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CHAPTER ONE  
INTRODUCTION 

1.1Bakckground: 
People who complete suicide are depressed at the time of their deaths; depression 

that is untreated, undiagnosed, or ineffectively treated is the number one cause of 

suicide. 

Suicide is the 3rd leading cause of death for 15 to 24-year-olds and 2nd for 24 to 

35-year-olds, on average, 1 person commits suicide every 16.2 minutes. 

From the above statistics it become clear it’s huge problem so as statisticians 

even if we can’t prevent this we can at least help by analysis predict if there is 

any hope of the survive of the person who commits suicide . 

1.2Problem Identification: 

Committing suicide, still not appreciated as a public health problem by the 

majority of health professionals and public policy experts and received only 

limited attention. Limitation of knowledge, absence of realistic to admit that there 

is problem to deal with and to figure out a solution for it. 

1.3Problem definition: 

After the person commits suicide by taking any kind of poisons and we receive 

him in ER we need to know what are the main factors (predictor or explanatory 

variables) that increase the likelihood of been survive and leave the system or not 

(the dependent variable)? 

1.4Research Objectives: 

The main objective is to study the probit analysis and to find suitable data for it, 

to make it clearer. 
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The specific objective is to estimate the inequalities in risk of being involve in 

over dose or taking poisons intentionally and whether he will survive or not  so: 

Describing frequencies, rate, contributing factors to the person who commits 

suicide. 

Identify the major factor that would predict which patients most are at risk by 

constructing probit regression models to examine the predictor. 

1.5 Research Hypothesis: 

1. probit models do not fit to the data of committing suicide. 

2. The liver function does not represent the main contributing factors of casualty. 

3. Bilirubin test does not determine whether the suicidal person will survive or 

not. 

4. Liver function does not determine whether the suicidal person will has neck 

stiffness.  

1.6 Research Methodology: 

1.6.1 Data source and type: 

         Data is pertaining to the different suicidal person who commits suicide 

from medical case. 

1.6.2 Statistical method: 

1. Descriptive statistics is employed in estimating factor. 

2. Fitting probit regression model to examine the independent 

association of each casualty and the explanatory variables. 
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1.7 Research Important: 

1. The application of the probit analysis is the most important aspect 

of this study because there is lack of study of it, 

2. Analyze critical data like data of suicidal people and try to figure 

out a quick solution to help doctor by probabilities and predictions 

that whether each case they get will survive or not , that also help 

to be attention about the risk of poison and how it affect in our 

body at all.  

1.8 Organization of the study: 

The study organization is summarized such that chapter one including background, 

problem identification, problem definition, research objectives, research hypothesis, 

research methodology, importance of the study and organization. 

Chapter two presented overall understanding of the concept of suicide and 

poisoning. 

Chapter three reviewed the research method and the basic ideas of probit regression.  

Chapter four is the analysis and discussion which includes the model building 

results. 

Chapter five is the results and recommendations of the study. 
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CHAPTER TWO 
LITERATURE REVIEW 

 

2.1Commiting Suicide: 

    Suicide is a tragic and potentially preventable public health problem. In 2000, 

suicide was the 11th leading cause of death in the U.S. Specifically, 10.6 out of 

every 100,000 persons died by suicide. The total number of suicides was 29,350, or 

1.2 percent of all deaths. Suicide deaths outnumber homicide deaths by five to three. 

It has been estimated that there may be from eight to 25 attempted suicides per every 

one suicide death. The alarming numbers of suicide deaths and attempts emphasize 

the need for carefully designed prevention efforts. 

Suicidal behavior is complex. Some risk factors vary with age, gender and ethnic 

group and may even change over time. The risk factors for suicide frequently occur 

in combination. Research has shown that more than 90 percent of people who kill 

themselves have depression or another diagnosable mental or substance 

abuse disorder, often in combination with other mental disorders. Also, research 

indicates that alterations in neurotransmitters such as serotonin are associated with 

the risk for suicide. Diminished levels of this brain chemical have been found in 

patients with depression, impulsive disorders, a history of violent suicide attempts, 

and also in postmortem brains of suicide victims. 

Adverse life events in combination with other risk factors such as depression may 

lead to suicide. However, suicide and suicidal behavior are not normal responses to 

stress. Many people have one or more risk factors and are not suicidal. Other risk 

factors include: prior suicide attempt; family history of mental disorder or substance 

abuse; family history of suicide; family violence, including physical or sexual abuse; 
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firearms in the home; incarceration; and exposure to the suicidal behavior of others, 

including family members, peers, or even in the media. 

2.2 Gender Differences:  

Suicide was the 8th leading cause of death for males and the 19th leading cause of 

death for females in 2000.1 More than four times as many men as women die by 

suicide,1 although women report attempting suicide during their lifetime about three 

times as often as men.5 Suicide by firearm is the most common method for both men 

and women, accounting for 57 percent of all suicides in 2000. White men accounted 

for 73 percent of all suicides and 80 percent of all firearm suicides. 

2.3 Children, Adolescents, and Young Adults: 

In 2000, suicide was the 3rd leading cause of death among 15- to 24-year-olds -- 

10.4 of every 100,000 persons in this age group -- following unintentional injuries 

and homicide. Suicide was also the 3rd leading cause of death among children ages 

10 to 14, with a rate of 1.5 per 100,000 children in this age group. The suicide rate 

for adolescents ages 15 to 19 was 8.2 deaths per 100,000 teenagers, including five 

times as many males as females. Among people 20 to 24 years of age, the suicide 

rate was 12.8 per 100,000 young adults, with seven times as many deaths among 

men as among women. 

2.4 Older Adults: 

Older adults are disproportionately likely to die by suicide. Comprising only 13 

percent of the U.S. population, individuals age 65 and older accounted for 18 percent 

of all suicide deaths in 2000. Among the highest rates (when categorized by gender 

and race) were white men age 85 and older: 59 deaths per 100,000 persons, more 

than five times the national U.S. rate of 10.6 per 100,000. 



6 
 

2.5 Attempted Suicides: 

Overall, there may be between eight and 25 attempted suicides for every suicide 

death; the ratio is higher in women and youth and lower in men and the elderly.2 

Risk factors for attempted suicide in adults include depression, alcohol abuse, 

cocaine use, and separation or divorce.7,8 Risk factors for attempted suicide in 

youth include depression, alcohol or other drug use disorder, physical or sexual 

abuse, and disruptive behavior.8,9 As with people who die by suicide, many  

people who make serious suicide attempts have co-occurring mental or substance 

abuse disorders. The majority of suicide attempts are expressions of extreme distress 

and not just harmless bids for attention. A suicidal person should not be left alone 

and needs immediate mental health treatment. 

2.6 Prevention: 

Preventive efforts to reduce suicide should be based on research that shows which 

risk and protective factors can be modified, as well as which groups of people are 

appropriate for the intervention. In addition, prevention programs must be carefully 

tested to determine if they are safe, truly effective, and worth the considerable cost 

and effort needed to implement and sustain them. 

Many interventions designed to reduce suicidality also include the treatment of 

mental and substance abuse disorders. Because older adults, as well as women who 

die by suicide, are likely to have seen a primary care provider in the year prior to 

their suicide, improving the recognition and treatment of mental disorders and other 

suicide risk factors in primary care settings may be one avenue to prevent suicides 

among these groups.11 Improving outreach to men at risk for suicide is a major 

challenge in need of investigation. 



7 
 

Recently, the manufacturer of the medication clozapine received the first ever Food 

and Drug Administration indication for effectiveness in preventing suicide attempts 

among persons with schizophrenia.12 Additional promising pharmacologic and 

psychosocial treatments for suicidal individuals are currently being tested. 

If someone is suicidal, he or she must not be left alone. Try to get the person to seek 

help immediately from his or her doctor or the nearest hospital emergency room, or 

call 911. It is also important to limit the person's access to firearms, medications, or 

other lethal methods for suicide. 

2.7 Common Questions and Answers about Suicide: 

What should you do if someone tells you they are thinking about suicide? 

If someone tells you they are thinking about suicide, you should take their distress 

seriously, listen nonjudgmentally, and help them get to a professional for evaluation 

and treatment. People consider suicide when they are hopeless and unable to see 

alternative solutions to problems. Suicidal behavior is most often related to a mental 

disorder (depression) or to alcohol or other substance abuse. Suicidal behavior is 

also more likely to occur when people  experience stressful events (major losses, 

incarceration). If someone is in imminent danger of harming himself or herself, do 

not leave the person alone. You may need to take emergency steps to get help, such 

as calling 911. When someone is in a suicidal crisis, it is important to limit access to 

firearms or other lethal means of committing suicide. 

What are the most common methods of suicide? 

Firearms are the most commonly used method of suicide for men and women, 

accounting for 60 percent of all suicides. Nearly 80 percent of all firearm suicides 

are committed by white males. The second most common method for men is 

hanging; for women, the second most common method is self-poisoning including 
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drug overdose. The presence of a firearm in the home has been found to be an 

independent, additional risk factor for suicide. Thus, when a family member or 

health care provider is faced with an individual at risk for suicide, they should make 

sure that firearms are removed from the home. 

How do suicide rates compare between men and women? 

More than four times as many men as women die by suicide; but women attempt 

suicide more often during their lives than do men, and women report higher rates of 

depression. 

2.8 Suicide by poison: 

Poison is anything that kills or injures through its chemical actions. Most poisons are 

swallowed (ingested). The word poison comes from the Latin word - potare - 

meaning to drink. But poisons can also enter the body in other ways: 

 By breathing 

 Through the skin 

 By IV injection 

 From exposure to radiation 

 Venom from a snake bite or insect bite 

2.9 Poisoning Causes: 

Poisons include highly toxic chemicals not meant for human ingestion or contact, 

such as cyanide, paint thinners, or household cleaning products. 

Many poisons, however, are substances meant for humans to eat, including foods 

and medicines. 
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Foods: 

 Some mushrooms are poisonous 

 Drinking water contaminated by agricultural or industrial chemicals 

 Food that has not been properly prepared or handled 

Drugs: 

Drugs that are helpful in therapeutic doses may be deadly when taken in excess. 

Examples include: 

 Beta blockers: Beta blockers are a class of drugs used to treat heart conditions 

(for example, angina, abnormal heart rhythms) and other conditions, (for 

example, high blood pressure, migraine headache prevention, social phobia, 

and certain types of tremors). In excess, they can cause difficulty 

breathing, coma, and heart failure. 

 Warfarin(Coumadin): Coumadin is a blood thinner used to prevent blood 

clots. It is the active ingredient in many rat poisons and may cause heavy 

bleeding and death if too much is taken. 

 Vitamins: Vitamins, especially A and D, if taken in large amounts can cause 

liver problems and death. 
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CHAPTER THREE 
Regression & PROBIT ANALYSIS 

 

3.1 Introduction:  

Linear regression analysis is the most widely used of all statistical techniques: it is 

the study of linear, additive relationships between variables, usually under the 

assumption of independently and identically normally distributed errors.  Let Y 

denote the “dependent” variable whose values you wish to predict, and let X1, …, 

Xk denote the “independent” variables from which you wish to predict it.  Then the 

equation for predicting the value of Y at time t (or in row t of the data set), which 

will be denoted here by Ỹ(t), is of the form: 

Ỹ(t) = b0 + b1 X1(t) + b2 X2(t) + … +  bk Xk(t). 

This formula has the property that the prediction for Y is a straight-line function of 

each of the X variables, holding the others fixed, and the contributions of different X 

variables to the predictions are additive.  The slopes of their individual straight-line 

relationships with Y are the constants b1, b2, …, bk, the so-called coefficients of the 

variables.   That is, bi is the change in the predicted value of Y per unit of change in 

Xi, other things being equal, for i=1, …, k.  The additional constant b0, the so-

called intercept, is the prediction that the model would make if all the X’s were zero 

(if that is possible).   The coefficients and intercept are estimated by least squares, 

i.e., setting them equal to the unique values that minimize the sum of squared errors 

within the sample of data to which the model is fitted. 

Galton termed this phenomenon a regression towards mediocrity, which in modern 

terms is a regression to the mean. To a naïve observer this might suggest that later 

generations are going to exhibit less variability--literally more mediocrity--than 
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earlier ones, but that is not case.  It is a purely statistical phenomenon. Unless every 

child is exactly as the same size as the parent in relative terms (i.e., unless the 

correlation is exactly equal to 1), the predictions must regress to the mean regardless 

of biology.     

Regression to the mean is an inescapable fact of life. Your children can 

be expected to be less exceptional (for better or worse) than you are. Your score on a 

final exam in a course can be expected to be less good (or bad) than your score on 

the midterm exam. A baseball player's batting average in the second half of the 

season can be expected to be closer to the mean (for all players) than his batting 

average in the first half of the season. And so on. The key word here is "expected." 

This does not mean it's certain that regression to the mean will occur, but that's the 

way to bet! More precisely, that's the way to bet if you wish to minimize squared 

error. 

We have already seen a suggestion of regression-to-the-mean in some of the time 

series forecasting models we have studied: plots of forecasts tend to be smoother--

i.e., they exhibit less variability--than the plots of the original data. This is not true 

of random walk models, but it is generally true of moving-average models and other 

models that base their forecasts on more than one past observation. 

The intuitive explanation for the regression effect is simple: the thing we are trying 

to predict usually consists of a predictable component ("signal") and a statistically 

independent unpredictable component ("noise"). The best we can hope to do is to 

predict (only) that part of the variability which is due to the signal. Hence our 

forecasts will tend to exhibit less variability than the actual values, which implies a 

regression to the mean. 
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Another way to think of the regression effect is in terms of selection bias. In general 

a player’s performance over any given period of time can be attributed to a 

combination of skill and luck. Suppose that we select a sample of professional 

athletes whose performance was much better than average (or students whose grades 

were much better than average) in the first half of the year.  The fact that they did so 

well in the first half of the year makes it probable that both their skill and their luck 

were better than average during that period. In the second half of the year we may 

expect them to be equally skillful, but we should not expect them to be equally 

lucky. So we should predict that in the second half their performance will be closer 

to the mean.  Meanwhile, players whose performance was merely average in the first 

half probably had skill and luck working in opposite directions for them.  We should 

therefore expect their performance in the second half to move away from the mean 

in one direction or another, as we get another independent test of their skill.  We 

don’t know which direction they will move, though, so even for them we should 

predict that their second half performance will be closer to the mean than their first 

half performance.  However, the actual performance of the players should be 

expected to have an equally large variance in the second half of the year as in the 

first half, because it merely results from a redistribution of independently random 

luck among players with the same distribution of skill as before. 

3.2 Justification for regression assumptions: 

Why should we assume that relationships between variables are linear? 

1. Because linear relationships are the simplest non-trivial relationships that can 

be imagined (hence the easiest to work with). 

2. Because the "true" relationships between our variables are often at 

least approximately linear over the range of values that are of interest to us. 
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3. Even if they're not, we can often transform the variables in such a way as to 

linearize the relationships. 

This is a strong assumption, and the first step in regression modeling should be to 

look at scatter plots of the variables (and in the case of time series data, plots of the 

variables vs. time), to make sure it is reasonable a priori.  And after fitting a model, 

plots of the errors should be studied to see if there are unexplained nonlinear 

patterns. This is especially important when the goal is to make predictions for 

scenarios outside the range of the historical data, where departures from perfect 

linearity are likely to have the biggest effect.  If you see evidence of nonlinear 

relationships, it is possible (though not guaranteed) that transformations of variables 

will straighten them out in a way that will yield useful inferences and predictions via 

linear regression.       

And why should we assume that the effects of different independent variables on the 

expected value of the dependent variable are additive?  This is a very strong 

assumption, stronger than most people realize.  It implies that the marginal effect of 

one independent variable (i.e., its slope coefficient) does not depend on the current 

values of other independent variables.  But… why shouldn’t it?  It’s conceivable that 

one independent variable could amplify the effect of another.   In a multiple 

regression model, the estimated coefficient of a given independent variable 

supposedly measures its effect while "controlling" for the presence of the 

others.  However, the way in which controlling is performed is extremely 

simplistic: multiples of other variables are merely added or subtracted.  

Many users just throw a lot of independent variables into the model without thinking 

carefully about this issue, as if their software will automatically figure out exactly 

how they are related. It won’t!  Even "automatic" model-selection methods (e.g., 

stepwise regression) require you to have a good understanding of your own data and 
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to use a guiding hand in the analysis.  They work only with the variables they are 

given, in the form that they are given, and then they look only for linear, additive 

patterns among them in the context of each other. You need to collect the relevant 

data, clean it up if necessary, perform descriptive analysis to look for patterns before 

fitting any models, and study the diagnostic tests of model assumptions afterward, 

especially statistics and plots of the errors.  You should also try to apply the 

appropriate economic or physical reasoning. Here too, it is possible (but not 

guaranteed) that transformations of variables or the inclusion of interaction terms 

might separate their effects into an additive form, if they do not have such a form to 

begin with, but this requires some thought and effort on your part.    

And why should we assume the errors of linear models are independently and 

identically normally distributed? 

1. This assumption is often justified by appeal to the Central Limit Theorem of 

statistics, which states that the sum or average of a sufficiently large numbers 

of independent random variables--whatever their individual distributions--

approaches a normal distribution. Much data in business and economics and 

engineering and the natural sciences is obtained by adding or averaging 

numerical measurements performed on many different persons or products or 

locations or time intervals. Insofar as the activities that generate the 

measurements may occur somewhat randomly and somewhat independently, 

we might expect the variations in the totals or averages to be somewhat 

normally distributed.  

2. It is (again) mathematically convenient: it implies that the optimal coefficient 

estimates for a linear model are those that minimize the mean squared 

error (which are easily calculated), and it justifies the use of a host of statistical 
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tests based on the normal family of distributions. (This family includes the t 

distribution, the F distribution, and the Chi-square distribution.)  

3. Even if the "true" error process is not normal in terms of the original units of 

the data, it may be possible to transform the data so that your model's 

prediction errors are approximately normal.  

But here too caution must be exercised.  Even if the unexplained variations in the 

dependent variable are approximately normally distributed, it is not guaranteed that 

they will also be identically normally distributed for all values of the independent 

variables.  Perhaps the unexplained variations are larger under some conditions than 

others, a condition known as "heteroscedasticity". For example, if the dependent 

variable consists of daily or monthly total sales, there are probably significant day-

of-week patterns or seasonal patterns.  In such cases the variance of the total will be 

larger on days or in seasons with greater business activity--another consequence of 

the central limit theorem. (Variable transformations such as logging and/or seasonal 

adjustment are often used to deal with this problem.)  It is also not guaranteed that 

the random variations will be statistically independent.  This is an especially 

important question when the data consists of time series:  if the model is not 

correctly specified, it is possible that consecutive errors (or errors separated by some 

other number of periods) will have a systematic tendency to have the same sign or a 

systematic tendency to have opposite signs, a phenomenon known 

as "autocorrelation" or "serial correlation". 

A very important special case is that of stock price data, in which percentage 

changes rather than absolute changes tend to be normally distributed.  This implies 

that over moderate to large time scales, movements in stock prices 

are lognormally distributed rather than normally distributed.  A log transformation is 

typically applied to historical stock price data when studying growth and 
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volatility.  Caution:  although simple regression models are often fitted to historical 

stock returns to estimate "betas", which are indicators of relative risk in the context 

of a diversified portfolio, I do not recommend that you use regression to try to 

predict future stock returns.   

You still might think that variations in the values of portfolios of stocks would tend 

to be normally distributed, by virtue of the central limit theorem, but the central limit 

theorem is actually rather slow to bite on the lognormal distribution because it is so 

asymmetrically long-tailed.  A sum of 10 or 20 independently and identically 

lognormally distributed variables has a distribution that is still quite close to 

lognormal.  If you don’t believe this, try testing it by Monte Carlo simulation:  you’ll 

be surprised.  (I was.) 

Because the assumptions of linear regression (linear, additive relationships with i.i.d. 

normally distributed errors) are so strong, it is very important to test their validity 

when fitting models, a topic discussed in more detail on the testing-model-

assumptions page, and be alert to the possibility that you may need more or better 

data to accomplish your objectives. You can’t get something from nothing.  All too 

often, naïve users of regression analysis view it as a black box that can automatically 

predict any given variable from any other variables that are fed into it, when in fact a 

regression model is a very special and very transparent kind of prediction box.  Its 

output contains no more information than is provided by its inputs and its inner 

mechanism needs to be compared with reality in each situation where it is applied.   

3.3 Correlation and simple regression formulas: 

A variable is, by definition, a quantity that may vary from one measurement to 

another in situations where different samples are taken from a population or 

observations are made at different points in time.  In fitting statistical models in 
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which some variables are used to predict others, what we hope to find is that the 

different variables do not vary independently (in a statistical sense), but that they 

tend to vary together. 

In particular, when fitting linear models, we hope to find that one variable (say, Y) is 

varying as a straight-line function of another variable (say, X). In other words, if all 

other possibly-relevant variables could be held fixed, we would hope to find 

the graph of Y versus X to be a straight line (apart from the inevitable random errors 

or "noise"). 

A measure of the absolute amount of "variability" in a variable is (naturally) 

its variance, which is defined as its average squared deviation from its own mean. 

Equivalently, we can measure variability in terms of the standard deviation, which is 

defined as the square root of the variance. The standard deviation has the advantage 

that it is measured in the same units as the original variable, rather than squared 

units. 

Our task in predicting Y might be described as that of "explaining" some or all of its 

variance--i.e., why, or under what conditions, does it deviate from its mean? Why is 

it not constant? That is, we would like to be able to improve on the "naive" 

predictive model: Ý(t) = CONSTANT, in which the best value for the constant is 

presumably the historical mean of Y. More precisely, we hope to find a model 

whose prediction errors are smaller, in a mean square sense, than the deviations of 

the original variable from its mean.  

In using linear models for prediction, it turns out very conveniently that 

the only statistics of interest (at least for purposes of estimating coefficients to 

minimize squared error) are the mean and variance of each variable and 
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the correlation coefficient between each pair of variables. The coefficient of 

correlation between X and Y is commonly denoted by rXY. 

The correlation coefficient between two variables is a statistic that measures 

the strength of the linear relationship between them, on a relative (i.e., unit less) 

scale of -1 to +1. That is, it measures the extent to which a linear model can be used 

to predict the deviation of one variable from its mean given knowledge of the other's 

deviation from its mean at the same point in time. 

The correlation coefficient is most easily computed if we first standardize each of 

the variables--i.e., express it in units of standard deviations from its own mean--

using the population standard deviation (the one whose formula has n rather than n-1 

in the denominator), rather than the sample standard deviation.   The standardized 

value of X will be denoted here by XSTD, and the value of XSTD in period t is 

defined in Excel notation as: 

XSTD(t) = (X(t) - AVERAGE(X))/STDEV.P(X) 

(I am going to be a bit sloppy and use Excel functions rather than conventional math 

symbols in some places to avoid problems with fonts, as well as to illustrate how the 

calculations would be done on a spreadsheet.)  For example, suppose that 

AVERAGE(X) = 20 and STDEV.P(X) = 5. If X(t) = 25, then XSTD(t) = 1, if X(t) = 

10, then XSTD(t) = -2, and so on.  YSTD will denote the similarly standardized 

value of Y.) 

Now, the correlation coefficient is equal to the average product of the standardized 

values of the two variables: 
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rXY = AVERAGE(XSTDYSTD) = (XSTD(1)YSTD(1) + XSTD(2)YSTD(2) + ... + 

XSTD(n)YSTD(n))/n 

... Where n is the sample size. Thus, for example, if X and Y are stored in columns 

on a spreadsheet, you can use the AVERAGE and STDEV.P functions to compute 

their averages and population standard deviations, then you can create two new 

columns in which the values of XSTD and YSTD in each row are computed 

according to the formula above. Then create a third new column in which XSTD is 

multiplied by YSTD in every row. The average of the values in the last column is 

the correlation between X and Y. Of course, in Excel, you can just use the 

formula =CORREL(X,Y) to calculate a correlation coefficient, where X and Y 

denote the cell ranges of the data for the variables.  (Note:  in some situations it 

might be of interest to standardize the data relative to the sample standard deviation, 

but the population statistic is the correct one to use in the formula above.)    

If the two variables tend to vary on the same sides of their respective means at the 

same time, then the average product of their deviations (and hence the correlation 

between them) will be positive, since the product of two numbers with the same sign 

is positive. Conversely, if they tend to vary on opposite sides of their respective 

means at the same time, their correlation will be negative. If they 

vary independently with respect to their means--that is, if one is equally likely to be 

above or below its mean regardless of what the other is doing--then the correlation 

will be zero. 

The correlation coefficient can be said to measure the strength of 

the linear relationship between Y and X for the following reason.  The linear 

equation for predicting YSTD from XSTD that minimizes mean squared error is 

simply: 
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ỸSTD (t) = rXY XSTD (t) 

Where ỸSTD denotes the prediction for YSTD .  Thus, if X is observed to be 1 

standard deviation above its own mean, then we should predict that Y will be 

rXY standard deviations above its own mean; if X is 2 standard deviations below its 

own mean, then we should be predict that Y will be 2rXY standard deviations below 

its own mean, and so on. 

In graphical terms, this means that, on a scatter plot of YSTD versus XSTD, the line 

for predicting YSTD from XSTD so as to minimize mean squared error is the line that 

passes through the origin and has slope rXY. This fact is not supposed to be obvious, 

but it is easily proved by elementary differential calculus of several variables. 

Here is an example:  on a scatter plot of YSTD versus XSTD, the visual axis of 

symmetry is a line that passes through the origin and whose slope is equal to 1 (i.e., 

a 45-degree line), which is the gray dashed line on the plot below.  It passes through 

the origin because the means of both standardized variables are zero, and its slope is 

equal to 1 because their standard deviations are both equal to 1. (The latter fact 

means that the points are equally spread out horizontally and vertically in terms of 

mean squared deviations from zero, which forces their pattern to appear roughly 

symmetric around the 45-degree line if the relationship between the variables really 

is linear.)  However, the gray dashed line is the not the best line to use for predicting 

the value of YSTD for a given value of XSTD.  The best line for predicting 

YSTD from XSTD has a slope of less than 1:  it regresses toward the X axis.  The 

regression line is shown in red, and its slope is the correlation between X and Y, 

which is 0.46 in this case.  Why is this true?  Because, that’s the way to bet if you 

want to minimize the mean squared error measured in the Y direction .  If instead 

you wanted to predict XSTD from YSTD so as to minimize mean squared error 
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measured in the X direction, the line would regress in the other direction relative to 

the 45-degree line, and by exactly the same amount. 

 

If we want to obtain the linear regression equation for predicting Y from X 

in unstandardized terms, we just need to substitute the formulas for the standardized 

values in the preceding equation, which then becomes: 

(Ỹ(t) - AVERAGE(Y))/STDEV.P(Y) = rXY (X(t) - AVERAGE(X))/STDEV.P(X). 

If we now rearrange this equation and collect constant terms, we obtain: 

Ỹ(t) = b0 + b1 X(t) 

where: 

b1 = rXY (STDEV.P(Y)/STDEV.P(X)) is the estimated slope of the regression line, 

and 

b0 = AVERAGE(Y) – b1 (AVERAGE(X)) is the estimated Y-intercept of the line. 
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Notice that, as we claimed earlier, the coefficients in the linear equation for 

predicting Y from X depend only on the means and standard deviations of X and Y 

and on their coefficient of correlation. 

The additional formulas that are needed to compute standard errors, t-statistics, 

and P-values (statistics that measure the precision and significance of the estimated 

coefficients) are given in this set of notes and also illustrated in this spreadsheet file. 

Perfect positive correlation (rXY = +1) or perfect negative correlation (rXY = -1) is 

only obtained if one variable is an exact linear function of the other, without error. In 

such a case, one variable is merely a linear transformation of the other--they aren't 

really "different" variables at all! 

In general, therefore, we find less-than-perfect correlation, which is to say, we find 

that rXY is less than 1 in absolute value. Therefore our prediction for YSTD will 

typically be smaller in absolute value than our observed value for XSTD. That is, we 

will always predict Y to be closer to its own mean, in units of its own standard 

deviation, than X was observed to be, which is Galton's phenomenon of regression 

to the mean. 

So, the technical explanation of the regression-to-the-mean effect hinges on two 

mathematical facts: (i) the correlation coefficient, calculated in the manner described 

above, happens to be the coefficient that minimizes the squared error in predicting 

YSTD from XSTD, and (ii) the correlation coefficient is never larger than 1 in 

absolute value, and it is only equal to 1 when YSTD is an exact (noiseless) linear 

function of XSTD. 

The term "regression" has stuck and has even mutated from an intransitive verb into 

a transitive one since Galton's time. We don't merely say that the predictions for Y 

"regress to the mean"--we now say that we are "regressing Y on X" when we 
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estimate a linear equation for predicting Y from X, and we refer to X as a 

"regressor" in this case. 

When we have fitted a linear model, we can compute its mean squared prediction 

error and compare this to the variance of the original variable. As noted above, we 

hope to find that the MSE is less than the original variance. The relative amount by 

which the mean squared error is less than the variance of the original variable is 

referred to as the fraction of the variance that was explained by the model. For 

example, if the MSE is 20% less than the original variance, we say we have 

"explained 20% of the variance." 

It turns out that in a simple regression model (a linear model with only one "X" 

variable), the fraction of variance explained is precisely the square of the correlation 

coefficient--i.e., the square of r. Hence, the fraction-of-variance-explained has come 

to be known as "R-squared".  The interpretation and use of R-squared are discussed 

in more detail . 

In a multiple regression model (a linear model with two or more "X" variables), 

there are many correlation coefficients that must be computed, in addition to all the 

means and variances. For example, we must consider the correlation between each X 

variable and the Y variable, and also the correlation between each pair of X 

variables. In this case, it still turns out that the model coefficients and the fraction-

of-variance-explained statistic can be computed entirely from knowledge of the 

means, standard deviations, and correlation coefficients among the variables--but the 

computations are no longer easy. We will leave those details to the computer.     

3.4 Probit analysis: 

• Probit analysis is a type of regression used to analyze binomial response variables.  
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• It transforms the sigmoid dose-response curve to a straight line that can then be 

analyzed by regression either through least squares or maximum likelihood.  

• Probit analysis can be conducted by one of three techniques:  

 Using tables to estimate the probits and fitting the relationship by eye,  

 Hand calculating the probits, regression coefficient, and confidence intervals, 

or Having a statistical package such as SPSS do it all for you. 

 In probability theory and statistics, the probit function is the quantile function 

associated with the standard normal distribution  . It has applications in exploratory 

statistical graphics and specialized regression modeling of binary response variables. 

 The standard normal distribution is commonly denoted as N(0,1) and its 

cumulative distribution function as . As an example, consider the familiar fact 

that the standard normal distribution places 95% of probability between −1.96 and 

1.96, and is symmetric around zero. It follows that: 

  

 The probit function gives the 'inverse' computation, generating a value of an 

N(0,1) random variable, associated with specified cumulative probability. Formally, 

the probit function is the inverse of , denoted . Continuing the example, 

 . 

In general, 

 

and 
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3.5 POBIT REGRESSION MODEL: 

 Probit Analysis is a method of analyzing the relationship between a stimulus 

(dose) and the quantal (all or nothing) response. Quantitative responses are almost 

always preferred, but in many situations they are not practical. In these cases, it is 

only possible to determine if a certain response (such as death) has occurred. In a 

typical quantal response experiment, groups of animals are given different doses of a 

drug. The percent dying at each dose level is recorded. These data may then be 

analyzed using Probit Analysis.  

 The Probit Model assumes that the percent response is related to the log dose 

as the cumulative normal distribution. That is, the log doses may be used as 

variables to read the percent dying from the cumulative normal. Using the normal 

distribution, rather than other probability distributions, influences the predicted 

response rate at the high and low ends of possible doses, but has little influence near 

the middle. Hence, much of the comparison of different drugs is done using response 

rates of fifty percent.  

 The popularity of the method is due in large part to the work of Finney (1971), 

in his book Probit Analysis. He explains the proper use and analysis of quantal 

response data. In NCSS, we have coded the algorithms given in his book, and we 

refer you to it for further information and background.  

 3.6 Background: 

 The idea of probit analysis was originally published in Science by Chester 

Ittner Bliss in 1934. He worked as an entomologist for the Connecticut agricultural 

experiment station and was primarily concerned with finding an effective pesticide 
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to control insects that fed on grape leaves (Greenberg 1980). By plotting the 

response of the insects to various concentrations of pesticides, he could visually see 

that each pesticide affected the insects at different concentrations, i.e. one was more 

effective than the other. However, he didn’t have a statistically sound method to 

compare this difference. The most logical approach would be to fit a regression of 

the response versus the concentration, or dose and compare between the different 

pesticides. Yet, the relationship of response to dose was sigmoid in nature and at the 

time regression was only used on linear data. Therefore, Bliss developed the idea of 

transforming the sigmoid dose-response curve to a straight line. In 1952, a professor 

of statistics at the University of Edinburgh by the name of David Finney took Bliss’ 

idea and wrote a book called Probit Analysis (Finney 1952). Today, probit analysis 

is still the preferred statistical method in understanding dose-response relationships.  

3.7 The Basics: 

Probit Analysis is a specialized regression model of binomial response variables.  

Remember that regression is a method of fitting a line to your data to compare the 

relationship of the response variable or dependent variable (Y) to the independent 

variable (X).  

Y = a + b X + e 

Where  

 a = y-intercept  

 b = the slope of the line  

 e = error term  
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Also remember that a binomial response variable refers to a response variable with 

only two outcomes. For example:  

 Flipping a coin: Heads or tails.  

 Testing beauty products: Rash/no rash.  

 The effectiveness or toxicity of pesticides: Death/no death.  

3.8 Applications: 

Probit analysis is used to analyze many kinds of dose-response or binomial response 

experiments in a variety of fields. However, because my background knowledge of 

probit analysis stems only from toxicology, the examples from this webpage will 

only be of toxicology.  

Probit Analysis is commonly used in toxicology to determine the relative toxicity of 

chemicals to living organisms. This is done by testing the response of an organism 

under various concentrations of each of the chemicals in question and then 

comparing the concentrations at which one encounters a response. As discussed 

above, the response is always binomial (e.g. death/no death) and the relationship 

between the response and the various concentrations is always sigmoid. Probit 

analysis acts as a transformation from sigmoid to linear and then runs a regression 

on the relationship.  

Once a regression is run, the researcher can use the output of the probit analysis to 

compare the amount of chemical required to create the same response in each of the 

various chemicals. There are many endpoints used to compare the differing toxicities 

of chemicals, but the LC50 (liquids) or LD50 (solids) are the most widely used 

outcomes of the modern dose-response experiments. The LC50/LD50 represent the 

concentration (LC50) or dose (LD50) at which 50% of the population responds.  
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For example, consider comparing the toxicity of two different pesticides to aphids, 

pesticide A and pesticide B. If the LC50 of pesticide A is 50ug/L and the LC50 of 

pesticide B is 10ug/L, pesticide B is more toxic than A because it only takes 10ug/L 

to kill 50% of the aphids, versus 50ug/L of pesticide B.  

3.9 Logit vs. Probit:  

Logit is another form of transforming binomial data into linearity and is very similar 

to probit. Logit functions by taking the log of the odds: logit(P) = log P/ (1-P). Yet, 

the relationship between logit and probit is almost indistinguishable: Logit ≈ (π/√3) 

x probit. In general, if response vs dose data are not normally distributed, Finney 

suggests using the logit over the probit transformation (Finney, 1952). Although the 

multivariate usage of probit analysis is beyond the content of this webpage, it is 

worth noting that the similarity between probit and logit doesn’t hold in a 

multivariate realm (Hahn and Soyer date unknown). Hahn and Soyer suggest that 

logit provides a better fit in the presence of extreme independent variable levels and 

conversely that probit better fit random effects models with moderate data sets 

(Hahn and Soyer date unknown).  

3.10 Summary: 

 Probit Analysis is a type of regression used with binomial response variables. 

It is very similar to logit, but is preferred when data are normally distributed.  

 Most common outcome of a dose-response experiment in which probit 

analysis is used is the LC50/LD50.  

 Probit analysis can be done by eye, through hand calculations, or by using a 

statistical program.  
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 CHAPTER FOUR 
STATISTICAL ANALYSIS 

 
4.1Probit Analysis: survive versus amylase (liver function) 

Distribution: Normal 

Table (4.1): Response Information: 

Variable Value   Count 
survive 1(survive) 8 

0(not survive) 65 
Total 73 

 

From above table we find 8 survive and 65 don’t survive from total observations 

which are target of the study. 

Estimation Method: Maximum Likelihood 

Table (4.2): Regression Table: 

Variable Coef Standard 
Error 

Z P 

Constant -4.25000 1.49525 -2.84 0.004 
amylase 0.682734 0.325858 2.10 0.036 
Natural 
Response 

     
     0      (the probability that a unit fails without being 
exposed to any of the stress). 

 
 

Estimated regression model estimates of the coefficients in the regression model, 

with standard errors. 

The p-value (0.004 ,0.036) for the model of survive versus the liver function shows 

the addition of the predictor variables(liver function) significantly reduces the 
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deviance compared to a model containing only a constant term. A small p-value (less 

than 0.05 if operating at the 5% significant level) indicates that the model has 

significantly reduced the deviance and is thus useful for predicting the probability of 

the studied outcome  

Log-Likelihood = -22.691 

Table (4.3) Goodness-of-Fit Tests: 

Method Chi-Square DF P 
Pearson 28.0401   17 0.044 
Deviance 22.5000 17 0.166 

 

The p-value for the residual term tests whether there is significant a sign of a better 

model may be possible. A small p-value indicates that significant deviance remains 

in the residuals, so that a better model might be possible. 

Tolerance Distribution: 

Table (4.4): Parameter Estimates: 

Parameter Estimate Standard 
Error 

95.0% Normal CI 
 
Lower Upper 

Mean 6.22497 0.857212 4.54487 7.90508 
StDev 1.46470 0.699079 0.574755 3.73262 

 

  



31 
 

Table (4.5) of Percentiles: 

Percent Percentile Standard 
Error   

95.0% Fiducial CI 
Lower Upper 

1 2.81757 0.878096    -22.3235 3.76074 
2 3.21685   0.702282   -16.1692   3.99924 
3 3.47017   0.595461    -12.2765   4.16265 
4 3.66074   0.519192    -9.36002   4.29740 
5 3.81576 0.461098    -7.00091   4.42024 
6 3.94770 0.415648    -5.00904   4.54088 
7 4.06338   0.379935    -3.28351   4.66761 
8 4.16696   0.352256    -1.76740   4.80999 
9 4.26117   0.331507   -0.430597   4.98151 
10 4.34788  0.316878    0.736402   5.20293 
20 4.99225   0.370460     4.37923   11.8772 
30 5.45688   0.530262     4.81283   18.8829 
40 5.85389   0.694330     5.07848   24.9739 
50 6.22497   0.857212     5.30138   30.6923 
60 6.99306    1.02483     5.51313   36.4220 
80 7.45769    1.20716     5.73301   42.5587 
90 8.10206    1.42293     5.98526   49.7458 
91 8.18878 1.72468     6.32984   59.7183 
92 8.28298    1.76544     6.37589   61.0607 
93 8.38656    1.80975     6.42586   62.5190 
94 8.50225    1.85851     6.48074   64.1226 
95 8.63419    1.91301     6.54193   65.9137 
96  8.78920    1.97521     6.61163   67.9565 
97 8.97977    2.04836     6.69340  70.3567 
98  9.23310   2.13836     6.79376   73.3075 
99 9.63237 2.25811     6.92694 77.2304 

 

4.2 Probit Analysis: neck versus amylase  

Distribution: Normal 

Table (4.6) Response Information: 

Variable Value Count 
neck 1 47      (Event) 
 0 26 
 Total 73 
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Estimation Method: Maximum Likelihood: 

Table (4.7) Regression Table: 

Variable Coef Standard 
Error 

Z P 

Constant 2.62513 0.999752 2.63 0.009 
amylase -0.527725 0.229247 -2.30 0.021 
Natural 
Response 

 
0   (the probability that a unit fails without being exposed 
to any of the stress). 

 

Estimated regression model estimates of the coefficients in the regression model, 

with standard errors. 

The p-value (0.009, 0.021) for the model of neck versus the liver function shows the 

addition of the predictor variables(liver function) significantly reduces the deviance 

compared to a model containing only a constant term. A small p-value (less than 

0.05 if operating at the 5% significant level) indicates that the model has 

significantly reduced the deviance and is thus useful for predicting the probability of 

the studied outcome.  

Log-Likelihood = -44.704 

Table (4.8) Goodness-of-Fit Tests: 

Method Chi-Square DF P 
Pearson 43.6097 17 0.000 

Deviance 51.3973 17 0.000 
 

The p-value for the residual term tests whether there is significant a sign of a better 

model may be possible. A small p-value indicates that significant deviance remains 

in the residuals, so that a better model might be possible. 
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Tolerance Distribution: 

Table (4.9) Parameter Estimates: 

Parameter Estimate Standard 
Error 

95.0% Normal CI 
 

Lower Upper 
Mean 4.97444   0.411337 4.16823 5.78064 
StDev 1.89493   0.823167 0.808771 4.43976 

 

Table (4.10) of Percentiles: 

percent percentiles Standard 
error 

95.0% Fiducial CI 
Lower Upper 

1 9.38270 2.22349 7.01131   38.4963 
2 8.86614 2.00126 6.72801  35.0240 
3 8.53840 1.86053 6.54773   32.8214 
4 8.29186 1.75485    6.41175   31.1649 
5 8.09132 1.66901    6.30088   29.8177 
6 7.92062 1.59606    6.20629   28.6713 
7 7.77095 1.53219    6.12316   27.6663 
8 7.63695 1.47509 6.04855   26.7666 
9 7.51507 1.42324   5.98054   25.9485 
10 7.40288 1.37558    5.91778   25.1956 
20 6.56925 1.02463    5.44482   19.6077 
30 5.96814 0.777948    5.08998   15.5922 
40 5.45451 0.577329    4.76294   12.1849 
50 4.97444 0.411337    4.39628   9.06119 
60 4.49436 0.303434    3.74862   6.21848 
70 3.98074   0.325378    1.62458   4.60822 
90 3.37963   0.498466   -2.14522   4.00766 
91 2.54599   0.819715   -7.66354   3.46506 
92 2.31193 0.865415   -8.41222   3.39809 
93 2.43381   0.915417   -9.22635   3.32614 
94 2.17792   0.970757   -10.1223   3.24781 
95 2.02826    1.03294   -11.1238   3.16113 
96 1.85756    1.10425   -12.2668   3.06314 
97 1.65702    1.18848   -13.6107   2.94895 
98 1.41047    1.29256 -15.2639   2.80966 
99 1.08273    1.43160   -17.4630  2.62595 
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4.3 Probit Analysis: passing versus amylase:  

Distribution: Normal 

Table (4.11) Response Information: 

Variable Value Count 
passing 2 33  (event) 

1 40 
Total 73 

 

Estimation Method: Maximum Likelihood 

Table (4.12) Regression Table: 

Variable Coef Standard 
Error 

Z P 

Constant 0.338460   0.870565   0.39 0.697 
amylase -0.108915   0.203805   -0.53   0.593 
Natural 
Response 

     
     0    (the probability that a unit fails without being 
exposed to any of the stress). 

 

Estimated regression model estimates of the coefficients in the regression model, 

with standard errors. 

The p-value (0.697, 0.593) for the model of passing versus the liver function shows 

the addition of the predictor variables (liver function) isn’t significantly reduces the 

deviance compared to a model containing only a constant term. A large p-value 

more than 0.05 if operating at the 5% significant level indicates that the model 

hasn’t significantly reduced the deviance and isn’t useful for predicting the 

probability of the studied outcome. 
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Means there is no association between the liver function and passing which is 

sociological problem.   

So I use this analysis just to show how probit technique. 

Log-Likelihood = -50.121 

Table (4.13) Goodness-of-Fit Tests: 

Method Chi-Square DF P 
Pearson 43.1778 17 0.000 
Deviance 56.8249 17 0.000 

 

The p-value for the residual term tests whether there is significant a sign of a better 

model may be possible. A small p-value indicates that significant deviance remains 

in the residuals, so that a better model might be possible. 

Tolerance Distribution: 

Tabl (4.14) Parameter Estimates: 

Parameter Estimate Standard 
Error 

95.0% Normal CI 
 
Lower Upper 

Mean 3.10755    2.46647 -1.72663   7.94174 
StDev 9.18145    17.1806 0.234488   359.503 
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Table (4.15) of Percentiles: 

percent percentiles Standard 
error 

95.0% Fiducial CI 
Lower Upper 

1 24.4668 37.9291 * * 
2 21.9639 33.2491 * * 
3 20.3760 30.2803 * * 
4 19.1814 28.0474 * * 
5 18.2097 26.2314 * * 
6 17.3826 24.6860 * * 
7 16.6575 23.3312 * * 
8 16.0081 22.1183 * * 
9 15.4176 21.0155 * * 
10 14.8741 20.0006 * * 
20 10.8349 12.4701 * * 
30 7.92231 7.07687 * * 
40 5.43365 2.65901 * * 
50 3.10755 2.46647 * * 
60 0.781460 6.55650 * * 
70 -1.70720 11.1547 * * 
90 -4.61975 16.5777 * * 
91 -8.65895 24.1187 * * 
92 -9.20252 25.1343 * * 
93 -9.79304 26.2377 * * 
94 -10.4423 27.4512 * * 
95 -11.1675 28.8066 * * 
96 -11.9946 30.3526 * * 
97 -12.9663 32.1692 * * 
98 -14.1609 34.4026 * * 
99 -15.7488 37.3720 * * 

  

We notes here when there is no significance association between the response 

variable and the explanatory factor we can’t calculate the 95.0% Fiducial CI for the 

Percentiles. 
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4.4 Probit Analysis: passing versus bilirubin 

Distribution:Normal 

Table (4.16) Response Information: 

Variable Value Count 
passing 2 33  (event) 

1 40 
Total 73 

 

Estimation Method: Maximum Likelihood 

Table (4.17): Regression 

Variable Coef Standard 
Error 

Z P 

Constant 0.0329984    0.285819 0.12   0.908 
amylase -0.0018518   0.0029679 -0.62   0.533 
Natural 
Response 

     
     0    (the probability that a unit fails without being 
exposed to any of the stress). 

 

Estimated regression model estimates of the coefficients in the regression model, 

with standard errors. 

The p-value (0.908, 0.533) for the model of passing versus the bilirubin test 

Shows the addition of the predictor variables (bilirubin)  isn’t significantly reduces 

the deviance compared to a model containing only a constant term. A large p-value 

more than 0.05 if operating at the 5% significant level indicates that the model has 

not significantly reduced the deviance and isn’t thus useful for predicting the 

probability of the studied outcome  

 



38 
 

Log-Likelihood = -50.065 

Table (4.18) Goodness-of-Fit Tests: 

Method Chi-Square DF P 
Pearson 68.2560   30 0.000 
Deviance 93.5375  30 0.000 

 

Tolerance Distribution: 

Table (4.19): Parameter Estimates: 

Parameter Estimate Standard 
Error 

95.0% Normal CI 
 

Lower Upper 
Mean 17.8196 130.704  -238.355 273.994 
StDev 540.014 865.488 23.3439   12492.2 
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 Table (4.20):  of Percentiles: 

percent percentiles Standard 
error 

95.0% Fiducial CI 
Lower Upper 

1 1126.87    1911.38 * * 
2 1274.08    1675.68 * * 
3 1033.47    1526.17       * * 
4 963.215    1413.73 * * 
5 906.064    1322.29       * * 
6 857.420    1244.48       * * 
7 814.768    1176.27       * * 
8 776.578    1115.21 * * 
9 741.846    1059.69       * * 
10 709.876    1008.60       * * 
20 472.307    629.752       * * 
30 301.003 359.079       * * 
40 154.631    140.297       * * 
50 17.8196 130.704       * * 
60 -118.991    332.628       * * 
70 -265.364    563.215       * * 
80 -436.668    835.914       * * 
90 -674.237    1215.48       * * 
91 -706.207    1266.61       * * 
92 -740.939    1322.17       * * 
93 -779.129    1383.28       * * 
94 -821.780    1451.53       * * 
95 -870.425    1529.38       * * 
96 -927.576    1620.86       * * 
97 -997.836    1733.34       * * 
98 -1091.23    1882.88       * * 
99 -1238.44    2118.63 * * 

 

4.5 Probit Analysis: survive versus bilirubin  

Distribution: Normal 
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Table (4.21) Response Information: 

Variable Value Count 
survive 1 8  (event) 

0 65 
Total 73 

 

Estimation Method: Maximum Likelihood 

Table (4.22): Regression 

Variable Coef Standard 
Error 

Z P 

Constant -1.57906 0.386154   -4.09  0.000 
bilirubi 0.0039042 0.003569 1.09   0.274 
Natural 
Response 

 
    0     (the probability that a unit fails without being 
exposed to any of the stress). 

 

Estimated regression model estimates of the coefficients in the regression model, 

with standard errors. 

The p-value (0.000, 0.274) for the model of survive versus the bilirubin test 

A show the addition of the predictor variables (bilirubin) isn’t significantly reduces 

the deviance compared to a model containing only a constant term. A large p-value 

more than 0.05 if operating at the 5% significant level indicates that the model has 

not significantly reduced the deviance and isn’t thus useful for predicting the 

probability of the studied outcome  

But medically there is strong relationship between bilirubin tests and survive of the 

suicidal so if we increase the sample it might change the result.   
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Log-Likelihood = -24.641 

Table (4.23) Goodness-of-Fit Tests: 

Method Chi-Square DF P 
Pearson 43.4861 30 0.053 
Deviance 32.2797 30 0.355 

 

The p-value for the residual term tests whether there is significant a sign of a better 

model may be possible. A small p-value indicates that significant deviance remains 

in the residuals, so that a better model might be possible. 

Tolerance Distribution: 

Table (4.24) Parameter Estimates: 

Parameter Estimate Standard 
Error 

95.0% Normal CI 
 

Lower Upper 
Mean 404.454 289.209 -162.386 971.294 
StDev 256.135 234.166 42.6851 1536.96 

 

  



42 
 

Table (4.25) of Percentiles: 

percent percentiles Standard 
error 

95.0% Fiducial CI 
Lower Upper 

1 -191.406 264.867 * * 
2 -121.584 202.575 * * 
3 -77.2836 163.668 * * 
4 -43.9585 135.020 * * 
5 -16.8511 112.425 * * 
6 6.22161 94.0641 * * 
7 26.4518 79.0953 * * 
8 44.5656 67.1994 * * 
9 61.0393 58.3888 * * 
10 76.2034 52.8366 * * 
20 188.885 101.210 * * 
30 270.137 169.667 * * 
40 339.563 231.031 * * 
50 404.454 289.209 * * 
60 469.345 347.776 * * 
70 538.772 410.677 * * 
80 620.023 484.480 * * 
90 732.705 587.033 * * 
91 747.869 600.846 * * 
92 764.343 615.855 * * 
93 782.456 632.361 * * 
94 802.687 650.798 * * 
95 825.759 671.830 * * 
96 852.867 696.545 * * 
97 886.192 726.935 * * 
98 930.492 767.342 * * 
99 1000.31 831.047 * * 

 

4.6 Probit analysis (output): 

The default output consists of: 

 The response information. 

 The factor information. 

 The regression table, which include the estimated coefficients and their 

standard errors. 
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 Z-value and p values: The Z. test tests that the coefficient is significantly 

different than 0; in other words, is it a significant predictor? 

 Natural response rate: the probability that a unit fails without being exposed to 

any of the stress. 

 The test for equal slopes, which tests that the slopes associated with the factor 

levels are significantly different. 

 The log. Likelihood from the last iteration of the algorithm. 

 The goodness-of fit tests, which evaluate how well the model fits the data. 

The null hypothesis is that the model fits the data adequately. Therefore, the 

higher the p-value the better the model fits the data. 

 The parameter estimates for the distribution and their standard errors and 95% 

confidence intervals. The parameter estimates are transformations of the 

estimated coefficients in the regression table. 

 The table percentiles, which includes the estimated percentiles, standard errors 

and 95% fiducially confidence intervals. 

 The probability plot, which helps you to assess whether the chosen 

distribution fits your data. 

 The relative potency- compares the potency of stress for two levels of a factor 

to get this output; you must have a factor and choose a weibull, lognormal or 

log logistic distribution. 
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Figure (4.1) 
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Figure (4.2)  
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Figure (4.3) 

 

262422201816141210

99

95

90

80

70
60
50
40
30

20

10

5

1

amylase

Pe
rc

en
t

17.0917 2.35901
19.8501 2.35901

Mean StDev
Table of Statistics

20
22

alb

Probability Plot for outcom

Probit Data - ML Estimates
Normal - 95% CI

 

 

 

 

 

 

 

 



46 
 

CHAPTER FIVE 
RESULTS AND RECOMMENDATION 

 

5.1 The Study Result: 

1. When the person lost hope and deside to put the end of his life and 

committing suicide the most easy way to take poisons and we receive him in 

any medical section the most important factor that will determine whether we 

will help him to leave the system alive the liver function (amylase) which with 

the analysis in this study we find this variable significantly the most 

contributing factor. 

2. Albumin is significantly explaining the dependent variable so it’s very 

important test we should do for the suicidal as first as he inter the system. 

3. Bilirubin the second test we do but in this study it isn’t very significant 

meaning isn’t determine the release of the suicidal but if we increase the 

sample size maybe the result will change because this variable is very 

important medically and the doctor order to do it when the person suspected 

drug toxicity. 

4. Passing throws the system before or not doesn’t affect the survival of the 

suicidal or not.  
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5.2 The Recommendation: 
This study should not be the last for probit analysis which is huge world itself. 

The committing suicide increases each year, so I hope this study helps to improve 

the medical system in our country to improve centers to those people who are 

suicidal and treats them and admit that they have a problem to solve.   
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