الآيـــة

قـــال تعالى:

وَيَسْئَلُوكَ عَنِ الرُحِ فَى الرُحُ فِي أَمِر رَبِي , وَمَا أُوتِيتُمْ فِيَ العِلمِ إِلا قَلِيلاً)

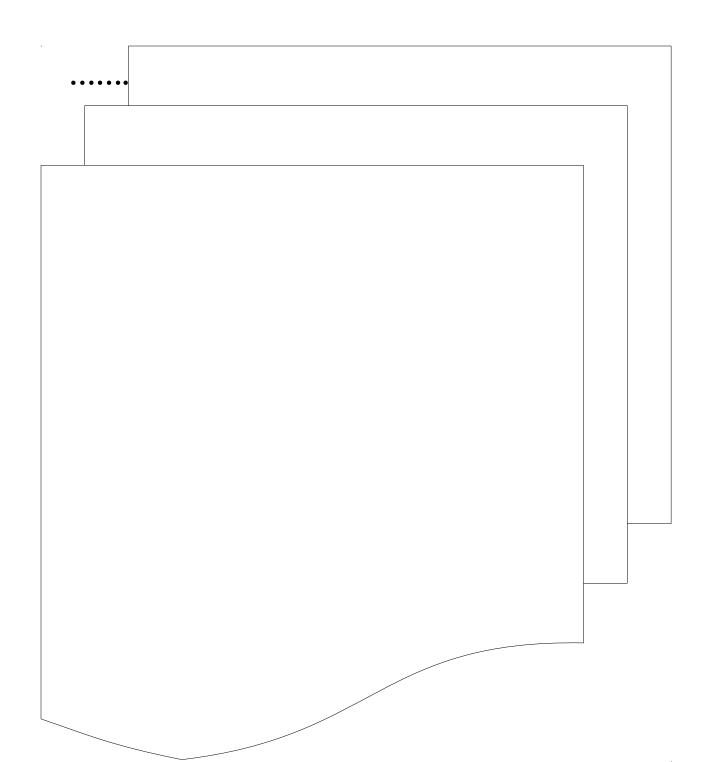
صق لله العظيم

الإسراء الآيه 85

ABSTRACT

This study aims to assess the effective dose radiation received by pediatric brain when the ages from (1 month to 168 month). Study included number of 30 patients. Two type of computed tomography machines (dual slice – 64 slice) where used in this study . The study was conducted at three radiation centers in Khartoum. After the effective dose was measured throw (Dose length product) the study showed that the average effective dose was (1.464965 mSr).

The effective dose compared with the age of each patient. It was found that the effective dose was directly proportional with the age, and that was an inverse relation between the effective dose and slice thickness. When the radiation dose was compared with the used machines it was found that the dose was greater when the 64 slice machine was used.


مسد

شهر الدراس خلم

luct مقارنة الفعالة

ل الج

بن عمر في هذه الخرطوم نتجه (ا) . تم الجرعة مه ووجدTo my parents

Acknowledgement

- My full thanks to Allah in everything.
- My great gratitude to my supervisor Dr. Hassan Mohammed Ibrahim Alhassan and my teacher Badria Habiballah & Dr.Salah.
- I offer my regards and blessings to all of those in the three centres for help me, and radiologists, technologist, and staff in these centres.
- Great thanks and appreciation to mr.Mohammed Abdulwahap and mr.Mohammed Abdulkareem in royal scan centre.
- To whom that helped me, I gave them my great thanks.

CONTENTS

الآيــــه	i
ABSTRACT	ii
Abstract in Arabic الملخص	iii
Dedication	iv
Acknowledgement	V
List of table	ix
List of figure	X
Abbreviations	xi
Chapter One : introduction	
1.1Electromagnetic radiation	1
1.1.1Ionizing radiation	1
	2
1.2 Problem of study	3
1.3 Objectives	4
1.3.1 General	4
1.3.2 Specific	4
1.4 Overview of study	4
Chapter two: literature review	
2.1 Theoretical backgrounds	5
2.1.1 Electromagnetic radiation	5
2.1.1.1 Discovery2.1.1.2 Radiation Doses	7
2.1.1.2.1 Absorbed dose	9

2.1.1.2.2 Equivalent dose	10
2.1.1.2.3 Effective dose	10
2.1.1.3 Uses of radiation	11
2.1.1.3. 1 In medicine	11
	11
2.1.1.4 Type of radiation	
2.1.1.4.1 Ionizing radiation	15
2.1.1.4.2 Non-ionizing radiation	15
	16
2.1.2 Ionizing radiation	16
2.1.2.1 Types of ionizing radiation	17
2.1.2.1.1 Directly ionizing	17
2.1.2.1.2 Indirectly ionizing	19
2.1.2.2 Sources of ionizing radiation	
2.1.2.3 Health effects	21
2.1.2.3.1 deterministic effects	23
	23
	23
2.1.3 X-ray	25
2.1.3.1 Properties	
2.1.3.2 Interaction with matter	26
2.1.3.2.1 Photoelectric absorption	27

2.1.3.2.2 Compton scattering	
2.1.3.2.3 bremsstrahlung	27
2.1.3.2.4 Characristic radiation	28
2.1.3.3 X-ray production	28
2.1.3.4 X-ray tube	29
2.1.3.4 .1 Anode	30
2.1.3.4 .2 Focal Spot	31
2.1.3.4 .3 Cathode	32
2.1.3.5 The x-ray circuit	33
2.1.3.6 Electron energy	34
2.1.3.6.1 Potential energy	34
2.1.3.6.2 Kinetic energy	35
2.1.3.6.3 Binding Energy	36
2.1.3.7 Units of measure and exposure	36
	37
	37
2.1.4 Computed Tomography	38
2.1.4.1 An Overview of CT History	38
2.1.4.2 Applications of CT Imaging	41
2.1.4.3 Basic Principles of CT Imaging	41
2.1.4.4 The CT Scanner Components	42
2.1.4.5 Types of machines	44
2.1.4.6 CT Scan Room	45

2.1.4.7 Advantages	46
2.1.4.8 Adverse effects	47
2.1.4.8.1 Cancer	47
2.1.4.8.2 Contrast	48
2.1.4.9 Radiation safety in CT	49
2.1.4.10 Diagnostic use	49
2.1.4.11 Specific Dose unit for CT	50
2.1.4.12 Diagnostic Reference Levels	51
2.1.5 Pediatric CT	52
2.2 Previous studies	55
Chapter three	
3.1 materials	58
3.1.1 Study sample	58
3.1.2 Machine used	58
3.2 Method	59
3.2.1 Techniques used	59
3.2.2 data analysis	59
Chapter four	
4.1 Result	61
Chapter Five	
5.1Discussion	66
5.2 Conclusion	67
5.3 Recommendation	68
References	69

Appendix	74

List of Tables

Table		Page number
Table (2,1):	International System of Radiological Protection	22
Table (2.2): Summary of historical CT milestones		40
Table (2.3):	reports average radiation exposures	45
` '	patient population of the study classified per hospital and type of examination.	58
Table (3.2):	k conversion coefficient	60

List of Figures:

Figure	Page
	num
Figure (2.1): Relationship between effective, equivalent and	10
absorbed doses	
Figure (2.2): A <u>chest radiograph</u> of a female, demonstrating a	12
<u>hiatus hernia</u>	
Figure (2.3): An arm radiograph, demonstrating broken <u>ulna</u> and	12
<u>radius</u> with implanted <u>internal fixation</u> .	
Figure (2.4): brain image in CT scan	`14
Figure (2. 5): Different types of <u>electromagnetic radiation</u>	15
Figure (2.6): interaction of ionizing radiation with matter	19
Figure (2,7): Typical Photon Energy Spectrum from a Machine	30
Operating at KV = 80	
Figure 2. 8): X-ray tube. The vacuum tube (A) houses cathode	30
(B) and anode (C) . Current heats up the filament, releasing	
electrons (D), which are accelerated towards the anode. Interacting	
with either the nucleus or the shell of the target material,	
Bremsstrahlung and characteristic radiation are released (E),	
Figure (2.9): X ray tube	32
Figure (2.10): Energy Exchange within an X-Ray Tube	34
Figure (2.11): system of production x-ray	35

Figure (2.12): Electron-Atom Interactions That Produce X-Ray Photons	37
Photons	
Figure (2.13) : Anatomical structures within the patient's body are reconstructed from the x-ray transmission data.	42
Figure (2.14): The x-ray tube and the detector array are oppositely placed, inside the gantry.	43
Figure (4.1) : correlation between ED of gender of patients	61
Figure (4.2) : correlation between ED and slice thikness	62
Figure (4.3): correlation between ED and group of Age of patients	63
Figure (4.4): Explain between ED and two defferent machine	64
Figure (4.5) Explain effective dose with age and slice for each result	65

Abbreviations

Abbreviation	statement	Page number
СТ	Computed tomography	4,14,27,35,36,40,41,
		52,53,66
L	The scan length	30,36
Kv	Kilo voltage	35
MDCT	Multi detector CT	55,56
mGy	mili Gray	49,50
CTDI	Computed tomography dose index	49,59
CTDIw	weighted Computed tomography dose	49
	index	

CTDlvol	volume Computed tomography dose	49,50
	index	
DLP	Dose Length Product	50
ED	The effective dose	61,62,63,64
RP	Radiation Protection	9,47
NRPB	National Radiation Protection Board	57
IEC	International commission	25
DRL	Diagnostic Reference Level	51,57
ICRP	International Commission Radiological	22,23,24,25,51,70,71
	Protection	
EMR	Electromagnetic radiation	5,6