

إِلَيْهِ

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

قال تعالى :

الْمُنَشَّحُ لَكَ صَدْرُكَ ۝ ۱ ۝ وَوَضَعْنَا عَنْكَ وِرْكَ ۝ ۲ ۝ الَّذِي أَنْقَضَ ظَهْرَكَ
۝ ۳ ۝ وَرَفَعْنَا لَكَ ذِكْرَكَ ۝ ۴ ۝ فَإِنَّ مَعَ الْعُسْرِ يُسْرًا ۝ ۵ ۝ إِنَّ مَعَ الْعُسْرِ يُسْرًا
۝ ۶ ۝ فَإِذَا فَرَغْتَ فَانْصَبْ ۝ ۷ ۝ وَإِلَى مَرِّيكَ فَامْرَغْ ۝ ۸ ۝

صدق الله العظيم

سورة الشرح

Dedication

To my father.

To my mother teachers brother ,sisters and friends with gratitude and
love.

Acknowledgment

I would like to express my sincerest thanks to my supervisor, Ust. AbdAllh Salih Ali for his support, continuous help, device and encouragement throughout the completion of this thesis.

I would also like to thanks the all staff of Sudanuniversity of science and technology and Al Neelin University for their help to complete this thesis.

Last, I would like to thanks my family and friends for their assistance and encouragement.

Abstract

The main aim of this thesis is to design a wireless weather station using radio frequency to send weather data to central weather forecaststation.

The wireless weather station consisting of transmitter unit and receiver unit.

Also microcontroller and different sensors was used to design the station in real time .

The sensors will pickup temperature, humidity, pressure, and light then send data to microcontroller PIC16F877A to be processed and transmitted data via radio frequency to receiver station which represent the central station for weather forecast.

The central station consist of microcontroller PIC18F46K20 forProcess and personal computer and liquid crystal display(LCD)To display data.

The simulation of wireless weather station is run out by used proteus8, micro c, labview programs.

The simulation results proved the efficiency of wireless weather station.

مستخلص البحث

الهدف الرئيسي من هذا البحث هو تصميم محطة طقس لاسلكية باستخدام الترددات الراديوية لارسال بيانات الطقس الى محطة التوقعات الجوية المركزية . تتكون محطة الطقس اللاسلكية من وحدة ارسال ووحدة استقبال . ايضا تم استخدام المتحكم الدقيق وحساسات مختلفة لتصميم المحطة في الزمن الحقيقي. حيث تقوم هذه الحساسات بالتقاط بيانات درجة الحرارة والضغط الجوي وشدة الاضاءه وترسلها الى المتحكم الدقيق من النوع PIC16F877A والذي يقوم بمعالجتها وارسالها بواسطه الموجات الراديوية الى محطة الاستقبال والتي تمثل المحطة المركزية للتوقعات الجوية . المحطة المركزية تحتوي على المتحكم الدقيق من النوع PIC16F46K20 للمعالجه والحاسوب الشخصي وشاشة لعرض البيانات . تم محاکاه محطة الطقس اللاسلكية باستخدام برامج proteus8, microc, labview اثبتت نتائج المحاکاه كفاءه محطة الطقس اللاسلكية .

List of Content

no	Title	Page
1	الآداب	i
2	Dedication	ii
3	Acknowledgment	iii
4	Abstract in English	iv
5	Abstract in Arabic	v
6	List of Content	vi
7	List of Table	vii
8	List of Figure	viii
Chapter One		
Introduction		
1.1	General	1
1.2	Problem statement	1
1.3	Objective	1
1.4	Methodology	2
1.5	Thesis layout	2
Chapter Two		
Literature Review and Previous works		
2.1	Previous studies	3
2.2	Sensors and Transducers	4
2.2.1	Type of transducers	6
2.2.2	Primary and secondary transducer	6
2.2.3	Sensor characteristics	7
2.2.4	Sensor Errors	8
2.2.5	Type Of Used Sensors	9
2.3	Actuator	11
2.4	Method of Signal Filtering	12

2.5	Embedded System	13
2.6	The difference between a computer and embedded systems	13
2.7	Microcontroller	15
2.7.1	Microcontroller Features	15
2.7.2	Criteria for choosing a microcontroller	17
2.8	Radio Frequency	17
2.8.1	RF Characteristics	18
2.8.2	Radio frequency module	18
2.9	The Electromagnetic Spectrum	19
Chapter Three System design		
3.1	Project description	22
3.2	System hardware	25
3.3	LM35 Temperature Sensor	26
3.4	Capacitive humidity sensor	28
3.5	The Timer NE555	28
3.6	Pressure Sensor	31
3.7	Light Depended Resistance	32
3.8	PIC16F877A Microcontroller	33
3.9	PIC18F46K20 Microcontroller	34
3.10	Liquid Crystal Display (LCD)	35
3.11	RF Based Wireless Remote using RX-TX Modules	36
3.12	HT12D DECODER	38
3.13	HT12E Encoder	39
3.14	RF Modules	40
3.15	Antenna	42
3.16	MAX232	43

3.17	RS232 Cable	44
3.18	Circuit Diagram	45
Chapter Four		
Simulations and results		
4.1	Simulations	47
4.1.1	Circuit Diagram	47
4.1.2	virtual terminal	50
4.1.3	Lab view	50
4.2	RESULT	52
Chapter Five		
Conclusion and Recommendations		
5.1	Conclusion	54
5.2	Recommendations	54
	References	55
	Appendix	A1

List of Table

Table no	Title	Page
2.1	The parameters for choosing sensors	11
2.2	Other type of sensors	11
2.3	Comparison of radio, light, heat Wave Characteristics	17
2.4	The Electromagnetic Sbectrum From VLF To X-RAY T	20
4.1	The sensor output range	53

List of figure

Figure no	Title	Page
2.1	How sensor work	5
2.2	Modifying sensor input	5
2.3	Calibration curve	6
2.4	Primary and secondary transducer	7
2.5	A Measure of the lack of random errors (scatter)	7
2.6	Type of error	8
2.7	Method of Input signal Filtering	12
2.8	Method of the Output signal filtering	12
2.9	The component of embedded system hardware	14
3.1	System block diagram	23
3.2	Flow chart of system design	24
3.3	Block Diagram of transmitting station	25
3.4	Block Diagram of Receiver Station	26
3.5	LM35 Temperature Sensor	26
3.6	LM 35 Temperature sensor Interface to MCU	27
3.7	HS1101 Sensor	28
3.8	NE555 timer with a stable circuit	29
3.9	The NE555 timer pin configuration	29
3.10	Connecting hs110xx to five 555timer	30
3.11	Capacitive sensor interface MCU	30
3.12	MPX4115A air pressure sensor	31
3.13	MPX 4115A Sensor Interface to MCU	32
3.14	light sensor	32
3.15	PIC16F874A/877A Microcontroller chips	33
3.16	Figure 3.16. PIC18F46K20 pin configuration	34
3.17	The 16×2 liquid crystal display	35

3.18	RF based wireless remote using rx-tx modules	36
3.19	Encoder HT12E interface with RF transmitter	37
3.20	Decoder HT12E interface with RF receiver	37
3.21	HT12D decoderpin configuration	39
3.22	HT12E Encoder pin configuration	40
3.23	Transmitter and Receiver RF Module	40
3.24	Receiver Module	41
3.25	Transmitter Module	41
3.26	Max232 Adapter	43
3.27	The MAX232pin configuration	43
3.28	RS232 Cable	44
3.29	DB9 female connector	44
3.30	Circuit Diagram of Transmitter and Receiver with RF	45
3.31	wireless Weather Station Circuit Using Radio Frequency (RF)	46
4.1	simulation wireless weather station using radio Frequency	47
4.2	Transmitter Circuit	48
4.3	Receiving Circuit	49
4.4	virtual terminal	50
4.5	Virtual terminal-data to personal computer	50
4.6	The labview readings	51
4.7	Weather Station block diagrams	52
4.8	Amplitude shift keying (ASK)	52