ for || < N; .Whenever the linear system £; is of type (a),
the Minkowski inequality for integrals shows that the sequence
{(Li)(t + B)Ygeya € £2(z?) forany fixed t € R? (see [89]). Trivially, the same
applies for £; of type (b). Therefore, for any fixed ¢t € R4, the function

( 1
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(ZL;)(t,x) = Xpega(Lid)(t + B)e~2mA'x helongs to L2[0,1)4 and the following
expression for £; holds: Forany f = T,F € Vq,f we have

(Lif )®) = (F,ZL;p(t,)) 202, t € R, (21)
The proof is analogous to the one of [89]. In particular, for any a € z* we have

(Lif )(@) = (F ,ZL,p(0,)e ™) 1 110 = J F (x)g;(x)e?™* dx, (22)
[0,1)4
where the functions 9, = L2,...,5, given by

9,00 = 25900 = ) (56)Be ¥ F* € PO, (23)
pezd
will play a central role throughout this section.

Given a nonsingular matrix M with integer entries, we consider the lattice in z%
generated by M, i.e., Lat(M) = {Ma: a € z%} c z%.

Without loss of generality we can assume that detM > 0; otherwise we can
consider M' = ME where E is some d X d integer matrix satisfying det E = —1.
Trivially, LatM = LatM’. We denote by M™ and M~ the transpose matrices of M
and M1 respectively. The following useful generalized orthogonal relationship holds
(see [86]):

i Tay=T
eZTrlaM k

{detM , a € Lat(M) ,

0, € z%\Lat(M), 24
KT a € z%\Lat(M) (24)

Where N(M") = z% n{M"x: x € [0,1)4} .The set N(M") has detM elements
(see [108] or [109]). One of these elements is zero, say i; = 0 ; we denote the rest of
elements by i,,..., iz0:y Ordered in any form.Note that the sets, defined as

Q.= M7Ti, + M7[0,1)% k= 1,2,...,detM, satisfy (see [109]):

detM
0N Qu=0 if k=#k and Vol UQk -1 .
k=1
Thus, for any function F integrable in [0, 1)¢ and z%-periodic we have
detM
j F(x)dx = Z jF(x)dx.
[0,1)¢ k=1 Q4

Given s linear time-invariant systems £;,j = 1,2,...,s, the aim is to recover any
function f € qu from its generalized samples at a lattice Lat(M) of z4, i.e., from
the sequence of samples {(L;f )(Ma)} e, j=1 5,5+ (80) gives

(L;f )(Ma) = (F ,me‘zni“TMTx)Lz[o,l)d ,a€ztand j=1,2,...,s. (25)
As a consequence, the recovery of the function F = T¢_1 feL? [0,1)d, and hence
of f € qu , from the sequence of generalized samples leads us to study the
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properties (completeness, Bessel, frame, or Riesz basis properties) of the sequence
{gj(x)e_zmTMTx}and,j:Lz ..... s in L2[0,1)%.

Next, we carry out the study of the completeness, Bessel, frame, or Riesz basis
properties of the sequence {g (e 2"} yepa ;o1 5 s iN L2[0,1)%. To this end, we

introduce the s X (detM) matrix of functions

[91(x) g1(x+M7iy) -+ gi(x+ M Tigeen))
G(x) = |gz(X) Go(x+M7Tiy) o gplx + M_TidetM)|
lgs(0)  golx+ M) -+ goCx + M7igern)
=[g;(x +M7"ip)] j=120s (26)
k=1,2,.,detM

and its related constants
Ag = essinf Apin [G*(X)G(x)] ,Bg = €55 supApa[G*(x)G(x)],

x€[0,1)4 x€[0,1)4
where G*(x) denotes the transpose conjugate of the matrix G(x), and A,.n
(respectively A,,,,,) the smallest (respectively the largest)eigen value of the positive
semi definite matrixG*(x)G(x). Observe that0 < A; < B; < oo. Note that in the
definition of the matrix G(x) we are considering the z¢-periodic extension of the
involved functions g;,j = 1,2,...,s. The following result remains true for
arbitrary functions g; in L? [0,1)¢,j=1,2,...,s,notnecessarily given by (23).
Lemma (4.2.1)[77] : Let g; bein L?[0,1)® for j = 1,2,...,s and let G(x)
be its associated matrix as in (26). Then:
(2) The sequence {g, (e ™"} ye,a ;1 5, ¢ is @ complete system for 12[0,1)? if
and only if the rank of the matrix G (x) is detM a.e. in [0,1)¢.
(b) The sequence {g (e "™ *}ye,a i 5,5 is @ Bessel sequence for L2[0,1)4 if
and only if g; € L*[0,1)? (or equivalently B; < oo).
In this case, the optimal Bessel bound is B /(detM).
(c) The sequence {g (e 2" ¥} e a1 5 s isaframe for L2[0,1)¢ if and only if
0 < Ag £ B; < .
In this case, the optimal frame bounds are A;/(detM) and B /(detM).
(d) The sequence {g, (e 2™ }ye,a iy, s is a Riesz basis for 12[0,1)¢ if and
onlyifitisaframeands = det M.
Proof : Properties (a), (b) and (c) depend on the behavior of the £2-norm of the

sequence of inner products {(F,g,(e ™M) 20 1ya}qes j=1,2,.,s O any function

.....

.....

F € L2[0,1)4. First, we obtain a representation for this #2-normby using that the
sequence {e?™@™x} _ 4 is an orthogonal basis for L2(M~'[0,1)¢. For any F €
L?[0,1)% we have
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(F(x),9,()e ™M) 210100 = f F(x)g,(x)e*™“M'* dux

[0,1)d
detM

= Z fF(x)gj(x)eZ”mTMTx dx

k=1 Qx
detM

_ j z Fx + MTi)g (x + M5 dx, (27)
M_T[O,l)d k=1
where we have considered the z?-periodic extension of F . Then,

S
e : Tagl 2
Z z |(F(x),gj(x)e_2m“ ) 12[0,1)4

j=1 a€z?
1 S
B detMZ
j=1 L>(m7'[0,1)%)

Denoting F(x) =[F (x),F (x + M7"iy),....,F (x + M7"iz.p)]" the equality above
reads

detM 2
z Flx+ M7y g (e + M)
k=1

S
— < Tl 2 1
D D F. 0@ | = S IGCOF N gy (28)

j=1 aez

Where we have denoted L2(M~"[0,1)%) = L*(M~'[0,1)%) x- - -x L*(M~7[0,1)%)
(s times) with the usual norm. On the other hand, using that the function g; is 74 -
periodic, we obtain that the set
{gj(x+M 7T + M), g;(x +ig + M7Tiy),..,0;(x + M7 + M7 Tigey)} has
the same elements as{g;(x + M~"iy),g;(x + M7"i,),...,g;(x + M igey)}. Thus
the matrix G(x + M~ "i,) has the same columns of G (x), possibly in a different order.
Hence, rankG(x) = detM a.e. in [0,1)¢ if and only if rankG(x) = detM a.e. in
M~[0,1)4. Moreover,

Az = essinf A [G*(X)G(x)] ,Bg = ess sup dyug G (x)G(x)]. (29)

x€M™'[0,1)4 x€eM~[0,1)4

To prove (a), assume that there exists a set 2 € M~'[0,1)¢ with positive measure
such that rank G(x) < detM,x € (2. Then, there exists a measurable function
v(x),x € £, such that ¢(x)v(x)=0and |v(x)| =1 in 2. This function can be
constructed as in [97]. Define F € L?[0,1)¢ such that F(x) = v(x) if x € 2, and
F(x) = 0if x € M7"[0,1)%\ 2. Hence, from (28) we obtain that the system is not
complete.

Conversely, if the system is not complete, by using (28) we obtain a F(x) different
from O in a set with positive measure such that G(x)F(x) = 0. Thus rankG(x) <
detM on a set with positive measure. Parts (b) and (c) in Lemma (4.2.1) have been
proved in [89] for the univariate case. By using (28) and (29), the proofs for the
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general case are completely analogous. To prove (d) we assume that detM = s and
that the sequence is a frame. We see that it is also a Riesz basis by proving that the
analysis operator

A: LP[0,1)* - £5,A(F ) = {{F(x) 'me_zmaTMTx) LZ[O,1)d}a’Ezd,j:1,2,...,s
IS surjective (see [82]). To this end, notice that when detM = s the matrix G(x) is a
square matrix and hence, the condition A; > 0 implies that the inverse matrix
G~1(x) exists and its entries are essentially bounded. Let {c;, Yaest j=12,.s DE an
elementof £2.Forj = 1,2,...,s we define the function

£(x) = (detM) z ey

a€Ezd

and let F be the function such that F(x) = ¢ 1(x)[&(x),...,& ()], x €
M~[0,1)4. This function belongs to L?[0,1)% because the entries of G~1(x) are
essentially bounded. We have that G(x)F(x) = [§,(x),...,&(x)]", and using (27)

we obtain that
detM

(F(x) ,gj(x)e_zni“TMTx) = j z F(x + M_Tik)gj(x + M—Tik)ezmaTMTx dx
mM7[0,1)@ k=1

— fj(x)eZniaTMTx dx = Cj,a )
M~ "[0,1)4
and consequently, A(F) = {¢jq }aes?j=12.,s- CoOnversely, assume that the

sequence {g (e ™M Yy, g, o 1S a Riesz basis. Let { fj o Yoeqt jo12,.,5 DE it

.....

dual Riesz basis. Then, by using (27) we obtain
detM

Z fj’,O(x+ M—Tik)gj(x+ M—Tik)eZm'aTMTx dx = 60(,0(5]-']-/.
M_T[O,l)d k=1

Therefore, for j,j' = 1,2,...,s, we have
detM

Z firox+ M7Tip)gi(x + M7Tiy) = (detM)§; j» a.e.in [0,1)%
k=1

Thus the matrix G (x) has a right inverse; in particular, s < detM. As a consequence
of (a) we have s > detM and, finally, s = detM. Next we discuss the meaning of
Lemma (4.2.1), whenever the functions g;,j = 1,2,...,s, are given by (23), in
terms of the average sampling terminology introduced by Aldroubi et al. in [105].
Thus, following [105] , we say that:

(i) The set of systems {£, L,,..., L} is an M-determining filtering sampler for Vj if
the only function f € qu satisfying £;f(Ma) = 0 for all j = 1,2,...,s and
a € z% is the zero function.
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(if) The set of systems {£,,L,,...,Ls} 1S an M-stable filtering sampler for qu if

there exist two positive constants C; and C; such that
S

2
GIfIE <) Y |5fMa)] <GIfIP for all f €V
j=1 aez

If {£;,L,,...,L;} IS an M-stable filtering sampler for qu , then any function
f € Vqﬁ can be recovered, in a stable way, from the sequence of generalized samples.
Roughly speaking, the operator which maps f € Vqﬁ into the sequence of samples
{£if(Ma)}ye,e j=12,. s has a bounded inverse. An M-determining filtering sampler
for V(g can distinguish between two distinct functions in Vq,f , but the recovery is not
necessarily stable. Notice that from (25), parts (a) and (c) of Lemma (4.2.1) read as
follows:

(i) The set of systems {L,,L,,..., L} is an M-determining filtering sampler for Vdf
if and only if rankG(x) = detM a.e. in [0,1)¢ (and hence, necessarily, s >
detM).

(i1) The set of systems {£;, L,,..., L} is an M-stable filtering sampler for Vdf if and
only if 0 < A; < B; < oo. These properties can be expressed in terms of the
function det[G*(x)G(x)]. Indeed, as rankG(x) = detM if and only if
det[G*(x)G(x)] # 0, we have that the set of systems {£4,£,,...,£L;} is an M-
determining filtering sampler for v3 if and only if det[G*(x)G(x)] # 0 a.e. in
[0,1)¢ Provided that the function g; € L°[0,1)¢ for each j = 1,2,...,s (or
equivalently B; < o0), since det[G*(x)G(x)] is the product of the eigenvalues, we
have that
Amin[G* ()G ()N < detG*(x)G(x) <

(Anax[G* )G OD@EM 11,0 [6* ()G (0] < BE™ ™ Ayin[6* ()G ()],
and therefore, the set of systems {£,, £,,..., L} is an M-stable filtering sampler for
V; if and only if

ess infdet[G*(x)G(x)] > O.

x€[0,1)4

If the functions g;,j = 1,2,...,s, are continuous on R?, the above condition reads:
det[G*(x)G(x)] # 0 forall x € [0,1)?Hence, the set {£,,L,,..., L} is an M-stable
filtering sampler for Vdf if and only if

rankG(x) = detM  for all x € [0,1)¢ . (30)
In the above section we have proved that, provided that the functions g; € L*[0,1)¢
foreachj = 1,2,...,s,theset {£,L,,..., L} IS an M —stable filtering sampler for
Vq,f if and only if A; > 0. In this section we obtain the corresponding stable

sampling formulas leading to the recovery of any function f € Vqﬁ from the
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sequence of its generalized samples {£;f (Ma)} . The sampling formula

will be unique in the case s = detM. These, explicitly given, sampling
formulas consist of the major difference with the analogous results included in [105].
Now we prove that the expression (22) allows us to obtain F from the generalized
samples {£;f (Ma)} . Applying the isomorphism 73 we get generalized
regular sampling formulas in Vdf . Assume that g; € L*[0,)% forj = 1,2,...,s;
then, F(x)g;(x) € L?[0,1)%. Hence using (24) and (22), for j = 1,2,...,s we
obtain that
(detM) 2 (Ljf) (Ma)e—Zm'aTMTx — z (Ljf)(a)e—zmaTx z e—Zm'aTM_Tk
aezd aezd keN (MT)
_ Z z (Lif) (@ o-2mic (x+M k)
keN (M) qezd
= z Fx+M k)gj(x+M7k).
kEN (M")

aEZd,j=1,2 ..... S

aezd,jzl,z ..... S

This can be written in matrix form as

z (Lif)(Ma)e 2> z Lsf(Ma/)eZHiaTMTx]T

a€zl aezd
in L2[0,1)¢4, where the matrix function G(x) is given in (26) and F(x) denotes the

vector F(x) = [F(x), F(x + M7"iy),..,F (x + M‘TidetM)]T. In order to recover the
function F, let [d,(x),..., ds(x)] be a vector with entries in L*[0,1)¢ such that
[dy(x),...,ds(x)]G(x) = [1,0,...,0]a.e.in [0,1)%. Later, we will show that a
necessary and sufficient condition for the existence of such a vector is that A; > 0.
As a consequence, we get

G(x)F(x) = (detM)

S
F(x) = (detM)z z (Lif) (Ma)e~2ma™'x i [0,1)2. (31)
J=1 qezd
Finally, the isomorphism 7 gives

£ = (detM)zz(Ljf)(Ma)(Td,dj)(t— Ma),t € RY,

j=1 aezd
where we have used the shifting property (20) and that the shift-invariant space Vqﬁ IS

a RKHS. In addition, much more can be said about the above sampling expansion. In
fact, the following result holds:

Theorem (4.2.2)[77]: Assume that the functions g; given in (23) belong to

L*[0,1)¢ for each j = 1,2,...,s. Let G(x) be the associated matrix defined in
[0,1)¢ as in (26). The following statements are equivalents:
(@) 4 > 0;
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(b) The set of systems {£,, £,,..., £} is an M —stable filtering sampler for V§;

(c) There exists a vector [d; (x),...,ds(x)]with entries d; € L% [0,1)¢ satisfying
[d{(x),...,ds(x)]G(x) = [1,0,...,0]a.e.in [0,1)¢ , (32)

(d) There exists a frame for qu) having the form {S;(- — Ma)}ye,t j=12,. s SUCh that

forany f € V3

S
f= (detM)z Z(Ljf)(Ma)Sj(- _Ma) in I2(RY) (33)
j=1 a€ez
In case the equivalent conditions are satisfiedwe have that the reconstruction
functions S;,j = 1,2,...,s, in the sampling formula (33) are necessarily given

through a vector [d,(x),...,ds(x)] satisfying (32), by

S50 =) G@t-a) ¢ € RY, (349)
a€czd
Where ci]-(a),a € z, are the Fourier coefficients of d; , ie, d;(x) =

Yiaeqd ci]-(a)e‘z’”“”‘. The sampling series in (33) also converges absolutely and
uniformly on R9. If s = detM then the sequence {S;(- — Ma)}yeqest j=12,.,5 1S @
Riesz basis for Vqﬁ and the sampling functions S;,j = 1,2,...,s, satisfy the
interpolation property (£;/S;)(Ma) = §; /640, wWhere j,j’ = 1,2,...,sand a € z.
Proof :Part (c) in Lemma (4.2.1) proves that conditions (a) and (b) are equivalent. If
A; > 0 then ess infycpg,1ye det[G"(x)G(x)] > 0 and , consequently, there exists
the pseudo-inverse matrix GT(x) = [G*(x)G(x)] G *(x); its entries are essentially
bounded and its first row satisfies (32); therefore (a) implies (c). If [d{(x),...,ds(x)]
satisfies (32) with d; € L*[0,1)%, we have proved earlier that formula (33) holds in

L?(R%) where S; is equal to T,d; or, equivalently, is given by (34). Since we have
J PYJ

assumed that d; € L[0,1)¢ for each j = 1,2,...,s, Lemma (4.2.1) (b) proves that

{gj(x)e‘Z”i“TMT"}aEZd’ j=12,.s IS a Bessel sequence in L?[0,1). The same argument

proves that {(detM)dj(x)e‘z”"“TMT"}aEZd’FLZ’_H’S is also a Bessel sequence in
L?[0,1)%. These two Bessel sequences satisfy (see (25) and (31)):

S
F(x) = (detM) z z (F, g, (x)e—ZEiaTMTxhz[O’l)d dj (x)e—ZTL'iaTMTx’ Fel? [0’1)d_
J=1 aezd
Hence, they form a pair of dual frames for L?[0,1)¢ (see [82]). Since

Si(t — Ma) = Ty[d;(-)e 2™«M"](t) and Ty is an isomorphism, the sequence
Si(t — Ma d i is a frame for V2 ; hence (c) implies (d). Notice that since
j a€z®,j=1,2,.,s 0}

. Ta T . -
we have assumed that {{g (e ™" “}pe,d j=1,2,.s 1S @ Bessel sequence with

.....

bound
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Bg/(detM) and (L;f )(Ma) = (F, ﬁ)e‘z”i“TMT")Lz 0,1y%» We have

; : S iy P
Y lgfaaf <= < 2L f e v

j=1 aez
If {Sj(t — Ma)}geptj=12,. s IS @ frame for Vdf , then formula (33) gives a stable

way to recover f € Vq,f from its generalized samples. Indeed,
2

I = (detm)? D5 (£1)(Me)s; (- ~Ma)

j=1 aezd

< (detM)ZCZ Z lLf M)

j=1 aez?
where C is a Bessel bound for {S;(t — Ma)}ye,ej=12, s Hence the set
{L£1,L;,..., L} is an M —stable filtering sampler for v . Therefore (d) implies (b).
The pointwise convergence in the sampling series is absolute due to the unconditional
convergence of a frame expansion; it is uniform on R%as a consequence of (19).
If s = detM then, according to Lemma (4.2.1) (d), the frame

{St-Ma)} (i), {Tqbdje‘Z”i“TMT‘}aEZdJ_:LZ lllll _ s a Riesz basis for v .

.....

Applying formula (33) for f = Sy and having in mind the uniqueness of the
coefficients in a Riesz basis, we get the interpolatory property (LjrS]-)(Ma) =
8; i764,0 - The equivalence between conditions (a), (b) and (d) in Theorem (4.2.2)
was established in [105] for average sampling, at the lattice z¢, in finitely-generated
shift-invariant spaces by using another techniques. Notice that our generalized
sampling on the more general sampling lattice Mz® can be seen as a problem of
generalized sampling in a finitely-generated shift-invariant space on the sampling
lattice z¢. Indeed, the generalized sampling of the functions f = Y c,e a,d(- —@)

at Mz* can be thought as a bounded map from £(z%) to (#?(Mz%))* :

(Gelacss = {Z aaLid(MB ~ a)} ,
a€zd 1<j<s,fez?
or also as
detM
{agz hstsdetM,and — {Z z aftgj(l)t(ﬂ - a)} )
t=1 aezd 1<j<s,f€z?

where Jif W) = [Li{f (w + M7 )}](0),¢.() = ¢(M - =J;), and
{Jl,JZ,.. yJaerm) = z¢n (M[0,1)%), which can be seen as generalized sampling

t z¢ of the functions f having the form: f =Y%My _.al¢,(- —a). The
samplmg formulas (33), explicitly given by using (c), are the novelty of the result
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proved here. The solutions of (32) with entries in L*[0,1)? are exactly the first row
of the (detM) X s matrices of the form

D(x) = GT(x) + U)[Is — G()GT(x)] (35)
where GT(x) is the pseudo-inverse matrix of G(x),GT(x) = [G*(x)G(x)]71G*(x),
and U(x) is an arbitrary (detM) x s matrix with entries in L*[0, 1)2. Indeed, if the
vector [dy(x),...,ds(x)] satisfies (32), it can be easily checked that the

.....

j=1,2,..s
is a left inverse of the matrix G (x), and it can be expressed in the form (35) by taking
U(x) = D(x). Conversely, any matrix of the form (35) is a left inverse of G(x) and
its first row satisfies (32). Finally, notice that if the functions g;,j = 1,2,...,s, are

continuous on R¢, the condition (a) in Theorem (4.2.2) reads: rankG(x) = detM
forall x € R? (see (30)).

Given an error sequence € = {& q}gesdj=12,,5 IN R%, the aim in this section is to
study when it is possible to recover any function f € vj from the sequence of

.....

forthesystems £; ,j = 1,2,...,s,for f = T,F € Vi we have

(L) (Ma + &) = (F,(ZL,p) (g0 )e 2™ M ) 21 ya @ € 2%, (36)
where we have used that (ZL£;)(MB + ¢ p,x) = (ZL;$)(g;5,x)e?™FM* for
any f € z%. (36) leads us to study the frame property of the perturbed sequence

.....

.....

bounds A;/(detM) and B /(detM). In the case of s = detM, the above sequence
is a Riesz basis for L2[0,1)4.

One possibility is to use frame perturbation theory in order to find the suitable error
sequences for which the sequence {(ZZ,¢) (&4, )e 2™ M }ocpa i1, ¢ is a frame
for L2[0,1)¢. The following result on frame perturbation, which proof can be found in
[82] will be used later:

Lemma (4.2.3)[77]: Let { f,,};—, be a frame for the Hilbert space H with frame
bounds 4, B, and let { g,,}n=1 be a sequence in H. If there exists a constant R < A
such that Y511 f — g F)I?* < R|If]|? for each f € H, then { g,,}or—, is a frame

2 2
for ¢ with bounds A(1 —/R/A) and B(1—/R/B) .1 f { f,}-, is a Riesz basis,
then { gn}n=1 is a Riesz basis. Given an error sequence € = {&j 4 }yetjo12,.s © R
we define on £2(z%) the operator D, = [Dg1,..., D¢ |, Where
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D;jc = Z [ngb(Ma - L + sj,a) —qub(Ma —,8)] Cp
ﬁEzd aez?

foreach ¢ = {cg }pe,e € £2(z%). The operator norm is defined as usual

ID¢ ll oz (u2y
ID:ll=  sup —————
ceezizinfoy  llclleza

for each ¢ € £?(z%).
Theorem (4.2.4)[77] : Assume that g; € L*[0,1)% forj = 1,2,...,s with
Ag > 0. If the error sequence € = {gj 5}ge, j=1,2,. s Satisfies the inequality

D, ||> < Ag/(detM), then there exists a frame {S;ataest j=1,2,.s Tor Vdf such that,

forany f € vj
S

) = Z z (Lif ) (Ma +€4)Sf,(8),t € RY, (37)

j=1 a€z?

S
, Where ||DgC||§§(Zd) :z“D&J’C“jZ(zd)
=1

where the convergence of the series is in the L2(R%) —sense, absolute and uniform on
RY. Moreover, when s = detM the sequence {S;a}aest j=1,,. s @ Riesz basis for Vqﬁ

, and the interpolation property (L;S7,)(MB + € 5) = 8,844 holds.

Proof :The sequence {(ZZ,$)(0,-)e 2™} a1, ¢ is aframe (a Riesz basis
if s = detM) for L2[0,1)¢ with frame (Riesz) bounds A /(detM) and B;/(detM).
Forany F (x) = Yy e cye‘z’”"’Tx in L2[0,1)% we have

> D [ @EB e e = LI F O]

j=1 aezd

)

j=1 aezd

2

— — _ . _ T. _ . T
(Z [£,0(B + &ja) — L,P(B)|e2miMa-B) - Z cye Zmy')l,z[o,nd
pezd y €z
2

- i z z 1£,0(8 + ¢&a) = LB Cua—p
j=1 aez? |pez
— S z z |Lio(Ma — B +¢€4) — Lip(Ma — B)]cp

j=1 aezd | ez
s

=2

j=1
By using Lemma (4.2.3) , the sequence {(ZL,$)(&jq)e ™M Y yept jm1a,.s IS @
frame for L?[0,1)? (a Riesz basis if s =detM). Let {h{,}yc,ajo1,. 5 bE its
canonical dual frame. Hence, forany F € L2[0,1) we have

= 1D IP11F 122y 1y

<D 117 || {e)}, e

2 2
De’j {C)/}y ez 2 (Zd)

2(29)

( ]
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S
F = z Z (F ()' (Z_l:](p)(Ej’a,')e_zniaTMT)LZ[0’1)dhj£;a

j= 1 aez?

Z z (Lif)(Ma + € 4 )hf, in L*[0,1).

j=1 aezd
Applying the isomorphism Ty , one gets (37) in L? (R%) where Sia = Tphi, . Since

T is an isomorphism between L?[0,1)¢ and v;, the sequence {S7,}pezd j=12,.s IS @
frame for v; (a Riesz basis if s = detM). Point wise convergence in the sampling
series is absolute due to the unconditional character of a frame. The uniform
convergence on R is a consequence of the reproducing property (19) in Vi . The
interpolatory property in the case s = detM follows from the uniqueness of the
coefficients with respect to a Riesz basis. Formula (37) in Theorem (4.2.4) is useless

from a practical point of view, since the frame {S;;} e, j—1, . s » Which depends on

the error sequence {¢; .} Is impossible to determine. As a consequence,

aEZd,j=1,2 ..... S’
in order to recover any function f € v from the samples
In order to apprOX|mate the sequence {a,}ye,e € £2(z*) defining f € V3 , the
frame algorithm can be implemented in the £%(z%) setting as in [90].

Following the techniques in [90] (see also [86,103]), whenever the generator ¢ and
the impulse responses of the systems £;,j = 1,2,...,s, are compactly supported

one could obtain a bound for ||D, || interms of & = lim;.||gjq||

Finally, it is worth to mention the recent related [83,99,110].
We denote by W2(R%) = {f: |IDYf|l, < oo,|y | <} the usual Sobolev space,
and by |fl;2 =Xp=||DPf|, ;0 < j <r, the corresponding semi norm of a
function f € W,2(R%) . We assume here that all the systems Li,j =12,..,s,are
of type (a), i.e., £;f = h; = f , belonging the impulse response h; to the Hilbert
space £2(R%). Recall that a Lebesgue measurable function h : R* — C belongs to

the Hilbert space L2 (R?) if
1/2

h|, = J(EIh(t—a}l)zdt < oo,

[0,1)d ‘a€z?
Notice that L2(R%) c L'(R%) n L2(R%). Moreover, ||[{h * f (@)} genellz < Rz If]l2
(see [96]); thus the sequence of generalized samples {(L;f)(Ma)}yestj=12, .5
belongs to £2(z%) for any f € L?(R%). Besides, we assume that the generator ¢
satisfies the Strang—Fix conditions of order r, i.e.,

$0) =0, DPfp(a)=0, |Bl<r, a € z%\{0}
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Given avectord = [d4,...,ds] with entries in L[0,1)¢ and satisfying (32), first we
note that the operator I; : (L*(R%)), ||l ) = (V4. |I-ll2) given by

(Taf)(®) = (det) Y Y (Lif Ma)Sq (£ — Ma),t € RY,

Jj=1 aez
is a well-defined bounded operator onto V3 . Besides, I, f = f for all f € vj.
Under appropriate hypotheses we prove that the scaled operator I)' = only0q/p,
where a,f = f (-/h) for h > 0, approximates, in the L2 —norm sense, any function
f in the Sobolev space W,?(R%)as h — 0*. Concretely we have:
Theorem (4. 2.5)[77]:Assume that ess sup, ga Yacat |P(t + )| (1 + |t + )" < oo
for some r € N. Let d be a vector with entries in L*[0,1)¢ and satisfying (32). If the
generator ¢ satisfies the Strang—Fix conditions of order r, then, for each
f € W2R* and h > 0, the L?> —approximation error satisfies
If — Il < KIf]y2h* , where the constant K is independent of fand h.

Proof :Using that I;)¢ = & for each & € a,,V3 then, for each f € L?(R%) and
€ 0,V; , Lebesgue’s Lemma [84] gives
h .
IF = FEfl, < Q) min If = £l

where we have used that ||| = III;ll. Now, for each f € W;2(R%) and h > 0
there exists a function &, € a,v3 suchthat [1€, — fll, < K|f|,2h?

where the constant K is independent of f and h (see [98]), from which we obtain the
desired result. Notice that the approximation property given in Theorem (4.2.5)is
similar to those given by integral operators in [98].

For the efficiency and stability of the reconstruction process given in Theorem
(4.2.2), it is very desirable for the reconstruction functions S;,j = 1,2,...,s to be
well localized; see [88,93,101] and the references therein. In this section we study
two particular cases, reconstruction functions with exponential decay and
reconstruction functions with compact support, by using directly formulas (34).Thus
we prove that whenever the generator ¢ and the functions £;¢,j = 1,2,...,s, decay
exponentially fast, there are many sampling formulas like (33) involving
reconstruction functions §; with exponential decay, i.e., there exist constants C > 0

and g € (0,1) such that [S;(t)| < Cq'*l,t € R®First we introduce some complex
notation, more convenient for this study. We denote z% = z%z;%...z;¢ for
z =[z4,...,24] EC4a = [ay,...,ay] € z% and the d —torus by

Té = {z €C%|z| = |z,| == |z4] = 1}. We define

_ . T T
9;(2)=pezZde,p(wz™" ,G(z) = [gj (zlez’”mllk ,...,Zdez’”md‘k)] i=12,..5
k=1,2,..detM
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where m4,...,my denote the columns of the matrix M~1. Note that for the vector
z = [e?™™,...,e?™¥d] we have G(x) = G(z). Provided that the functions g; are
continuous on R%, we have the following result: There exists a vector
d = [d4,...,d,] with entries essentially bounded in T¢ and satisfying
d(z)G(z) = [1,0,...,0] for all z €T“ (38)

if and only if

rankG(z) = detM  for all =z €T9, (39)
Forj = 1,2,...,s, the corresponding reconstruction function S; ; in the sampling
formula (33) is

Sj,d(t) = 2 &](a)¢(t —a) , (40)

aczd

where c?j(a),a € z% are the Laurent coefficients of the functions d; ,i.e. , d;(z) =
P ci]-(a)z‘“. Let H denote the algebra of all holomorphic functions in a
neighborhood of the d —torus T%. Note that the elements in # are characterized as
admitting a Laurent series where the sequence of coefficients decays exponentially
fast [96].The following theorem shows that, whenever the generator ¢ and the
functions £;¢,j = 1,2,..., s have exponential decay, if the vector d has entries in
then the reconstruction function S; ,d has also exponential decay. It also proves that
condition (39) is also sufficient for the existence of a vector d with entries in H and
satisfying (38). Its proof uses the standard technique for proving extensions of
Wiener 1/f Lemma in group algebras.
Theorem (4.2.6)[77] : Assume that the generator ¢ and the functions £;¢,j =
1,2,...,s, have exponential decay. Then, there exists a vector d = [d,,...,d] With
entries in 7 and satisfying d(z)G(z) = [1,0,...,0] for all z € T¢ if and only if
rankG(z) = detM for all z € T, In this case, all of such vectors d are given as
the first row of a (detM) X s matrix D (z) of the form

D(z) = G'(2) + Ul - G(2)GT(2)] , (41)
where U(z) is any (detM) x s matrixwith entries in Hand
Gt (z) = [G*(2)G(2)]"*G*(z). The corresponding reconstruction functions
SiarJ = 1,2,...,s, given by (98) have exponential decay.
Proof : The hypotheses say that g; € #,j = 1,2,...,s; thus det[G*(2)G(2)] € H.
Assuming that rankG (z) = detM for all z € T¢ we have that det[G*(2)G(2)] # 0
for all z € T® and then, the matrix [G*(2)G(2)]™! has entries in H. As a
consequence, the entries of GT(z) = [G*(2)G(2)]71G*(2) belong to 7. Now it is
easy to check, as we did in this Section, that all the vectors d with entries in A and
satisfying (38) are given as the first row of matrices D(z) satisfying (41), where the
entries of U(z) belong to #. Since d; € H,j = 1,2,...,s, their Laurent coefficients

&j («) have exponential decay, i.e., there exist

( ]
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C > 0 and g € (0,1) such that |d;(a)| < Cq'*,a €2%j = 1,2,...,s. Without
loss of generality, we can also assume that | (t)] < Cq!®l, for all t € R<; then the
reconstruction functions S; ;(t) = Xge c?j(a)qb(t —a),j] = 1,2,...,s, satisfy

IS;a@®| ¢ z g9t -a) < C? (Z q2|“|>q|“| ) t € R4,

aczd a€z?
Notice that, in particular, the solution obtained from the pseudo-inverse matrixG T (z),

which is unique in the case s = detM, gives reconstruction functions S;;with
exponential decay.
Theorem (4.2.7)[77]: Let G(z) be an s X m matrix whose entries are Laurent
polynomials. Then, there exists an m X s matrix D(z) whose entries are also Laurent
polynomials satisfying D(z)G(z) = I, if and only if rankG(z) =m for all
z € (C\{0}%. From this theorem, we derive the following corollary:
Corollary (4.2.8)[77]: Assume that the generator ¢ and the functions £;¢,j =
1,2,...,s, have compact support. Then, there exists a vector d = [d,,...,ds] whose
entries are Laurent polynomials and satisfying d(z)G(z) = [1,0,...,0] if and only
if rankG(z) = detM for all z € (C\{0})%. The reconstruction functions Sia,j =
1,2,...,s, obtained from such vectors d by (40) have compact support. A vector
d(z) satisfying d(z)G(z) = [1,0,...,0] whose entries are Laurent polynomials can
be obtained by solving a linear system whose unknowns are precisely the coefficients
of dj(2),j = 1,2,...,s. From one of these vectors, say d = [dy,..., ds], we can get
all of them. Indeed, it is easy to check that they are given by the first row of the
(detM) x s matrices of the form

D(z) = D(2) + U(2) [IS — G(z)ﬁ(z)] , (42)
where D(2) = [d}([zlez’”'m;"k s, 2g@P AR 1o oy and U(z) is any

j=1.2,..,s

(detM) x s matrix with Laurent polynomial entries. The interested reader can find
in [100,111,112] methods to check if the condition in the theorem holds, and also
another method to find a particular solution D(z)of (42). Both involve the use of
Grobner bases.
Finally, notice that having reconstruction functions with compact support implies
low computational complexity and truncation errors are avoided. A related topic is
the local reconstruction in shift-invariant spaces which invokes only finite samples to
reconstruct a function on a bounded interval: See [102,104]. The aim in section is to
validate the sampling formulas

F(O) = (deth) Y )" (L;f JMa)S;q (¢ - M)t € RY,

j=1 a€zd
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obtained in this Section for the shift-invariant space Vq§ , In a larger space. To this

end, assume that the generator ¢ € £2(R%) nc(R%). Recall that a Lebesgue
measurable function ¢ : R? - ¢ belongs to the Banach space £*°(R%) if

|| = ess sup lo(t -a)| < o .For1 < p < o we have that L*(R%) c LP(R%),

te[o,1)4
[0.1) aez?

in particular, £L*(R%) c L?(R%). Observe that if there are constants C > 0 and
¢ d o (mpd 2
& > 0 such that |@(t)] SW ,t € R® ,then ¢ € L*(R?) .Let Vg be the

L*™-closure of the linear span of the integer translates of ¢, i.e. ,

Ve = span~{¢p(t —a):a € z} . As the integer translates of ¢ are £ —stable
(they form a Riesz sequence in L?(R%)), then this space can be expressed as Vy =
{p+" a:a € cy(z?)}, where ¢+ a denotes the semi-discrete convolution
Yaesa(a)p(- —a) and ¢y (z*) denotes the space of sequences on z¢ vanishing at co
(see [98]). As a consequence, V;’is a set of continuous functions on R¢ and the set

inclusion Vdf c Vg holds . Let A be the set of functions of the form f(x) =

Y vega a(a)e 2™ % with g € £1(z%). The space A, normed by ||f|l, = llall; and
with point wise multiplication is a commutative Banach algebra. If f € A and
f(x) # 0 for every x € R4, the function 1/f is also in A by Wiener’s Lemma.
Consider s linear time-invariant systems £;,j = 1,2,...,s. In addition, assume that
DEp € L2(RY) N C(RY),|B] < m, where m is the largest order among the partial
derivatives appearing in the systems of type (b) (m = 0 if no partial derivatives
appear).Thus we have that {£;¢(a)}4e,« € €1 (z%) for the systems of the type (b).
This is also true for the systems of type (a) since ||{¢ = h(a)}l; < l|lhll1]¢]. (S€€[96]).
As aconsequence, the Fourier transforms of these sequences, which are precisely the
functions g;,j = 1,2,...,s, defined in (23), belong to the algebra A. The next result
describes when (90)has a solution d with entries in the algebra A:
Lemma (4.2.9)[77] :There exists a vector d = [dy,...,d] with entries d; in the
algebra A, j = 1,2,...,s, and satisfying

d(x)G(x) = [1,0,...,0],x € [0,1)¢ (43)
if and only if rankG(x) = detM forall x € R%.
Proof : The proof is the same as the one in [166, Lemma 1] although for a slightly
different matrix G. For any vector d satisfying the above lemma, Theorem (4.2.2)
gives the corresponding sampling formula in ng ;

S
£ = (detM)Z 2 (Lif Y(M)S;q (t - Ma),t € RY, (44)
Jj=1 aezd
where S;; = Tyd;,j = 1,2,...,s.In particular, formula (44) holds for the space
span{p(- — a)}ae,e. The reconstruction functions S;4j = 1,2,...,s, are

J
determined from the Fourier coefficients of dj , l.e.

( ]
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d;(a) = Jio.1ye d;(x)e?™*'* dx , a € 2. More specifically,

S a(t) = z d()p(t-a),t € RE. (45)

aezd

Since d; € #*(z%),j = 1,2,...,s,and ¢ € L2(R%), we obtain that the
reconstruction functions S;,; € L*(RY),j = 1,2,...,s (notice that |¢ *" a|, <
lo|llall; , see [96]). By using a density argument, in the next theorem we extend
the sampling formula (44) to the whole space V5’ in a point wise sense.

Theorem (4.2.10)[77]: Let d = [d,,...,ds] be a vector with entries d; in the
algebra A,j = 1,2,...,s, and satisfying (43). Then, for any f € V> the following
sampling formula holds point wise:

£ = (detM)Z z(Ljf)(Ma)Sj,d(t— Ma),t € RY, (46)

j=1 aez

where the reconstruction function S;;, given by (45), belongs to L*(RY) for
j=1,2,...,s. Moreover, assuming that ¢, D¢ € C,(R?) for |B] < m, (i.e., ¢ and
its derivatives are continuous on R¢ vanishing at infinity), then the convergence of
the sampling series in (46) is also absolute and uniform on R4,

Proof : Consider the Banach space C/*(R%) of all functions f which, together with
all their partial derivatives D f of order|f| < m ,are continuous and bounded on R
with the norm ||f|lc;» = max sup,cpa |DP £(t)]. For any vector d with entries in A

|Bl=sm
and satisfying (43) there exists a constant K > 0 such that, for each
feqr®Y, AWM <Klfllg for all te R?, (47)

where (I;f)(t) = (detM) z z (£;if )(Ma)S; 4(t - Ma). For the proof, see

Jj=1 aez?

[91]. Let f € Vg and a € co(z?) such that f(t) = Xgena(a@)p(t —a). For
n € N we define f,(t) = Xaj<n a(a)qb(t - a).From the assumptions on ¢ we have
that £, € C"(R%). Moreover, for || <mandn >1 > 0, we have

DA =l D la(@!|pFot-a)| < sup la(@)l DP9

1<|a]<n I<|a|sn

Since the sequence a € cy(z%), {f,}r=1 is a Cauchy sequence in the Banach space
CI"(R%), we deduce that f;, converges in the C[* —norm to f as n — oo. In particular
f € CrRY) .
Using that the sampling formula holds for f, € span{¢(- — a)} e, and
inequality (47) we obtain that, forall t € R?,
0 < |fn(®) = Taf (Ol = Ial(fn = NI | <Kllfu = fllcp» = 0 asn — oo, and then
If(t) = f(t) for all t € R%. This proves that the sampling formula (46) holds

,t € R
[0 0]
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point wise. It remains to prove the absolute and uniform convergence of the series in
(46). Let |B] < m. Assuming that Df¢ € C,(R%) we have that Dff, € Co(R%).
Since DP f,, converges uniformly to D f on R%, and C,(R%) is a closed subspace in
L*(R%), we obtain that DA f € Cy(R%). From this fact and using the Lebesgue
dominated convergence theorem (whenever £; is a system of type (a)), we obtain that
{(Lif Y (Ma)}gen € Co(R%) foreachj = 1,2,...,s. Hence, by using that

Sia € L°(R?) and the inequality

Z (L, YM)S; ot — Ma)| < sup |(£;f YM)|[S,alert € RE, 7 € N,
|alon |a|>n
we obtain that the series in (46) converges absolutely and uniformly on R¢. Observe
that, under the assumed hypotheses, in the proof of the theorem we have

obtained that Ve © CJM(R?) . (48)
In the case that the continuous functions ¢ and Df¢, |8| < m, belong to the Wiener

space W(L?,€") :={f + Ynea||fXnns+n|l < o0}, then the generator ¢ and its
derivatives DP¢, S| < m, belong to L2(R%) n C,(R%). Finally, notice that our
space Vy° differs from the shift-invariant space V°introduced in [79]. Following this
reference,under appropriate hypotheses, a similar sampling result can be proved for
functions in V> having locally uniform convergence.

We denote by WEZ(R?) = {f: [[D'flleo < o,|y| < r} the usual Sobolev
space, and by |f|; = Xi=;|D?f||. .0 < j < r, the corresponding seminorm
of a function f € W, (R%).

Theorem (4.2.11)[77]: Let ¢ € Wl (R%), 0 <j<rand @ € LY(R?) be
compactly supported functions and let Q be the quasi-projection operator given by

@N® = Y (B¢ = D)yauey (¢t - ), (49)

aezd
If Q m = m for every polynomial = of degree at most r — 1, then

If = Qnfljoo SKRI | flreo,f € WH(R), where Q4 = 0,Q0ypand K is a
constant independent of h > 0 and f .From this result, and assuming that the
generator ¢ satisfies the Strang—Fix conditions of order r, we deduce by using
Theorem (4.2.10) that, for any function f € C,(R%) n Wi (R%)

I f = fll, = O™ as h-0*.
Theorem (4.2.12)[77]: Assume that ¢ is a compactly supported generator in
WL (R%) where r > m, with m being the largest order of the partial derivatives
appearing in the systems L;.Letd = [d;,...,d,] be a vector with entries in the
algebra A and satisfying (43). If the generator ¢ satisfies the Strang—Fix conditions
of order r then, for each f € Co,(RY) n Wi(R%) and 0 < h < 1, the following
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inequality holds: ||f — I*f || < KI|flyeh™™ ,Where I}' = 0,l301/, and the
constant K is independent of f and h.
Proof : From Theorem (4.2.10) we have that I}¢ = & for any & € onVy and
h > 0. From (48) ,¢& € C[*(R%), and from (47), there exists a constant M > 0
such that ||| < Mlllligm forall I € CJ*(R?). Hence, forany f € Cj*(R%) and
0 <h < 1,weobtain that
If =Tl <0 =€l +If =L2F | = 1f =<l + 1T =D,

= If = $lloo + [|Taar/nG = O || S If = &lloo + Mllor/n(€ =) IICzn

S f =Sl + MIIE = fllepr < A+ M = fllgp . § € oV, (50)
where we have used that o;,,(§ — f) € CI"(R%).Given ¢ = ¢ satisfying the
Strang—Fix conditions of order r, there exists a compactly supported function

@ € LY'(R%) satisfying the conditions of Theorem (4.2.11). An example of such a
function @ can be found in [98]. Let Q be the quasi-projection operator defined in

(48). Note that for f € C,(R%) we have that {(f,gb(- — a))Ll(Rd)} L Eco(zh)

and hence Qf € Vy° . Moreover, from Theorem (4.2.11), forj = Oofelz,...,m, we
have that|f - Qnf |j,oo <SKh | flrw , f €WhH(R?) where the constants
K;,0 < j <m,are independent of f and h. By using (50), for any
f € Co(RY) N WL (R%), we obtain

IF = 1Al < € dnf N1E = flley < CllOf = Fllep

=C max”D‘Bth—DBf”oo < Czwhf_f'j,oo
j=0

|Blsm
m m
< Clfljw ) KT < €| ) K |If b
j=1 j=1

where the constant C is independent of f and h .

Corollary (4.2.13)[296] : Suppose that ¢ is a compactly supported generator in
wate (R4) where € > 0, with largest order of the partial derivatives appearing in the
systems L;.Letd = [d,,...,ds] be a vector with entries in the algebra A and

satisfying (43). If the generator ¢ satisfies the Strang—Fix conditions of order m + €
then, foreach f € Co(R%) n Wt (R%) and the following inequality holds:

||f_['d(1_€)f ||oo < K|f|m+e,00(1 — E)E , Where Fd(l_e) = O-(l—e)rdo_l/(l—e) and the
constant K is independent of f and (1 — ¢).

Proof : From Theorem (4.2.10) we have that Fd(l_e)f = & forany & € oy oVy
and e > 0. From (48) ,¢ € C["(R%), and from (47), there exists a constant M > 0
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such that ||| < Mllllign forall I € CJ'(R?). Hence, forany f € Cj*(R%) and

we obtain that

F =2 | sl =glleo + || =028 | = 0F =l + |22 -0
=f = $lloo + [|Ta01/00 G = O || S Nf = Elleo + Ml|oy/-9( = ) IICI;n
< Nf =&l +MIE = Fligp < A+ MNE = Fligp . & € 00_oV5

where we have used that a;,,_(§ — f) € CI'(R%).Given ¢ = ¢ satisfying the

Strang—Fix conditions of order m + ¢, there exists a compactly supported function

@ € LY(R%) satisfying the conditions of Theorem (4.2.11). An example of such a
function @ can be found in [98]. Let Q be the quasi-projection operator defined in

(48). Note that for f € C,(R%) we have that {(f,@(- - a))Ll(Rd)} L€ co(z%)

AEZ
and hence Qf € Vy° . Moreover, from Theorem (4.2.11), forj = 0,1,...,m, we
have that|f - Qu_of |j’w <K= O™ | f lmtew » [ € WIFE(R?) where the
constants K; ,0 < j < m, are independent of f and 1 — e. By using (50), for any
f € Co(RY) n WIHe(R%), we obtain
(1-¢) .
|7 =r2r|| s e, inf, e = Fllgp < cllea-of = Fl g

Ea(l_e) ®

m
=C maX”DﬁQ(l_e)f — Dﬁf“oo < CZ|Q(1—e)f _flj,oo
=0

|Blsm ,
]_

m
Ki |Iflj(1-e)F,
=1

m
< Clflje ) K1 -™ < C
j=1

where the constant C is independent of f and 1 — €.

116

——
| —




Chapter 5
Approximation with Sampling and Recovery of Bandlimited Functions

We explain the algorithm underlying XA quantization in its simplest version, we
review the mathematical results that are known, and we generalize the simple first-
order A scheme to higher orders, leading to better bounds. A generalization of
Kadec’s 1/4 theorem to higher dimensions is considered. Finally, the developed
techniques are used to approximate biorthogonal functions of particular exponential
Riesz bases for L,[—m, ], and a wellknown theorem of Levinson is recovered as a
corollary.

Section(5.1) A family of Stable Sigma-Delta Modulators of Arbitrary Order

Digital signal processing has revolutionized the storage and transmission
of audio and video signals as well as still images, in consumer electronics
and in more scientific settings (such as medical imaging). The main advantage of
digital signal processing is its robustness: although all the operations have to be
implemented with, of necessity, not quite ideal hardware, the a priori knowledge that
all correct outcomes must lie in a very restricted set of well-separated numbers makes
it possible to recover them by rounding off appropriately. Bursty errors can
compromise this scenario (as is the case in many communication channels, as well as
in memory storage devices), making the “perfect” data unrecoverable by rounding
off. In this case, knowledge of the type of expected contamination can be used to
protect the data, prior to transmission or storage, by encoding them with error
correcting codes; this is done entirely in the digital domain. These advantages have
contributed to the present widespread use of digital signal processing.

Many signals, however, are not digital but analog in nature; audio signals,for
instance, correspond to functions f(t), modeling rapid pressure oscillations, which
depend on the “continuous” time t (i.e. t ranges over R or an interval in R, and not
over a discrete set), and the range of f typically also fills an interval in R. For this
reason, the first step in any digital processing of such signals must consist in a
conversion of the analog signal to the digital world, usually abbreviated as A/D
conversion. For different types of signals, different A/D schemes are used; in this
paper, we restrict our attention to a particular class of A/D conversion schemes
adapted to audio signals. Note that at the end of the chain, after the signal has been
processed, stored, retrieved, transmitted,..., all in digital form, it needs to be
reconverted to an analog signal that can be understood by a human hearing system;
we thus need a D /A conversion there.

The digitization of an audio signal rests on two pillars: sampling and
Quantization , both of which we now briefly discuss. We start with sampling. It is
standard to model audio signals by bandlimited functions, i.e. functions f € L*(R)
for which the Fourier transform

117

——
| —



F (&) —Lf t)e 8t dt
f€ = I f()e

vanishes outside an interval || < 2. Note that our Fourier transform is normalized
so that it is equal to its inverse, up to a sign change,

O = = [ e ar
= m e

The bandlimited model is justified by the observation that for the audio signals of
interest to us, observed over realistic intervals [—T,T] <rf)™ L,

negligible compared with ||x|¢j<o (X <7 f)? ||2 for 2 = 2m- 20,000 Hz. Here and

later in this section , ||-||, denotes the L?(R) norm. For bandlimited functions one can
use a well-known sampling theorem, the derivation of which is so simple that we

include it here for completeness: since f is supported on [—£,], it can be
represented by a Fourier series converging in L2(—0, 2); i.e.,

F©O =) e for 5 <a

Nnez
where
1 ‘ 1
N . T nm
:_ iném/Q — = —
-0
We thus have
o 1 [ nm .
f) = 5\/;2 f(ﬁ)e_mfnm XiEl<e

Nnez
which by the inverse Fourier transform leads to

f@) = Z f (7}2—”) Slz(gff _n:gt) = Z f (7}2—”) sinc(Qt-nm). (1)

nez nez

This formula reflects the well-known fact that an -bandlimited function is

completely characterized by sampling it at the corresponding Nyquist frequency %
However, (18) is not useful in practice, because sinc(x) = x~!sin x decays too

slowly. If, as is to be expected, the samples f ( ) are not known perfectly, and have

to be replaced, in the reconstruction formula (1) for £(t), by f, = f (F) + &, , with

all |¢,,| < &, then the corresponding approximation £, may differ appreciably from
f(t). Indeed, the infinite sum ), €, sinc(2t — nm) need not converge. Even if we

assume that we sum only over the finitely many n Satisfying |n£| < T (using the

tacit assumption that the f( ) decay rapidly for n outside this interval) , we will
still not be able toensure abetter bound than |f(t) — f(t)| < CelogT, since

( ]
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T may well be large, this is not satisfactory. To circumvent this, it is useful to
introduce oversampling. This amounts to viewing f as an element of L2(—102, 1),

with 2 > 1; for |&] < AR we can then represent f by a Fourier series in which the
coefficients are proportional to

f(:_g) ) ji¢3) =ALQ\/§Z f(%) e~ MSm/AL for || < Am.

Nnez

Introducing a function g such that gis € ,and g(§) = \/%for | < m, gié)=0
for |€| > Am, we can write

O = 25 f(Gg)emmang (D),

Nnez

10 = 721Gzt - 3). @

nez
Because g is smooth with fast decay, this series now converges absolutely and

resulting in

uniformly; moreover if the f( ) are replaced by
fo=f (A—Q) +¢&, in (2) ,with |g,| < & then the difference between the
approximation £, (x) and f(x)can be bounded uniformly:

If () - f(®)| < e%z |g<§t — %)| < €C, (3)

Nnez

where C, = A Hg'll;2 + llg |l does not depend on T. Oversampling thus buys the
freedom of using reconstruction formulas, like (2), that weigh the different samples in

a much more localized way than (1) (only the f ( ) with |t - | ‘small” contribute

significantly). In practice, it is customary to sample audio 5|gnals at a rate that is
about 10 or 20% higher than the Nyquist rate; for high quality audio, a traditional
sampling rate is 44,000 Hz. The above discussion shows that moving from “analog
time” to “discrete time” can be done without any problems or serious loss of
information: for all practical purposes , f is completely represented by the sequence

(f (%)) . At this stage, each of these samples is still a real number. The
Nez

transition to a discrete representation for each sample is called quantization. The
simplest way to “quantize” the samples f (Z—Z) would be to replace each by a

truncated binary expansion. If we know a priori that |f(t)] < A < o forall t (a
very realistic assumption), then we can write

_—_ no—k
f(/m - _4A +Azbk2 ,
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with b € {0,1} for all k,n. Ifwe can “spend” x bits per sample, then a natural
solution is to just select the (bI*)g<x<—1 ; CONstructing £(x) from

k-1

the approximations f, = —A + Az bi2™" then leads to

k=0
|F (&) = f(®)| < C27***4, where C is independent of k orf. Quantized
representations of this type are used for the digital representations of audio signals,
but they are not the solution of choice for the A/D conversion step. (Instead, they are
used after the A/D conversion, once one is firmly in the digital world.) The main
reason for this is that it is very hard (and therefore very costly) to build analog
devices that can divide the amplitude range [—A4, A] into 27%*1 precisely equal bins.
It turns out that it is much easier (= cheaper) to increase the oversampling rate, and

to spend fewer bits on each approximate representation £, of f (%) By appropriate

choices of £, one can then hope that the error will decrease as the oversampling rate
increases. Sigma-Delta (abbreviated by XA) quantization schemes are a very popular

way to do exactly this. In the most extreme case, every sample f (Z—Z) in (1) is

replaced by just one bit, i.e. by a g,, with q,, € {—1, 1} ; we shall restrict our attention
to such 1-bitXA quantization schemes. Although multi-bit XA schemes are becoming
more popular in applications, there are many instances where 1-bit XA quantization is
used .

The following is an outline of the content of the section. We explain the algorithm
underlying XA quantization in its simplest version, we review the mathematical
results that are known, and we formulate several questions. We generalize the simple
first-order XA scheme to higher orders, leading to better bounds. In particular, we
show, for any k € N, an explicit mathematical algorithm that defines, for every
function f that is bandlimited (i.e. the inverse Fourier transform of a finite measure
supported in [—Q, Q]) with absolute value bounded by a < 1, and for all n € Z,

“bits”q )e {—1, 1} such that, uniformly in t,
F©) - Eq”” (Ce-2) < cgrr. )

Moreover, we prove that our algorithm is robust in the following sense.
Since we have to make a transition from real-valued inputs f ( ) to the discrete

valued ¢q, € {—1,1}, we have to use a discontinuous function as part of our
algorithm. In our case, this will be the sign function, sign(4A) = 1 if A = 0,
sign(4) = —1 if A < 0. In practice, one cannot build, except at very high cost, an
implementation of sign that “toggles” at exactly O; we shall therefore allow every
occurrence of sign(A) to be replaced by Q(A4), where Q can vary from one time step
to the next, or from one component of the algorithm to another, with only the
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restrictions that Q(A4) = sign(4) for [A| = 7 and |Q(A)| < 1 for |A] < 7, where
T > 0 is known. (Note that this allows for both continuous and discontinuous Q, if
we impose a priori that Q(t) can take the values 1 and —1 only, then the restrictions
reduce to the first condition.) Moreover, whenever our algorithm uses multiplication
by some real-valued parameter P, we also allow for the replacement of P by P(1 + ¢),
where can again vary, subject only to |e|] < u < 1, where the tolerance u is again
known a prioiri. We can now formulate what we mean by robustness: despite all this
wriggle room, we prove that (4) holds independently of the (possibly time-varying)
values of all the € and Q, within the constraints.

For the sake of convenience, we shall set (by choosing appropriate units if
necessary) 2 = mw and A = 1. We are thus concerned with coarse quantization of
functions f € €2 ={h € L?,||h||;» < 1,
support h © [—m, m]}; for most of our results we also can consider the larger class
C,=f{h:h is a finite measure supported in [—m,7],]|hll;» < 1}.With these
normalizations (3) simplifies to

(t)—AZf (t-3) (5)

with g as described before ;

g(f)=\/%_nfor|€| < mgl)= 0for ||> Amand § € C™. (6)

It is not immediately clear how to construct sequences = (gt ) , With
g+ € {—1,1} for each n € z, such that

Fo® = 7> ada(t - %) ™

provides a good approximation to f. Takmg simply g} = sign (f G)) does not

work because there exist infinitely many independent bandlimited functions ¢ that
are everywhere positive (such as the lowest order prolate spheroidal wave functions
[67], [68] for arbitrary time intervals and symmetric frequency intervals contained in
[—m, ]); picking the signs of samples as candidate g would make it impossible to
distinguish between any two functions in this class. First order XA-quantization
circumvents this by providing a simple iterative algorithm in which the g} are

constructed by taking into account not only f (%) but also past f (%) we shall see

below how this leads to good approximate fq}L. Concretely, one introduces an

auxiliary sequence (u,)ne, (sometimes described as giving the “internal state” of the
YA quantizer) iteratively defined by
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(un = Up-1 + f(%)_ q%

qn = sign <un_1 +f (%))

and with an “initial condition” wu, arbitrarily chosen in (—1,1). In circuit
implementation, the range of n in (8) isn > 1. However, for theoretical reasons, we
view (8) as defining the u, and g, for all n. At first glance, this means the u,, are
defined implicitly for n < 0. However, as we shall see below , it is possible to write
u, and q,, directly in terms of u, ., and f,,,; whenn < 0. We shall now show by a
simple inductive argument that the u,, of (8) are all bounded by 1. We prove this in
two steps:

Lemma(5.1.1)[49]: Forany f € C; and |u,| < 1, the sequence (u,),e, defined
by the recursion (8) is uniformly bounded, |u,| < 1 foralln = 0.

(8)

Proof : Suppose |u,_;| < 1.Because f € C;,we have |f (%)l < 1, so that

|f (%) + un_1| < 2. It then follows that
|f (%) + Uy — sign (f (%) + un_1)| < 1.
For negative n, we first have to transform the system (8) into a recursion

in the other direction. To do this, observe that forn > 1,
n n
Up_q + f(j)> 0 :oun—f(i)z U, — 1 <0

un_1+f(%)< O:un—f(g)zun_1+1 > 0.

In all cases we have, thus, sign (un ~ f G)) = —sign (un—l + f G)) The
recursion (8) therefore implies, forn > 1,

Up—1 = Up — f(g) — sign (un - f(%)) ’ 9)

which we can now extend to all n, making it possible to compute u,, for
n < 0 corresponding to the “initial” value u, € (—1,1). The same inductive
argument then proves that these u,, are also bounded by 1. We have thus:
Proposition (5.1.2)[49]:The recursion (8), with |u,| <1 and f € C,, defines a
sequence (U, )ne, fOrwhich |u,| < 1forallnez.

From this we can immediately derive a bound for the approximation error

(&) = fa(@O].
Proposition (5.1.3)[49]: For f € C;,A > 1, define the sequence g* through the
recurrence (8), with u, chosen arbitrarily in (—1,1). Let g be a function satisfying
(6). Then
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f@® - —zqng t - Z)

Proof : Using (5), summatlon by parts, and the bound |u,,| < 1, we derive

-2 do(e - )| =320 G)- o )

n

< 2lg'lls (10)

2

s;z|g<t—%>—g<t—"11|
_Az j|g<y)|dy Zllg'lls

_n+1

This extremely simple bound is rather remarkable in its generality. What makes it
work is, of course, the special construction of the g via (8); the g} are chosen so

that, for any N, the sum Zn Lq) closely tracks Zi\[:lf(%),since

Zf an

If we choose uy, = 0 (as IS customary), then we even have

;f(g) —;q%

this requirement (which can be extended to negative N) clearly fixes the g;
unambiguously. The “Z” in the name £A-modulation or XA-quantization stems from
this feature of tracking “sums” in defining the g ; XA-modulation can be viewed as a
refinement of earlier A-modulation schemes, to which the sum-tracking was added.
There exists a vast literature on XA-modulation in the electrical engineering
community; see e.g. the review books [58] and [71]. This literature is mostly
concerned with the design of, and the study of good design criteria for, more
complicated XA-schemes. The one given by (8) is the oldest and simplest [58], but is
not, as far as we know, used in practice. We shall see below how better bounds than
(10), i.e. bounds that decay faster as A — oo, can be obtained by replacing (8) by other
recursions, in which higher order differences play a role. Before doing so, we spend
the remainder of section on further comments on the first-order scheme and its
properties.

In practice, one cannot use filter functions g that satisfy the condition in (6) because

they require the full sequence (q,’})nEZ to approximate even one value f(t). It would

- |uN_u0| < 2

= luyl < 1, (11)
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be closer to the common practice to use G that are compactly supported (and for
which the support of G is therefore all of R, in contrast with (6)). In this case, the
reconstruction formula (5) no longer holds, and the approximation error has
additional contributions. Suppose G is supported in [—R, R], so that, for a given t,

only the g With |t — —| < R can contribute to the sum ¥, g~ G(t — g;) . Then we

f@—~§}%t——) Fo) - Zf 6(t-3)
'ﬁijfz‘%G@‘%)

The second term can be bounded as before. We can bound the first term by
introducing again an “ideal” reconstruction function g, satisfying supp
g c [-Am, An] and §l{—pm = (2m)7'/2 Then

£ - Zf 6 (- 3)
@Dlo(e-3)-c(e-3)]

s;}]gt—I-— (c=2) <16 =gl + 276" = gl

n

By imposing on G that the L! distance of G and G’/4 to g and g'/A, respectively, be
less than C /A for at least one suitable g, we see that this term becomes comparable to
the estimate for the first term. (This means that G depends on A; the support of G
typically increases with A.)

In practical applications, one is generally interested only in approximating
f (¢t) for t after some starting time t,,t > t,. If finite filters are used this means that
one needs the g only for n exceeding some corresponding n, . There is then no need
to consider the “backwards” recursion (9), introduced to extend Lemma (5.1.1)
(bound on the|u,| uniform in n > 0) to Proposition(5.1.2) (bound on the |u,|
uniform in n).

Note that in practice, and except at the final D/A step mentioned in the
introduction, bandlimited models for audio signals are always represented in sampled
form. This means that once a digital sequence (g;t ) is determined , all the filtering

and manipulations will be digital, and an estimate closer to the electrical engineering
practice would seek to bound errors of the type

Z qrGh—n
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using discrete convolution with finite filters G#, rather than expressions of the type
(10) or (11). If we were interested in optimizing constants relevant for practice, we
should concentrate on (13) directly. For our present level of modeling however, in
which we want to study the dominant behavior as a function of A, working with (10)
or (11), or their equivalent forms for higher order schemes, below, will suffice, since
(13) will have the same asymptotic behavior as (11), for appropriately chosen G/ .
Unless specified otherwise, we shall assume, for the sake of convenience, that we
work with reconstruction functions g satisfying (6). Since such g are supported on
all of R, we will always need to define g,, for all n € z (rather than N). For first-
order XA, we could easily “invert” the recursion so as to reach n < 0. For the higher
order XA considered from this Section onwards, such an inversion is not
straightforward; instead we will simply give, for every algorithm that defines g,, for
> 0, a parallel prescription that defines q,, forn < 0.

In practice, one observes better behavior for |f(t) — fg?(t)| than that proved in

Proposition (5.1.3). In particular, it is believed that, for arbitrary
1
f € (C;, 11m— j

£ - —Z ata (¢ - %)
|t|<T

with C independent of f € C; or of the initial condition u, for the recursion (8).
Whether the conjecture (14) holds, either for each f € C;, or in the mean (taking an
average over a large class of functions in C; or C,) is still an open problem.

It is not surprising that a better bound than (10) would hold, since we used very

little in its derivation. In particular, we never used explicitly that the f(3) were

dt < /13, (14)

samples of the entire (because bandlimited) function f.

For some special cases, i.e. for very restricted classes of functions f, (14) has been
proved. In particular, it was proved by R. Gray [72] that if one restricts oneself to
f=f. Where a € [—1,1] and f,(t) = a, then

C
dt|da < = (15)

in Gray s analysis the integral over t IS a sum over samples, and g is replaced by a
discrete filter G* (see above), but his analysis applies equally well to our case. A
different proof can be found in [63]. Gray’s result was later extended by Gray, Chou
and Wong [72] to the case where the input function f(t) is a sinusoid , f(t) =
a sin bt, with |b| < m.

For general bandlimited functions, there were no results, to our knowledge, until
the work of [61], [62], [63], who proved, by a combination of tools from number
theory and harmonic analysis, that, for all f € ¢, and all ¢ for which
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f'(t) # 0, < c,r‘*f (16)

£()- Zq (¢-3)

In Glintiirk’s analysis the value of C depends on |f’'(t)| as well as €; his g (into
which the 1/A factor from (10) has been absorbed) is compactly supported, and has
to satisfy various technical conditions. Although there is no mathematical proof for
the moment, numerical simulations of intermediate results in Giintiirk’s work

suggest that (16) may still hold, for general f € C,, if the upper bound CA73"¢

replaced by C/1_§+S. For more details concerning the whole analysis and this
discussion in particular, we refer the reader to [62], [63].
Remarkably, an iterative procedure very similar to (8) can be used to compute the
binary expansion of a number in (0, 1). Consider the recursion
{ﬁn = 20,4 + x, — b,
b, = sign(2ii,,_, + x,)
with initial condition #_; = a/2, by = sign(a), and with the sequence (x,),
defined by xy = a,x, =0forn > 0; here a is any number in (—1,1). By
induction one derives again that |#%,, | < 1 for all n, so that

N N
by = @ = 27 (0 — By)
n=0

(17)

2 — ) 27"b,

n=0

N
—|2m_, + z 27M(1, — 2L,,_,)

= 27Miy| < 2¥N> 0as N - w,
which converges exponentially like a binary expansion. (Since the b, € {—1,1},
>®_,27™b, is not quite a binary expansion; however, for n > 1, the

b, = (1 +b,)/2 € {0,1} are the digits for the binary expansion of ”T“ )

The only difference between the two recursions is the presence of the multiplications
by 2 in (17). When the recursive equations are converted into block diagrams for
circuits that would implement these recursions in practice , the diagram for (17)
would require only one item more (a multiplier by 2) than the diagram for (8). The
similarity of the two algorithms or circuits seems to contradict the claim in the
introduction, that XA quantization is much cheaper to implement than binary
quantization of less frequent samples. However, the two algorithms behave very
differently when imperfections, in particular imperfect quantizers, are introduced.
Quantizers are never perfect. Although we desire to use q(x) = sign(x) for our 1-
bit quantizer, in practice we may have,e.g.,q(x) = sign(x + &), where § is
unknown except for the specification |§| < 7; the value of § may vary from one
circuit to another, and it may even, due to thermal fluctuations, vary from one time
step n to the next. More generally, we may have Q(x) = sign(x) for |x| = t,
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whereas for |x| < t,we have only the bound |Q(x)| < 1. (Note that if Q is
restricted to take only the values 1 and —1, the second condition is automatically
satisfied, implyingthat for |t| < T, the behavior of Q(t) can be completely arbitrary.)
A good algorithm or circuit is one that will perform well even without very stringent
requirements on t; if extremely tight specifications on 7 are necessary to make
everything work well, then this will translate into an expensive circuit.

Let us replace the sign function in (8) by such a nonideal quantizer; the new
recursion is then

(un = Up-1 T f(%)_Qn

i i (18)
n = Qn <un—1 + f(z));
and let us assume that , foralln € z,
{Qn(x) = sign(x) for |[t|= 7 (19)
|10, ()| < 1 for |t|<T.

It turns out that the u,, are then still bounded, uniformly, independently of

the detailed behavior of Q,,, as long as (19) is satisfied:

Lemma (5.1.4)[49] : Let f be € C,, let u,,q, be as defined in (18), and let Q,,
satisfy (19) forall n. If |Juy| <1+ t,then|u,| < 1 + tforalln > 0.

Proof : We use induction again. Suppose |u,-;| < T + 1.Because

f e C, |f (§)| < 1. We now distinguish three cases. If
g+ f(5) > 7, thenu, =,y + f(%) — 1€ (t—1, t+1). Likewise, if

U1 +f(%) < —7,thenu, = u,_, + f(%) + 1€ (-t —1,—7+1).Finally,

if —7 < u,_, + f(%) < 7,then |Qn (un_l + f(%))| < 1, s0 that

Uy = Up_q1 + f(;)—Qn<un_1+ f(;)) eE(—-7 -1, T+ 1).

Note that Lemma (5.1.4) holds regardless of how large 7 is; even ¢ > 1 is allowed.
To discuss the case n < 0, we need to reconsider the recursion , because for generic
Q,, , we can no longer “invert” the relationship between u,, and u,,_,. Therefore, we
simply posit the following recursion for n < 0, inspired by (9),

n+1
un:un+1_f< 1 >+qn

kqn = —Cn (un+1 - f(n ; 1))

An immediate generalization of Lemma (5.1.4) is then

(20)
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Lemma (5.1.5)[49] : Let fbe in C;, let u,,, g, be as defined in (18) or (20), and let
Q,, satisfy (18) for all |n] > 1. Assume also that |uy] < 1 + 7. Then|u,| <t +
1foralln € z .

By the same argument as in the proof of Proposition (5.1.3), Lemma (5.1.5) has as
an immediate consequence the following :
Corollary (5.1.6)[49]: Let f be in C;, let A be > 1, and suppose ¢ satisfies

(6)-Suppose, also, the sequence (q7) _ is generated by (18), with imperfect

quantizers Q,,(t) that satisfy (19). Then, forallt € R,

1 1
F&) -5y aha(t = 5) < —— gl (21)

If one replaces the “perfect” reconstruction function g by a suitable compactly
supported G*#, as in this subsection , then one can also derive estimates similar to
(21), exploiting the compactness of the support of G#. Although we must pay some
penalty for the imperfection of the quantizer in all these cases (the constants
increase), the precision that can be attained is nevertheless not limited by the
imperfection: by choosing A sufficiently large, the approximation error can be made
arbitrarily small.

The same is not true for the binary expansion-type schemes (17). Suppose we use
(17) to generate bits b,, € {—1, 1}, and consider the approximation
ay =YN_,27b, to the input a, as before; however, the quantizer has been

changed to, say, Q,(t) = sign(t — §,,), with |§,,|] < 7. Suppose now a = %,for
the sake of definiteness, assume &, > 0. Then (34), with this imperfect quantizer ,
will give by = —1, so that ay = by + ¥N_,27™b, < —27N for all N, implying
la — ay| > % for all N. The mistake made by the imperfect quantizer cannot be

recovered by computing more bits, in contrast to the self-correcting property of the
>A-scheme. In order to obtain good precision overall with the binary quantizer , one
must therefore impose very strict requirements on 7, which would make such
quantizers very expensive in practice (or even impossible if z is too small). On the
other hand [73], XA-quantizers are robust under such imperfections of the quantizer,
allowing for good precision even if cheap quantizers are used (corresponding to less
stringent restrictions on ). It is our understanding that it is this feature that makes XA-
schemes so successful in practice.

It would be better, however, to see the approximation error decay faster with A,

3

faster even than the A1z estimate conjectured to hold for first order XA-quantization
of bandlimited functions. For this faster decay we must turn to higher order schemes.

Proposition(5.1.7)[49]:Take f € C,, take A > 1, and suppose g satisfies (6).
Suppose that the g2 € {—1, 1} are such that there exists a bounded sequence (1) ez
for which
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£(5)- ai = Ak(u)-Z( D' (Y ttney (22)

Then, forall x € R,

1 n 1 d*g
— A ——
£(6) Azqng (e-3)] = zhl= | 7] 23)
nez
Proof : It follows from (22) that
1 n
— __ = k i
£(0) ang : ~1> asaog (t-=)
n
1 _k .
== wti (g (e-5))| (24)
n
Where A7X is the k-th order forward difference. Thus (see [59, p. 137]),
+ 1
2 (169) = S (a3
k/A
e 1 @ n+k
= (D5 | (t— +s) be(As)ds, (25)

0
where ¢, is the k-th order B-spline, ¢, = xjo.17 * - * Xjo,1; (k convolution factors).

Note that ¢, is positive, and supported on [0, k] (so that we can just as well replace
the integration limits by —oo and o0). Moreover , Y., P (y + m) = 1 for all
y € R. It follows that we can estimate

O -7 ako (t-7)

Nnez

< sl Y. ] gt (-~

Tl—oo

$r(4s)ds

+5)

Tl j 9Py = At + 1+ k) dy

1
= 2z Il lg ]l

The key to better decay in A for the approximation rate is thus to construct algorithms
of type (22) with k > 1 and uniformly bounded u,, . A XA algorithm which has such
uniform bounds on the “internal state variables” is called “stable” in the electrical
engineering literature; see e.g. [66]. We are thus concerned here with establishing the
existence of stable XA schemes of arbitrary order. We first discuss the cases k = 2
and 3, before proceeding to general k. We shall consider the recursion
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Vp= Up-1t Xp — Qn
Uy = Up—q + Uy (26)
qn = Sign[F(up_1,Vn-1,%,)],
where the function F still needs to be specified. We are interested in applying this to
the case where the x,, are samples of a function f € C,; however, our discussion of
the boundedness of u,, , v, is valid for arbitrary input sequences (x,),e,, provided
x| < a < 1.
Several choices for F have been considered in the literature; see e.g. [58]. One family
of choices described in [58] is
F(u,v,x) = yu + v + x, (27)
where y is a fixed parameter. A detailed discussion of the mathematical properties of
this family is given in [70]. Another very interesting choice, proposed by N. Thao
[69], is
. ] 2
F(u,v,x) = ox 7;lgn(x) + (v + Hiﬂ> +2(1 = |xDu. (28)

In both cases, one can prove that there exists a bounded set A, ¢ R? so that if
|x,,| < aforalln,and (uy,vy) € A, then (u,,v,) € Aa forall n € N;see [70].

It follows that we have uniform boundedness for the wu, if x, =f(%) for

bandlimited f with ||f]|, < a, implying a 22 bound according to (23). As in the
first order case, it turns out that for (28) this 2=2 bound can be improved by a more
detailed analysis; for constant input one achieves, in a root-mean squared
sense, a A~°/4*€ pound. Numerical observations suggest that this result can be
improved to a A75/2 decay rate for appropriately “balanced” F; they also suggest that
this result can be extended to general band-limited functions (instead of constants).
We refer to[70], [74], [75] for a detailed analysis and discussion of these schemes.

Robustness is an issue for second-order (and higher-order) schemes, just as it was
for the first-order case. In fact, the problem becomes trickier because the quantization
scheme should be able to deal not only with imperfect quantizers, but also with
imprecisions in the multiplicative factors defining F in (28) (below). The analysis in
[70] shows that we do indeed have such robustness, for a wide family of second-order
sigma-delta schemes.

Proving more refined bounds than (23) for higher order XA schemes, even for
constant input, turns out to be much harder than for first order (where already the
analysis leading to (16) is highly nontrivial — see [62], [63]). This is mainly because
even for x,, = x constant, the dynamical system (26) is much more complex than
(8). In particular, the map

Ri,:R—R
u—u + x — sign(u + x)
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has[—1,1] as an invariant set, regardless of the value of x € [-1,1]. In
contrast, the maps
Ry, : R*? — R?

()=

have invariant sets I, that depend on the value of x € (—1,1). The sets I, have
fascinating properties which are still poorly understood; for instance, for each fixed
x, T, seems to be a tile for R? under translations by 2z2. (This tiling property is
observed for many F, and we conjecture that it holds for a large family of F, even
though we can prove only a few special cases — see below.) For x # 0, the I, for (27)
can have interesting fractal boundaries; for “large” X, these I, are disconnected.
On the other hand, the sets I, for (28) are connected neighborhoods of (0, 0)
bounded by four parabolic arcs ; because of the explicit characterization of these sets,
a proof that the 2z?-translates of I, tile R? is straightforward in this case. The
smoothness of the boundaries also makes it possible to refine (23) for this choice
constant input (see [74]).
Neither of the two schemes (27) or (28) is easy to generalize to higher order. We shall
therefore concentrate our attention here on yet another choice for F,
F(u,v,x) = v + x + M sign(u), (30)
with M > 1 to be fixed below. In addition, we shall also allow the signfunctions in
(26) and (30) to be imperfect quantizers, and the multiplication by M to be imperfect
as well. Our recursion thus reads, forn > 0,
Up = Up-1 + Xp— @y
Up = Up—q + Vp (31D)
Gn = Qalvp_1 + X + M1 + €)Q7 (Un-1)],

where we assume that Q1 , QZsatisfy (2),and |e,| < u < 1.

The approach in [19] can be used to show that this second-order recursion does
produce uniformly bounded wu,,, v, . We shall provide a different argument here,
that, unlike the analysis in [19], generalizes to arbitrary order. Prescribing initial
values u,, v, (or equivalently wu, u_;) the recursion (31) determines

qn» Un, Up,n = 1. In addition, we also need to give a prescription for n < 0.
Observe that the equations for u,, v, can be rewritten as
U, = 2Up_q1 — Up_» + X, — g, ; this suggests a symmetry between wu, and
u,_,. We use this to define the following recursion for u,, q, withn < 0,
{ Uy = 2Upgpq — Upgz + Xpgo — Qngz
n+2 = erz[un+1 — Upip T Xy +M(1 + gn)Qrzz(un+1)]»
to be used forn < —2.If we introduce also v, = u, — u,,, forn < 0, this
becomes

u+x—sign(u+;+x)

v+u+x—sign(u+z+x) @9
2
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Up = Ung1 + Xpyo — Qne2

Up = Upyr + Vp (32)
n+2 = Q%[vn+1 +xn+2 +M(1 + gn)Q%- (un+1)]r
We define v_; = —v, and use this together with the already prescribed values

Ug, U_1 in (32). This recursion will then serve to determine the values of q;, u;, v; for
j < 0. The sequences (u,), (q,) will then satisfy, for all n,
Au, = x, — qp.

We introduce an algorithm to generate g,, for n < 0 because our approximation
formula (5), using g supported on all of R, requires them; in practice one uses only
compactly supported G, and g,, with n < 0 are not needed. Since the negatively-
indexed g,, are kept for only theoretical reasons, we would be justified in keeping the
sign function“clean” in their recursion, i.e. without the Q1, Q3, ¢, “imperfections”;
we left them in for the sake of generality. It is clear, by comparing (32) with (31), that
if we can prove that (31) implies uniform bounds on |u,|, |v,| for n > 0, starting
from some initial condition |uy| < Uy, |vy| < Vy (with Uy, V, to be determined),
then the same uniform bounds on |u,]|,|v,| for n < 0 will follow, provided
lu_1| < Uy, |v-1| £ V,. Since v_; = —v,, we need to impose only the additional
constraint |uy, + v_q| = |uy — vo| < U, for this to hold. This will allow us to
restrict our arguments to the n > 0 case. We then have:

Lemma (5.1.8)[49]: If [vy]| < M(1 + p) + 1 + 7,then
lv, | < M(1 + w+ 1 + tforall n € Z.

Proof: By induction. Suppose |v,_1| < M(1+pu)+1+7.If
V1 +x,] >M(1 + €,) + 7,then

[Vl = [Vno1+ X — Qa(Wno1 + Xp)| = [vpoy + x| — 1

< |lvgy4l+a—-1<MA+w+1+r7,

where we have used that |v,,_; +x,| > . If|v,_; +x,] < M(1+€,) + 1,
then |v,| < |vpoq + x4l + 1SM(A+€)+t+1 < MA+p) +1+ 1.
Lemma(5.1.9)[49]: Suppose u, < 7,and Uy, ,Ukyz, .-+, Ugsy > T. Define k
to be the smallest integer strictly larger than % + 1.I1f L > k, then there exists at

leastonel € {1,...,k}suchthat v, + xpp01 < —M(1 —p) + 1+ a + 7.
Proof: SUppose vy, 1 + X4, ee o) Vkgr—1 + Xgqie e all > —MA —p)+1+a +

T.Because Uy q,..., Ugsp—q areall > 7, we have qi12 =...= g4 = 1, which
implies
K
Vit T Xitx+1 = Vi1 +Z(xk+l — Qr+) t Xpprr1
1=2
<MA+w+1+7+E-—-—1D@—-1)+a
2M
<M(1+u)+1+r+a—(1—a)1_a

= -MA-wW+1+a+r.
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Lemma (5.1.10)[49]: Let uy, ugyq,..., Ugy, e @S in Lemma (5.1.9). If
Vgl + Xpqpi1 < —MA —w)+1+a+r
forsomel € {1,...,L}, thenforall I’ satisfyingl < l' < L,
Viat! + Xpqt'er < —MA —p)+1+a+r.
Proof: By induction. Suppose vy n + Xgyn+1 < —M(A — w)+ 1 + a + Twith
n € {1,...,L — 1}; we prove that this implies
Viane1 ¥ Xkanez < M1 —p) +1+a+ 7 If
Vktn T Xegner = —M(L + €pyp41) + T,then Gryneq = 1 (SINCE Ugyy, > 7)),
hence
Vkintt T Xgantz < —MQ — @) + 1+ a +7 -1+ Xppny
<-MQA-w+1+a+r
On the other hand, if
Vkin T Xerner < —MA + &ip41) + 7,
then
Vkin+tr T Xpantz < —M(1 + &qppi1) + T + 1+ Xpinyo
<-M1-w+1+a+r
Lemma (5.1.11)[49]: Let uy, uj41,-.., Uk4, be as above. Then the v, decrease
monotonically in [, with v,y —Vi4; = 1 —a,until v, + x,4741 drops below
—M(1 — p) + 1 + a + t. All subsequent v, with I’ < L remain negative.
Proof: Aslong as vy ., + Xx4ne1 = —M(A —p)+ 1+ a4+ twithn < L, we have
Qrins1 = LSO Viin = Vikgner = Xy +1 =2 1—a lf
Virl ¥ Xpppe1 <—M(1 — ) + 1+ a+ t,then
Vigr! + Xpqt'41 < —M@A — w) + 1 + a + by Lemma (5.1.10) if
Il <l <Lsothatvy,y < -M(1 —u)+1+2a+71<0.
Proposition(5.1.12)[49]: Suppose |x,| < a < 1 for all n € Z. Let u,,v,, and

g, be defined as in (31) and (32), with M > 222 Then, if [vy| < M(1+ p) +

1 + t,there exists |v,| < M(1 + u) + 1 + 7 for all n € Z. Moreover, if

_ 2
[M(1+p)+t+3/2—a/2] foralln € Z.
2(1-a)

Proof: We first discuss the case n > 0. The bound on v,, is proved in Lemma (5.1.8),
we now turn to u,. SUPPOSEe Uj,q,..., Uk IS @ Stretch of wu, > 7, preceded by
u, < 7.We have then, forallm € {1,...,L},

m m
Ugsm = Uk +ka+l <7 +2”k+l :
=1 =1

By Lemma (5.1.11), these v,,; decrease monotonically by at least (1 — a) at every
step until they drop below a certain negative value, after which they stay negative.
Consequently, Uy S U — (I1—a) (-1 =MA+puw+1+7—-(1—-a)(l—-1),
at least until this last expression drops below zero. It follows that

|uol, Vo] < T/2,then |u,| < 7+
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n

Weem < T + r71;131><Z[M(1 ) rl+T— (- a(l - 1D (33)
=1

[M(1 + w) + 3/2 —1/2 + t]?
2(1 — a)
The initial condition |u,| < /2 ensures that the upper bound (33) holds for all
[M(1+p)+3/2—a/2+1]?

uy,n = 0. The lower bound ,u,, > —1 — 202 for n > 0, is proved

<71+

entirely analogously.

To treat n < 0, note that the “initial conditions” for the recursion (32) satisfy
lv_1| = |vo| < t/2, and |u_1| = |uy — vo| < 7. It follows that we can repeat
the same arguments to derive an identical bound on |u,| forn < —1.

A third-order YA scheme. Let us consider the construction we discussed for second
order, but take it one step further. For n > 0 define the recursion

( ugU = (U + X — n
u® = (2) + u®
] u® = (3) +u® (34)
1 2 3
=0 [u“ o+ My (1 + eD)0F () + M1 + 2203 (1) )]

where QL , Q2, Q2 satisfy (19), |€1],|€2| < u, and where M, M, will be fixed below

in such a way as to ensure uniform boundedness of the (|u£l) | )nen, Provided we

start from appropriate initial conditions u(() ), u((,z), u((,3). We assume again that

|x,] < a < 1foralln > 0.
We shall keep this discussion to a sketch only; a formal proof of this third order
case will be implied by the formal proof for arbitrary order in the next.
This preliminary discussion will help us understand the more general construction,
however.

First of all, exactly the same argument as in the proof of Lemma (5.1.8) establishes

that| ul” | < M1 + @) + 1 + 7 =M.

Next, imagine a long stretch of un+1, u,&?z,...,all > M1+ up+1+7.

Then the corresponding q,.;4+, are all automatically equal to 1, unless ufjjl +

Xnsp < —M1(1+€l,)) + 7. Arguments similar to those in the proofs of Lemmas
(5.1 9) (5 1.10),(5.1.11) then show that if ul > M1 -puw+1+a+71t=0,

the un £, Will decrease monotonically, by at least (1 — a) at each step, until u,(l +)l +

n+1

Xn4141 drops below —mM;(1 =) + 1+ a+ 7 (inatmost x; = [%J + 2 steps),

®

after which all the subsequent w7,
n+l

1+2a+7t
M, >

in the stretch are negative, provided we chose

. As before, this argument leads to
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M +(1-a)/2

w?| < M, = M,(1 + p) + 7+

2(1—a)
One could then imagine repeating the same argument again to prove the desired
bound on the [u{> |: prove that if one has a long stretch of u>),...,u'>) that are all

(2)

positive, then necessarily the corresponding u;%,

must dip to negative values and

remain negative, in such a way that the total possible growth of the ul(f’jn must remain

bounded. We will have to make up for a missing argument, however: when we

followed this reasoning at the previous level, we were helped by the a priori

knowledge that consecutive u,(ll) just differ by some minimal amount,

|u$31 - u,(ll) | = 1 — a. We used this to ensure a minimum speed for the dropping

ul(i)m and thus to bound the ul(i)m In our present case, we have no such a priori
bound on |u,(,L2J21 — u'?|, so that we need to find another argument to ensure

sufficiently fast decrease of the ul(i)m What follows sketches how this can be done.

Suppose ul(3) < T ul(i)lul(i)L > 7. Then we must have, within the first «;

indices of this stretch (with k,, independent of L, to be determined below) that some

up, < —My(1—p) + 7. Indeed, if us,...,uls) ;> —My(1—p)+7, then the

corresponding q;.,., are 1, unless ul(i)m -1 < —M;(1 — p) + a + t. As before,

this forces the ul(i)m down, until they hit below —M; (1 — u) + a + 7 in at most
(2)

l+m to

steps, after which they remain below this negative value. This forces the u

decrease, and one can determine «, so that if ul(i)l,...,ul(i),cz_l >—-M,(1 —u) + 7,
(2)

(2)
l+K; 1+
—M, (1 — u) + 7, the picture changes. We can get q;.,7,, = —1, and the argument

(1

l+m

then u < —M,(1 — p) + © must follow. Once u has dropped below

that kept the ul(i)m down can then no longer be applied. In fact, some of the u
(2)

I+m toincrease. However, as soon as

with m > I" may exceed t again, causing the u
(2)

we have k; consecutive u,,

> —M,(1 — w) + t,we must have, for at least one of

the corresponding indices, that u,(f) < —-M;(1—pu)+ 1+ a+ t, which forces the

subsequent ufll) below this value too, and we are back in our cycle forcing the uf)

down, until they hit below —M,(1 —p) + t.Soif —-M,(1 — W) +71 + K,M; < 0,
then the uflz) do not get a chance to grow to positive values within the first x, indices

after ul(i)l, < —M,(1 — p) + 7 .This forces all the ul(_?m to be negative for m = [' +

1,...,L; since ' < K, ,this then leads, by the same argument as on the previous

(3)
level, to a bound on u, 7.

We present this argument formally, for schemes of arbitrary order; the proof consists
essentially of careful repeats of the last paragraph at every level. This then also leads
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to estimates for the bounds M; ,and corresponding conditions on the M;. We assume

again that |x,| < a < 1forall n € N. To define the XA scheme of order J for which
we shall prove uniform boundedness of all internal variables, we need to introduce a
number of constants. As before, the XA -scheme will use nonideal quantizers with an
inherent imprecision limited by t, and all the multipliers in the algorithm will be
known only up to a factor (1 + €), where |e|] < u < 1. We pick a so that

2a¢ < 1 — u, and we define

M_21+a+r _l2M1+1+aJ+2
C S
4 A
B =1_‘u—_a M] = MlB] 11/(] D (35)
4B K2 B3 — a —
Vv = {max(— , 1+ ( m,rcl)‘ + 1
k(1 — @) Ky

where j ranges from 1 to /. Forn > 0, the scheme itself is then defined as follows

(o =l x - g,
u) = (J) Y =2 (36)
< Qn{u“) + My (1 + en)Qn[ D+ M1+ DR, +-
+M;_,(1 +€,72)e) ™ f{ 11) +-
\ +M_ (1 + €7D0 )) -1
where |1, |€d],...,|el7"| < eand QL,... Q) satisfy (19) for all n. We start
with initial conditions u( ),...,u(()]), and we apply (36) recursively to determine
qj,u (),... U) ,forj = 1,2,.... Prescribing these initial conditions is equivalent to

) @)
e U jyg

For n < 0, we mirror this system, obtaining

prescribing uU

1 1
( u() 5131 + (=1 (%p4; = Gnej)

ud =ul) +ul™ =2,

] (1) 1\n2r1,,2) 2\N3(.,3) (37)
qn+] = (_1) Qn{un+1 + Ml(l + En)Qn[un+1 + MZ(l + En)Qn(un+1 +-
2 1 -1

L My (1+ €70 e + My (L + 67 ) en ) - Ol
To set the recursion running for n < 0, we prescribe the mirrored initial conditions
u(_j])+1 = j_l(—l)f‘lugl) (]l : 1) These conditions are chosen to guarantee that
u(()]) U])+1 are given the same values as in the prescription for the forward

recurrence. We now use (37) recursively to generate the g,,n < 0. If we take, for

simplicity, u D =9 for j = 1,...J, then the “initial conditions” for the n < 0

recursion have likewise u(_’])+1 = Oforj = 1,...J. If we relax our constraints on
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the initial conditions somewhat, imposing uU) < A; for appropriate 4; , then we also
impose that |¥/_,(—1)/ "’ (]l - 1)| < A; .In both cases, one readily sees, as
before, that the proof of a uniform bound for the |u,({)| in the n > 0 recursion

simultaneously provides the same uniform bound for the |u£l])| inthe n <0
recursion.
Proposition(5.1.13)[49]: Suppose |x,| < a < 1 for all n € Z. Let M; for

j = 1,...,], be defined as in (35), let the imperfect quantizers Q}l,...Q,ﬁ Satisfy (36)
for all n € Z, and let the sequences (g,), 7z and (ug)) . ,Jj =1,...,],be as
ne

defined by (34) or (37), with initial conditions u(]) =0 forj =1,...,J. Then

uP | < 2 — e)MB’"WwUD* foralln € Z

The proof of Proposition (5.1.13) is essentially along the lines sketched for the third-
order case, albeit more technical in order to deal with general /. The whole argument
IS one big induction on j. We start by stating two lemmas for the lowest value of j, to
start off the induction argument.

Lemma(5.1.14)[49]: [ul’ | < My(1 + w) + 1 + a + 7 foralln € Z

Proof:The argument is very similar to that used in the proof of Lemma (5.1.8),
except that x,, does not appear in the definition of g,,.We work by induction. Suppose
) s MA@+ W+l +a+ . f [l >MA+ €el) + 7, then g, and

u™  have the same sign, so that [ul”] < U] — 1 + |x,] < [P, - 1 +

a < |u(1) | < MQA+w+1+a+r7 If |u(1) < M;(1 + €}) + 7,then
< W) +1+a < MA + W +1+a+ 7.
Lemma(5.1.15)[49]:If u® o u® > M,(1+p)+7,withN >

n+1’ n+N

K4, then there
must exist [ € {1,...,x;} such that u(l)l < —M;(1 — p) + t. Moreover, for all

' € {I,...,N}, u(l)l, < —M;(1 — pu) + t +1+a. A similar statement holds if

;221,... fﬁBN < —M,(1 + u) — 7, and other signs are reversed accordingly.

Proof:The argument is again similar to the proofs of Lemmas (5.1.9),(5.1.10).

(1) ne,
n+1’°"" n+k -1

An+2 = "= Qnyk, = 1 Hence

Suppose u areall > —M;(1 — u) + t.Then we have

1 1
r(szk = r(1+)1 +Z(xn+l In+1)

< M;(1+ ,u)+1+a+r—(k1—1)(1—a)<—M1(1—,u)+r.
This establishes that u?, < —M;(1 — p) + tforsomel € {1,...,k;}.

n+l
< —M;(1 — w) + © + 1+ a, for some r with

Next, suppose that u,, ;..
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l<r<N-1If ufllfr > —-M;(1 — p) + 7,theng,yr41 = 1, hence

1 1 1
ur(l-gr+1 1(1+)r + Xpyrpr — 1 < uy(l.zr < -MA-w+71t+1+a,

if u,(lljr < —M;(1 — u) + 7,then

1(113r+1< M (1 — W +t+1+ |l -MA-wW+7+1+a

In both cases, u,(lljrﬂ < —M;(1 —p) + v+ 1 + a, and we continue by induction.
Next we introduce auxiliary constants, forj = 1,...,J:

K = v2U~Dy,

Mi=Q+wWM +t+1+a, Mj=A+wM;+7+ Kj_M;_,forj =2
=(1-wWMy—t—1—a, M'=0—-p) Mj-1— kj_ M forj>=2 (38)
M, = M;(1 4+ p) + 7
my= M(1—-pw-1 .

These have been tailored so that
Lemma (5.1.16)[49]: The constants defined above by (37) satisfy, for
j=2,....,],

QA -wM >+ k412 —-a)M_,, (39)
M < (2 - a)M; (40)

m; + M
Ki —Kj_1 2 W (41)

Proof: The first equation is proved by straight substitution:
1 -w M, —t— Kj—1(2 - a)M]—1

. . 2 — o)k

_ Bi-1,(-1? - ! _ 1

B M [1 H = G-17Bi-1p, Bv ]
. . /My + (2- a)k

> B/lvU-D' M, [1—u— /M, lgv ) 1] (42)
. . 22 —ao)(1 — a —

> Bi-1yU-1°p, [1 —u - ( )(4 28 aM,.

The second equation is proved by induction. First we consider the case j = 2:
My—Q2—-—a)M,=(u+a—-—1M, -1 — Kk, M; < —aM, —t— Kk, M; <O.
Now suppose that M; < (2 — a) M; holds for some j > 2. Then (42) immediately
implies that
Mi,>A-wMy,—1—-K2—-a)M =2 aM,, ,
leading to
Mj’+1 > 2Mj,, — M]+1 < (2 - a)M
It remains to prove the third inequality. Because the definition of M;., is slightly
different for j = 2 than forj > 2, we handle the case j = 2 separately.Now
My (ky — k) — My — My = Mi'k; — 2Myky — 2 M,
= (a+1+71)v?k; — 2M;k; — 2vVB M,

——
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4K,
1 —wu

=(a+1+r)[v<wc1—14_B‘u)— ]> 0,

where we have used v > + k?B.

K1(1 —Il)
Forj > 2weuse Mj < (2 — a)M; and M;., > a M;_, to upper bound the
right-hand side of (40), and we replace the various x; and M, by their definitions;
then we see that the equation holds if v, (1 — v™2) >B(3—a—pa™}, or,
equivalently, if v2> B(3 —a —u)v(ak;)™! + 1. From the definition of v one
easily checks that this is indeed the case, completing the proof.
Corollary (5.1.17)[296] : Show that
In1

g Ing,
Proof :|f (%)| + |u,—q| + |Sign( )+ Uy 1)|
(s

G
1+1+| gn ()+un1)|<1,
|Slgn( ( )+ Up_ 1)|<1,

|Slgn (f ()L) + un_1)| <-1
From (8) we get g;* > 1 taking In we get Ing;* >In1then 11lng, >1In1and
In1
A >

Ingn
Section(5.2) Multidimensional Bandlimited Functions

The subject of recovery of bandlimited signals from discrete data has its origins in
the Whittaker— Kotel’nikov —Shannon (WKS) sampling theorem (stated below),
historically the first and simplest such recovery formula. Without loss of generality,
the formula recovers a function with a frequency band of [—m, ] given the function’s
values at the integers. The WKS theorem has drawbacks. Foremost, the recovery
formula does not converge given certain types of error in the sampled data, as
Daubechies and DeVore mention in [49]. They use oversampling to derive an
alternative recovery formula which does not have this defect. Additionally for the
WKS theorem, the data nodes have to be equally spaced, and nonuniform sampling
nodes are not allowed. As discussed in [48], nonuniform sampling of bandlimited
functions has its roots in the work of Paley, Wiener, and Levinson. Their sampling

formulae recover a function from nodes (t,,),, where (eitnx)n forms a Riesz basis

for L,[—m, m]. More generally, frames have been applied to nonuniform sampling,
particularly in the work of Benedetto and Heller in [44,45], [48].

We derive a multidimensional oversampling formula (see (46)), for nonuniform
nodes and bandlimited functions with a fairly general frequency domain; investigates
the stability of (46) under perturbation of the sampled data. This Section presents a
computationally feasible version of (46) in the case where the nodes are
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asymptotically uniformly distributed. Kadec’s theorem gives a criterion for the nodes
(tn)n SO that (eitnx)n forms a Riesz basis for L,[—m, ].Generalizations of Kadec’s
1/4 theorem to higher dimensions are considered in this Section, and an asymptotic
equivalence of two generalizations is given. Investigates approximation of the
biorthogonal functionals of Riesz bases. Additionally, we give a simple proof of a
theorem of Levinson.

We use the d-dimensional L, Fourier transform

FUOC) = [ £t dirf € Lmy,
Rd

where the inverse transform is given by

1 .
FUOCO) = G [ £t dgf € Ly,
R4

This is an abuse of notation. The integral is actually a principal value where the limit
is in the L, sense. This map is an onto isomorphism from L, (R%) to itself.
Definition(5. 2. 1)[42]: Given a bounded measurable set E with positive measure,
we define

PWg ={f € L,(R?) |supp(F~'(f)) c E}.
Functions in PWy, are said to be bandlimited.
Definition (5. 2.2)[42]:The function sinc : R — R is defined by

%) \We also define the multidimensional sinc function

sinc(x) =

SINC : R% - R? by SINC(x) = sinc(x;) - - - sinc(xg),x = (xq,...,%x4). We recall
some basic facts about PWg :

(i) PWy is a Hilbert space consisting of entire functions, though in this section we
only regard the functions as having real arguments.

(i) In PWg , L, convergence implies uniform convergence. This is an easy
consequence of the Cauchy—Schwarz inequality.

(iif) The function sinc(m(x — y)) is a reproducing kernel for PW|_, »; That is, if
€ PW|_y n , then we have

f )= jf(r)sincn(t—r)dr ,t € R. (43)

(iv) The WKS sampling theorem (see [69]). If f € PW|_,  , then
£ (0 =Zf(n) sincn(t —n),t € R,

Nnez
where the sum converges in PW_. 1 , and hence uniformly.

If ( f,,)nen 1S @ Schauder basis for a Hilbert space H, then there exists a unique set
of functions ( f* )nen (the biorthogonalsof (( f, Jnen)such that (f,,f* ) = Gum.
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The biorthogonals also form a Schauder basis for H. Note that biorthogonality is
preserved under a unitary transformation.

Definition (5.2.3)[42]: A sequence (f,,),, € H such that the map Le, = f,, is
an onto isomorphism is called a Riesz basis for H. The following definitions and facts
concerning frames are found in [57].

Definition (5.2.4)[42]: A frame for a separable Hilbert space H is a sequence
(fo)n © Hsuchthatforsome0 < A < B,

ANFIP < ) Ffu)I? < BIF I VS € H. (44)

The numbers A and B in (44) are called the lower and upper frame bounds. Let H be
a Hilbert space with orthonormal basis (e,),. The following conditions are
equivalent to (f;,),, © H being a frame for H.

(i) Themap L : H — H defined by Le,, = f, is bounded linear and onto. This map
is called the synthesis operator.

(i) The map L* : H — H (the analysis operator) given by
f = Y.(f, fn) e, is an isomorphic embedding.
Given a frame (f;,),, with synthesis operator L, the map S = LL* given by

Sf =X.{f, fx)n 1sanonto isomorphism. S is called the frame operator associated
to the frame. It follows that S is positive and self-adjoint. The basic connection
between frames and sampling theory of bandlimited functions (more generally in a
reproducing kernel Hilbert space) is straightforward. If (e‘t"()), is a frame for
f € PW|_g 5 with frame operator S, and f € PW|_ r, then

SFN) = ) EH U e = ) FE)

=n2f<tn)fn,

implying that F~1(f) =Xnf (tn) S™ fn, so that f =3, f (t) F (ST ).
Note that in the case when t,, = n, we recover the WKS theorem.
Definition (5.2.5)[42]: A sequence (f;,),, satisfying the second inequality in
(44) is called a Bessel sequence.
Definition (5.2.6)[42]: An exact frame is a frame which ceases to be one if any
of its elements is removed. It can be shown that the notions of Riesz bases, exact
frames, and unconditional Schauder bases coincide.
Definition (5.2.7)[42]: A subset S of R is said to be uniformly separated if

inf |lx— y|l, > 0.

X,VES,x#y
Definition (5.2.8)[42]: If S = (x;) is a sequence of real numbers and f is a
function with S in its domain, then f ¢ denotes the sequence (f(xyx) ). In [49],
Daubechies and DeVore derive the following formula
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f(t)—AZf t——) t €R (45)

Nez
where g is infinitely smooth and decays rapidly. Thus oversampling allows the

representation of bandlimited functions as combinations of integer translates of g
rather than the sinc function. In (45) is a generalization of the WKS theorem. The
rapid decay of g yields a certain stability in the recovery formula, given bounded
perturbations in the sampled data [49].We derive a multidimensional version of
(45).Daubechies and DeVore regard F~1(f) as an element of L,[—Am, Ar] for some
A > 1. In their proof the obvious fact that [—m, ] © [—Am, Ax] allows for the
construction of the bump function F~1(g) € C*(R) which is 1 on [—m, 7] and 0
off [—Am, Ar]. If their result is to be generalized to a sampling theorem for PWy in
higher dimensions, a suitable condition for E allowing the existence of a bump
function is necessary. If E < R%is chosen to be compact such that for all

A > 1,E c int(AE), then in [51], a C*-version of the Urysohn lemma, implies the
existence of a smooth bump function which is 1 on E and 0 off AE. It is to such
regions that we generalize (45):

Theorem (5.2.9)[42]: Let0 € E < R? be compact such that for all

A > 1,E c int(AE). Choose S = (t,)neny © R? such that ( f,,)nen, defined by
£, () = et is a frame for L,(E) with frame operator S. Let A, > 1 with
F1(g): R >R F1(g) € C®where F1(g)|lz = 1and F1(9)|a, 5 = 0. If
A = Apand € PWg ,then

10 = a3 (bt ()ole - Feeme o

keN \neN
where By,, = (S71f,,S7! fi.)g . Convergence of the sum is in L,(R%), hence also

uniform. Further, the map B: ¢,(N) - ¢£,(N) defined by
Vidken — Cnen Bin Yn)ren 1S bounded linear, and is an onto isomorphism iff
( fu )nen is a Riesz basis for L, (E).

Proof: Define fo,(-) = fu (I) . Note that ( f; ,,), is a frame for L, (AE) with frame

operator S.
Step 1: We show that

f = Zf( ) [FST fn)F QNS € P, (47)

We know supp(F 1(f )) € E c AE, so we may work with F~1( f) via its frame
decomposition. We have

FU) = S SHF )= zwj_l(f);f/l,n)/w S3~" famon AE.

This yields
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FAF) = ) F ) fandae (7 )P (gD on RY,
since suppF(g) < AE. {laking Fourier transforms we obtain
f= D F ) finhae FI(ST)F (@) on R (48)
Now "

. n
ES Wi = [ TP d = £(2)
AE
which, when substituted into (48), yields (47).

Step 2: We show that

f(-)=Zf(%")

where convergence is in L,.
We compute F[(S, " fin)F1(9)]. For h € L,(AE) we have

h = $(S;7'h) = Z<Sl_lh'f;l,k>/1E fak = Z(h,S,fl farae fak
X X

Z(Sa_l fanS2 7t fagdae 9 ( - %k)] (49)

k

Letting h = S, fan
St fan = z<5/1_1 faSa~t fudae fuk

k
This gives

FI(S2 ™ fan)F D)) = z<5/1_1f/1,n»5/1_1f/1,k>)lE FlAxF @]
X

= Z<S/1_1fl,ni Sa  fadae J ei(f'%k)?’_l(g)(f Ye 48 qg
X

AE

= D57 S ks j F(g)(§)e T dg
k

AE

_ _ t
= Z(SA YanSa e g ( — Tk)
%

so (49) follows from (47).
Step 3: We show that

_ - 1 _
(27 fanS2™ faxhae = 7a S ST idp for nk € N. (50)
First we show (S; ' fi.) () = /—%d ) (I) , or equivalently that

fan = %ds,1 ((S‘lfn) (j)).We have forany g € L,(AE),
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G s = f (& )e 5 gg = j GO

= /1‘1<g(/1( s fre)e-
By definition of the frame operator S;, S529 = Xken{G fax)ae fax, Which then

becomes S, g = A% ¥, {(g(A()), fi)e fax. Substituting g = Aid(S‘lfn) (E) into the
equation above we obtain

1
25 ((s ) ( ) Z<s S fide fir = (SET) (3) = fune
We now compute the desired i mner product:

(27 o Sa” fardar = A% f(s_lfn) G) (S7i) G) dx
AE

A4 S ——— 1
~ 15 | ST RIOTTRI® dx = 75 oS i

Note that (49) becomes

f()—Ade( )[Z(S oS idg (- - A)] (51)

Step 4: Themap V : £,(N) = £,(N) given by

X = (X )ren » On BinXn)ren = Bx is bounded linear and self-adjoint. Let
(di)ren be the standard basis for £, (N), and let (e;) ey be an orthonormal basis for
L,(E). Then

Vd; = (Bkj)keN = Z Byjdy = Z(S_lfj's_lfk)dk
K K
= ) WS ™HLe, eda,

k
where L is the synthesis f operator, i.e., S = LL*. Define

@: 2 (N) » L,(E) by @(dy) = ex, k € N. Clearly g is unitary. It follows that
V = @ 1L*(S71)2Le, which concludes Step 4. From here on we identify V with B.
Clearly B is an onto isomorphism iff L and L* are both onto, i.e., iff the map Le,, =
fr 1S an onto isomorphism.
Step 5: Verification of (46). Recalling Definition (5.2.8),

tn

fs/p = (f (7 ))nEN; foreacht € R%, let g, (t) = (g (t —%") )nEN.

Noting that f ( ) (t - = ) € L,(AE), and recalling that ( f; ,,),, is a frame for
L,(AE), we have
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2rG

=D P el S ANFTOI, (52)

and
2

:2‘03_1 (9 (t - Z ) s fan)ae

2

Note that (51) becomes

0L ) [Tonsle -] ST oo

- = Z(fm)n(Bgl(t))n =~ {fi2 BGO) = 5 {Bfssa 52000

- 2T (D) = 32 (T ())o(-2)

keN \neN

which proves (46).
Step 6: We verify that convergence in (46) is in L, (R) (hence uniform). Define

0 == Y (Bl (c-2)

and 1<k=sn
fm,n(t)=%d zk (Bf%)k g(t—%k).
Then e
[Pl = 32 D (B %),f o (=)
m<k<n
) A_ldms,cs,l (Bf;)f*(g)(f)e“f%’”,
SO
NP G f F1(g) ()2 mZk (Bf%)ke“f't?k) i
<zl 2. (655) s 2.

If (hy,),, is a orthonormal basis for L, (AE), then the map Thy = f;, (the synthesis

operator) is bounded linear, so
Ft < Bfs) h
=)l =57 (3 (o55) )

2 2

<<l Y’ (5rs) | -

2 msksn k

2 ld
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But Bfs€ #°(N), s0 [|[F ' (fun)]l2 = 0asmmn—o. As F1 is an onto
A

isomorphism, we have ||f,..|| = 0, implying that || f — f,|| = 0 asn — co.
Note that (45) is conveniently written as
f@O=— (st) g(t-2).t € RY. (53)
A - 2/ A

Proposition(5.2.10)[42]: If 0 € E < R® is compact, then the following are
equivalent:

() E < int(AE) forall A > 1.

(ii) There exists a continuous map ¢ : S~ — (0, o) such that

E ={typ(y) |y € S% 1t € [0,1]}. The following is a simplified version of
Theorem (5.2.9) , which is proven in a similar fashion:

Theorem (5.2.11)[42]: Choose (t,,),ey © R® such that (£,),ey, defined by

() = (Znid/z et s a frame for L, ([—m, m]%). If f € PWg then

F(o) = 2 (2 By, f (tn)>511vc(n(t ~t,)),t € RY. (54)

keN \neN
The matrix B and the convergence of the sum are as in Theorem (5.2.9).

(46) generalizes (54) in the same way that (45) generalizes the WKS equation. We
can write (54) as

F(©O = ) (Bfs WSINC(r(t - 1,)). (55)

keEN
Frames forL, (E) satisfying the conditions in Theorems (5.2.9) and (5.2.11) occur

in abundance. The following result is due to Beurling in [47].
Theorem(5.2.12)[42]: Let A < R? be countable such that

VA
>

If E is a subset of the closed unit ball in R% and E has positive measure, then
{eiP| 1 € A}is aframe for L,(E).

A desirable trait in a recovery formula is stability given error in the sampled data.
Suppose we have sample values

I .
r(A) = Ea,ﬂe‘?,giu |4 -ull; >0 and R(A) = fseu]lgi inflld —pll, <

fo = f(%) + €, where sup,|e,| = €. Ifin (45) we replace

f (%) by £,, and call the resulting expression £, then we have

FO-FOlsezy Jo(e =) <@g, +lg )

Nnez
It follows that (45) is certainly stable under £, perturbations in the data, while the

WKS sampling theorem is not. For a more detailed discussion see [49]. Such a
stability result is not immediately forthcoming for (46), as the following example
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illustrates. Restricting to d = 1, let (t,),e, Satisfy t, = D & z, and t,, = n for
n # 0. The forthcoming discussion in this Section shows that (f;,;,),ez 1S @ Riesz
basis for L,[—m, ].

Note that when (f,,),, IS a Riesz basis, the sequence (S‘lfn )nis its biorthogonal

sequence. The matrix B associated to this basis is computed as follows. The

biorthogonal functions (G nez for (sinc(m(- —n)))nez are
_ (=1)™n(t - D)sinc(mt)

G,(t) = S Yr— ,n #= 0,

And Go(t) = M That these functions are in PW;_,  is verified by applying

inc(m
the Paley—Wlener theorem [56], and the biorthogonality condition is verified by
applying (43). Again using (43), we obtain

) Bmo = (Go,Gp) = D™ £ 0
(1) m0 — ooYm/ — SiTlC(T[D)(m — D):m )
(i) Boo = (Go, Go) =m,
D2(_1)ﬂ+m
(111) an = <G’ru G‘m) = 6nm + ,else.

(n — D)(m — D)
Note that the rows of B are not in #,, so that as an operator acting on #.,, B does not
act boundedly. Consequently, the equation

f©r =5 (B7s) o(:-3) (56)
k

k
is not defined for all perturbed sequences fs where
A
(fg) = (fg) where sup,|e,| = € .
4 A n+ey

Despite the above failure, the following shows that there is some advantage of (46)
over (44).

If fsis some perturbation of fs such that | Bfs — Bfs
A A A A

n

< €, then

sup, f ® = 7 ©®]=sup

o (8- fs>)k (%)

< esup - Z|g t—— (57)

Ee]R{d
from here on, we focus on the case Where (tn)nen 1S an €, perturbation of the lattice
z%, and (f,)nen iS @ Riesz basis for L,[—m, m]%. In this case, under the additional
constraint that the sample nodes are asymptotically the integer lattice, the following
theorem gives a computationally feasible version of (46). The summands in (46)
involves an infinite invertible matrix B, though under the constraints mentioned
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above, we show that B can be replaced by a related finite-rank operator which can be
computed concretely. Precisely, one has the following.
Theorem (5.2.13)[42]: Let (ny)xey be an enumeration of z¢4, and
S = (tx)key € R? such that
%Eymk_tﬂb==0-

i . a _ i(nr, i(tr,
Define ek,fk : R - C by ek(x) = (Zn)d/z el<nkx) and (zn)d/z el(th)’

(hy), be the standard basis for #,(N). Let P;:#,(N) — £,(N) be the orthogonal
projection onto span{h,,..., h;}. If (fi)ken iS @ Riesz basis for L,[—m, 7]¢, then for
all f € PW_;, ja, We have

and let

l
1 t
F(t) = lim—dz [(PIB‘l P)1 fs] g(t-=2).t € RY, (58)
l—»o0 ) ] 1 K A
where convergence is in L, and uniform. Furthermore,

_ sinct(tpq —tme) - Sincn(tpg —tma) 1 <nm </,
PB 1P = { v m ’ ’
(P Dnm 0, otherwise.
Convergence of the sum is in L, and also uniform.

proof : Step 1: B is a compact perturbation of the identity map, namely
B =1+ lllm(—Pl + (PlB_l Pl)_l).

Since (fi)ken IS @ Riesz basis for Ly[—m,m]% L* = (I — T) is an onto
isomorphism where T,, = ey — f; so B simplifies to
(I-T)*(I - T*)~1. We examine
Bl'=(U-THU -T)=1+((T'T-T-T)=1+ A,
where A is a compact operator. If an operator A: H — H is compact then so is A*,
hence P,AP, — A in the operator norm because
IP,AP, — All < ||[P,AP, — PA| + [|P,A = Al < [|[AP, — Al| + [[P,A — Al
= [|[PA" — A™|| + [[PA - Al > 0 .
We have
Bl = lim(I + PAP) = lim(I + P, (B™* = DP)

=lllm(1— Pl+ PlB_lpl).

Now (P,B~1 P)) restricted to the first I rows and columns is the Grammian matrix for
the set ( f1,..., f;) which can be shown (in a straightforward manner) to be linearly
independent. We conclude that
P,B~1 P, is invertible as an [ x [ matrix. By (P,B~1 P,)~! we mean the inverse as an
| x | matrix and zeroes elsewhere. Observing that the ranges of P,B~! P, and
(P,B~1 P))"1are in the kernel of — P, , and that the range of I — P, is in the kernels
of ,B~1 P,and (P,B~1 P;)~1, we easily compute

(I -—P +(PB'P)™ ) ' =] —-P+ PBlP,
so that
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B~ = lim(I — P, +(RB™'P)™)7",

implying
B =lim(U — P + (B P)™) = limB = lim(=P, +(PBP)7)) .

Step 2: We verify (58) and its convergence properties. Recalling (53), we have

(00]

F@O =2 |- p o+ @RI fs| g (e- %)

k=1 Ak

_ Aidi[(B = B) fsal, 9 (t - %k)
k=1

implying
l
f - %RZ[(PZB POss] (=)=
E3lo - mosisl -5k 3, o)
Therefore, . o

— /%dkzl::l [(PIB—l Pl)_lf%]k g (.— %k) 2

Y16 - 80l (- ) Y 1(2)al-2)
=1 ) k:l+1Oo [—Am,Am]4

=2 1(9)()< 8- Boss| P+ p () >)
k=1 Ak k=1+1 [—AmAm]?

after taking the inverse Fourier transform. Now
1 4 ty
FO=- ) |esross| o)

[ i,y
(B- B)fs|
I 1 k

2

1
T
[—Am,Am]@ k=1+1

(> EI)-

since (fk (z)>k is a Riesz basis for L,[—Am, Am]¢. Since B, » B as | - o and

> t ot
2, ()

[-Am,Am]®

A2 ()

(f (%")) € ¢£2(N), the last two terms in the inequality above tend to zero, which
k

proves the required result. Finally, to compute (P,B~ P)),,,,,, recall that

( ]
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B™1 = (I-T*)(I —T). Proceeding in a manner similar to the proof of (52), we
obtain
Br?1111 = (LL*enJ em) = (L*en'l‘*em> = (fn:fm)
= sincn(ty1 —tpa) " sinct(tyg — tma)-
The entries of P,B~1 P, agree with those of B~ when1 <n,m <L
Theorem (5.2.14)[42]: Under the hypotheses of Theorem (5.2.14) ,

l
f@© = lim ' [(PB7 )™ fily SINC(E — ).t € RY, (59)
k=1

where convergence of the sum is both L, and uniform. The following lemma forms
the basis of the proof of the preceding theorems, as well as the other results in the
section.
Lemma (5.2.15)[42]: Let (n,,) ey be an enumeration of z¢, and let
(ti)keny © RE. Define
e, fi i R > cby e, (x) = —— el™ and fi (x) = —— el(tx),
(2m)2 (2m)2
Then for any r,s > 1, and any finite sequence (ay)y-, , we have

S

Z T g iuOm — Tk o 4O

d
k=r \(2m)2 (2m)2 X
s 1/2
< (end(suprskssllnk—tklloo) — 1) (2 |ak|2> . (60)
k=r
Proof : Let§, =t, —ny, where 8, = (,,...,0k,)- Then
S
0, (x) = e [eitnen, oitten)]
k=r (2m)2
S
_ A ~ e[ 1 — giden)] (61)
k=r (27‘[)7

Now for any &y,
1 — ei((sk,X) — 1 — ei8k1x1 ei8kdxd

o i(iaklxah i(ifskdxd)fd
TR A VA
Ja=0

j1=0
_ (i5k1x1)j1 ..... (i), %q)
- il 1
(jl:---;jd) ]1 ]d
ji=0
f ]
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Gl (i5k1x1)]1 ..... (i(gkdxd)jd
Jal e jq! ’

(JomJa)€]

where J = {(ji, .., jg) € Zz%|j; =0,(jy,...,jq) # 0}. Then (61) becomes

S .
a , (I8, x ) ]
k=r (27’[)E (]1 jd)e] ]1' ]d.
le ... ]d a . .
= _ z 1 ' _dl jid k TANREREE 5)0 eitni),
v Ja k=r (27‘[)2

(JomJa)€J
SO

itda ; e
1
|(pr,s(x)| < z j1! ..... jd! z ak5k1 """ Skd a -
(Jiwja)€] k=r (2m)2
For brevity denote the outer summand above by h; ;. (t). Then
2 2

dx

2

f s )" dt | < j

[~mm]

hjl,...,jd (x)

[—7'[’7'[] d (jl""ijd)ej

|hjs,ia @) dx |,

(JrmJa)E T [—n,n]d

IA

so that

T[jlt---tjd i .
< S st ... . gld d
vl Z Jit e Ja! Zak “ “ .

(Jvmja)€] ! [-m,m]d |k=T

. . S 5
n]ll"'l_]d . 2 . 2
= § — : ,( P82 |67 | >
]1. ----- _]d' k

(jl""'jd)ej =r

i S ) 2 i ) \2
> i D lel? ((sup line = il
J1 0 g r<kss

(€] 1 k=r
1

,
_ n(suPrasslne = tillo) 1 A
- ]1| ..... jd' | kl

wJd)E ]
1

nsu<<n—t Ve 2
1—[ (suprspssllng — tello) ) (ZlakF)

|
=1 \f,=0 Je!

IA

N[ =
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1

s 2
— (eﬂd(suprskSSan_tk“oo) — 1) (Zlak|2> .

k=r
Corollary (5.2.16)[42]: Let (ny)xen be an enumeration of z¢, and let
(tx)ken © RY such that sup ||ny, — txllee = L < oo. Define
keN

er fio : RE - cby e (x) = — e and fi, (x) = —— et® Then the map

(2m)2 (2m)z
T: Ly[—m,m]? - L,[—m, m]%, defined by Te, = e, — f,, satisfies the following

estimate:

IT|| < e™4 —1. (62)
Proof : Lemma (5.2.15) shows that T is uniformly continuous on a dense subset of
the ball in L,(E), so T is bounded on L,[—m, m]%. The inequality (62) follows
immediately.
Corollary(5.2.17)[42]: Let (n)ken » (tk)keny © R4, and let e, fi, and T be
defined as in Corollary (5.2.16). For each [ € N, define T; by T, = e, — fj for
1 <k<landT,, =0forl<k.
If limy_llnx — tell = 0, then lim,_, T; = T in the operator norm. In particular,
T is a compact operator.

Proof : As
0 0o l
(T — T (z akek> = Z ax(ex — fi) — z ax(ex — fi)
k=1 k=1 k=1
= Z ac(ex — fi) = T( Z akek>'
k=1+1 k=l+1

the estimate derived in Lemma (5.2.15) yields

7o) (3 )

k=1 k=1+1

2 2

< (endsupkzl+1||5k||°o _ 1)

)

00
k=1

2
so ||[(T — T)Il, = 0asl — o. As T; has finite rank, we deduce

that T is compact.
Theorem (5.2.18)[42]: Let (t,)re, © R be a sequence of distinct points such
that

lim supln —t,| =L <Z'

[n|—>c0
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Then the sequence of functions ( f;) ke, , defined by f, (x) = \/%eith,

IS a Riesz basis for L,[—m, m]. Theorem (5.2.18) shows that in the univariate case of
Theorem (5.2.13), the restriction that ( fi)ren 1S @ Riesz basis for L,[—m, m]can be
dropped. The following example shows that the multivariate case is very different.
Let (e,), be an orthonormal basis for a Hilbert space H. Let f; € H with ||fi]| = 1
, then ( f1,e,,e5,...) IS a Riesz basis for H iff (f;,e;) # 0. Verifying that the map T,
given by e, — ¢, for k > 1ande; — f;, isa continuous bijection is routine, so T
IS an isomorphism via the Open Mapping theorem. In the language of Theorem
(5.2.13), (f1, €z, €3,...) s a Riesz basis for L,[—m, 7] iff 0 # sinc(mty,) - - -
sinc(mtyq),that is, iff ¢; € (R\{£1,+£2,...1)% Corollary (5.2.16) yields the
following generalization of Kadec’s theorem in d dimensions.
Corollary(5.2.19)[42]: Let (ng)key be an enumeration of z% and let
(ti)reny < RY such that

I = telles = L < &)
sup ||In. — telle =
kEIz) & k td

Then the sequence ( fi)keny defined by f.(x) =

Ly[—m, ]2

The proof is immediate. Note that (62) implies that the map T given in Corollary
(5.2.16) has norm less than 1. We conclude that the map

(I — T)e, = f; isinvertible by considering its Neumann series.

The proof of Corollary (5.2.16) and Corollary (5.2.19) are straightforward
generalizations of the univariate result proved by Duffin and Eachus [50]. Kadec

. (63)

elxtk) js a Riesz basis for

(27-[)61/2

improved the value of the constant in the inequality (63) (for d = 1) from % to

the optimal value of 1/4; this is his celebrated “1/4 theorem” [52].Kadec’s method of
proof is to expand e%* with respect to the orthogonal basis

1
{1, cos(nx), sin (n — —) x}
2 neN

for L,[—m, ] , and use this expansion to estimate the norm of T .

In the proof of Corollary (5.2.18) and Corollary (5.2.19) we simply used a Taylor
series. Unlike the estimates in Kadec’s theorem, the estimate in (62) can be used for
any sequence ( t,)xen < R%such that
SUpregllne — txllo = L < oo, not only those for which the exponentials (etn*),
form a Riesz basis. An impressive generalization of Kadec’s 1/4 theorem when
d = 1 is Avdonin’s “1/4 in the mean” theorem [43].Sun and Zhou (see [55]) refined
Kadec’s argument to obtain a partial generalization of his result in higher dimensions:

Theorem (5.2.20)[42]: Let (ay)pe,e © R*suchthat 0 < L <<,

nez
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SiTlT[L)d (sinnL)d

D;(L)=(1- L nmlL
qa(L) ( cosnl + sinml + — —

and
la, —nlle < L,n € z%. 1f Dy;(L) < 1,
1
then ( 2
pdl)2and (1+ Ddl)2.
In the one-dimensional case, Kadec’s theorem is recovered exactly from Theorem

(5.2.20). When d > 1, the value x; satisfying 0 < x; < %and Dy(xz) =1isan
upper bound for any value of L satisfying

e““n'('))) is a Riesz basis for L,[—m,m]¢ with frame bounds (1 —

0 <LK i and D;(L) < 1. The value of x; is not readily apparent, whereas the
constant in Corollary (5.2.19) is l::—z . A relationship between this number and x,; is
d

given in the following theorem (whose proof is omitted).
Theorem (5.2.21)[42]: Let x, be the unique number satisfying
0 < x4 < %and Dy(x4z) = 1.Then

In 2

. Xd T 7g
im —in 22 = 1.
12md?

Thus, for sufficiently large d, Theorem (5.2.20) and Corollary (5.2.19) are essentially
the same.
We apply the techniques developed previously to approximate the biorthogonal

unctions to Riesz bases (—e!tnC or whic e synthesis operator is sma
functions to Riesz b \/;_nlt()f hich the synth perat I

perturbation of the identity.
Definition (5.2.22)[42] :A Kadec sequence is a sequence (t,)ne, Of real numbers
satisfying

1
sup|t, —n|=D < —.
nez 4

Definition (5.2.23)[42]: Let (t,)nez © Rbe a sequence such that
(fdn = (\/L_ eitn(‘)) is a Riesz basis for L,[—m,]. If | > 0, the

21 n
[-truncated sequence (t; ,)ne, IS defined by t;,, = t, if [n| <l and

. . 1 i .
t,, = n otherwise. Define f;,, = ﬁe‘tlrn() fornezl >0.
Let P, : L,[—m, ] = L,[—m, ] be the orthogonal projection onto span{e_,,..., e;}.
Proposition (5.2.24)[42]: Let (t,)nez © R be a sequence such that (f,),
(defined above) is a Riesz basis for L,[—m, ]. If (e,), is the standard exponential

orthonormal basis for L,[—m, ] and the map L (defined above) satisfies the estimate
II — L|| =6 < 1, then the following are true:
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(i) For I = 0, the sequence ( f;,,), IS a Riesz basis forL,[—m, r].
(i) For L > 0, the map L, defined by L,e,, = f;, satisfies ||L;*|| <
Proof : If (c,), € £?(z), then

(-1 (2 cnen> =) calen—Lien) = ) (ea—f) = U~ L)P (z cnen>,

n n In|st

1
1-8§ °

so that

I —-L)=U-1LDp . (64)
From this, [[I — L|| < &, which implies (i) and (ii).
Define the biorthogonal functions of ( f;,), to be ( f;;, ). Passing to the Fourier

transform, we have \/%T( fin) () = sinc(n(t —t;,)) and
1

Gin(t) = \/T_T[T( frn) ().

Define the biorthogonal functions of ( f;,),, similarly.
Lemma(5.2.25)[42]: If (t,),, c R satisfies the hypotheses of Proposition

(5.2.24) , then
lim Gl,n = Gn n PW[_T['T[] .

[—>00

Proof : Note that
Onm = <fl,n'flfm) = <Llenrfljﬁm> = (e, L’ZfI*m>
so that for all m, f;', = (L7 )™ 'e,,. Similarly, f;;, = (L* ) 'e,,. We have
fim = fo = (@D L) Dey = LTI = LDA ) ey

Now (84) impliesL, — L, = (I — P)(L — I),so that

fim— fm =LA = DU = PYL ) ey
Applying Proposition (5.2.24) yields

1

Ifim = fill < 7= 1" = DU = PIC ) eyl
which for fixed m goes to 0 as [ —» o. We conclude lim;_,q, fi;, = fim , Which,
upon passing to the Fourier transform, yields lim;_,o, G;,, = Gy, .
Theorem (5.2.26)[42]: Let (t,),e; © R be a sequence (with t, = 0 for
n # 0)such that

(fdn = (\/%_n eitn(‘))n is a Riesz basis for L,[—m, ], and let (e,,),, be the standard

exponential orthonormal basis for L,[—m,m]. If the map Lgiven by Le, = f,
satisfies the estimate I — L < 1, then the biorthogonals G,, of

=F()() = sinc(n( —t)) in PWi_pq are

B H(t)
) = oGy

n ez, (65)

where
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H@®) = (¢ — to)l_[<1 - —) (1 - Z> (66)

Proof : We see that §,,,, = (Gl,m, Sin), Where S; . (t) = sinc(n(t — t,)) when

In| <1 and S,,(t) = sinc(m(t —n)) when |m| >1. Without loss of
generality, let |m| <. (43) implies that G;,,(k) = 0 when |k| > . By the WKS
theorem we have

G (t) = Z Gom()sine(n(t - k)

k=—1
k=l
(_1)k_1tGl,m(k) .
(k_ p— >smc(7tt)
_ w, ()
[Ti=1(k-t)(=k -1

where w; is a polynomial of degree at most 21. Noting that

sinc(mt),

l

sinc(mt) = 1_[<1 — —) and ﬂ(k —t)(—k —t) = (=D')? 1_[ <1 - ]tc_22>

k=1 k=1

(=D)w, (t) T— 2
Gm(t) = (ll—)zl 1_[ <1 — ﬁ)

k=1+1
Again by (43), 6, = Gy (t,) When |n| < [so that

(_ )l had t2
6nm (l')z Wl(tn) 1_[ 1- k_nz .
k=l+1
This determines the zeroes of w;. We deduce that

we have

w(t) = cullieza (¢ -ti) (¢ ~t-x) for some constant c; . Absorbing constants, we have

Gum(t) = ?H—;(f " where
H(t) = (¢ —to)n(l‘ _><1_ iﬂﬁ[(l_ 5‘_22>

l+1
NOW 0 = Hy(tm), 50 Gy () = ¢, 2022 Taking limits,
c, = 1
SN CHICH

This yields Gm(t) = — O Define

(t —tm)H] (tm)

H) = (¢t —to) (1— —)(1— i).

t_k
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Basic complex analysis shows that H is entire, and H, > H and H;, — H'

uniformly on compact subsets of C. Furthermore, H'(t;,) # 0 for all k, since each t;
is a zero of H of multiplicity one. Together we have

: _ H(t)

R Y S TS i
By the foregoing lemma, G;,, — G,. Observing that convergence in
PW_ ) implies pointwise convergence yields the desired result.Levinson proved a

version of Theorem (5.2.26) in the case where (t,),e, 1S @ Kadec sequence. His
original proof is found in [53]. We recall that if (f;,),, is a Riesz basis arising from a
Kadec sequence, then the synthesis operator L satisfies |[/ — L|| < 1. Levinson’s
theorem is then recovered from Theorem (5.2.26).

Corollary(5.2.27)[296]: Let 0 € E ¢ R? be compact such that for all
€, > 0,E c int((1+€)E). Choose S = (tam+ey))(m+een © R? such that
(fan+eg) dmregens GEfiNA DY frmiey (1) = e'im+en)), is a frame for L,(E) with
frame operator S. Let e >O0with F~1(g):R? - R,F 1(g) € C* where
F Pl = 1and F (@l (a+enrye = 0.1fe; > €5 >0 and f € PWg , then

f© = @Z ((m;ENB“m*o)f <(t1(71+2))>>9 (t A Jtrkez)

keN

),t € RY,  (67)

where Bym+e,) = (S7! fom+eg)» S~ fi)e - Convergence of the sum is in L,(R%),
hence also uniform. Further, the map B : £,(N) — ¢,(N) defined by

Widken — (Zan+eg)en Brimeeg) y(m+€0))kEN is bounded linear, and is an onto
isomorphism iff ( fim4e,) )am+e)en 1S @ Riesz basis for L, (E).

Proof : Define f(11¢,),im+e0) (- ) = fom+en) (m) . Note that( f(1+e,),am+e0)) mteo)

is a frame for L, ((1 + €;) E)) with frame operator S, ).
Step 1: We show that

Lim+eo) _ _
f= Z f (ﬁ) [T (S(l%i-fz)f(1+62),(m+eo) )T 1(9)] ,f € PWg. (68)
(m+egp)
We know supp(F~1(f)) ¢ E c (1+ €,)E, so we may work with F~1( f ) via its
frame decomposition. We have

FHF) = SarenSaven (FTH(S))

= Z (:]:_1(f);f(1+62),(m+60))(1+€2)5 S(_l%l-ez) f(1+€2),(m+€0)’
(m+¢€p)

on (1 + €,)E. This yields
T_l(f) = Z <T_1(f)rf(1+62),(m+60))(1+62)E (S(_ﬁ-ez) f(1+62),(m+60)):7:'_1(g)! on Rd.

(m+e€q)

since suppF(g) < (1 + €,)E. Taking Fourier transforms we obtain
f= z (FX ) farepmreg)a+ene FI(S@hey)F (@) on RE. (69)

(m+e€q)
Now
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(m+fo) tim+ey
<:F_1(f):f(1+62),(m+eo)>(1+62)5 = J. “F_l(f)(f)e (1+6 )> dE B f<(; + EZ))>

(1+62)E
which, when substituted into (69), yields (68).
Step 2: We show that

Z ( tl( + EEO) ) Z( F ; ) ( 1 +t € )
J ( 2) e (1+€3) ](1+62),(7”+€o) 19 (1+€5) ](1+Ez),k (1+€3)E 9 ( 2)

(m+e€p)

where convergence is in L,.We compute :F[(S(‘E;rl) f(62+1),(m+60)).7-"‘1(g)]. For
h € L,((1+ €,)E) we have

h = St4e)(Sate)h) = z(SGiez)h» fare) i) +e)E f+e,)k
k

, (70)

= z(h  Sivey) farepi)arent faren
k

Letting h = Sq4c,) fli+e,) (meeo)
S(_li-ez) f(1+€2),(m+€0) = Z<S(_1%|-€2) f(1+62),(m+€0) 'S(_li-ez) f(1+62),k)(1+62)E f(1+62),k-

- - k
This gives

T[(S(_l%l-ez)f(1+ez),(m+eo))T_l(g)] ( )
= Z(Saiez)f(wez),(m%o), Sarepfa+reniarens FlfarepF (@]
X

. tr
_ _ S i
= E (Sihen S rep)mre) » Strep S +en k) 1+ex)E f e ~Are) F1(g)(§)e 6 dé
X

(1+€2)E
, tr
_ _ _ —i(— == .%)
= Z(S(ll+ez)f(1+62),(m+eo) '5(11+62)f(1+62),k>(1+ez)E f F 1(9)(8; )e (+e) ™" dg
k (1+e)E

_ _ 9%
- Z<S(11+e2>f (+ep)mree)  SarenSfaren ) a+ene 9 ( - m>

k
so (70) follows from (68).
Step 3: We show that

<S(_1%|-62)f(1+62),(m+60) ’ S(_l%i-ez)f(1+62),k>(1+€2)E

- (1+ Ez)d(s_lf(m+eo)r5_1fk>5;fOI‘ € >0,k € N. (71)

First we show (S(_l%i—ez)f(1+ez),(m+eo))(') (1+6 )d ( (1+62)f(m+60)) ((1_'_.62)) , Or
equivalently that

1 _ .
faremre) = GrepaSater) <(5 Yfmees)) ((H—EZ)))WE have forany g € L,((1+ &)E),

€
—== tk)
(9 fa+e) k) a+eE = f g(&)e Q+e)" " qe

(1+€3)E

=(1+¢€)° j g((L+edx)e™™ dx = (1+ &)U g((1+€)()) fids-

E
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By definition of the frame operator

Sta+ey  S+ed = Z<grf(1+ez),k)(1+ez)E faa+ey) o
keN

which then becomes S(1.e)9 = (14 €)% Lilg((1 + €)()), fids fra+en k-
Substituting g = (st fom+eq)) (m) into the equation above we obtain

1 .
AT enasare <(5 “Hmten) (m» = > (5 fumseoy fide faaren
k

= (S(S_lf(m+éo))) ((1 + 62)) = f(1+62),(m+60)'

We now compute the desired inner product:

(1+62)d

(Satenfa+ey, (m+60)' Svepfa+eni)1+eE
5 o) (G3ey) 670 ()

(1+€2

1
) %f(S_lf(m+60))(x)(S_lfk)(x) = m“‘_ fon+eo)S™ YioE -

E
Note that (70) becomes

FOI= 4 +162)d(; f((l("jf‘j))[}s Somser S8 (-~ 25|

0

Stepd: Themap V : £,(N) » £,(N) given by
x = dken » (Zmeeg) Bk(m+€0)x(m+eo))keN = Bx is bounded linear and self-

adjoint. Let (dy)xen be the standard basis for £, (N), and let (ej, ) xen b€ an
orthonormal basis for L, (E). Then

Vd = ( k])k N sz}dk —Z<S 1f}; 1fk)dk z(L*(S_l)ZLej'ek)dk;

where L is the synthe5|s f operator, |e S = LL*. Define <p 2 (N) » Ly(E) by
o(dy) = ey, k € N. Clearly ¢ is unitary. It follows that V = ¢ 1L*(S71)2Lg,
which concludes Step 4. From here on we identify VV with B. Clearly B is an onto
isomorphism iff L and L* are both onto, i.e., iff the map Legnic,) = fun+e,) 1S aN
onto isomorphism.

Step 5: Verification of (67). Recalling Definition (5.2.8),

t(m+ep)
fs/arey) = (f (ﬁ )) ,foreacht € RY, let
(m+e€y)EN

t(m+eo) -
= -0 . Noting th
I1+e,) (L) (g (t (1+62)) )(m+e o oting that

f(G5=) 9(t - 55 ) € La((t+&)B), and recalling that (fise,) (mteg))ameeq) 1S
a frame for L, ((1 + €,)E), we have

> I ((tl(TZ)) )| = Y IFU ) farenmien)arenel < AareplF I (73)

meo

(72)

and
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2

t(m+e ) .
Z |g (t (1+ 02) ‘U: < T O+ >>'f(1+62),(m+60)>(1+62)E

(m+e€p)
2

T_1<g(t T ))
0 e, 3, (D) L ool i)

- T X (<t1(m++2)) [Z ("”‘*6"”‘9(“(1 -trke2>>]

+60

1 - -
e DI ) i) R e (f s BYare)©)

< Ag+ey)
Note that (72) becomes

(m+e€p)

1
T 0+ e)d (Bfs/a+er) » Gaa+e,) (D)

= m;(BfS/(l'i'fz))kg (t B 1+ 62))

= ﬁz Z Bran+en f ((tl(rj_toz))) g (t ¢ j—kez))'

keN \ (m+eg)EN

which proves (67).
Step 6: We verify that convergence in (67) is in L,(R) (hence uniform). Define

1 t
fim+e)() = e Z (Bfs/c1+e), 9 (t “a +k62)>

1<k<(m+eq)
and
1 ty
fm,(m+60)(t) = m z (BfS/(1+62))kg (t - (1+e )) .
2 msks(m+eg) 2
Then
- 1 _ t(m+e )
1 — 1 — 0
[T (fm,(m+eo))](f) = (1 + €, mSk;+EO)(Bf5/(1+Ez))kT [g ( a+ 62)>]
1 _ (€ )
T A+e)d Z (Bfsjcaven) FH(@)(E e " Ore),
2 msks(m+eg)
SO
2
- i
I Gnimee) e = e [ P @EOF (Bfssrsen)e “T | az
(1+€,)E msk<(m+eg)
2
1
*0+e)d (Bfsja+en) Jarenk
2 msk<(m+egp) )

If (Ranse,)) re is a orthonormal basis for L, ((1 + €,)E), then the map
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Thx = fu+e,k (the synthesis operator) is bounded linear, so
2

_ 2 1
7 1(fm,(m+€o))]||zs(1+—6)d r 2 (Bfsjien) i
2 msk<(m+egp) 5
1 2
saregl™ ). [Bae) ]
2 msks(m+eg)

But Bfs/(14¢,) € ¢2(N), 50 ||[[F*(fincmee))]||2 = 0asm > 0,60 > 0. As F~?
is an onto isomorphism, we have || fp an+ey)|| = 0, implying that ||f — fonse, || = 0
as m — oo. Note that (45) is conveniently written as

Ly

1
f@= mzk:(BfS/(Hez))kg (f—m>;t € R%.  (74)

Corollary(5.2.28)[296]: Let ((m + €y)x)reny be an enumeration of z%, and
S = (tk)kEN c Rd such that limk_,oo”(m + EO)k — tk”oo = 0. Define ek,fk :

R? — C by e, (x) = (an) -7 e/{(m*eoe®) and L eteX) and let (hy), be the

standard basis for ¢,(N). Let P;: £,(N) — £,(N) be the orthogonal projection onto
span{hy, ..., b }. If (fi)ken is @ Riesz basis for L,[—m, w]%, then for all
f € PW_ e, We have

l
_ 1 I t
f@® —}L@om;[(ag P fyaseol, 8 (¢~ s ¢ € RG0S)

where convergence is in L, and uniform. Furthermore,
(p,B~! Pl)(m+60)m =
{sincn(t(m%o),l —tm1)  SINCT(Emaey)d — tma) 1 < (M +6€),m <,
0, otherwise.
Convergence of the sum is in L, and also uniform.
Proof: Step 1: B is a compact perturbation of the identity map, namely
B =1+ lim(-P, + (P, B~ P)7Y). (76)

Since (fi)ken IS a Riesz basis for Ly[—m,m]¢ L* = (I — T) is an onto
isomorphism where T,, = e, — f; so B simplifies to (/ —T)™'(/ — T*)~'. We
examine B'=(U -TU —-T)=1+(T*T —T —T*) =1 + A,where A is
a compact operator. If an operator A: H — H is compact then so is A*, hence
P,AP; — A in the operator norm because
IP, AP, — Al < [[P AP, — PA|| + [|PA = Al < [|[AP — All + [[PA = All
= ||P,A* — A*|| + ||P,A— Al = 0 .

We have B~! = lim;_,,(I + P,AP) =lim;,,(I + P/(B~'— DP)

= lim(/ - P, + P,B~1 P).
Now (P,B~! P)) restricted to the first [ rows and columns is the Grammian matrix for
the set ( f1,..., f;) which can be shown (in a straightforward manner) to be linearly

independent. We conclude that P,B~! P, is invertible as an [ x [ matrix. By
(P,B~1 P;)~1 we mean the inverse as an | x | matrix and zeroes elsewhere. Observing
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that the ranges of P,B~1 P, and (P,B~1 P,)tare in the kernel of 1 — P, , and that the
range of I — P, is in the kernels of P,B~1 P, and (P,B~ P,)~1, we easily compute
(I—-P +(PBP)™) Y =]—-P+PB'P,
sothat B~! = lim;,(I — P, + (R,B~1 P)~1)~1, implying
B = }Lr?o(l - P +(PB'P)™) = zlg?o B, = llgglo(_ P, +(PB'P)™H) .
Step 2: We verify (75) and its convergence properties. Recalling (74), we have

1 B _ t
f (t) — mkzﬂ[(l - Pl + (PlB 1 Pl) 1)fS/(1+62)]k g (t - (1 +k€2))

- mZJ(B = B) fyjaven), 9 (t T a +62))

implying z

1 o t
f@®- m;[(’w PP fsaven ], 9 (t Qa +k€z)> )

1 < L
m;[(B - Bl)fS/(1+62)]kg (t 1+ 62))

(00]

+ﬁk;1f ((1 ikez))g (t T a ikez))'
l

1 -1 py-1 Lk
fQ)—- m;[(PzB P) fS/(1+62)]kg<'_ a +62)>

(00]

1 t
mZ[(B — By) fs/(1+62)]kg ('_ m>
k=1

(0.0)

* ﬁk;f ((1 -t:ez)) g ( T ikez))

FHg)() (Z [(B - BYfiyraey] e T

Therefore,

2

[~(1+e)m, (1+€5)m]?

k=1
¥ Z ((1+e2)> ' (HGZ)))

after taking the inverse Fourier transform. Now

1 -1 py-1 Lk
fe-= m;[(l’zB P) fsjarenl, 9 (-— 1+ 62))

- (1+¢,)d

[~(1+ex)m,(1+€,)m]?

162

——
| —




« , tk
()
E (B~ B)fs/rven] 6 A*e2

(1 +e€ )
o [~(1+ex)m,(1+ex)m]4
N 1 z f( te )ei(. Ty
d
(1+¢€,) e (1+¢€y)

[~(1+e)m (1+ex)m]?
1

M M = e 2\
= m”w - B)fsjarenll oy, +m<k;1 |f (m) ) :

since <fk ((1+'e ))) is a Riesz basis for L,[—(1 + €,)m, (1 + €,)m]%. Since B; —» B
2
k

(1+Ez)

as | - oo and (f( L )) € £2(N), the last two terms in the inequality above tend to
k

zero, which proves the required result. Finally, to compute (P,B~! P,),,,,, recall that
(I T*)(I — T ). Proceeding in a manner similar to the proof of (73), we

Obtam Bm(m+e ) — <LL*e(m+eo)J em) = <L*e(m+eo)'l’*em> = (f(m+eo)'fm>

= sincmt(tanseyn — tma) ** Sinett(tmeegya — tma)-
The entries of P,B~! P, agree with those of B~ when1 < (m +¢,),m <L
Corollary (5.2.29)[296]: Let ((m + €y)x)ken be an enumeration of z4, and let

(tk)kEN (@ Rd. Define ek,fk . Rd - C by ek(X) = ei((m+60)k'x) and

(2m)2
fieGo) = el Then for any €, > e; = 0, and any finite sequence (a)\5%.., .
(2m)z
we have
(1+€4)
Ak _ g HOmeo) _ Ak 08
k=(1+es) \(210)2 (2m)2z ,
(1+€4) 1/2
< (end(sup(1+e3)sks(1+e4)”(m+60)k = tilloo) _ 1) |ak|2 .77
k=(1+€3)
Proof :Let 5, =t, — (m+ €y), Where 8, = (6k,,...,0;,)- Then
(1+€4)
A . ,
Pa+es) ey (X) = — [e{imteodin) giltix)]
k=(1+es) (21)2
(1+€4)
- Sk gitmreoa[1 — oitdrn)] 78)
k=(1+es) (21)2
Now for any &y,
1 —_ ei(6k,x) — 1 — i6k1x1 iskdxd
Z (l6k1x1)]1 i (i6kdxd)fd
—
j1=0 Jja=0 Ja
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i (i5k1x1)j1 ..... (i(gkdxd)jd

T j
(]1!!](1) ]1 ]d
ji=0
_ l-jl’m,jd (l5k1x1)11 ..... (i5kdxd)fd
- il e i1 !
rrd@)€ v Ja
where | = {(j, ...,j(d) ? z%|j; = 0,(j1, ., jq) # 0}. Then (78) becomes
1+64 . .
i Ji ..., 1 J
Prte) (14en)(X) = — L e{(m+€o).x) jJr-ia (0, 1) (0k,Xa)’
3) 4 a e j !
k=(1+e3) (21)2 (v )€ J J1 Ja
le . Jd (1+es)
= — ;ijll"'ljd ak 3 61‘11 ..... Séd ei<(m+60)k:x>
0 I | 1 d )
Guoger Tt Ja k=(1+e3) (21m)2
S0
ieia (tew) , e l{(m+eg)px)
|(p(1+€3):(1+64)(x)| = | il aké‘lﬁ """ 6I£Ld1 d
ey 78 Ja ey (2m)2
For brevity denote the outer summand above by h; ;. (t). Then

=
=

> 2
2
j |Pare ey )| dt | < j Z hj ., (O dx

[-mm]?

N|

[-m,m]d |Cnema)€T

= Z f b, i, O dx |,

(jll'"!jd)e] [—T[,T[]d

N

so that
||<p(1+63),(1+€4) ”2

1
2 2
T[jl!"-!jd (1+E4) . . ei((m+60)klx>
B S I S i PN
LT ! 1 ‘ z
(J1wja)€] [-m,m]d |k=(1+€3) (2m)2
1
(1+€4) 2
/il 2| ) ja |?
—_ 1 .....
B L R
(jl;---,jd)ej k:(1+63)
pivda [ O , 2(j1da) \ 2
< ) el D lad < sup ||<m+eo)k—tk||oo>
Grida)e) - @ \k=(Trer) (rea)sksCires)
Jremid (1+€4) 2
_ n(sup(1+e3)sks(1+e4)”(m + €0k — tk”oo) ! 2
= T ja! |a|
)€ ] ! k=(1+€3)
1
d (1+€4) 2
1—[ n(sup(1+e3)<k<(1+e4)”(m+EO)k_tk”oo) _1 z lau|?
=1 Je: k=(1+€3)
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=(end(sup<1+63)sks(1+e4)||cm+eo>k—tk||oo) _ 1) z |ax|?

Corollary (5.2.30)[296]: Let (t(n+ey)) m+ep)ez © R be asequence (with

tanie,) # 0 for (m+e€p) # 0) such that (fonrep)omiey = (V%eit(mw('))(mﬁo)

is a Riesz basis for L,[—m, 7], and let (egn+e,)) m+e,) D€ the standard exponential
orthonormal basis for L,[—m, ]. If the map L given by Le i) = fun+e,) Satisfies
the estimatel — L < 1, then the biorthogonals
G(m+eo) of = T(f(m+eo))() - SlTlC(T[( t(m+eo))) in PW[—n,n] are

H(t)

G( )(t) = ) (m+¢€y) €z, (79)
e (t = tamren )H (ton+en))
where
. ¢ ¢
H@) = (t — ty) 1_[ (1— )(1— ) . (80)
(m¥eg)=1 t(m+eo) t—(m+eo)

Proof : We see that Sgnseym = (Gim, Siansey)) WNEIE Spmaie)(t) = sinc(m(t — tanse,)))
when [(m + €g)| <1 and S e, () = sinc(m(t —(m +€))) when |m| > L.
Without loss of generality, let |m| < I. (1) implies that G;,,,(k) = 0 when |k| > L.
By the WKS theorem we have

G (8) = Z Gum(k)sine(n(t - )

k=—1
k=l
(_1)k_1tGl,m(k) .
= ( p— )smc(nt)
k=—1
wi(©) sinc(mt),

 MMieea(k -0)(—k -1)
where w; is a polynomial of degree at most 21. Noting that

oo l

t2
sinc(mt) = <1 — —) and (k —t)(=k —t) = (=D'(H? <1 - _2>'
we have
_ Dwi(®) T 2
G (8) = Wkl;L(l - ﬁ)

Again by (1), S¢mreym = Gim(Ean+e,)) When [(m + €5)| < I so that
_ (_1)l t(2m+60)
6(m+€o)m - (11)2 Wl(t(m+€o)) 1_[ 1- k2 '

k=l+1
This determines the zeroes of w;. We deduce that

wy(t) = Cy Hﬁzi(tt —_ti;)(t ~t_y)
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for some constant c; . Absorbing constants, we have

G (t) = Ct’}j—lt(t) where
t t t
o= -] (- (- DI 1)
ty t_i k?
k=1 +1
Now 0 = H;(t,;,), S0 G, () = ¢ %’ij’:’m Taking limits,
_ 1 v _ Hy(t)
= e This yields Gm(t) = o oy
Define
= t t
H@) = (¢ —to) (1— —)(1— —).
) ty t_i

k=1

Basic complex analysis shows that H is entire, and H, > H and H;, — H'
uniformly on compact subsets of C. Furthermore, H'(t,) # 0 for all k, since each t,
is a zero of H of multiplicity one. Together we have

lim G;,,(t) = @) t eR

i Gun® = T Gy €N
Corollary(5.2.31)[296]: Let (t(nie))m+eez © R be a sequence such that
( fom+e)) am+e,) (defined above) is a Riesz basis for Ly[—m, ). If (emm+e,)) me,) 1S
the standard exponential orthonormal basis for L,[—m, ] and the map L (defined
above) satisfies the estimate ||[I — L|| = § < 1, then the following are true:

(1) For I = 0, the sequence ( f (m+ey)) on+e,) 1S @ Riesz basis forL,[—m, m].
(i) For I > 0, the map L, defined by Lie(nye,) = fiamse,) Satisfies ||L7]| <

1

1-6 °
Proof :If (canrey))m+e,) € £2(z), then
(I_Ll) Z Cim+eg)€(m+ey) | = Z C(m+60)(e(m+60) _Lle(m+60))
(m+e€g) (m+egp)
= z (eaneq) = fimeren))
|[(m+eg)|st
= (I - L)Pl z C(m+eo)e(m+eo) ’
(m+ep)
so that
U —-Ly)=U-LP . (81)

From this, ||[I — L;|| < &, which implies (i) and (ii).
Define the biorthogonal functions of ( fi(m+ep))m+e) 10 D& (fim+ey) )imeo):

Passing to the Fourier transform, we have \/%_nj-"( fiimreg) () = sinc(m(t — tymre)))
1 * . . .
and G miey) () = ET( fim+ep)) (t)- Define  the  biorthogonal  functions  of

(f(m+eo))(m+eo) Similarly-
Corollary (5.2.32)[296]: If (tan+e,))m+e,) © R satisfies the hypotheses of
Proposition (5.2.25), then
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lll)rg Glim+eq) = Gimtey) in  PWi_nnq -
Proof :Note that Sunieym = (fiansey) fim) = (Li€an+ey) fim) = (€amteg) Lifiim) SO
that for all m, i, = (L} )~ 'ep,. Similarly, f;, = (L* )"'e,,. We have
fim = fm = (L) (L") ey = L)L — LD ) tepn. Now  (84) implies
L—-L =U-P)L-D,sothat /5, — fm =L)AL — DU — PYL ) ten.
Applying Proposition (5.2.25) yields ||f;, — fim sﬁll(L* — DI — PYL ) tenll,
which for fixed m goes to 0 as [ - o. We conclude lim;_,q fi;n, = fim, Which,
upon passing to the Fourier transform, yields lim;,o, G;,, = Gy, -
Corollary(5.2.33)[296]: Let (2tgnie,))amic,)ez € R be a sequence and
(fzz(m+eo))(m rey) is a Riesz basis for L,[—m, ]. If (€z¢n+ey))m+e,) 1S the standard

exponential orthonormal basis for L,[—m, 7] and the map L? satisfies the estimate
Il — L?|| =& < 1, then the following are hold:

- 2 - - -

(i) For I = 0, the sequence (le,z(m+eo))(m+€0) Is a Riesz basis forL,[—m, r].

(i) For I > 0, the map L3, defined by L2 ,e,0n+c) = 2 2(meey) Satisfies [IL72]] < ﬁ :
Proof : For (Caim+ey))m+e,) € £2(2z), we have

(I - L%l) Z Cz(m+eo)ez(m+eo)> = Z C2(m+eq) (62(m+60) - L%lez(m+eo))

(m+e€q) (m+e€g)

- z (62(m+60) - fzz(m+eo)) = (I - LZ)PZI Z CZ(m+60)eZ(m+eo) ’
[(m+eg)|st (m+eg)

so that
(I —L3)= (U= L))Py .
Hence || — L%,|| < &, which gives (i) and (ii) .
Hence from Definition (5.2.4) we can show that

Le(m+6 )
(f' (szl,Z(m+60) Lz—o )

ZleZ(m+60)

Allf 7 < <@A+e)lf 1%

(m+e€g)

foreveryf € H,e; > 0.
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Chapter 6
Channeled Sampling and Sampling Expansion with Symmetric Multi-Channel
Sampling in Shift-Invariant Spaces

We find necessary and sufficient conditions under which a regular shifted sampling
expansion hold on V(¢) and also introduce a single channel sampling on V(¢)
together with some illustrating examples. We then find necessary and sufficient
conditions under which an irregular or a regular shifted sampling expansion formula
holds on V (¢)and obtain truncation error estimates of the sampling series. We also
find a sufficient condition for a function in L?(R) that belongs to a sampling
subspace of L?(R). Several illustrating examples are also provided. We use Fourier
duality between V(¢) and L?[0, 27] to find conditions under which there is a stable
asymmetric multi-channel sampling formula on V(¢).
Section(6.1) Channeled Sampling

The celebrated WSK (Whittaker—Shannon—Kotel’nikov)-sampling theorem says that
any signal f(t) of finite energy with band-width =, that is, f € PW, can be
reconstructed via its regularly spaced discrete sample values {f(n): n € Z} as
f@®) =Y,czf (n) sinc(t — n), which converges both in L?(R) and uniformly on

. sin wt
R, where, sinct =

Is the cardinal sinc function and PW,, is the Paley—Wiener

space:

PW, = {f € L*(R): supp f (§) < [-m,l}.
Here F[f](§) = f (&) is the Fourier transform of f(t), which is normalized as

f = \/% IZ f(t) e"®dt for f € L2(R) nL'(R) so that F[-] is a unitary

operator from L?(R) onto L*(R).

As a natural generalization of the WSK-sampling theorem, many authors have
developed sampling theory on general shift invariant spaces.

For any ¢(t) in L*(R), we let V(¢) = span{e(t — n):n € Z} be the closed
subspace of L?(R) generated by integer translates {¢(t —n):n € Z} of ¢(t) and
call V(¢) the shift invariant space generated by ¢(t). Then PW,, is the shift invariant
space generated by sinct, of which {sinc(t — n):n € Z} is anorthonormal basis.
For example, Walterlldeveloped a regular sampling theorem on a shift invariant
space V(¢), where ¢(t) is a continuous real valued orthonormal generator (in fact, a
scaling function of an MRA) with decaying property ¢(t) = 0(|t|"17¢) (e > 0)
for |t| large. Following [33], Janssen used Zak transform to generalize Walter’s result
to regular shifted sampling. Zhou and Sun found a necessary and sufficient condition
for a regular sampling expansion to hold onV(¢p) when V(@) is a space of
continuous functions generated by a frame generator ¢(t). Later noting that sinct
does not satisfy the Walter’s decaying condition, Chen and Itoh extended Walter’s
work by removing too much restrictive conditions in [33] like continuity and the
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decaying property on ¢@(t) when ¢(t) is a Riesz generator. Zhao, Liu, and Zhao
extended further results in [37] by considering frame generators. However, there are
some gaps in the arguments of the proofs of results in [37]and [41]. We first find
necessary and sufficient conditions under which a regular and a regular shifted
sampling expansion to hold on V (¢) and then extend them into a single channeled
sampling expansion.

In the following, we assume that ¢(t) is a frame or a Riesz (stable) generator of
V (@), thatis, {¢(t — n) : n € z}isaframe or a Riesz basis of V(¢) so that

Vi) = f(©) =) cm) ot = m): € = {c(Whex € 12,

Nez
where f(t) is the L? — limit of },,c,c(n)@(t — n). We are then concerned on the

problem: When is there a function S(t), called an interpolation generating function of
V' () for which the sampling expansion formula

f© = Y f@SE = n).f € V(9)

Nnez

holds in L?(R)-sense.

For any ¢@(t) in L>(R) and ¢ = {c(n)}neg iN 13, leté* (&) = Ypec(n) e
discrete Fourier transform of ¢, (c * @)(t) = Ynezc(M)@(t — n) : discrete-
continuous convolution product of ¢ and @(t), G,(§) = Yne| (€ + 2nm)|2,¢ € R.
Then
() = ") + 2m) € L?[0,2m] and

1 Ny = 27l = 22 ) Je@I?,

nez

G,(§) = G,(§ + 2m) € L'[0,2m] and

||G¢(§)||L1[0’2n] = ||<p(t)||2L2(R). Moreover, we have (see [4]) that {@(t — n):
n € z}is

(i) a Bessel sequence with a Bessel bound B > 0, i.e.

z [W(@©), 0 — ) I < BlYlAy e LP@®) (Yl = 1¥ll2m)

NeEz

if and only if
2nG,(§) < B a.e. on R, (D
(if) a frame of V (¢) with frame bounds B = A > 0, i.e,,

AP < )" [W(©. 0 = M < BIYIEY € V ()

nez
if and only if
A < 2mG,(§) < Ba.e.on suppG, , (2)
(iii) a Riesz basis of V (¢) with Rieszbounds B = A > 0, i.e,,
Allell® < liCc * @)(@®) I? < Blicll®,c € 12 (3)
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if and only if

A < 2nG,(§) < Ba.e.onR,and (4)
(iv) an orthonormal basis of V (@), i.e ||[(c * @)(OII*> = |lc|l?>, ¢ € I? if and only if
21G,($) = 1ae. onR. Here we use supp f for any f($) in L';,-(R) to denote the
support of f viewing f as a distribution on R, that is, R\supp f = {£¢ € R: f(:) = 0
a.e. on some neighborhood of £}.
We begin with two simple lemmas, which play key roles in the following.
Lemma(6.1.1)[35]: Forany ¢ = {c(n)}ez and d = {d(n)},cz in I?, let

c*xd = {(c x d)(n) = zc(k) dln — k)}
keZ nez
be the discrete convolution product of ¢ and d. Then

e () d () ~ Z( ¢ * d)(n)e™™ (5)
nez
which means that Y,,cz( ¢ * d)(n)e™™ is the Fourier series expansion of
&* (&) d*(§) € L'Y0,2r]. Moreover, ¢ * d € c, and

2T

[le®a©l a = 2x) 1 © « Do, 6)

0 nez
Proof :Since ¢*(¢) and d*(§) € L?[0, 2], ¢*(§) d*(§) € L'[0,2m] of which
theFourier series is

n 1 n . .
& (E)d* (&) ~ Z%(6*(E)d*(f),e‘mf)Lz[O,Zn] e ™ from which

nez
(5) follows. Then ¢ x d € ¢, by Riemann-Lebesgue lemma and (6)is an

immediate consequence of the Parseval’s identity. In particular, (6) implies that
¢*(&) d* (&) € L2[0,2n] ifand only if ¢ * d € 2.

Lemma(6.1.2)[35]: Letc = {c(M)}nez € 1%, 0(t) € L>(R), and assume that
(c * @)(t) converges in L*(R). If either c € [? or {¢(t —n) : n € Z} is a Bessel
sequence, then

Fle * 9](§) = &*(§) d". (7)
Proof : Since (¢ * @)(t) = Y,ezc (M)@(t — n) converges in L2 (R),
Fle* ¢1(§) = Tnez( c(n) e §(§)) converges in L*(R), that is, &, (§) (&) =
Yikjzn € (k) e~ H (&) converges to F[c * ¢](§) in L>(R). Hence to show (7), it is
enough to show that &, (&) @(§) converges to ¢*(&) @(§) in L2(R). when either
c € lYor {p(t — n): n€Z}isaBessel sequence. Now

(0]

0 () ) — '@ @@ =f 160 (©) - ¢ (O)IP1@()1* d§

— 00
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2T

_ f | 6% (©)- E*(©)I2G, (§)dE

0
2T

En ) = EON o | G O

0

<

2T

< 16,105 |

0
so that lim,,_e |[¢%, (&) @(&) — &*(&) @(&)|| = 0 provided that either ¢ € ! so

that ¢*,, converges to ¢*(§) uniformly on [0, 2] or {@(t — n) : n € Z} is a Bessel
sequence so that G, (&) € L”[0,2m] by (1). In the following, we let ¢(t) be a
complex valued square integrable function on R such that ¢(t) is a frame or a Riesz
generator of V (¢), thatis, {¢(t —n) : n € Z} is a frame or a Riesz basis of IV (¢).

We also assume {@(n)},ez € 1% and set ¢*(&) = Tpezo (n) e ™ € L* [0,27].
Then

& (§) — &°(9) |'ae

Vig) = (o)) =) c ot —k:cel
keZ

where each f(t) = (c*@)(t) = Xrezc(k)o(t —k) converges in L?(R). In
particular,for each n € Z,Y ez ¢ (kK)e(n — k) converges absolutely, which we
may set to be f(n) = Yxezc (kK)o(n — k).Note that as a shift invariant space,
V (¢) contains S(t — n) forany nin Z if S(t) isinV (¢). For a measurable set E in
R, we let |E| be the Lebesgue measureof E and yz (&) the characteristic function of
E. For a measurable function f(t)on R, let || ]|, = I}SElll_po Hi{\l£|f(t)| and

Ifllcc = sup Hl%r\lg |f(t)| be the essential infimum and essential supremum of f(t),
|E|=0

respectively.
Theorem(6.1.3)[35]:Assume that ¢(t) is a frame generator of V(¢) and

{o(M)},, ez € I2. If there is S(t) in V(¢)such that {S(t —n) : n € Z} is a Bessel
sequence(respectively, a frame) of V(¢) for which the sampling expansion formula

f(©) = Y f (WSt~ n),f € V() (®)
n ez
holds in the L? sense, then
Suppp = SuppS' C suppG, = suppGs C suppp® 9)

and thereisaconstanta > 0
(respectively, there are constants 5 = a > 0) such that

a < [@*(§)|(respectively,a < [@"(§)| < B)a.e.on suppG,,. (10)
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(@)
@ © xsuppG,(§)a.e.onR . (11)

(b) If {p(n)},, ez € I and there is S(t) € V(¢) such that (8) holds, then (9), (11)
hold and

Moreover S$(§) =

1
RO xsuppG,(§) € L* [0,27] . (12)

Proof:(a) Assume that {S(t — n): n € Z} is a Bessel sequence of V(¢) with a
Bessel bound B for which the sampling expansion formula(8)

holds .Then S(t) = z a (n)e(t — n) and

nez

p(t) = Z @ (M)S(t — n) for some a = {a(n)}, ¢z in I

n ez
Then by Lemma (6.1.2)
$©§) = a* ()P and (&) = ¢*(5) S (13)
and so
Gs(§) = 1a"(§)I*G(§) and G,(§) = 19" (H)I*Gs(8), (14)

from which (9) follows immediately. We also have from (13)
S(&) = 0a.e.on (supp@)®and S(&) = ((gfé)) a.e. on supp (¢*(&)so that (11) holds
by (9). Now (14) implies

Go(©)

A~ 2 _
9 OF = g5

so that 2—2 < |(@*(&)|* a.e. on suppG,, where (Ag, Bs) are frame bounds of

{o(t —n): n € Z}[see (2)]. If{S(t — n) : n € Z}isalso aframe of V (¢)
withframe bounds (A4g, Bs), then (15) implies g—i < |9*(©))* < j—ia.e. on suppG,,.
Hence (10) holds.

(b) Assume {@p(n)},,cz € I and (8) holds on V (¢) for some S(t) € V (¢). Then

(9) and (11) hold by the same arguments as in the proof of (a).We now have from
(11) and

a.e.on suppG, (15)

xsuppG, () = xsuppG,(§ + 2m),

co 0o ~ 2
© > j_w 15| d¢ = j_w 2*((?) xsuppGy, (§)ds

= f |<;Z((§))|2 xsuppG, (§)dé
0

A, [ 1

=21 ), 1T OPF

xsuppG,(§)dé
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so that (12) holds. Theorem (6.1.3) gives some necessary conditions for the sampling
expansion formula (8) to hold. Conversely, we have:

Theorem(6.1.4)[35]: Assume that ¢(t) is a frame generator of V (¢) and
{@(n)},,cz € 2. If there are constants B > a > 0 such that

a < |[¢"(E)| < B a.e. on suppG,($), (16)
then there is a frame generator S(t) of V (¢) for which
fO = f WS- (17)
Nnez
holds for any f(t) = (c * @)(t) € V (¢) satisfying
(P (6)(E) € L?[0,2m]. (18)

If moreover |@*(¢)| < B a.e.onR, then (8)—(11) hold and {f (n)},cz € [ for any
f e V(o).

Proof : Inequality (16) implies that ——

xsuppG, (&) € L*[0,2m] < L*[0, 2] So

7 ®
that
1 |
——xsuppG, (§) = ) a(e™ = &' (¢) for some a = {a(M}yez
7® L
in 12. Define $(¢) by (11) , that is, $(&) :% xsuppG, = a*(§)@(£). Then
2T

| Bs©la = [1@©r 6, ©d < 6@, 1@ 6 < «
. J
so that S(¢) € L?(R). Since

SO =@ = ) ame™ o) (19)

Nnez
by Lemma (6.1.2) , we have by Fourier inversion

S(t) = Ypeza Mt — n) € V (¢). Now (19) implies

suppS c suppp C suppG, so that @(§) = ?*(5)S()a.e.on R (20)
since (20) holds on suppG, by (11) and §(¢) = S(&)=0ae.on (suppG,)©. Then as
in the proof of Theorem (6.1.3) , (14) holds so that

Gy ($) .
Gs(&) = FEGE on supp ¢* O suppG, = suppGs. (21)
Hence, we have by (16) and (21)
Ao G5(E) = —2 G 22
nf, S ) = oma, & oM SuppGs (22)

so that {S(t — n): n € Z} is at least a Bessel sequence of V (¢). Now for any
f@© = (€ * )®)inV (p)withc = {c(M}pezinl?,

f& =e@a@) =@ e ©)SE (23)
by (20). If ¢*(¢) *(¢) € L?[0,2mr],then {f(n)},cz € [*and
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P = f *(f) = Y. ezf (Me ™ inL2[0,2n] by Lemma (6.1.1). Hence,
we get

f& = F©® = Z(f(n)e_inf $(€) (24)

nez
by Lemma (6.1.2) since {S(t — n): n € Z} is a Bessel sequence. Then we have

(17) by taking Fourier inversion on (24).0n the other hand, we also have from (23)
f&) = e (P ()S) = ()" (O)xsuppGy(§)S(E) since
suppS < suppG,, . Let

P (OxsuppGy(®) = d'(§) = ) (f(e ™ be the Fourier

nez

series expansion of ¢* () xsuppG,(§) € L°[0,2r] < L*[0,2n]. Then
e ()P (O)xsuppGy(§) = ¢*(H)d*(§)
= ) (c + dymyeins

nez
so that f(&) = Z(c + d)(n)e ™ §(§) andso
nez
f() = Z(C * A)(n)S(t— n),f € V(¢p).HenceV (S) =V (p)
nez

so that (22) implies {S(t — n) : n € Z}is aframe of VV (¢).

Finally, assume

axsuppGy(§) < 19" ()| < B a.e.onR. (25)

Then (18) holds for any ¢ = {c(n)},ez in [* since @*(§) € L*[0,2n].
Hence{f (n)},cz € [?forany f € V (@) and (17) holds on V (¢), that is, (8) holds.
(9),(10),(11) then follows from (8) by Theorem (6.1.3).
Corollary (6.1.5)[40]: If ¢(t) is a frame generator of V (¢), {¢(M)}pecz € I*
and @*(§) # 0 onsuppG,, then there is a frame generator S(t) of V (¢) for which
(8), (9),(10), (11) hold.

Proof : If {p(n)}, ez € I' and @*¢) # 0 on suppG,, then

P* (&) € C(R) satisfies the condition (25) so that the conclusion follows from
Theorem (6.1.4) . In [41], the authors assumed that ¢(t) is a frame generator of
V (¢) and {9(n)},cz € [? and then claimed (see Theorems 1 and 2 in [41]) that
there is S(t) in V (¢) for which the sampling expansion formula (8) holds if and only
if the condition (12) is satisfied. In particular, in [41], the authors assumed nothing on
the sequence {S(t — n) : n € Z}. However in [41] have some gaps. Assume first
that (8) holds. Then @ (t) =X, cze (n)S(t — n), which needs not imply

P(&) = ¢ (&) S(&) (see [41]) in general unless either {S(t — n):n € Z} is at least a
Bessel sequence or{@(n)}, cz € [ (see Lemma (6.1.2)). Conversely if the condition
(12), instead of the condition (16), holds in Theorem (6.1.4) , then we still have

( ]
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(19),(20),(21) and (23). However &*(&) @ (&) may not be in L2[0,27] so that
(24) may not hold and {S(t — n): n € Z} may not be a Bessel sequence in
general. Hence ,contrary to the claim in [41], we cannot be sure if (8) holds assuming
only the condition (12).
Lemma(6.1.6)[35]: Assume that ¢(t) is a Riesz generator of V(¢)and
{p(n)}, ez € [?. Assume that there is S(t) € V(@) for which the sampling
expansion formula (8) holds. If either {¢(n)},cz € I* or {S(t— n):n€Z}is a
Bessel sequence, then ¢*(&)~1 € L2[0,2n] and
suppp = suppS S suppG, = suppGs = suppp” = R, (26)

5 @(S)

=50
Theorem(6.1.7)[35]: Assume that ¢(t) is a frame generator of V(¢) and
{p(n)},, ez € [2.Then there is a Riesz generator S(t) of V(¢) for which (8) holds if
and only if @(t) is also a Riesz generator of I/ (¢) and

a.e.on R. (27)

0 < 1g"Dllo = 1"l < 0. (28)
Furthermore in this case, we have, in addition to (26) and (27);
S(t) is cardinal,i.e. S(n) = 6y, for n €z . (29)

Proof : First assume that (8) holds on V(¢) for some Riesz generator S(t) of V (¢).
Then we have (13), (14) and so (9). Since suppG, = suppGs= R, {p(t — n): n € 7}
must be a Riesz basis of V(¢) so that (26) and (27) hold by Lemma (6.1.6).Now (28)

comes from (15): |¢*(O)|? = % a.e. on R and (29) comes immediately from
S

S(t) = XnhezS(M)S(t — n).Conversely, assume that ¢(t) is a Riesz generator of
V(¢) and (28) hold. Define $(&) by (27). Then

S(&) = a*(&) (&) € L*>(R), where a*(&) = ¢*(§)~' € L°[0,2n] so that
S(t) = (a* @)(t) € V(p).The rest of the proof is the same as the one in Theorem (6.1.4) .
Corollary(6.1.8)[35]: Assume that ¢(t) is a frame generator of V (¢) and
{o(n)},, ez € I*. Then there is a Riesz generator S(t) of V (¢) for which (8) holds if
and only if @(t) is also a Riesz generator of VV (¢) and ¢*(¢) # 0on [0, 2m].

Proof: If {p(n)},cz € [}, then $*(&) = ¢*(¢ + 2m) € C[0,2m] so that
19*(Dllo = [glzig]l ¢*(Oland [|9" Dl = max | @*(O)I.

Hence the condition (27) is equivalent to ¢$*(§) # 0 on [0,2m]. Therefore, the
conclusion follows from [33], Walter assumed that ¢(t) is a continuous real-valued
orthonormal generator with ¢@(t) = O(|t|"*™5) (s > 0) for |t| large. Then
{o(M)},, cz € [* so that the main Theorem of [33] is a special case in [37], Chen and
Itoh claimed in [37] that assuming ¢(t) is a Riesz generator of V (¢) with
{o(M}necz € 17, (8) holds for some S(t) in V (p)if and only if ¢*(&)7! €
L*[0, 27t]. However, from [41], there are some gaps in [37], which are filled and
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extended by Theorem (6.1.7). As it was done in [37] and [41].We now assume that
@(t) is a complex valued square integrable function on R such that ¢(t) is a frame
generator and {@(c + n)},ez € 12 for some g in [0, 1).

Then for any f(t) = z c Me(t-n)inV (p) withc = {c(n)}nez

nez
in 12, flo + n) = Z ¢ (k)p(o +n - k) converges absolutely
nez
foreach n in Z.Let Z,(¢t,§) = Z @ (t + n)e ™™ be the Zak

nez

transform of @ (t) (see [13]).

Theorem(6.1.9)[35]: Assume that ¢(t) is a frame generator of V(¢) and
{op(M)}, ez € [? for some o in [0, 1).

(@) If there is a frame generator S,(t) of V (@) for which the regular shifted
samplingexpansion formula

f&) = Zf (0 + M)Ss(t —n),f €V (p) (30)

nez
holds, then there are constants 5 = a > 0 such that

a < |Z,(0,¢)] < Bae. onsuppG,,
supp § = supp S, C suppG, = suppGs, © suppZ,(0,§), and

: p©)
S0 =7y A uPPG(©) (31

(b) Conversely, if there are constants 3 > o> 0 such that

ayxsuppG,(§) < |Z,(0,¢)| < P ae.on R then there is a frame generator S, (t) of
V () for which (30) and (31) hold.

(c) There is a Riesz generator S, (t) of V (¢) for which (30) holds if and only if ¢(t)
is a Riesz generator and 0 < |[Z,(0,9)||, < [|Z,(0,8)|| < oo. Furthermore, in
2@
Zy(0.8)
Corollary (6.1.10)[35]: If ¢(¢) is a frame generator of V(¢),
{p(c + M)}ez € 1Y and Z,(0,€) # 0o0nsuppG,, then there is a frame
generator S, (t) of V (¢) for which (30) and (31) hold.

Example (6.1.11)[35]: The Shannon function ¢(t) = sinnt/mt isa
continuous real-valued Riesz (in fact orthonormal) generator and

{@(MW}nez = {Son}nez- Since §7((§) = Lon[0,2x] but [p(t)| = O(|¢|™) for |¢]
large so that ¢(t) does not satisfy the Walter’s decaying condition, the WSK
sampling theorem is not covered by the sampling theorem in [33] but follows from
Corollary (6.1.8). Channeled sampling expansion recovers a signal via discrete
sample values taken from one or more channeled (output) signals, which are obtained

this case, we have S,(o + n) = &y, forninZand S,(§) = a.e.on R.
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by passing the original (input) signal through a linear time invariant system of pre-
filters. Channeled sampling goes back to the work by Shannon, where sample values
are taken from the original signal and its derivative. For general discussion of
channeled sampling on Paley—Wiener spaces, we refer to [38], [39]and references
therein. Here we consider a single channel sampling on shift invariant spaces. Let
p(t) € L*(R)be a frame generator and H(&) € L®(supp( @)) a transfer function
(or apre-filter). Let C(f)(t) = FL(HE) F(&).f € V (p).Then C(f)(t) € L*(R) for
any f € V (¢). Note that if f(&) € LY(R) or (§) € L2(supp®) , then C(f)(t) €
C(R) n L*(R).

Lemma(6.1.12)[35]: If ¢(t) € L>(R) is such that {¢p(t — n): n€Z} is a
Bessel sequence and H(¢) € L*(supp( @)), then o(t— n): ne€Z} is also a
Bessel sequence.

Proof : Let B > 0 be a Bessel bound of ¢(t — n) : n € Z}. Then
2TG ) (§) = Zﬂz |H(E + 2nm) (& + 2nm)|?

Nnez

|H (&) xsuppd (©)II?,, 2nGp(E)

I1H () xsupp@(OII* B a.e.onR

sothat {C(p)(t — n) : n € Z}is also a Bessel sequence (cf. (1)).

In the following, we assume that ¢ (t) € L?(R)is a frame generator and H(¢) €

L (supp( @)) is atransfer function such that either H(¢) € L?(supp( §)), Or

@(t) € LY(R).Then {C(¢)(t — n): n € Z} is a Bessel sequence by Lemma
(6.1.12) and C(p)(t) € C(R) n L2(R) since H(&)@(t) € LY(R). We assume
further that{C(@)(n)}, cz € 1*. Thenforany f(t) = (c * @)(t) € V (¢) with
c={talnez € I3 CNH@) =F 1 HESf) =F (" OHE®P®)) = (c* C(p)(®)

by Lemma (6.1.2) since {C(¢)(t — n): n € Z} is a Bessel sequence. Moreover
foranyninZ

<
<

CH) = Y e (CE@)@ - )

Nnez

converges absolutely and lim, . (c* C(¢))(n) = 0 (cf. Lemma (6.1.1)). We

then have the following, whose proof is essentially the same as the one in Theorem
(6.1.7).

Theorem(6.1.13)[35]: Let ¢(t) € L2(R) be a frame generator and H(§) €
L®(supp( ®)) a transfer function such that either H(&) € L?(supp( ®)) or
é(t) € LY(R) n L*(R).Assume {C(¢)(n)},ecz € [?>. Then there is a Riesz
generator S(t) of V (¢) for which the channeled sampling expansion formula

f© = zC H)SE —n),f € V(p)

nez

holds if and only if ¢ (t) is a Riesz generator of V(¢) and

177

——
| —




0 < [IC@) Ollo < 11C(@ |l < . Furthermore in this case, C(S)(t) is

interpolatory, i.e C(S)(n) = &, forn € Z.And $(§) = % (§)ae.onR.
¢

Example(6.1.14)[35]: Let @(t) = txpn(®) + (2 — xpy() be the
cardinal B-spline of degree 1. Then ¢(t) is a continuous Riesz generator (see [4]) and

e

N .
P& = \/;_n (1 r ) € LY(R) n L?(R).Take a transfer function H(§) = eio¢

with0 < o < 1.Then C(p)(t) = @(t + o) sothat C(p)(o) = 0,
Clp)(c+1)=1—-0, and C(p)(c+ n)= 0 for n = 0,1 . Therefore

C@) &) = Z,(0,6) = g + (1 — 0)e™¥ sothat|c’(7p)*f|0 = 20 — 1]

and |C(@) €(&)|e = 1. Hence, by Theorem (6.1.13), forany ¢ € [0, 1)\{%}, there
Is a Riesz generator S(t) of V (¢) for which we have the sampling expansion

f) = z f (n+0)S(t —n) on V (¢),which converges not only in L?(R)
n

but also uniformly on R since supg Yqez| @(t — n)|2 < oo.
Example(6.1.15)[35]: Let ¢(t) = sinct so that (&) = \/%)([_M](E). Then

@(t) is an orthonormal generator of V (@) = PW, . Take a measurable function
H(&) on R such that H(¢) and H (&)~ ! belong to L*[—m, ]. Then

H(§) € L?[-m,m] and C(p)(t) = T_l(\/%—nH(f)X[—n,n](f))(t) € PW, so that

1
Z IC@MI* = NIC@OI* = ——NIHEOI o <

nez
that is, {C(@)(n)},ez € 2. On the other hand, by the Poisson summation formula,

C(@) (&) =V27 Sneg C(@)(E + 2nm) = H(E) on [—m, «]. Hence by Theorem

(6.1.13),there is a Riesz generator S(t) = F* (\/E;H(f) X[-n,n](f)) of PWn for

which we have the sampling expansion f(t) = Y,,C (f)(n)S(t —n) on PW,,
which converges not only in L?(R) but also uniformly on R. It is exactly the single
channel sampling introduced in [38].
Corollary (6.1.16)[296]: Suppose that ¢;(t) is a frame generators of V(¢;)
and {@;(n)}, ez € 1. Then there is a Riesz generators S;(t) of V(¢;) for which (8)
holds if and only if ¢;(t) is also a Riesz generators of V(¢;) and

0 < Y lZ®l, < D g @I, <

JEZ JEZ

Furthermore in this case, we have, in addition to (26) and (27);

S;j(t) is cardinal,i.e. Sj(n) = 6y, for n €z .
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Proof : First assume that (8) holds on V(¢;) for some Riesz generator S;(t) of
V(@j). Then we have (13), (14) and so (9) . Since suppG,, = suppGs, = R,

{o;j(t — n):j,n € Z} must be a Riesz basis of V(¢;) so that (26) and (27) hold by
Lemma (6.1.6).Now (28) comes from (15): ¥ ez |¢7*(§)|2 = Zjez% ae.onR
]

and (29) comes immediately from ¥,c;S;(t) = YnezXjezSi(m)S;(t — n).Conversely,
assume that ¢;(t) is a Riesz generator of V(¢;) and (28) hold. Define §]($) by (27).
Then %jez8(6) = ez @ () 3;§) € L2(R), where a'() = ez @ ()7 €
L*[0, 2m] so that ¥, ;ez Sj(t) = Xjez(a x @;)(t) € XjezV (@;). The rest of the proof
is the same as the one in Theorem (6.1.4) .
Section (6.2) Sampling Expansion

For any ¢(t) in L?(R) , letV (¢)= span{¢@ (t — n): n € Z} be the closed
subspace of L?(R)spanned by integer translates { ¢ (t — n): n € Z} of ¢ (t). We
call V () the shift invariant space generated by ¢ (t) and ¢ (t) a frame or a Riesz or
an orthonormal generator if { ¢ (t — n) : n € Z} is a frame or a Riesz basis or an
orthonormal basis of V (¢). For more details on the structure of shift invariant spaces
with single and multiple generators, we refer to [24] and [31].When ¢ (t) =sinct =

sinmt

@(t) is an orthonormal generator of V (¢) = PW=, the Paley—Wiener space

nt
of signals band-limited in [—m, ] and the celebrated WSK (Whittaker—Shannon—
Kotel’nikov) sampling theorem says f(t) = Y,ezf (n)sinc(t — n),f € PWn,
which converges both inL?(R) and absolutely and uniformly on R. As a natural
generalization of WSK-sampling theorem, many authors studied sampling expansion
procedure on the general shift invariant space V (¢) under various assumptions like
continuity and/or decaying condition on the generator ¢ (t). For example, Walter
considered a real-valued continuous orthonormal generator satisfying ¢ (t) =
O((1 + |t])~°) with s > 1, Chen, Itoh, and Shiki considered a continuous Riesz

generator satisfying ¢ (t) = O((1 + [t])™° with s > % and Zhou and Sun

considered a continuous frame generator ¢(t) satisfying supg Ynezle (t — n)|? < oo.

( See [11],[12],[13],[23],[25] and [32]) . Noting that the Paley—Wiener space PWr is
a prototype of the reproducing kernel Hilbert space, we first find conditions under
which V (¢) can be recognized as a reproducing kernel Hilbert space in section, we
find necessary and sufficient conditions under which an irregular sampling expansion
and a regular shifted sampling expansion hold on V(¢). We can relax most of the
restrictions imposed on the generator ¢ (t) before. We also introduce a notion of the
sampling space, which was first considered by Zhou and Sun, and find a sufficient
condition for a function in L?(R) to be in some sampling space. Let {@n: n € Z}
be a sequence of elements of a separable Hilbert space H with the inner product (,)
and V = span{ ¢ n: n € Z} the closed subspace of H spanned by { ¢, : n € Z}.
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Then { ¢, : n € Z} is called a Bessel sequence (with a Bessel bound B) if there is a
constant B > 0 such that Y,czl{(@, @, )I> < B|l @ ||, € H (or equivalently
@ €V ),aframe sequence (with frame bounds (4, B)) if there are constants B,A > 0
such that A|| @ ||* <€ Tnez | (@, @) < B|| ¢ ||, ¢ € V, a Riesz sequence (with
Riesz bounds (4, B)) if there are constants B,A > 0

2
Yem o,

nez
where ||c]|? = Ynez lc(n)|?, an orthonormal sequence if (¢, ) = 8, for all m

and nin Z. If {¢, : n € Z} is a frame sequence or a Riesz sequence or an
orthonormal sequence in H, then we say that { ¢,, : n € Z} is a frame or a Riesz
basis or an orthonormal basis of the Hilbert subspace V in H. On L?(R) N L*(R), we
take the Fourier transform to be normalized as

Allell® < <Bllcll>,c = {c(M}nez € I*

Flel(§) = ¢ ()= ¢ (e~ dt, ¢ (1) € L*(R) N L'(R)

1
% |
so that F[ - ] becomes a unitary operator from L?(R) onto L?(R).

Forany ¢ (¢) € L*(R), let @(t) = Xnezle (¢ — n)I?,
Gp(§) = Ynezle (€ + 2nm)|%. Then &(t) = @(t + 1) € L'[0,1],

G,(§) = G,(¢ + 2m) € L'0,2n] and
e O 2q = NP Ol = G Ollizpos;-

Let suppG, be the support of a locally integrable function G, () as a distribution
on R (see [29]), that is, R\suppG,, is the largest open subset of R on which
G,() = Oae. Let E, = suppG,n|[0,2r] and N, = [0,2n]\E, . Forany
c = {c(M}yeg € 12, let  ¢*(&) =X, ezc (n)e™™ be the discrete Fourier
transform  of c. Then ¢ (& =¢ (& + 2m) €L?[0,27] and
LEIErdE = 2mlcll Forany ¢ = {c(Minez and d = {d(n)},, in
12, the discrete convolution product of ¢ and d is defined by

cxd = {(c *xd)(n) = Ypezc (k)d(n — k)}.Then ¢&* (5)&*(5) belongs

to L'[0, 2 mr] and its Fourier seriesis (¢ * d)(n)e™™¢ so that
2T

|

0
Proposition(6.2.1)[14]: Let ¢ (t) € L>(R)and B ,A > 0. Then
@ {e(t —n): n € Z}isaBessel sequence with a Bessel bound B if and only if
2mG, (§) < Bae.on|0,2n],
(b){e (t — n): n € Z}is aframe sequence with frame bounds (4, B) if and only
if

¢ (f)&*(f)|2d€ = 2m||c = d||* (32)

A<2nG, (§) < Ba.e. onk, , (33)
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(©) {e (t — n): n € Z}isaRiesz sequence with Riesz bounds
(A,B)ifandonlyif A <2n G, (§)- B ae.on[0,2n],

d){e (t — n): n € Z} isanorthonormal sequence if and only if

2m Gy, (§)=1ae.on[0,2mx].

Proof : (See [28]) Forany ¢ (t) € L?(R)and ¢ = {c(n)}ez € 1%, let
T(c)=1(c * @)(t) =YXkezc (k) @ (t — k) Dbe the semi-discrete convolution
product of ¢ and ¢ (t), which may or may not converge in L*(R). In terms of the
operator T, called the pre-frame operator of { @ (t — n): n € Z}, (see [28]):
{o (t — n): n € Z}is a Bessel sequence with a Bessel bound B if and only if T is
a bounded linear operator from (2 into V (¢) and ”T(C)HZLZ(]R{) < B||c||?, ¢ € [?,

{o(t — n): n € Z}is aframe sequence with frame bounds (4, B) ifand only if T
is a bounded linear operator from [? onto V (¢) and
Allell? < ITOI? 2qy < Bllcll®,c € N(T)*, (34)

where N(T) = KerT = {c € I?: T(c) = 0} and N(T)! is the orthogonal
complement of N(T) inl? {@ (t — n): n € Z}is a Riesz sequence with Riesz
bounds (4, B) if and only if T is an isomorphism from [ onto V (¢) and

Allc])? < ||T(c)||2L2(R) < Bl|c|]|>,c € F{o({t—-—n):n €7} IS an orthonormal
sequence if and only if T is a unitary operator from [? onto V (o).

Lemma (6.2.2)[14]: Let @ (t) € L*(R). If { @ (t — n): n € Z}is aBessel
sequence, then for any

¢ = {cMlez in %59 () =& (HP () (35)

so that

(0]

IC*DOP e = [ 1€ OaOF

— 00

- j & (OI26, (E)dE. 36)

Proof : See [12] and [28]. Let ¢ (t) be a frame or a Riesz generator. Then T is an
isomorphism from N (T)* onto V(¢) so that

Vip) = {(c o)) : c € 12} = {(c x p)(©):c € N(T)* },
where f(t) = (¢ * @)(t) isthe L>-limit of ¥,czc (k) @ (t — k). By (36), we
have N(T) = {c € I?: ¢"(§) = Oae.onE, }sothat

N(T)*={c e l?: (& =0aeonN, }. (37)

Proposition (6.2.3)[14] : Let ¢ (t) € L?>(R) be a frame generator and
f®) = (c * @)(t) €V (¢),where c € [2. Thenc € N(T)* if and only if
c(k) =(f@), ¥ — k))zry, k € Z,where {p (t —k): k € Z}is the canonical
dual frameof { @ (t —k): k€ Z}.
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Proof : Note that we have by (35) for any f(t) = (c * @)(t) €V (¢),
(FO, - k) zg = (€ (O (), e ™ P (&) 2w

= (@O @28

716, G, () XSUPP Gy (§)e™ ™8 ) 2

2T
1 .
= ﬁj & (&) xp, ©)e*EdE,k € 1

since ¢ (&) = > ‘pG(E()E) xsupp G, (£) (see [22]), where xg (&) is the characteristic

function of a subset E of R. Hence
21

Z(f(t)n,b(t— )z e~ = % z j & (Oxp, Qe d¢
k€eZ keZ \
= &'(9) xg, ©.
Now, ¢ € N(T)* if and only if ¢* (&) =0a.e.on N, (see (37)).
Thatis, ¢* (&) = ¢ (&) Xg, (§€) a.e. on [0, 2r]. Hence the conclusion follows. A

Hilbert space H consisting of complex-valued functions on a set E is called a
reproducing kernel Hilbert space (RKHS in short) if the point evaluation I.(f) =
f(t) is a bounded linear functional on H for each tin E. In an RKHS H, there is a
function k(s,t) on E X E, called the reproducing kernel of H satisfying

(1)) k(-,s) € HforeachsinkE,

(i) (f (), k(t,s)) = f(s),f € H.

Moreover, any norm converging sequence in an RKHS H converges also uniformly
on any subset of E, on which k(t,t) is bounded (see [30]). If a shift invariant space
V' (¢) with a frame generator ¢(t) is an RKHS, then its reproducing kernel is given

by
k(t,s)chp(t—n)@(s—n)=2®(t—n)(p(s—n) (38)

nez nez
where {i (t — n) : n € Z} is the canonical dual frame of { ¢ (t — n) : n € Z}.

We now find conditions on the generator ¢ (t) under which V (¢) can be recognized
as an RKHS. Since all functions in an RKHS must be pointwise well defined, we
only consider generators ¢ (t) satisfying ¢ (t) is a complex valued square integrable

function well defined every whereon R . (39)
If V (¢) is recognizable as an RKHS with the reproducing kernel k(t,s) as in (38),
where @ (t) is a frame generator satisfying (39), then

O(s) = ka (s — 2 = Z|((k(t,s),<p (t = Wl

nez nez

< B||K(-,s)||2L2(R) = Bk(s,s),s € R,

where B is an upper frame bound of { ¢ (t — n) : n € Z}. Hence
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D (t) = Zlgo (t-n)|? < oo forany t in R . (40)

nez
Conversely, we have:

Proposition(6.2.4)[14]: Let ¢(t) be a function satisfying (39) and (40).
(@) If ¢ (t) is a frame generator, then V,(¢) = {(c * @)(t) : ¢ € N(T)*}
iIsan RKHS in P which any f(t) = (c * ¢)(t) is the pointwise limit of

Z c (k) ¢ (t — k), which converges also in L?(R).

k€eZ
(b) If @(t) is a Riesz generator, then V (¢) = {(c * @)(t):c € [} isan RKHS in
which any f(t) = (c * ¢)(t) is the pointwise limit of

Z c (k) ¢ (t — k), which converges also in L?(R).

keZ
() If ¢@(t) € C(R) n L2(R)is a continuous frame generator satisfying

supr®(t) < oo, then V (@) is an RKHS in which any f(t) = (c * @)(t) is the
pointwise limit Of Y ,czc (k) ¢ (t — k), which converges also in L?(R) and
uniformly on R to a continuous functionon R (soV (¢) c C(R) n L*(R)).
Proof : Assume that ¢ (t) is a frame generator satisfying (39) and (40). Then for
any c in [2,(c = @)(t) converges not only in L?(R) but also absolutely on R since
{ @ (t —m)}nez € I* forany tin R by (40). Then V,(¢) is a Hilbert space under the
L?> —inner product since for any f(t) = (c * ¢)(t) with € N(T):,
fOllz@y = 0 impliesc = 0so f(t) = 0 onR. Moreover for any

fC) = Xkezc (K) @ (- —k) in V(@) and any tin R, [f(O)] < |[c]ly@ () <
\/iz VO OIIf 2wy by (34). Hence V,(@)is an RKHS so that (a) is proved. Then
(b) follows from (a) since N(T) = {0} so that N(T) =1 and V(¢) = V,(¢)
when ¢ (t) is a Riesz generator satisfying (39) and (40). Finally let

@ (t) € C(R) n L?(R) be a frame generator and supr® (t) < oo. Then for any ¢
in 12, c(k) ¢ (t — k) converges not only in L2(R) but also absolutely and uniformly
on R to a continuous function f(t) on R.

Hence V(@) c C(R) N L*(R). Now for any f(t) = (c* @)(t) in V (¢),
decompose c into ¢ = ¢; + ¢, where ¢; € N(T) and ¢, € N(T)*. Then

llcy * @ |l2ry = 0sothat (c; * @)(t) = 0on Rsince (¢q * @)(t) is continuous
on R. Hence f(t) = (c; * @)(t) € V,(p) sothatV (¢) = V,(¢p)is an RKHS as in
(). Hence (c) is proved. Note that when ¢ (t) is a frame generator satisfying (39)
and (40) , Yezc (k) @ (t — k) converges also absolutely on R for any c in I
However V (@) as a space of the pointwise limits of ¥,z ¢ (k) ¢ (t —k),c € [?,
may not be a Hilbert space under the L?-inner product since fOIlzwy =0
implies f(t) =0 only a.e. on R unless ¢ (t) is a Riesz generator or a frame
generator as in (d).We say that two functions ¢, (t) and ¢, (t)in L?>(R) are equivalent
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(see [23]) if they generate the same shift invariant space, that is, V (¢,) =V (@,). It
IS then easy to see that ¢, (t) and ¢, (t) equivalent if and only if @,(t) € V(¢p,)
and ¢@,(t) €V (@;). In particular, ¢,(t) and ¢@,(t) are equivalent frame
generators if and only if there are ¢ and d in 12 such that

@2(t) = (c * () and @,(t) = (d * @;)(0) . (41)
Since (41) implies ®,$) = ¢°($) 91(5), P1§) = ¢°($) P2($) and so
Gp,(©) = 18" (DG, (©), Gy, () = | (DG 4, (&), we must have supp@; = supp®;,
suppG, = suppG,, ,andE, =E, if ¢,(t) and ¢,(t) are equivalent frame
generators.
Lemma(6.2.5)[14]: Let ¢, (t)and @,(t) be equivalent frame generators. Then
@, (t) is a Riesz generator if and only if ¢, (t) is a Riesz generator.
Proof: Since ¢,(t)and ¢,(t) are equivalent frame generators |, E, =E
Nowg; (t) is a Riesz generator if and only if Ep, = [0, 27]
(see Propositions (6.2.1)(b) and (6.2.1)(c)) so that ¢ (t)is a Riesz generator if and
only if ¢,(t) is a Riesz generator. Concerning the condition in Proposition
(6.2.4)(c), Zhou and Sun’s [38] proved.
Lemma(6.2.6)[14]: (see [22]). For any ¢ (t) in L2(R), the followings are
equivalent.
@ @ (t) € C(R) and supr® (t) < oo.
(b) Forany cin 2, (¢ = ¢)(t) converges pointwise to a continuous function on R.
(c) Forany cin 12, (c = ¢)(t) converges uniformly to a continuous function on R.
Moreover for any two equivalent frame generators ¢, (t) and ¢, (t), ,(t) € C(R)
and supr®, (t) < oo if and only if ¢@,(t) € C(R) and supr®, (t) < oo.Here,
®;(t) = Yalo; (¢ — n)|*for j=1, 2. Note that ¢ (t) € C(R) and supg® (t) < oo
if either ¢ () € C(R) and ¢ (t) = 0((1 + [tD™) for s > ~or ¢ (£) € L2(R),
and @ (&) has a compact support since when suppdp(é) < [—o,0] (6 > 0),

(2

D () = Ynpezlo t — n)|? < %ll ® |l;2ry DY the Plancherel-P"olya inequality
(see [30]). We also have:
Proposition (6.2.7)[14]: If ¢ (t) € L2(R) is such that

H, (@) =Z| @(¢ + 2nm)| € 12[0,21] , then @ (t) € C(R) N L*(R)

nez

and supr®, (t) < oo.

Proof: Since H,(§) € L?[0,2n] < L'[0,2n] and 1H, Dl 1j0,27) = 1| @ 11wy,
@) € L*(R)nLY(R)so ¢ (t) € C(R) N L*(R). Also

Yoez P(E + 2nm)etE 2T converges in L2[0, 27r]. Hence we have by the Poisson
summation formula (see Lemma (6.2.20) below)
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. 1 .
Z{()(f + 2nm)eit +2nm) — \/?Zga (t + n)e™¢ in L?[0,2n]
T

nez nez

so that
Do+ =

Nnez

2

z @(S; 1+ Znn)eit(f +2nm)

Nnez

L%[0,2m]
2
< Ity ©IF

Hence supr® (t) < ||H, (f)”2

0,2m]

L%[0,27]

Theorem (6.2.8)[14]: Let ¢ (t) be a frame generator satisfying (39) and (40) so
that V, (@) is an RKHS. Then for any sequence {t,} nez Of points in R with

tn < tpy1,n € Z,the followings are equivalent on V, (¢).

(a) There is a frame {S,,(t) : n € Z} of V,(¢) such that

FO =) f @S, € (@) (42)
nez
and {f (t,)}nez 1S @ moment sequence of a function to {S,,(t) : n € Z}, that is,
f(&n) = (g(0), Su(®)) 2wy, n € Z (43)

for some g(t) in V,(¢).
(b) There is a Bessel sequence {B,,(t) : n € Z} in V() such that

FO = ) fEBa(®),f € h(®) (44)
and there is a consta;tef? > 0 such that
DU <BIFIP gy f € V(@) (45)
(c) There argeczonstants B = a > 0such that
allf1P @ < ) @ < IR agyf € h(@) (46)
nez.

(d) {k(t,t,) : n € Z} is a frame of V,(¢), where k(t, s) is the reproducing kernel of
V, (). Furthermore, if any one of the above equivalent statements holds, then the
sampling series (42) or (44) converges both in L?(R) and absolutely and uniformly
on any subset E of R on which ®(t) is bounded.

Proof: Since f(t,) = (f(t),k(t, t,) )i2ry forany finV,(¢)andany ninz, (c) is
equivalent to (d). Assume (d) and let {S,,(t) : n € Z} be the canonical dual frame of
{k(t,t,) : n €Z}. Then

O = ) (FOKEE 2w Sa® = D f &IS(O.f € Vp(@)

Nnez nez

so that (42) holds. Let U be the frame operator of {S,,(t) : n € Z}. Then
k(t,t,) = U"1(S,(t)),n € Zso that

(
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ftn) = (fO,k(tt) Yew = (f(O,UT(Sa(0) 2wy

= (UHf), Sn(t) )2ryy M E L
so that {f(t,)} ez is the moment sequence of U~1(f) to {S,(t) : n € Z}. Hence
(@) holds. Conversely assume (a) and let U be the frame operator of {S,,(t) : n € Z}.
Then we have from (42) and (44)

O = ) (9O 5Oz = UG, f € Vp(e)

Nnez

so that g(t) = U'(f(t)) and for f € V,(¢) and n € Z,
(f(O),k(t,tn) ) zmy = f(tn) = (U™ (), Su(O) 2wy
= {f, U (S (O 2ry-
Hence k(t,tn) = U™1(S,(t)),n€Z so that {k(t,t,): n€Z} must be the
canonical dual frame of {S,,(t) : n € Z}. Hence (d) holds. (a) implies (b) with
B,(t) = S, (t),n € Z since (a) also implies (c). Assume (b). Then by (45)

D IOkt zml” = D 1 FEI? < IR f € (@)

nez nez

so that both {k(t,t,) : n € Z} and {B,(t) : n € Z } are Bessel sequences in 1, ().
Then {k(t,t,) : n € Z}and {B,(t) : n € Z } are dual frames of V},(¢) (see [28]) so

that (d) holds. Finally assume, e.g., that (c) holds. Then {f(t,)} nez € 1 for any
f € V,(¢). Hence as a frame expansion, the sampling series (42) or (44) converges

both in L?(R) and absolutely on R. Now for the reproducing kernel
k(s,t) = Ynez® (t — n)Y(s — n) of K, (),

> PE-mui-n

nez

2
k(t,t) = k()7 < By @(t)

L?(R)

where B, is an upper frame bound of {y) (s — n) : n € Z }. Hence as a series in the
RKHS V,(¢), the sampling series (42) or (44) converges also uniformly on any
subset E of R on which y(t) is bounded. Inspection of the proof of Theorem (6.2.8)
shows that the reconstruction frame {S,,(t) : n € Z } in (a) is uniquely determined as
the canonical dual frame of {k(t,t,) : ne Z} but {B,(t) : ne€ Z} in (b) need not be
unique but may beany dual frame of {k(t,t,): n e Z}. Note also that Theorem
(6.2.8) remains true on V (¢) = V,(¢) in the cases of Propositions (6.2.4)(b) and
(6.2.4)(c).In particular, in the case of Proposition (6.2.4)(c), the sampling series (42)
or (44) converges uniformly on R to a continuous function f(t) on R. Equivalence of
(@) and (c) in Theorem (6.2.8) was first proved in [26] assuming that ¢ (t) is a
continuous Riesz generator satisfying the growth condition

¢ () = 0((1 + [tD~*) with > =, which implies supg® () < oo. In [26], the
authors used the Gram matrix A of the frame {k(t,t,) : n € Z} in order to realize

L2(R) —
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the reconstruction frame {S,(t) : n € Z} claiming that A is invertible (see [26]).
But A is not invertible in general unless {k(t,t,): n € Z} is a Riesz basis of
V (). As a special case of Theorem (6.2.8), we now consider regular shifted
sampling at sampling points t, = o+ n,n€ Z, where 0 < o < 1. In the
following, we let (see [13])

Z,(t,8) = Zq) (t + k)e %% be the Zaktransform of ¢ (t)
nez
in L2(R). Then Z,, (t,&) is well defined a.e. on R? and is quasi-periodic in the sense

thatZ, (t + 1,§) = e¥ Z,(t,&)and Z,(t,§ + 2m) = Z,(t,&). For any
measurable function f(t) on R, let ||f]|, = sup ngr\lg |f(t)] and
|E|=0

£ ] “}Pfosup |f(t)| be the essential infimum and the essential supremum of
=0R\E

|f (t)| respectively where |E| is the Lebesgue measure of E. We first replace the
inequality (46) by an equivalent one, which is easier to check.
Lemma(6.2.9)[14]: Let ¢ (t) be a frame generator satisfying (39) and (40) and
0 < o < 1. Then the followings are equivalent.

(@) There are constants § = a > 0 such that

@l Iy < ) IF@ + WP SBIfIPeg.f € H@.  (47)

nez
(b) There are constants §# = a > 0 such that

< |Z,(0,¢)] <Ba.eonkEg. (48)
Proof : Forany f(t) = (c * ¢)(t) inV,(¢) withc € N(T)*, we have
f(oc + n) = zc K)o +n—k) = (c *d)n)
nez
whered = { ¢ (0 + n)},ez SO that

D Ife + mI =

/\

f) = Z,(0,£). Hence by (32) and (37)

e (1?2, (0.9 d ¢

(O Z, (0,0 d¢.

N|H [\.>|}_x &)

SRO\N

Hence by (36) , (47) is equivalent to
1
2ra [ 16(DI6, (Od s%f HGIHACHIET:
Eq@ Eg

< 21p [ 1E(OPG, ©dg.c € N
E¢
which is also equivalent to
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2ma Gy (§) < |Z(p (J,€)|2 < 2mBG,(§a.e. on E,. (49)
Let (4, B) be frame bounds of { ¢ (t — n) : n € Z}. Assume (a). Then we have by
(33) and (49), Aa < |Z, (o, &)|> < Bp ae. on E, so that (b) holds. Conversely
assume (b). Then by (33) and (48)

2 2
LGy (§) < 12, (0,01* < ZE G, (9 ae. on E, sothat

NI oy S 10 + DI2S L If11P 00, f € Vp(@).ie. (@) holds.
Combining Theorem (6.2.8) and Lemma (6.2.9) , we have

Theorem (6.2.10)[14]: Let ¢ (t) be a frame generator satisfying (39) and (40)
so that V,(¢) isan RKHS and 0 < o < 1. Then the followings are equivalent on

Vo (9).
(a) There is a frame {S,,(t) : n € Z} of V,(p)such that
fO= ) f (@ +mS(O.f € (o), (50)
n ez

Where {f(c + n)},ez isamoment sequence of a function in V,(¢) to {S,(¢) :
n € Z}.
(b) There is a frame {S(t — n) : n € Z} of V,(¢) such that

(O = ) f (@ + mSE = n),f € V(o) (51)
nez
(c) There is a Bessel sequence {B,(t) : n € Z} in V},(¢) such that
fO)= ) f @+ mBuO).f € h(®) (52)
nez

and there is a constant § > 0 such that

Y@ + W < BIFIP y f € (@),

nez
(d) There are constants § = a > 0 such that

IR gy < ) 1@ + WIS BIFIP . f € V(@)

nez
(e) There are constants 8 > a >0 such that a < |Z,(0,¢)| <p a.e.onE, .

(f) {k(t,c + n): n € Z}is a frame of V},(¢). Moreover if any one of the above
equivalent statements holds , then s,,(t) = S(t — n),n € Z, where

: »©
5© = %mw Gp(6) ae. on R (53)

and the sampling series (50),(51),(52) converge both in 12(R) and absolutely and
uniformly on any subset E of R on which ®(t) is bounded.

Proof : Equivalences of (a), (c)—(f) come from Theorem (6.2.8) and Lemma (6.2.9).
Assume (a) Then as in the proof of Theorem (6.2.8),
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U™(S,()) = k(t,o + n) = k(t — n,0),n € Z, where U is the frame operator
of {S,,(t):n € Z}, k(t, s) is the reproducing kernel of 1, (¢)and
k(t,o +n) = k(t —n,o) for n € Z comes from (38). Then as the canonical dual
frame of {k(t — n,0):n € Z}, S,(t) = S(t — n),n € Z,where S(t) = S,(t).
Hence (b) holds.

Conversely assume (b). Then by (51), ¢(t) = z ¢ (6 +n)S(t—n),
nez

where { @ (6 + N}, ez € 1% by (40). Hence % (&) Z 0(0,6) S(&) by (35)and so

G,(&) = |Z,(0, E)| Gs(&). Hence | Z,(o f)l2 f;"’g

S(t) are equivalent frame generators, from which we have Bi < | Zy(o, I < Ai
S S

nE, = Eg since ¢ (t) and

a.e. on E, where (4,B)and (As, Bs) are frame bounds of { ¢ (t — n): n € Z}
and {S(t — n) : n € Z}, respectively. Hence (e) holds. Moreover we have from

P& = Z,(0,6)8(8), 58 = Z‘p((% on supp Z, (o, §),which implies (53) since

supp G, (§) < supp Z,(0,§) by (e)
suppd (§) = suppS(&), suppd (§) < suppG, (§) . Then S(t) € V,(¢) since

1
700D XsuppG o (§) = 0a.e.onN, (cf. (37)). The mode of convergence of the

sampling series (50),(51),(52) was already proved in Theorem (6.2.8). Applying (51)

to S(t), we have S(t) = S(o + n)S(t — n)sothatS(c + n) = §y,,n € Z

provided that {S(t — n) : n € Z} is a Riesz basis of V,(¢). In fact, we have:

Proposition(6.2.11)[14]: Let ¢ (t) be a frame generator satisfying (39) and

(40) and 0 < o < 1. Assume that any one of the six equivalent conditions in

Theorem (6.2.10) holds. Then the followings are equivalent:

(@) @ (t)is a Riesz generator ;

(b) {Sp(t) = S(t — n): n € Z}is aRiesz basis of V,(¢);

(c)S(c + n) = 6gpu,n € Z

(d) {k(t,o + n): n € Z} is a Riesz basis of V,(¢). Moreover, if any one of the

above equivalent conditions holds, V,(¢) =V (¢).

Proof: Note that (b) means that S(¢) is a Riesz generator of V, (). Then equivalence

of (a) and (b) follows from Lemma (6.2.5). We saw already that (b) implies (c).

Assume (c) and let S(t) = Yezc (K)o (t — k) for some cin N(T)* . Then é*(§) =

Oa.e.on N(p(cf. (37)).NOW,
60,,1=S(J+n)=Zc(k)<p(a+n—k),n€Z, that is,

KEZ
¢c*xd =0, where d={@(0+n}nez and & = {Son}tnez

Hence é*(f)&*(f) = lae. on [0,2m]so that ¢*(&) # Oa.e. on [0,2m], i.e
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N, = ¢. Hence E, = [0,27] so that { ¢(t — n):n €Z} is a Riesz basis of
V, (@) , i.e. (a) holds. Equivalence of (b) and (d) follows since {Sn(t) : n € Z} and
{k(t,c + n): n € Z} are dual frames each other. Finally when ¢ (t) is a Riesz
generator satisfying (39) and (40), v,(¢) = V (p)since N(T) = {0}so N(T)* = I%
Combining Theorem (6.2.10) and Proposition (6.2.11) , we have:
Theorem(6.2.12)[14]: Let ¢ (t) be a Riesz generator satisfying (39) and (40)
so that V(¢) is an RKHS and 0 < o < 1. Then any one of the equivalent
statements on V(¢) in Theorem (6.2.10) is also equivalent to each one of the
following .(a)" There is a Riesz basis {S,(t) : n € Z} of V (¢) with which (50)
holds. ()’ 0 < [|Z, (0.9, < [|1Z (0O, < .

(F' {k(t,od + n): n € Z} is a Riesz basis of V (¢). Moreover if any one of the
above equivalent statements holds, then

Sp(t) = S(t-n) = B,(t), n ez (54)
where

vy P )

S8 Z,(0,0) a.e. on R (55)
and

S(c+n)=6pn,, n €EZL. (56)

Proof: Theorem (6.2.10) (a) implies (a)' by Proposition (6.2.11) . Conversely
assume (a)". Then the sampling series (50) is a Riesz basis expansion so that
fl@+mn) = (fO,U(S) dew = (UTH(),Su(®) hn € Z
where U is the frame operator of {S,,(t): n € Z}. Hence {f(c + n)},ez IS a
moment sequence of U~I(f) to {S,(t): n € Z} so that Theorem (6.2.10) (a)
holds. Equivalence of Theorems( 6.2.10) (e) and (6.2.10) (e)' follows since
E, =[0,2m7], ie. suppG,(§) = R when ¢ (t) is a Riesz generator. Since
k(t,d + n) = k(t — n,0),n € Z , (f)' means that k(t, o) is a Riesz generator of
V (@). Then equivalence of Theorems (6.2.10) (f) and (6.2.10) (f)' follows from
Lemma (6.2.5) since ¢ (t) and k(t, o) are equivalent frame generators. We have (56)
and S,,(t) = S(t — n),n € Z by Proposition (6.2.11). Hence (54) holds since (52) and

(56) imply
S.(t) = S(t — k) = zs (6 +n — k)B,()

Nnez

= Z 5 nBa(t) = By(),k € L.

ne'z

Finally (51) implies ¢ (t) = Y,ez@ (0 + n)S(t — n) so that
P& = Z,(0,&) S(&) from which (55) follows since suppZ, (d,¢) = R by ().
In Theorem (6.2.12), we may express any f(t) in V(¢) as
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FO =) cmpt-m=) fo+msE-n),

nez nez

which implies by (55) (&) = ¢*(&)@ (&) = Z£(0,8)Zy(0,€) ™" 9(8).
Hence ¢*(¢) = Zf(a,f)Z(p(a,f)‘l,which gives a relation

c(n) = z f(oc + k)b(n — k),n € Z connecting the expansion
ke Z
Coefficients {c(n)},ecz of f(t) and its sample values {f(c + n)},ecz, Where

Z,(o, Ot =Y,c7 b(n)e ™ Walter considered V (), where ¢ (t) is a real-
valued continuous orthonormal generator such that ¢ (t) = O((1 + |t|)™°) with
s > land Z,(0,§) # 0 on R.Then Z,(0,¢) € C[0,2 ] since {¢ (N)}pez € I*
so that the condition (e)' for ¢ = 0 in Theorem (6.2.12) holds. Hence we have the
sampling series expansion (51) with o = 0 on V (), which is a Riesz basis
expansion and converges both in L?(R) and absolutely and uniformly on R since
supr® (t) < oo. Chen and Itoh, extending Walter’s, considered a Riesz generator ¢
(t) satisfying only {¢ (6 + n)},cz € [? for some o in [0,1) and claimed (see [25])
that there is S(t) € V (¢) such that the sampling expansion formula (51)holds on V
(¢) in L(R) sense if and only if Z, (0,&)™* € L? [0, 2x] and in this case S(§) =
Z,(0,&)71 (&). However there are some gaps in the arguments of the proof in [25].
Assuming only {¢ (¢ + n)},ez € 12 for some o in [0, 1), which is weaker than the
condition (40), V (¢) may not be an RKHS so that the point evaluation of functions
in V (@) need not be well defined. Moreover, Chen and Itoh assumed nothing on
{S(t,, ) }nez but we must assume that {S(t —n)},c 7 IS at least a Bessel sequence to
derive S(§) = Z,(o, &)~1 %(&) from (51) (see Lemma (6.2.2)). Then we also have

Gy (&) =12, (o, €)|ZGS(E) a.e. on R so that ||Z, (o, E)||0 > 0, which is already
stronger than Z,, (g, &) ™" L?[0, 2rr]. The condition Z,,(c,¢)~" € L?[0, 2mr] guarantees
only that S(t) with S(&) = Z,(0,8)719(&) is in V(@) and satisfies the
interpolatory condition S(o + n) = §p,,n € Z. In [26], the authors proved the

equivalences of (a) in Theorem (6.2.10) , (a)' and (e)' in Theorem (6.2.12) together
with (55) assuming that ¢ (t) is a continuous Riesz generator satisfying ¢ (t) =

O((1+ |t)~®) withs > % . Finally we consider the case (c) in Proposition (6.2.4).
Theorem(6.2.13)[14]: Let ¢ (t) € L?*(R)nC(R) be a continuous frame

generator satisfying supr® (t) < o and 0 < o < 1. Then any one of the
equivalent statements on V,(¢) = V (¢) in Theorem (6.2.9) is also equivalent to

(e)" there are constants B >a > O such that aysuppG,(§) < |Z,(0,é)| <
BxsuppG, (§) a.e. on R. Moreover, if any one of the above equivalent statements

holds, then
S,(t) = S(t — n), n ez (57)
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Where

5 ¢ (§)
5(6) = Z,,5)

and sampling series (50),(51),(52) converge both in L?(R) and absolutely and

uniformly on R.

Proof: By the same arguments as in Lemma (6.2.9), we can easily see that the

condition (d)on V (¢) = V,(¢) in Theorem (6.2.10) is now equivalent to

2T

Znaf e (O6,(E)d € < j & (O1|2, (0,0 d €

0

xsuppG,(&) a.e. on R (58)

Eg@
2T
< Znﬁj & (D26, ©d&c € 2,
0

which is also equivalent to 27 a G, (§) < |Z, (o, g‘)|2 < 27BG, (§) a.e. on [0, 2m].
Now by the same arguments as in the proof of Lemma (6.2.9), one can see the
equivalence of the condition (d) on V (¢) in Theorem (6.2.10) and (e)". (57) and (58)
are already proved in Theorem (6.2.10). Finally, the sampling series (52),(51),(52)
converge uniformly on R since supr® (t) < co. Zhou and Sun proved (see Theorem
1 in [38]) the equivalence of the condition (b) in Theorem (6.2.10) and (e)" in the
case of ¢ = 0. It is interesting to note that the weaker condition (e) in Theorem
(6.2.10) implies the stronger condition (e)" for any continuous frame
generator ¢ (t) with supgr® (t) < oo. In [34], Zhou and Sun introduced a notion of
“sampling space” as: a closed subspace V of L?(R) is a sampling space if V has a
frame generator S(t) such that Y,ezc(k)S(t— k) converges pointwise to a
continuous function on R for each ¢ = {c(k)}ez in [*» and
f@®) = Ypez f()S(t — k),f € V, which converges both in L?(R) and
uniformly on R. By Theorem (6.2.13), we can easily see that V is a sampling space if
and only if V has a frame generator ¢ (t) in C(R) NL*(R) satisfying supr® (t) < o
and the condition (e)" in Theorem (6.2.16). Then Theorem (6.2.10)naturally leads to
the following relaxed notion of a sampling space.

Definition (6.2.14)[14]: A closed subspace V of L2(R) is called a sampling
space if V = V (¢) for some frame generator ¢ (t) satisfying (39) and (40) and
there are constants § = a > 0 such that a < |Z,(0,¢)| < p a.e. on E, for some o
in [0,1). Then Theorem (6.2.10) implies that any sampling space V =V (¢) has a
frame {S(t — n): n € Z} such that

f) = Z f(e+n)S(t—n),f €V,(¢p) which converges both in L*(R) and
nez
absolutely on R.
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Theorem (6.2.15)[14]: Let V (¢) be a sampling space where ¢ (t) and o are
the same as in Definition (6.2.14) . If Z,(0,¢) € L*(R), then there is a sampling
space V () o V (@), where y (1) is a Riesz generator satisfying (39) and (40), and
a<|Zy(o,$)| < £ a.e.on R for some constants 8§ > & > 0.

Proof: If ¢ (¢t) itself is a Riesz generator, then we may take (t) = ¢(t). Hence
assume that ¢(t) is a frame generator with frame bounds (A4,,B,) but not a
Rieszgenerator. Then E, = supp G, (£) n [0,27] & [0,2m] and

N, = [0,2n]\E, has a positive measure. Take (t) = ¢ (t) + { (t), where

(8 = 7= xw, () and [1Z, (0,9l < B.Then{ (t) € PW; and so

SupRE |C(t —n)|? < o . Hence (t) satisfies (39)and (40).
nez

On the other hand Gy, (§) = Z | (¢ + 2n7r)|2 = Gy (&) +{(&)? on [0, 2]

nez
so that min (4,,B%) < 2nGy(§) < max (B,,B%) a.e.on [0,2n]. Hence i (t) is a Riesz

generator. Now Zy,(0,¢) = Z, (0,§) + Z;(0,§) = Z,(0,§) + Be' xy, (§)
on [0, 2m] by Lemma (6.2.20) below. Therefore
B = |1Zy (0,)]le < 1Zy(0,8)| < B+ [|Z, (0,¢)|l a.e.on N, so that
min(a, B — ||1Z, (0,)le0) < 1Zyp(0,8)]
<max (B,B + 1Z, (5,6)||«)a.e. on [0, 27].
Finally ~we have () = @OXouppGy () = B(E)Xoupp Gp (§)  since

supp (§) < suppG,($) and N, N suppG,(§) = ¢. Hence ¢ (t) € V (¥) so
V(p) < V (¥). Note that the sampling space V (y) in Theorem (6.2.16) has a Riesz
basis {S(t —n) : n € Z} for which we have a sampling expansion (see Theorem (6.2.12)):

f©) =) flo+mSE = n).f € VW)

nez
Finally we give a sufficient condition that a function f € L?(R) belongs to some

sampling space.
Theorem(6.2.16)[14]: (see [34]). Let f € L*(R). If f(&) € L?*(R) and there
existconstants B > A > 0and 0 < ¢ < 1 such that

AZ @O <) |f ¢+ 2| < (Z 7+ 2nn)|>

Nez Nez
2
< B|Z; (5,0, (59)
then f belongs to some sampling space.
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o Zg(0,8)
D = 1 60
4G {«: e, (60)
kO, otherwise
Then
[ Snez |f (€ + 2nm)|? 1
A~ 2 -
[1o@ras Zeor 4t | mae
“o Af By
1
Ay By

sothat (&) € L?(R)and ¢ (t) = F~1(®)(t) € L*(R). Then

(Tnez|f (€ + 2nm)|? .
2 f
Gy (£ =z | § (£ + 2nm)|? =! 125 (0,9
nez 1 € B
L\/ZTL’ '§ r

so that min(i ,A) < Go (&) < max (i ,B) ,€ € [0,2m] and ¢(t) is a Riesz
generator. We also have

[ZnEZ|f(€ + Znﬂ)|

~ £ € A
Sigeram =1 @D
nez — ,¢$ €EB
V21 d f
50 that z | ¢ (£ + 2nm)| € L [0,21] € I2[0,27]. Then
nez

@ (t) € L*(R) n C(R) is a continuous Riesz generator and supgr® (t) < oo by
Proposition (6.2.7). On the other hand , we have by Lemma (6.2.20) below ,
{m Ynez €' (§ +2nm)f(§ +2nm)Z 5 (0,6)

Z; (08 =1, ¢ €4

et, ¢ € B
so that [Z,(0,&)| = 1 ae. on [0,2r] and V (¢) is a sampling space. Finally we
have SUPPYnez |f(§ + 2nm)[*= supp Zj(0,8) by (59) and so f(§) =
Z ¢ (0,8) @ (&) by (60), which implies f € V (¢).
We assume that ¢ (t) is a frame generator with frame bounds (4, B) satisfying the
conditions (39) and (40) and for some constants S >a > 0 and ¢ € [0,1)
a <|Z, (0,8)] < pae.onsuppG,(§).Then by Theorem (6.2.9), V,(¢) is an RKHS

on which we have a sampling expansion (51)

fO =) f@+mSE=n),f € h(®)

nez

Z(p (0,6) =
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where {S(t —n) : n € Z} is a frame of V,(¢) with frame bounds (% %) and S(t)
satisfies (53). Letc = {c(n)} ez Dbe the Fourier coefficients of — Xsupp Gy (§)

Zy (0%)
€ L™[0,2m] S0 that = Youpp Gy (§)=Znez c(m)e™™. Then 5(t) = (c * @)(®)
and so we have by (32)

21
1
DS+ = Y le o+ W =0 [ 1070 OIS
0

nez nez
Hence
1
nzeZ|S(t + P <— ;lgo(t L2t ER . (61)
Writing (51) as f(t) = z Flo + K)S(t — k) + E,(H) ),
|k|sn
we call
E(D® = D f(o + 0SC-h) (62)
|k|sn

the nth truncation error of f(t). We first consider the L2-estimate of E, (f)(t).
Theorem (6.2.17)[14] : We have

B
IE (DO gy < =5 > 1o + I

|k|sn
2
A
< (5) Sl € Ul (63)
Proof :We have by (53) and (62)
IE w(DOI 2y = [EZtPON 2z

2m

Go®
) Z9 @D

from which (63) follows immediately since {k(t,c + n): n € Z} is the canonical
dual frame of {S(t — n) : n € Z}. If moreover, ¢(t) is a Riesz generator, then

A B
2 ) @+ BE S IENDOIF e <z ) If +OEf €V (o).
|k|sn |k|<n
Concerning the point wise estimate of the truncation error (see [36]), we have from
(61) and (62)

1
EDOF <00 Y 1f(@ + DI f € V(p)

|k|<n

Xsupp qu (E)d E

z f(o + k)e ikt

|k|sn

195

——
| —




where @ (t) = Y,ez| @ (t —n)|?> so that the sampling series (51) converges
uniformly on any subset of R on which @ (t) is bounded . When E,(f)(t) € L}(R),
we can improve the L*-estimate of the truncation error.
Lemma(6.2.18)[14]: If H,(§) = Yuez | (€ + 2nm)| € L*[0,2m], then
supr® (t) < o and f£(&) € L'(R) for any £(t) € V (). In particular , V (¢) = Vp(e).
Proof: First supg® (t) < o by Proposition (6.2.7). For any f(t) € V (¢),
() = (c * @)(¢t) forsome cin [2. Hence (&) = ¢*(&) ¢ (¢) and

9] 21

f|f<f)|df - flé*(f)IHq)(s‘)df

0
< [1€°CO I zjo.2m1 Hp (D 1210,27) <
sothat f € L*(R).Finally V (¢) = V,(¢) by Proposition (6.2.4)(d).
Theorem (6.2.19)[14]: If H,(§) € L*[0,2n], then

1

1 ,\
IE (DOl < = [Ho@ll o | D) 1@ +RE ) FEV@. (68

|k|>n
Hence the sampling series (51) converges uniformly on R.
Proof: Now E_(F)(§) € L'(R) by Lemma (6.2.18) so that

(0]

1 . A .
EO©O = — | (Z flo + k)e-”‘f> S@e ds.
oo |k|>n

V2
Hence
En(F)O)] < S j > fo + e S ©la
—oo lk[>n
(Y (o + ke ®)|z,(0,6)| H,y(6)d ¢
\/_E'L |k|>n ’ ’

from which (64) follows.

We first introduce a variance of the Poisson summation formula, which is effective
in computing Z,, (o, ¢).

Lemma (6.2.20)[14]: Let F(&) € L'Y(R) so that f(t) = F1[F](t) € C(R)
and 0 < o < 1.Then

Zei"(f+2"")F(f + 2nm) converges absolutely in L*[0, 2] and

Nnez

Zeia(fﬂnﬂ)p(f + 2nm) ~\/%Zf(0;f)

\/_z f(o + n)e™™ (65)

Nnez

Nnez
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. 1 . . . .
which means that Ezf(a, &) is the Fourier series expansion of

zeid(f“nn)F(E + 2nm) . If moreover Z el?(E+2ME(E 4 2nm)

nez

nez
converges in L2[0, 2r] or equivalently {f (¢ + n)},e; € [?, then
. 1
el +nmpg 4 2nm) = —7Z:(0, &) in L2[0, 27]. 66
2 (€ + 2nm) = —==2,(0,8) in L2[0,2n] (66)

Proof : Assume that (§) € L*(R). Then

2
D Nl mECE 4 20y = D [ IFCE + 2nmld g

= nei(?wl)n
D G j|F(5)|d€
n€z 2nm

so that

Zei“(’f”"”)F(f + 2nm) converges absolutely in L[0,2m] .

nez
Hence
zei“(’f”"”)F(f + 2nm)
nez
~_Z<z la(€+2nn)F(€ 4+ ZnT[) e -1 E)Lz 027 —ikf'
k€z nez
where

<Z el (E+2E (e 4 2nm), e HE) oo
Nez

j Z lO'(f+2nTL’)F(€ + 2nn) elkfdé’

nez

_ Zj eic(E+2mE (8 4 2nm) k€ g €

NnezQ
+o00

= j F(&)ele*DE g =21 f(o + k)

— 00

by the Lebesgue dominated convergence theorem. Hence (65) holds. Now assume

that F(¢) € L'(R) and
Z elo(§+2nmE (& + 2nm) converges in L?[0, 2r]. Then (65) becomes

Nnez

an orthonormal basis expansion of Eei”“*Z"”)F(E + 2nm) in L?[0, 27]

Nnez

( ]
| 197 |




so that (66) holds. Lemma (6.2.20) is a more generalized version of the following
result in [25].

Corollary (6.2.21)[14]: (see [25]). If F(&) is measurable on R and

Ynez F(6 + 2nm) converges absolutely in L?[0, 2], then

1
ZF(f +2nm) = =2,(0.6) where f() = FUIFI)

Proof : Assume that z F(¢ + 2nm) converges absolutely in L2[0, 2 ]. Then
nez

Z F(¢ + 2nm) converges absolutely alsoin L[0, 2 7] so that F(&) € L'[0,2 n]

nez
and Y, F(§ + 2nm) converges inL?[0, 2rt]. Hence the conclusion follows from

Lemma (6.2.20) foro = 0.
Example (6.2.22)[14]: (see [13],[26] and [33]). Let ¢o(t) = xpo,1)(t) and
1
() = n 1 () 9o0) = [ Bra(t = 5)ds, 1 = 100 (0) = Broa(9)
0

be the cardinal B-spline of degree n. Then
n+1 |7’l+1

- 1 [1-e¢ ~ 1 ) &
7 = =(5—)  and 19n@)] = 5z sinc

It is known in [27] that ¢, (t) is an orthonormal generator and ¢, (t)for n > 1is a
continuous Riesz generator. Moreover since ¢ n(t) has compact support,

supr®, (t) = supRz |(pn(t - k)|2 < oo so that V((pn) is an RKHS for
K€L
n = 0.Since po(d+ n) =6y, forn €Zand0 <o <1, Z, (0,§) =1

so that by Theorem (6.2.12), we have an orthonormal expansion

fO =) flo+mgot —m) , f €V (o)

Nnez
which converges in L?(R) and uniformly on R since

() = Y lpo(t-MIP =1 onR.

,n = 0.

nez
For ¢@.(t) = txpn(t) + 2 — Oxpy (@), and 0<0<1,
p.(t) = 0,0,(0 +1) =1 —-o0,p,(0d + n) = 0forn # 0,1 S0 that
Zy (0,§) = 0 + (1 — o0)e™™.  Then 1Zg, (0,9, =120 — 1] and

|Zo, (0, €)||_=1. Hence by Theorem (6.2.12), forany o with 0 < ¢ <1 and o # %
we have a Riesz basis expansion

FO=) flo+mst-n, feVip)

nez
which converges in L?(R) and uniformly on R . For
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02(6) = 562 X0y (8) + 5 (66 =2 = 3)x11.0)(8) + 5 (3 = ©)2X123) (2), it is known
(see [13] and [26]) that
125,00, = 0but 3<|Z,, G .€)[| < |25, G ¢)|| <150 thatthereisa

[00)

Riesz basis expansion

FO= fz+n)se - n.f € V(o) (67)

2
nez
which converges in L?(R) and uniformly on R. Since the optimal upper Riesz bound

of the Riesz sequence {@,(t — k): k € Z} is 1 (see [27]), we have for the

sampling series (67)
2

1
DOy < 4 Y |F(5+K)| o f € Voo
|k|>n
On the other hand, we have
oy © =Y 1026 + 2l = = 3 fsine (& +.1)|
@, (&) = 0P n)| = — sinc | =—
keZ mkez 2m
<7 2, e+t =
= —= Sinc \ — = —
Vo & 17" \om Vim

Hence, Theorem (6.2.19) gives for the sampling series (67)

1Ex (DOl < 2(2 r(G+) 2)
|[k|>n

—t2

Example (6.2.23)[14]: Let@(t) =e2 be the Gauss kernel . Then

2

N[ =

@) =ez and0<||Gy,(E)llo <Gy (&)l < o0 s0that @ (t) is a continuous
Riesz generator satisfying

supr®(t) = supRZ | @ (t —k)|?> < o0.Since @ (§) € L*(R)
KEZ

and { ¢ (n)},ez € [, we have by Lemma (6.2.20)
-1
2,08 =21 Y €2 sothat 0 < ||Z,(Dl, < IZ,(Il,, < o,

Nnez

Hence by Theorem (6.2.12), V (¢) is an RKHS and there is a Riesz basis expansion
FO =) fmSE—n.f € V(@)
nez

which converges in L?(R) and uniformly on R .
Example (6.2.24)[14]: (see [22]). Let E be a measurable subset of [—m, 7] and

AR \/%)(E(f).Thengo (t) = F@I(§) € PWy sothat
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supr®(t) = SUPRZ | (t—k)|>? < o and
KeL

1
Go®) =) 10 + 2nm)* = —xEE) on[-m,7].
nez 21
Hence ¢ (t) is a (tight) continuous frame generator or an orthonormal generator if
|E| < 2mor |E| = 2 m, respectively. Since ¢ (¢§) € LY(R) and { ¢ (6 + n)}neq € 12

for 0 < o <1, we have by Lemma (6.2.20)
Zp(0,6) = € ) el72M yo( + 2nm) = €%y (£) on [0,2]

nez

so that |Z,($)| = 1 on E = E,. Hence by Theorem (6.2.13) , V (¢) is an RKHS
and there isa frame {S(t — n) : n € z}of V (¢) such that
fO)= ) f(o +mSE - n),f € V(p) (68)

nez
which converges in L?(R) and uniformly on RWhen E = [—m, ],

— ploé § __ 96 _ 1 —io§
Zy(0,8) = e’ onRsothat S(¢) = 7,0 7o Xi-mm) (§)e Hence,

S(t) = sinc(t — o) and so (68) becomes

£t = z f(o + n)sinc(t — o — n)

nez
which is the Wittacker shifted cardinal series on PW, (see [30]). Moreover,

applying Theorems (6.2.17) and (6.2.19), we have for the sampling series (68)
1B (DO 2y < Y If @ + O

|k|>z

and

- 2
IEx (HOI?,, < %(Z fo + k)|2> f €V ().

|k|>Z
Finally, we give an example of a Riesz generator ¢ (t) with supr®(t) = .

Example (6.2.25)[14]: For any ¢(t) € L?(R)\{0}, the Fourier series expansion

1 , |
of Gp(€)(€ L'0.27])is 52D {6y, Vzozmy €

Nez
where

(G (©), ™™ Y1210 m = f 1@ (®)2e™éd ¢

- f ¢ (D9 (C-W.

— 00

Hence if supp ¢ < [0,1], then G, (¢) = % lle]|l a.e. on R so that ¢ (t)is a Riesz

( ]
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For example, we take ¢ (t) = Z kxg,(t),where Ey = ( ] Then
k=1

Zk’zk 1

k2
|l = — < oo and supp ¢ = [0, 1]so that ¢ (t)is a Riesz generator
2k

satisfying: (39) and (40) but supr®(t) = oo since
1if t=0
2® =) lot-nP ={

nez
Since we have

Z,(0,6)=e%and Z,(0, §) = ¢ (0) # 0for0 < ¢ < 1, Theorem (6.2.12)
implies that for any o with 0 < o < 1, there is a Riesz basis expansion

F©O) =) flo+mSE-n).f €Vip)

nez
which converges in L2(R) and absolutely on R .

Corollary (6.2.26)[296] : We have

B
z”E DO e = 72 z ZVJ‘(" + k)|

Jez lklsn jEZ

< (§>2 %ZHJCJ'”LZ(R) fi € (o).

Jez

n [0, 1).

K2 if & < < k>1)°
1 2k<t—2k—1( - )

Proof :We have by (53) and (62)

MIE RO 1 = Y [EB)O|

JEZ Jez

| G ®
: ; ;fj(ﬂk)e °| o Gppe Fow G2

from which (63) follows immediately since {k(t,oc + n): n € Z} is the canonical
dual frame of {S(t — n) : n € Z}. If moreover, ¢(t) is a Riesz generator, then

A p !
B2 j 2 . 2 5 . |
7L ;m(a + R)? < j;nsn(f,)(t)u e S Wzn;m(a + . f; € V).
Concerning the point wise estimate of the truncation error (see [36]), we have from

(61) and (62)
1 2
YIEGHOF <00 Y Y |fi + BI'.f € )

JEZ |k|sn jEL
where @ (t) = Y,ez| @ (t —n)|?> so that the sampling series (51) converges
uniformly on any subset of R on which @ (t) is bounded . When

Y ez En(f;)(®) € L*(R), we can improve the L®-estimate of the truncation error.

L?(R)
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Corollary (6.2.27)[296] : Let F(¢;) € L*(R) so that f(¢) = F1[F](t) € C(R)
and € > 0. Then

ZZei(l‘f)(ff +2"")F(€j + 2nm) converges absolutely in L'[0,27] and

nez jeZ
nez jeL JEZ
3 e
nEZ JEZ

which means that \/%Zjez Z¢(1 —¢,&;) is the Fourier series expansion of

ZZ e/1= MM p(g. + 2nm). If moreover z z e -G+ E g + 2nm)

nez jeZ nezZ jew

converges in L2[0, 2x] or equivalently {f (n — e)}nEZ € 12, then

3Y ettmots @mE( 4 2nm) = sz(1 & ) in 12[0, 2]

nez jeZ ]EZ

Proof : Assume that (¢;) € L'(R) . Then

2
ZZ”ei(l—e)(fHZnn)F(fj + 2nn)||L1[0’2n] = ZZJ |F(§; + 2nm)|d¢;

nez jez nez jezZ o
2(n+1)m +00
=S wreplag = [ Repas,
nez JjEZ 2nw JEZ — o
so that

ZZe"(l‘E)@f TINME(&; + 2nm) converges absolutely in L'[0,27] .

nez jeZ

Hence
ZZ ei(l—e)(fj +2nn)F(€j + 2717'[)
nez jez

1 ; ] '

~ %Z (Z Z el-I(§+2mmp(E. + 2nm), z e~™1) 1210 2m Z e k4,
ke€z nez jEL JEL Jez
where
(ZZ i(1-e)(§; +2”7T)F(E + Znﬂ) Z E]>L2[0 21]
nez jez JEL
zz ei-9(¢; +2nn)F(€j + Znn)eikfjdfj
0 nez jeZ
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2
_ ZZJ ei(l—e)(fj+2n7t)F(€j + 2nm)ei€ide,

nez jezZ o
= | Fepettotias; =vam £k 9
Tel "

by the Lebesgue dominated convergence theorem. Hence in lemma (6.2.20) (65)
holds. Now assume that F(¢;) € L'(R) and

Z Z e'(1=I(&+2nM F (&, + 2nm) converges in L2[0, 2]. Then (65) becomes

nez jez

an orthonormal basis expansion of ZZei(l‘E)(ff +anm)p (g i + 2nm)
nez jez

in L2[0, 2rt] so that (66) holds.

Section (6.3) Asymmetric Multi-Channel Sampling

Reconstructing a signal from samples which are taken from its several channeled
versions is called multi-channel sampling.The multi-channel sampling method goes
back to the works of Shannon [19] and Fogel [8], where reconstruction of a band-
limited signal from samples of the signal and its derivatives was suggested.
Generalized sampling expansion using arbitrary multi-channel sampling on the
Paley—Wiener space was introduced first by Papoulis [17]. Since Papoulis’
fundamental work, there have been many generalizations and applications of multi-
channel sampling. See [2,6,7,15,16,18] and references therein.

Papoulis’ result has also been extended to a general shift invariant space by using
the filter banks technique (see [5,20,21]). More recently Garcia and Pérez-Villalon
[9] derived stable generalized sampling in a shift invariant space. Most previous work
related to multi-channel sampling has assumed that the sampling rates of all channels
are the same.

We consider an asymmetric multi-channel sampling in a shift invariant space
V(@) with a suitable Riesz generator ¢(t), where each channeled signal is sampled
with a uniform but distinct rate. Using Fourier duality between V(¢) and L?[0, 27]
[9,10,11], we derive a stable shifted asymmetric multi-channel sampling formula in
V(¢). The corresponding symmetric multi-channel sampling in V(¢) was handled in
[10],where ¢(t) is a continuous Riesz generator satisfying supg Ynez @t —n)|? < oo.
In this case all signals in V(¢) are continuous on R (see[22]). We require only that
the Riesz generator ¢@(t) is point wise well defined everywhere on R and
Yoez lo(t — n)|? < oo,t € R. Hence we essentially allow any Riesz generator in
L*(R). On the other hand, we allow more general filters than the ones in [9] by
asking only that the impulse responses of filters belong to L?(R) (or the frequency
responses of filters belong to L*(R)U L*(R)when Y.,c; |® (¢ +2nm)| €
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L?[0, 21]), whereas they belong to L?(R)N L'(R) in [10]. Finally, we give an
illustrative example. We take the Fourier transform to be normalized as

(00]

Flel€) = o) = f<p(t)e_"tf dt,e(t) € L*(R)n LY(R)

— 00

so that \/% F [-] extends to a unitary operator from L?(R)onto L?(R). For any

o(t) € I2(R), let
Co(®) = ) lo(t +mPand G,(6) = ) 16(¢ +2nm).

Nnez nez

Then C,(t) = C,(t +1) € L1[0,1],G,(¢ ) = G, (¢ + 2m) € 12[0, 2] and

2 _ _ 1
”(p(t) ” LZ(R) - ||C(p(t) || 11 [0,1] - E ”G(p(f) || 11 [0,27]
In particular, C,(t) <o forae.tinR.Wealso let

Zo(t) = ) g(t +meminé

nez

be the Zak transform [13] of ¢ (t) in L>(R)). Then Z,,(t, §) is well defined a.e. on R?
and is quasi-periodic in the sense that
Zy(t + 1,8) = eBZ,(t,&)and Z,(t, & +2m) = Z,(t,$).

A Hilbert space H consisting of complex valued functions on a set E is called a
reproducing kernel Hilbert space (RKHS in short) if there is a function g(s,t) on

E x E, called the reproducing kernel of H , satisfying

(1) q(-,t) e HforeachtinE,

(i) (f (s),q(s,t)) =f (), f €H.

In an RKHS H, any norm converging sequence also converges uniformly on any
subset of E, on which ||q(:, t)||2H: q(t,t) is bounded. A sequence {¢,:n € Z} of
vectors in a separable Hilbert space H is

(i) a Bessel sequence with a bound B (> 0) if

> Kp.0a) < Bligltg € H,

nez

(if) a frame of H with bounds B = A (> 0) if
Allol> < ) e o) < Blloll? @ € H,

Nnez

(iii) a Riesz basis of H with bounds B = A (> 0) if it is complete in
2
D e

< Bl|c||? € = {c(M)}ez € 1%
nez

where |[c]|z = Z|c(n)|2
nez

H and Al|c||? <
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In the rest of the section, we let V (@) be the shift invariant space, where ¢(t) is a
Riesz generator, that is, {¢(t —n):n € Z}is a Riesz basis of V (¢). Then

Vi) = {(c COIO =) et —n):C = {cnez € L.

nez
It is well known (see [3]) that ¢(t) is a Riesz generator if and only if there are

constants B = A > Osuch that A< G,(§) < Ba.e.on[0,2x]. In this case,
{o(t —n):n € Z} is a Riesz basis of V (¢) with bounds B > A. We assume
further that

(i) @(t) is everywhere well defined on R;

(i) C,o(t) <oo,t € Ryi.e.,{o(t +n):n € Z} € [*foreachtinR.

We then allow essentially all Riesz generators since for any ¢@(t) €
L*(R), C,(t) < oo a.e. so that ¢(t) has an equivalent representative satisfying the
above two conditions. Then for each ¢ € [%,(c * ¢)(t) converges both in
L?(R)and absolutely for each tin R. Hence V(@) becomes an RKHS with the
reproducing kernel (see[14])

q(s,t) = Z P(s-n)p(t -n),where { §(t — n): n € Z} is the dual
nez
Riesz basis of {¢(t — n): n € Z} with bounds % > %. As in [10,11] , we introduce an

isomorphism J from L2[0, 2r] onto V (¢) defined as:
1 . 1
(PO = 5= D (F €, e zpom @6 =1) = (F ()15~ Zp (6,200 -

Nnez

We then have:

(i) TF)IE) = F ()P

(i) J (F(§)e™™) = (JF)t —n),n € L

Let {L; [[]:1<j < N} be N LTI (linear time-invariant) systems with impulse
responses {L;(t):1<j < N}. Develop a stable shifted multi-channel sampling
formula for any signal f(t) € V (¢) using discrete sample values from

{Li(t):1<j < N}, where each channeled signal L; [ f](t) for 1<j < N is
assigned with a distinct sampling rate

N
F©O =) > Lo +nm)s O.F OV, (69
j=1nez
where {s; ,(t): 1 <j < N,n € Z}is aframe or a Riesz basis of
V(p){rj: 1 <j < N} are positive integers, and {g;: 1< j < N} are real
constants. Note that the shifting of sampling instants is unavoidable in some uniform
sampling [13] and arises naturally when we allow rational sampling periods in (69).
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Here, we assume that each L; [-] is one of the following three types: the impulse
response L(t) of an LTI system is such that
() I(t) = 6(t +a),a € Ror
(i) L(t) € L*(R) or
(iii)) I(¢) € L°(R) U L?(R) when H,(&)=Ynez | (& + 2nm)| € L*[0,2m]. For
type (i), L[f](t) = f(t + a),f € L*(R)sothat L[-]: L*(R) » L*(R) isan
isomorphism. In particular, for any f (t) = (¢ * @)(t) € V (@),
L[ f ](t) = (c = ¥)(t) converges absolutely on R since

Cy(t) = Ellp(t +n)|? <oo,t € R ,where y(t) = L[p](t) = ¢(t +a)

nez
For types (ii) and (iii), we have:

Lemma (6.3.1)[1]: Let L[-] be an LTI system with the impulse response I(t) of
the type (ii) or (iii) as above and Y (t) = L[@](t) = (¢ * D)(t) .Then

(@) Y(t) € Cu(R) := {u(t) € C(R): lim 50 u(t) = 0},

(b) supg Cy(t) < o

(c)forany f (¢) = (c * @)(t) € V (@), L[ f](t) = (c * P)(¢) converges
absolutely and uniformly on R. Hence L[ f ](t) € C(R).

Proof:First assume I(t) € L*(R). Then y(t) € C,(R) by the Riemann-Lebesgue
lemma since Y(&) = @(&)I(¢) € LY(R). Since

Y [P +2nm)] < Gy (€)26,E)7

nez
2 21
dli ol < [ 6,606k
nez LZ[QZH] 0

< 271G ()| o g 111 12y
Thus for any t in R, we have by the Poisson summation formula (see [14])

z Y(E + 2nm) eit@+2nm) — z Yt +n)e ™ in L2 [0,2n]

nez nez
Therefore forany t in R
2

1
Co(O) = ) 1t +m)I? = o

nez

z Y(t +n)e ™

Nnez

L? [0,2m]
2

z B(E + 2nm) eit@*anm

nez
< (16 Gl o g 12117 2y

By Young’s inequality on the convolution product,
ILLF Moy < IS iz Il 2y SO that L[] = L2(R) — L™ (R) is

_1
27

L? [0,2m]

( ]
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a bounded linear operator. Hence for any

F@©) = (€x @)®) = ) cmp(t —n) €V (p),

Nnez

LFI® = ) cmLlptt —m] = ) cp(t —n),

nez nez
which converges absolutely and uniformly on R by (b). Now assume that H,(§) €

L? [0,2m]. The case [(¢§) € L?(R)is reduced to type (ii). So let I{(§) € L™(R).
Then ¢(&) € L*(R) n L*(R) so that Y(&) = @&)I() € L*(R) n L*(R) and
s0 (&) € Cu(R) NLA(R)). Since

Z|1/3(€ + 2nm)| < ||| o wyH, (€ ) , we have again by thePoisson

nez

summation formula
2

Z B(E + 2nm) eitE+nm)
nez
2
< ||l||2Loo(R)||H<p(f)|| 2
so that suprCy, (t) < co. Forany f € L*(R),

|
ILL 1Ol = I+ Ulzay = == IFEI]

< T o 1 Mz

Hence L[-]: L?(R) —» L?(R) is a bounded linear operator so that for any f (t) =
(c * @)(®) € V (@), LLf1(t) = (c * P)(t) converges in L2(R). By (b), (c *
Y)(t) also converges absolutely and uniformly on R.

By Lemma (6.3.1)(b) ,y(t) € L*(R) . However, (¢ * )(t) may not converge in
L*(R) unless {(t — n):n € Z}is a Bessel sequence.
Lemma (6.3.1) (b) improves [10], in which the proof uses I(t) € L?(R) n L*(R),
suprCy,(t) < oo, and the integral version of Minkowski inequality. Note that the
condition H, (¢ ) € L?[0, 2] implies ¢(t) € L*(R) N Ce, ((R) and supgrC,, (t) < oo.
(see [14]). Note also that H,(¢) € L*[0,2n]if @(§) = o((1 + [N ), r > 1,
which holds e.g. for ¢, (t) := (@, * @,—1)(t) the cardinal B-spline of degree
n (= 1), where @, = xo,1)(t). We have as a consequence of Lemma (6.3.1): Let
L[-] be an LTI system with impulse response [(t) of type (i) or (ii) or (iii) as above
and Y(t) = L[p](t). Thenforany f (t) = (JF)(t) € V (¢),F (§) € L*[0,2m]

j
LIF1® = {©€),5-Zy (6, )izpoam (70)

C(t)—1
k4 2

L? [0,27]

0,27]
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since L[-] is a bounded linear operator from L*(R) into L?(R)or L*®(R)and
Yt —n):neZy €l?> teR Let y;(t) =L []t) and g; () =
—Zy; (0;,), 1< j <N .Then we have by (70)

1
Li [f1(g; +13n) =(F (€5 Zy, (95 +715 182 0.2m

=(F (¢), 9, €3 )e_irjnf)L2 [0,27] (71)
for any f(t) = (JF)(®) € V(p) and 1< j <N. Then by (71) and the
isomorphism J from L? [0,2m] onto V (¢), the sampling expansion (69) is equivalent

to
N

FE) = D ) (F )8 G ™2 gm SinE),

j=1nez
F (¢) € L? [0,2m], where {S; ,(§): 1< j < N,n €Z}is a frame or a Riesz basis
of L? [0,2m]. This observation leads us to consider the problem when is
{g,(©)e™mim8:1< j <N,n €Z}aframe or a Riesz basis of L? [0,27]? Note
that { me_irfnf: 1<j<N,nc€ Z}

- r
= {g]’m] (S)e—lrnf: 1<j<N1C< m; S; ,n € Z}

J
where r = lem{r;: 1< j sN}and g jn; (§) = g;(§)e™ MV for 1< j < N.
Let D be the unitary operator from L? [0,2r]onto L?(I)r , where [ = [0,27”]

defined by DF = [F (f + (k-1 2—”)]; ,F (¢§) € L? [0,2m]. We also let
r =1

T

G(g) = I:Dgl,l(g )l'--)Dgl’L(g );---;DgN,l(f ))JDgN'L(E) (72)
1 rN
N
r
be a Z - X rmatrix on [ and 4,,,(§ ), Ay, (¢ )be the smallest and the
j=1

largest eigenvalues of the positive semi-definite r X r matrix G(&)*G(§),
respectively.

Lemma(6.3.2)[1]:Let a; = [[1,,(E)]lo and Bz = 1Ay (E)]le be the
essential infimum of 4,,,(¢ ) and the essential supremum of A,,(¢ ) respectively. Then
{g,(@)e”mim8:1< j<N,n€L}is

(a) a Bessel sequence in L? [0,2x] if and only if B, < oo or equivalently
{Zy; (0;,$):1< j <N} €L” [0,27],

(b) a frame of L? [0,2x]ifand only if 0 < a; < B; < oo,

(c) a Riesz basis of L2 [0,2r]ifand only if 0 < a; < B; < o and
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ﬁ

N
Proof : Since { g, (§)e™"im¢: 1 s j <N,n €Z}isaBessel sequence or a frame
or a Riesz basis of L? [0,2r] if and only if

gﬁ

- . r
{g],m] (";)e—LT‘TLE: 1< Jj < N,1 < m; < ; ,h € Z}
J
IS a Bessel sequence or a frame or a Riesz basis of L? [0,2r]respectively, all of the
conclusions follow from [10]. Note that in [10], the authors use the Fourier transform
f &) =" f (®e ™ dt so that they use L? [0,2r] instead of L? [0,27r]. Assume
that 0 < a; < B; < oo so that
{ g, (e ™mi"¢:1< j <N,n €Z}orequivalently
- . r
{g],m] (f)e—l’r’flf: 1< ] < N,l < m] < 7 ,h € Z}
J
is a frame of L? [0,2m]. Then we can show easily (see [10]) that
- r
{g]'m] (E)e™8:1<j <N,1 < m; S? ,n € Z}
J
has a dual frame of the form
{Sjm.(f)e_imfﬂSj <N1s<m<l,ne Z}with

Tj

Sim, )€ L [02n]for1< j <Nand1l <m; <

satisfying ]
[D51,1(f ),...,DSLrL(g‘ )y, DSy 1 (€ )""'DSN,rL('S )]

= —[6) + B&)(T - 66)GEM],  73)
where G(E)T = [G(§)*G(§)]71G (&) is the pseudo-inverse of

N
r
G(&),B(&) is anyr X z; matrix with entries in L*(/),and I is
j=1
N
r
Z - Z — | identity matrix.In particular , when we choose
= -

B(¢) = 0in (73), we have the canonical dual frame of the frame

- . r
{g],m] (f)e—u‘nf:lﬁj <N,1 Smj S?,n € Z}
J

We are now ready to give the main results of this section. We first discuss the
sampling expansion (69), which is a frame expansion in V (¢).
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Theorem(6.3.3)[1]: Let a; and 5; be the same as in Lemma (6.3.2). Assume
Be < oo. Then the following are all equivalent.

(a) There isaframe{sj,mj (t—rm):1<j <N1<my srij,n € Z} of V(¢) for

which

f(t)—z z ZL [f1(o; +7j(mj —1)+7n)sjy; (E-rn)

=1neZ
f (@) €V (p). (74)
(b) There is a frame {s; , (t): 1< j < N,n € Z} of V (¢) for which
N
F@O= > Lif1(o +15m)5 (O.f )€ V(p) . (75)
j=1nezZ
©0 < ag;.

Proof: Assume 5, < . Then by Lemma (6.3.2)
{g (e ™iné:1<j <N,n €Z}is a Bessel sequence in L? [0,2x]. First (a)
implies (b) trivially. Assume (b). Applying the isomorphism J ~1 to (7) gives by (71)

F@© =) > (F )8 G )z 100 Sin €),F () € 17 [027],
manZ
where {s;,(t):1< j < N,n € Z}is a frame of L? [0,2r]. Then the Bessel sequence
{g &) mm:1<j <N,n ez} is in fact a dual frame of {s;, (t):1<j <Nn € 7}
(see [3]). Hence (c) must hold by Lemma (6.3.2). Finally assume (c). Then

0 < ag < P; < oo that {g],m] (E)e ™:1<j <N,1 < m, S% ,n € Z} IS
]
a frame of L? [0,2m]. Then we have a frame expansion on L? [0,27]
r
F(E)= z Z D AF .G m, GIe™™) 12 02mSim, (€ )e™ ™
j=1 mj=1neZL
JF () €12 ]0,2m], (76)

where S; ,,; (£ )’s are given by (73). Then the sampling expansion (74) comes from
(76) by applying the isomorphism (J since
(F (f ): gj,mj (f )e—irnf )LZ [0,27]
= (F (E) le,] (g, +1 (m] 1) +1n, &),z [0,277]
=L [f (GJ +r(m; —1)+rn)
for (J F)(t) = f (¢).
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Note that when 0 < a, < f; < oo, the sampling series (74) converges not only in
L?(R) but also uniformly on any subset of R, on which Cy(t) is bounded

Moreover since a; > 0,therankof G(§ )is r a.e.sothat 1 < z —

j=1
N

which means that the total sampling rate z — of the sampling expansion (74)
j=1

must be at least 1, the Nyquist sampling rate for S|gnals in V(). In the extreme case

we have:

Theorem (6.3.4)[1]:Let a; and B; be the same as in Lemma (6.3.2). Then there

Is a Riesz baSiS{Sjm.n(t):léjSN,l <m; <= ,n€ Z} of V(¢) for which
Tj

(t)—Z HZ“ZZ L; f](aj +rj(m] 1)+rn)51mn t)
f () € V(o) (77)

if andonlyif 0 < a; <f; <o and Z = 1 .In this case, we also have

=

(i()Sjm (t=rn):1<j <N,1<m; <—,andn € Z

Tj

(1) Li[sm,J(o; +7;(m; —1)+1n) =8 Sppfor1 < jkNandn € Z.

Proof: Assume 0 < a; <fB; < o and 2?’21%; 1. Then by Lemma (6.3.2),

{g m, (E)e7™™:1<j <N,1 < m; < ri ,n € Z} is a Riesz basis of L? [0,2mx].
]

Then we have

v
FE)=) Z Z<F )Gy GIET™Y 2 0oy Sim, (€ e
j=1 m;=1ne€z

JF (§) €12 [0,27], (78)
where {Sj,mj (E)e 1< j<N1<m <-,nE€ Z} is the dual of

Tj
{g m, (E)e™™:1<j <N,1< m; < Zone Z}. Applying the isomorphism
T
J to (78) gives (9), where S, ()= J (S j,mj(f)e—”"f) = Sim, (t—rn) and

(.7 (Sj,mj (f )) = Sj,mj(t)'
Conversely assume that the Riesz basis expansion (77) holds on V (¢). Applying the
isomorphism J~1 to (77) gives
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F@h}jZ}]mmmwﬁwmmmmawgm)@)
j=1 mj=1nez

JF (¢§) €12 [0,2m]
which is a Riesz basis expansion on L? [0,2r]. Then

{g]m] (€)e™™:1< j <N, 1 <my Si,n € Z} must be a Riesz basis of
Tj

[ [0,2mr] so that 0 < a; < Bz <o and Y. 1 —1 by Lemma (6.3.2). As the

dual Riesz basis of {g Jm, (E)e™:1<j <N,1 < m, Srij,n € Z},
{[] ! ( jm; n) (t)1<j <N,1<m Sf,n € Z} must be of the form
]

{Sj,mj (E )e—irnf:]_ S] <N,1 Smj S%,n € Z}, Where
]

{Sj,m]- €)1<j<N1<my si}satisfy (73) with B(§) = 0. Hence

Tj
S jm, )= d (Sj,mj(f)e“’mf) = Sjm, (t—rn), 1<j <N, andn € Z.Finally, we
have

Skmk (t) —Z z Z [Skm (0 +7;(m; —1) +11)S; 1 (£ —7TN)

j=1 mj=1nei
so that Lj[sgm,|(0; +7;(mj —1)+7rn) =8, 6,0. When N = 1, write L,[:
1,11 (t), 01,11, and P, (t) as L[], L(t),o,r, and Y (t).
Corollary (6.3.5)[1]: (see [12].) Let N = 1. Then there is a Riesz basis
{s,(t):n € Z}of V (¢) such that

F@©=) LIfI@ +msy®),f () € V() (79)

neiz

ifandonly ifr = 1 and
0 <12, 0)l, = 1240l (50)

In this case, we also have

(i) sp(t) = s(t —n),n € Z,

(i) 5¢) = 722,

(iii) L[s](c +n) = 8,0,n € Z. (81)

Proof : Note thatforr = 1,G(§) = % Zy(0,8)

2
and A, () = Ay (€) = (i) 1Z,,(0,8)|*so that 0 < ag < Bgoo if and only if
(80) holds. Therefore, everything except (81) follows from Theorem (6.3.4). Finally
applying (79) to ¢(t) gives
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0@) = ) Yo +m)s(t —n)

nez

from which we have (81) by taking the Fourier transform. When [(t) = 6(t) so that
L[-] is the identity operator, Corollary (6.3.5) reduces to a regular shifted sampling
onV (¢) (see [14]).

Corollary(6.3.6)[1]: Let N =1 and q (= 2) be an integer. Assume
Z,(0j,§) € 1°[0,2m], 1 < j < q, where o; =0 + g(j —1). Then the following

are all equivalent.
(@) There is a frame {s,(t):n € Z}of V (¢) for which

FO = Y U+ 2n)s@.f © € V@)
nez

(b) Thereis a frame {s; (t-n):1 < j < gq,n € Z}of V(¢) for which
q

F@O=) Y Lo +n)s; c-m).f ()€ V(o).

j=1neZ
© [£0-1124(5. DIl > 0.
Proof : Since
(LIf1(o +In)in € By={LIf1(; +n:1<j <qn € L}
we have a shifted symmetric multi-channel sampling
forq LTIsystems {L; [']:1 < j <q}withL; [-] = L[-],1 < j <q.Then
9;¢) = %Zﬂ,(aj s) 1 < j <qand
GEYGE) =

(2m)?
1271124 (0, I 0 > 0. Therefore, Corollary (6.3.6) is a consequence of Theorem (6.3.3).

_11Z(0j,&)|*. Hence a; > 0ifand only if

Example (6.3.7)[1]: Let ¢, = x01)(t) be the Haar scaling function and

P1(t) = (9o * Po)(®) = xj01y(O) + (2 — xpa () @ B-spline of degree 1. Then ¢, (¢) is
a continuous Riesz generator [4] and supgC,, (t) = supg Xnezl@:(t +n )? < oo.
First we take N =2, ¢ =0, =0, rn = 1,1, = 2, and two LTI systems
L[] and L?[-] with impulse responses [, (t) = X[_?l’o)(t) and I,(t) = )([_1’-?1)(1:).

Then it’s easy to see that

1 1 . 1 .
316) = 522y, 0.8) = 5= (e = —(1+3¢7),

ner

1 1 . 1 .
926) = 5-2y, 0.5 = géwz(n)e-mf = —(1+3¢7%),

where ;(t) = L; [¢](t). Hence
911E) = 91(§),912.) = 9:§ )eif'gm(f) = g2(§)
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so that (see (72))

T . .
G(E) = [D91,1» D91,2;D92,1] =—| 3+¢e¥ 3 —ei
lé6m _ —i
3+e %  3-—¢%
. 1 [30+ 18cosé¢ 8+ 6isiné
and G(§)°G(E) = o [ 8—6isiné 30+ 18cos .,f] '
The eigenvalues of G(& )*G(& ) are

~_[30 + 18 cos & ++/100 — 36 cos? € | so that

(16m)2
< ag = 14n(E)llo < Be = lIAm(E)llw <

14+ 3e7%¥ 1-— 3e—if]

1 58
(16m)2 — (16m)2 °
Hence by Theorem (6.3.3), there is a frame {s ;(t —2n):j = 1,2,3 and n € Z} of
the space of linear splines V (¢;) for which the following asymmetric multi-channel
sampling expansion holds:

F©O =) L [f1Es(E —2m)+ LIf1Cn + Ds,(t - 2n)
nez

+ L[ f12n)s3(¢ —2n)} , f € V (91),
Which convergesin L?(R) and absolutely and uniformly on R .

We now take N = 1 and I(t) = &(t) so that L[-] is the identity operator. Let
qg(= 1)beanintegerand 0 <o < %. Note first that for any fixed t in R,

Zy, (68 = ) u(t + me ™ € Cl02n]

nez
since ¢, (t) has compact support . Hence ||Z<,,1 (t,-)||Loo[0 2] < oo foreach tin R.
. s 1
Since Z,,(0,§) =0 + (1 —0)e™ for 0 <o < 1,]|Z,, (0,9, = 2|0— 5|
and ||Z,,, (o, é’)||Oo = 1. Therefore, by Corollary (6.3.5), for any o with 0 < ¢ < 1,

there is a Riesz basis {s(t — n):n € Z}of V (¢) such that

f(t)=Zf(a +n)s(t-n),f (t) € V (¢,) ifandonlyifo # %

nez

On the other hand, by Corollary (6.3.6), forany g = 2 and any o with 0 <o < %

, there isa frame {s; (t —n): 1 <j < q,n € Z} such that

q
FO =Y (o420 -1 +n)5 —1.f © € Vo),

j=1 €z
Corollary(6.3.8)[296]: Let a; = |[1,,(E)|lp and B; = ||IAy(€)llw be the
essential infimum of 4,,,(¢ ) and the essential supremum of A,,(¢ ) respectively. Then
{g(lﬁl) €3 Ye {F€)ae) N, €, =0,n € Z} is
(a) a Bessel sequence in L? [0,2m] if and only if B; < oo or equivalently
{le(Hq) (O'(Hel),f): €, =0} eL” [0,27],
(b) a frame of L? [0,2x]ifand only if 0 < a; < B; < oo,

( ]
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(c) a Riesz basis of L? [0,2x]ifand only if 0 < a; < f; < o and
(1+e)
— (1 + 62)(1+€1)
' 61—0
Proof: Since {g(.., (§)e '+ mé: e, > 0,n € Z } is a Bessel sequence or a
frame or a Riesz basis of L?[02mx] if and only if

. (1+¢€y)
—i(14+€,) né.
{g(1+61),m(1+61) (€ )e 2 P €1 = 0' 1 < m(1+61) = (1 + 62)(1+61) yn € Z

IS a Bessel sequence or a frame or a Riesz basis of L? [0,2r]respectively, all of the
conclusions follow from [10]. Note that in [10], the authors use the Fourier transform

FE)=[" 3m f(t) Il e ?™ad dt, so that they use L2 [0,2m] instead
of [2 [0,277].
Assume that 0 < a; < B; <o sothat {gu,.) e Mteuaniie >0,n €2} or
equivalently

. (1+¢€,)
e i+ e ¢ >0 1<m < n € 7
{g(1+el),m(1+51) (S) 1 (1+€y) (1 + 62)(14.61)

is a series of frames of L? [0,2]. Then we can show easily (see in [10]) that

. (1+¢€,)
emid+e) s > 0,1<m < ,n €T
{g(1+61),m(1+61) (6) 1 (1+61) (1 + 62)(1+€1)

has a series of dual frames of the form

—-i(1 . (1+€3) )
{S(1+51);m(1+51) (&)e i(1+ex) ng. €,=20,1 < M) = m ,h € Z} with
0 (1+€y) . .
Stredme,.y ) € L7 [02n] fore; = 0and 1 <mg,.) < (1+62)(21+q) satisfying

[D51,1(f ) DS arey) (€0, DSya(S), -, DS | (14ey) (§ )]

(1+€2)1 ‘(1+€2)n

1
- s D6 + BEW - 66)6EMN], 62
where G(E)T = [G(§)*G(§)]71G (&) is the pseudo-inverse of
N
G(&),B(§)isany(1+¢€,) X d+e) matrix with entries in L (1),

=0 (1 + 62)(1+61)

N N

1+¢€ 1+4+¢€

and ] is the i X (—2) identity matrix . In particular, when
&0 (1 + EZ)(1+51) =0 (1 + 62)(1+51)

we choose B(¢) = 0in (82), we have the canonical dual frame of the frame

. (1+¢€y)
e i@+e)n. o >0 1<m < n ez
{g(1+61),m(1+€1) (E) 1 (1+61) (1 + 62)(1+61)

Corollary (6.3.9)[296]: Let a; and S, be the same as in Lemma (6.3.2). Assume
B < oo. Then the following are all equivalent.
(@) There is series of a frames

z S repmpyey Ea— (1 +€2)n): €1 20,1 <mye) <
d=1

1+ €y
————— ne€evlZ
1+ €2)aqep " }
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of Y5t V(e(ts)) for which
m

NIOE
a=1
(1+€2)

N (1+€2)(1+51)

2 2 > b ety + -+ €0~

= M14e)=1 ne€Zd=

+ 1+ Ez)n )Siien, miey (ta-(1+ €z)n)

Z flta) Z V).  (83)

(b) There is a series of frames .51 S¢14c)n (td) €1 = O ,n eZ}of Yo, V(p(ty))
for which

z f(tq) = z Z z Lisey [F1(001e) + (1 + €2)(1he)N)Siseyn (ta),

€1=0nezd=

Z fta) € Z V(0 (ta)). (84)
d=1 d=1

©0 < ag.

Proof : Assume B; < oo. Then by Lemma (6.3.2)

{Gtaep @ e ireDaeans: ¢ > 0,n €7} is a Bessel sequence in L? [0,2m]. First (a)
implies (b) trivially.Assume (b). Applying the isomorphism 7 ~* to (84) gives by (71)

(1+€2)
(1+62)(1+51)

F@E = ) ) (FE)g @e @), 1o Sn (€,

M(14¢)=1 n€EL
F (&) € L? [0,2m],
where {¥7L1S(ie)n (ta):0<¢€; < N,n € z}is a frame of L? [0,2m]. Then the
Bessel sequence {g.y (€ )e A+ 0<e < N,n €Z} is in fact a dual
frame of {3521 Saiepn ((a) 10 <€ < N,n € Z} (see [8]). Hence (c) must hold by
Lemma (6.3.2). Finally assume (c). Then 0 < a; < fB; < oo that
19 G @O 6 2 0,1 Sy <

of L2 [0,2m]. Then we have a series of frame expansions on L? [0,27r]
(1+€,)
N (1+62)é+e1)

FO=D > D UFE) Tarameny G D™) 1o oomiStecima..y

€1=0 Mg )=1 NEL
(§)e7tFeansy [ F (&) € L? [0,2m), (85)

where Sire)ma,., (§)'s are given by (82). Then the sampling expansion (83) comes

from (85) by applying the isomorphism J since

(F (f ): g(1+el),m(1+€1) (f )e_i(1+62)nf )LZ [0,2m] —

,n € Z} is a frame
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(F ($),5 ZI/)] (Oasey) T A+ D) (Maiey — 1) + (1 +I1,8))2 [0,21]

= L(1+61) Fl0aie) + A+ )iy (Muiey — 1)+ (1 +€)n)

for Yg=1(J F)(tq) = Xg=1f(ta)-
Corollary (6.3.10)[296]: Let a; and S be the same as in Lemma (6.3.2). Then

: . . _ (1+€p)
there is a Riesz basis {Zg’l:ls(lﬂl),m(nq),n (tg):€1=20,1 <meye) < T " € Z}
of Y5t V(e(ty)) for which
m

WIOE
a=1

(1+62)
N (1+62)(1+51)
z z 2 Z (Larey [F 1004y + A+ €2) ey (Masey — 1)
€1=0 mg,H=1 n€Z d=1
+ (1 + GZ)n) S(1+€1) m(HEl) n( d ) )

2 f (ta) € Z V(9 (ta)) (86)

(1+€2)

if andonlyif0 < a; < f; < © and 261 ey =
2)(1+€1)

= 1 .In this case, we also

have
()zm,s (tg— L+ eDn) €1 =0,1 Smyye) <2
d=1 (1+€1),m(1+£1) d 2 1 =Y, = (14€) = (1+EZ)(1+61)
(i) Latep[Seme ) (0asey + A+ €Dareny(Masey —1) + (1 + €2)0) = 8146k Onyo
for0 < €;,k < Nandn € Z.
Proof : Assume 0 < a; <B; <o and T¥_,—2*2__ 1 Then by Lemma (6.3.2),

=0 (1+62)(1+51)

,andn € Z

(1+€2)

— = _n € Z} IS a series
(1+€2)(1+61)

{g(1+61).m(1+61) (f )e—i(1+62)nf: €1 > (), 1 < m(1+€1) <
of Riesz bases of L? [0,2r]. Then we have

(1+Ez)
N (Fe)ie)

FO=D ) D FO Gammmun O D) 1 o Saaiim, (e

€1=0 m(,H=1 n€Z

JF (&) € L2 [0,27], (87)
—i (1+€3)
where {S(1+61),m(1+61) (f )e i(1+e)ns €e=20,1< M(1+¢,) < m ,nE Z}
is the dual of

{g(1+61),m(1+51) (f )e_i(1+62)n§: 61 2 O ) 1 S m(1+61) S (1
the isomorphism (J to (87) gives (86), where
Z Saremeyepn(td) = J ((f )e_i(”ez)"f) = Z Strenmeuse,(ta = (L + €)1
d=1 d=1

and _J (Strepmpyey € ) = Z;’;lS(Hel),mmq)(td)._Converser assume that the Riesz

basis expansion (86) holds on Y7, V(¢(ty)). Applying the isomorphism g-1 to (86)
gives

(1+€2)

,n € Z}. Applying

+62)(1+€1)
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(1+62)
N (1+62)(1+51)

FEY=D D > (FE)Gammmyny G ) 1o oo

€1=0 mg,H=1 n€ZL

(Srermg.yn) €) F (§) € L2 [0.27]
which is a series of Riesz bases expansions on L? [0,2x]. Then
—i (1+€,)
{g(1+€1)'m(1+61) (6 )e l(1+62)n€: €1 2 0,1 < M(14e) < (1+62)E(21+ )
series of Riesz bases of L?[02r] so that 0 < a; <pB; < oo and
v _Gte) g by Lemma (6.3.2). As the series of dual Riesz bases of

61:0 (1+62)(1+61)
. (1 + 62)
—i(ltend. 0 >0 1 < < € Z
{g(1+61),m(1+61) (5 )e €1=1Y - m(1+61) - (1 + 62)(1+e1) & ,

n € Z} must be a

m -1 . (1+62)
Yield (S(Hq),m(ml),n) (tg):€1=20,1<mgiy < Trepens M€ Z} must be of the
—i(1+e)né . _(Q+tey)
form {5(1+el),m(1+q> € )e 2561 20,1 Smuye) < Trenm Z.t, where
_ (1+€3) . . _
S(1+61),m(1+51) (E ):€1=20,1 < M14e) = (1+62)(1+51)} SatISfy (82) with B(g) -
Hence
m
— —i(1+ex)n
z S(1+el),m(1+61),n(td) - (.7 (S(1+€1),m(1+61) (f )e l( 2) 6)
d=1

m

= z SGee)mane (ty-(1+€)n),e,=0,n € Z.

d=1
Finally, we have

m

z Skmi (La) =

d=1
(1+62)
N (1+62)(1+61)

z Z Z Z(L(1+el) [Skm ] (Oase) + (L + €2) a1y (Mppiey — 1)

€1=0 m(,.)=1 n€Zd=
+ (1 + EZ)n) S(1+51),m(1+€1)( (1 + EZ)n))
SO that Leise) [Simy ] (Grey + (1 + €2)aren(Marey — 1) + (1 + €2)0) = 8146y, k Ono-
When N = 1, write Li[-],X7 L (ty) ,01,(1 + €)1, and X0 ,(tg) as L[],
Ya=1l(ta) , 0 ,(1+e€),and X5, ¢ (¢q)
Corollary (6.3.1)[296]: (see [12].) Let N = 1. Then there is a series of Riesz
bases i1 sn(ty): n € Z}of Y7t V(p(ts)) such that

Z ft) =) Z LIfI(o + (1 + €)msa(ta), Z fta) € Z V(pta) (88)

nezd=1
if and only ife, = 0 and
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0 <[|Zy(a. O, = 2y D, - (89)
In this case, we also have
() Xaz1sn(ta) = Xge1s(ta —n),n € Z,

(i) $() = ;705

(i) L[s](c +n) = 8,9,n € Z. (90)
Proof :Note that fore, =0,G(¢) = i Zy(0,¢) and

2
In(€) = () = (52) |24(0,)| s0 that 0 < ag < fig < oo if and only if
(89) holds. Therefore, everything except (90) follows from Theorem (6.3.4). Finally
applying (88) to X.g-4 <p(td) gives

Z«p(ta - Zzp(a +1)s(tg =)

nezZd=1
from which we have (90) by taking the Fourier transform.

Corollary (6.3.12)[296]: Let N = 1 and g (= 2) be an integer. Assume
oo 1
Zy(0(4e),€) € L7[0,27], 0 < €, < q — 1, where o) =0+ 1 (€,). Then the

following are all equivalent.
(@) Therei |s a series of frame D=1 Sn(ta) n € Z}of Z 1 V((p(td)) for which

Zf(m = Z Lo + )sn(td).Zfad) c Z V (ot
d=1 d=1

nezd=1
(b) There is a series of frame {Zle Steey (ta-n):0< €6 <q—1,n € Z} of
e V(go(td)) for which

m q-1

z Ft =D > > LI N0t +1)S0ee) (ta =), 2 fta) € Z V(9 (ta)),

d= 161—07162

q

© |[D 12y @ OIf| > 0.

€,=0
Proof : Since
{Lifl(o + q—iln):n € Z} = {L[ f ](0usey +n):0< € < q—1,n € T},
we have a shifted symmetric multi-channel sampling for g LTI systems
{Lasep [:0<€ < q—1}with L,y [[]= L[]0 <€ < q—1.Then
Ja+e) (&) = _le)(o-(1+el) §),0<¢e < g—1and
G(&)'G(E) = o )2 Zfl_o 1Z2 (0116, €)1%. Hence ag > 0ifand only if

||Zflj, 1Zy (0¢14¢, ||| o > 0. Therefore, Corollary (6.3.13) is a consequence of
Theorem (6.3.3).

Corollary (6.3.13)[296]: Assume Z,,(2 — €,§) € L”[0,27],0 < ¢; < q — 1,then
the following are all equivalent.

(@) There is a series of frames {}.7-; s, (tg) : n € Z}of 51, V(¢ (ty)) for which

0
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Z ftd =) Z LLf1@ = €)sn (ta), Z flta) € Z V(p(ta),

nezd=1
(b) There is a series of frames {371 s(14e,) (ta - n) €, > 0,n € Z} of | V(e(ty)) for

which
Z fea=> ) Z LLF 16 = €)tarey) (ta =), 2 flta) Z V(o (o)

nezZe20d=1

D 1242 - €.9)]

€120
Proof : Since
{LIf12—-€e)}={L[fI(n—€): n € Z}. Now we have {L,¢,) []: €&, > 0} with
Livepy [[1= LI eg >0 .Then giyey(§) = %le(z —€,8),e, > 0and

G(E)'G(E) = T )2261>0|Z¢(2 — €, €)| . There for a, > 0ifand only if

> 0.

(©)

0

> 0.

D 12,2 -9

€120
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List of Symbols

symbols page
MRA Multi Resolution Analysis 1
L? Hilbert space 1
L the Lebesgue space on line 1
sup Supermum 2
inf Infimum 2
) Direc difference 2
2 0 Hilbert space 2
a.e Almost every where 3
supp support 4
L Essential Lebesgue space 5
Vy Spline subspace 7
WKS Whittaker— Kotel’nikov —Shannon 12
D Direct sum 13
21 Hilbert space 14
max maximum 16
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L? Lebesgue space 43
Vs shift invariant space 43
A-P approximation-projection 45
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