

ABSTRACT

Traditionally, survey filed work is needed at the different stages of any engineering project. Namely; the preliminary study, design study, construction and for the preparation of as build plans, in addition to the monitoring.

This research is directed towards the investigation of the use of Remote Sensing and Geographical Information Systems in engineering project stages, after collecting and processing data from field and satellite image, the main conclusions is as follows:

- Remote sensing are useful in a preliminary study to give information about initial quantities soil, vegetation and flood.
- Remote sensing are not suitable for all design studies.
- Data extracted from Geographical Information Systems is not suitable for contour map studies with small interval.
- Geographic Information Systems is suitable for documentation purposes.

المستخلص

عادة ما نحتاج لأعمال الحقل في المراحل المختلفة للمشروع الهندسي. تحديداً مراحل الدراسات الأولية، ودراسة التصميم والإنشاء من حيث بناء الخطط بالإضافة إلى المراقبة.

هذا البحث موجه للتحقق من استخدام الاستشعار عن بعد ونظم المعلومات الجغرافية في مراحل المشروع الهندسي، وبعد جمع البيانات ومعالجتها من الميدان وصور الأقمار الصناعية **الخلاصة النهائية هي:**

- الاستشعار عن بعد مفيد في الدراسة الأولية لإعطاء معلومات حول التربة والغطاء النباتي والفيضانات.
- الاستشعار عن بعد ليس مناسب لجميع دراسات التصميم.
- البيانات المستخرجة من نظم المعلومات الجغرافية ليست مناسبة من أجل دراسات الخرائط الكنتورية مع فاصل صغير.
- نظم المعلومات الجغرافية مناسبة لأغراض التوثيق.

ACKNOWLEDGMENTS

Extend my sincere thanks and appreciation for a family of *Surveying school in Sudan University for Science and Technology* and I especially thank the:

Dr. / El Hadi El Nagier Ibrahi

For his patience, motivation, enthusiasm and immense knowledge. His guidance helped me in all the time of research of this thesis.

I am using this opportunity to express my deepest gratitude and spatial thanks to the:

Engineer Advisory / Mohammed Osman Mohamed El Hassan - General Manager of Azman Advisory

Who in spite of being extraordinarily busy with his duties, took time out to hear, guide and keep me on the correct path which was his directives the greatest impact in my situation on the road to complete this study with the sincerest invitations health and wellness the service of science.

I register thanks for the *Geographical Information Systems Centre* of the *General Administration for Surveying, Khartoum state* who did not spare no effort to assist me.

I also like utmost thanks and gratitude to the brothers in the *Sadik Roads & Bridges CO-LTD* for the good cooperation.

I thanks and gratitude for a family of *sudanese survey corporation* And I especially thank the family of the *Topographic - center Kassala*.

I express my warm thanks to the family company "*DC*" *Property Investment "Saria Khartoum"* for their support and encourage.

I special thanks to my *small family* which have contributed significantly to the level of my performance for this study.

Lastly, I would like to express my deepest appreciation to all those who provided me the possibility to complete this project.

LIST OF CONTENTS

Abstract	i
Acknowledgment	ii
List of Contents	iv
List of Figures	vi
List of Tables	ix
CHAPTER ONE: INTRODUCTION	
CHAPTER TWO: REMOTE SENSING	
2.1 Remote sensing	3
2.2 Electromagnetic radiation	4
2.2.1 Basic law	4
2.2.2 Radiometric quantities	5
2.3 Colour and colour photography	6
2.4 Digital imaging	8
2.5 Radar imaging	9
2.6 Satellites	9
2.7 Image interpretation	10
2.8 Multispectral classification	11
2.8.1 Supervised classification	12
2.8.2 Unsupervised classification	12
2.9 Fields of application	
CHAPTER THREE: GEOGRAPHICAL INFORMATION SYSTEMS	
3.1 Overview	16
3.2 Components of GIS	16
3.2.1 Hardware components	16

3.2.2	Software components	19
3.3	GIS software's	20
3.4	Fields of application	21

CHAPTER FOUR: STAGES OF ENGINEERING PROJECTS

4.1	Introduction	22
4.1.1	Social hub	25
4.1.2	Economic hub	25
4.1.3	Urban axis	25
4.1.4	Environmental axis	26
4.1.5	Executive axis	26
4.2	Map	26
4.2.1	Definition	26
4.2.2	Types of maps	27
4.2.3	Evolution collect information	28
4.3	Soil	29
4.3.1	Definition of soil	30
4.3.2	Facility soil	30
4.3.3	Soil structure	31
4.3.4	Particle arrangement	31
4.3.5	Difficult soils	32
4.3.6	Soft clay soil	34
4.3.7	Fills	35
4.3.8	Consolidation of soil	36
4.4	Vegitation	37
4.5	Services	39
4.5.1	Water	39
4.5.2	Sewerage in cities	41
4.5.3	Electricity	42

CHAPTER FIVE: DATA COLLECTION AND PROCESSING

5.1	Discription of study area of the project	44
5.2	Field observations	45
5.2.1	Coordinates for control points	45
5.2.2	Contours	46
5.2.3	Soil in the study area	47
5.2.4	Vegetation in the study area	47
5.2.5	Flood	51
5.2.6	Services	51
5.2.7	Design sheets	52
5.3	Distant data	52
5.4	Data Processing	52

CHAPTER SIXITH: RESULTS AND ANALYSIS

6.1	Results	80
6.2	analysis	80

CHAPTER SEVEN: CONCLUSIONS AND RECOMMENDATIONS

7.1	Conclusions	81
7.2	Recommendations	81

REFERENCES

		82
--	--	----

APENDECIES

LIST OF FIGURE

2.1	Principles of remote sensing	4
2.2	Chromaticity diagram	7
2.3	Tow dimensional feature space with object clusters	11
2.4	Semantic network	13
3.1	GIS hardware components	17
3.2	CPU and main computer memory	18
5.1	location of the study area	44
5.2	location of the coordinate points	45
5.3	contour map of the study area	46
5.4	Acacia (Forest) Hayne Tree	47
5.5	ProsopisJuliflora (Swartz) DC Tree	49
5.6	LeguminosaeSubfamCeasalPinioideae Tree	50
5.7	Satellite images of the study area	52
5.8	Step of image geometric correction	53
5.9	Step of subset image	53
5.10	Step of image classification	54
5.11	Step export AutoCAD file to the shape file	54
5.12	Step of export the design (1) to shape File	55
5.13	Step of export the design (2) to shape file	55
5.14	Step of process of image class	56
5.15	Step of reclassify and subset	56
5.16	Step the layers of the image	57
5.17	Step design of the study area	57
5.18	Step of the proposal road layer	58
5.19	Step of converting the image to polygon	58

5.20	Step selection by attribute of soil layer	59
5.21	Step of the vegetation's layer selected	59
5.22	Step of the soil layer selected	60
5.23	Step classified image of study area	60
5.23	Step of trees layer	61
5.24	Step of soil layer	61
5.25	Step of type soil layer	62
5.26	Step contour map from image	62
5.27	Step of the fence buffer	63
5.28	Design (1) buffer	63
5.29	Step of design (1)	63
5.30	Step of the buffer flood	64
5.31	Step of the proposed design (2)	64
5.32	Land use map	65
5.33	Study area map	66
5.34	Contour map	67
5.35	Proposal road map	68
5.36	Soil map	69
5.37	Vegetation map	70
5.38	Flood map	71
5.39	Fence buffer map	72
5.40	Design buffer map	73
5.41	Design no. (2) map	74
B-1	design sheet no.(1)	91
B-2	design sheet no.(2)	91

LIST OF TABLE

2.1	Radiometric quantities	6
5.1	Coordinate points	46
5.42	Control point	75
5.43	Roads	75
5.44	Soil	76
5.45	Trees	76
5.46	Contour line	78
5.47	Flood	78
5.48	proposed design no.(2)	79