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ABSTRACT

Auscultation is a technique, in which Physicians used the stethoscope to
listen to patient’s heart sounds in order to make a diagnosis. However, the
determination of heart conditions by heart auscultation is a difficult task and
it requires special training of medical staff. On the other hand, in primary or
home health care, when deciding who requires special care, auscultation
plays a very important role; and for these situations, an ‘‘intelligent
stethoscope’” with decision support abilities 1s highly needed and it would
be a great added value.

In this study a reliable Real Time Heart sounds recognition system has been,
introduced, designed, implemented and successfully tested.

The system algorithm has been realized in two phases, offline data phase and
real data phase. For offline data phase, 30 cases of Heart Sounds (HSs) files
were collected from medical students and doctor's world website, and then
the background noise is minimized using wavelet transform. After that,
graphical and statistics features vector elements are formed for both time and
frequency domain. Finally, classification process was accomplished using
look-up table. The implementation of the proposed algorithm produced
accuracy of 90%, and sensitivity of 87.5%.

In experimental phase (real time data), electronic stethoscope has been
designed and recorded HSs directly from 30 volunteers with 17 normal case
and 13 various pathologies cases. In preprocessing stage, an adaptive filter
was used to filter heart sounds from lung sounds, due to lung sound
overlapped with heart sound in sub frequency band. Then, wavelet was
applied to minimized background noise and features are formed for
classification process, as well as offline data phase. The implementation of
the proposed algorithm produced accuracy of 80%, and sensitivity of 82.4%.

The advanced steps for implementing a portable module by embedded DSP
have been successfully achieved. Firstly, System SIMULINK model was
built, and then real time workshop was used to generate embedded coder,
finally the code files linked to Code Composer Studio Software and running
the project successfully.
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CHAPTER ONE
INTRODUCTION

1.1 General Overview:

Auscultation is a technique, in which Physicians used the stethoscope to
listen to patient’s heart sounds in order to make a diagnosis [1, 2].
Physicians are particularly interested in abnormal sounds, which may
suggest the presence of a cardiac pathology and also provide diagnostic
information [3, 4].

Nowadays, modern technology has provided more powerful tools to evaluate
the information related to heart sounds that traditional tools like stethoscope
cannot achieve [5]. One of the most common methods used for listening and
tracking the heart sounds is to record them with special devices, the recorded
heart sounds is known as PCG (phonocardiogram) signal. It is a particularly
useful diagnosis tool since it contains different timings and relative
intensities of heart beat sounds which are directly related to heart activity
[6]. The development of new digital signal processing techniques, such as a
pattern recognition and time frequency analysis and representation has
improved the HSs signal analysis and therefore make it actually as a non-
invasive technique in aid to heart activity diagnosis [7].

1.2 Significance of the study

Cardiac murmurs are often the first sign of pathological changes in the heart
valves. Doppler-echocardiography and magnetic resonance imaging are
today well established tools in the diagnosis of heart valve disorders, while
the classic techniques of auscultation and phonocardiography are playing a
diminishing role in modern specialist care. However, in primary or home
health care, when deciding who requires special care, auscultation still plays
a very important role. For these situations, an ‘‘intelligent stethoscope’” with
decision support abilities would be a great value.



1.3 Problem Statements

Determination of heart conditions by heart auscultation is a difficult task and
it requires special training of medical staff. The heart sound is usually
detected by human ear using acoustical stethoscope, which is inefficient due
to the limitations of the human's ear sensitively, especially that heart sounds
are very week in intensity and low in frequencies.

1.4 Objectives

The objectives of this research are general objective and specific objectives.

1.4.1 General Objective

The main purpose of this research is to design a real time heart sounds
recognition system, which supports healthcare physicians in decision
making.

1.4.2 Specific Objectives are to:
1. Design and implement a reliable electronic stethoscope.

2. Record heart sounds directly from patients, by using the designed
electronic stethoscope, then transmitted it to PC to be analyzed and
processed.

3. Simulate the hardware design flow for Embedded DSP using Code
Composer Studio software.

4. Classify heart sounds into normal and abnormal cases.

1.5 Methodology

The system algorithm has been realized in two phases, offline and real time
phase. For offline data phase, 30 cases of HSs files were collected from
medical students and doctor's world website, and then MATLAB software
was used to analyze and process the collected signals based on digital signal
processing (DSP).



For experimental phase (real time data), A designed of an electronic
stethoscope was used to record signals directly from patients, then transmit
the recorded signals to PC to be analyzed and processed.

The decision-making process comprises of three main stages:

At the first stage, an adaptive filter was applied in real time data to filter
lung sounds from heart sounds. This process is not needed when using
offline data, since it consist of pure heat sounds only. Both data (offline and
online data) were processed using wavelet transform, to reduce the
background noise. At the second stage, graphical and statistics features
vector elements are formed for both time and frequency domain. At the final
stage, classification process was accomplished by look-up table.

1.6 Thesis layout:
This research consists of five chapters:

Chapter one is an introduction, Chapter two deals of theoretical background
and discusses the related literature reviews. The design and implementation
of a Real time heart sounds recognition system was explained in chapter
three. The results and discussion were illustrated in chapter four, finally
conclusions and recommendations presented in chapter five.



CHAPTER TWO
THEORETICAL BACKGROUND AND REVIEWS

2.1 The human heart

The heart is located in chest between the lungs behind the sternum and
above the diaphragm. It is surrounded by the pericardium. Its size is about
that of a fist, and its weight is about 250-300g. Its center is located about 1.5
cm to the left of the midsagital plane. An overall view is given in figure

2.1). [9]

Sternum

Leftventricle

Diaphragm — Fight ventricl

Liver N La= 7 Stomach

Figure (2.1): Location of the heart in the thorax. [9]
2.1.2 Anatomy of the heart

The walls of the heart are composed of cardiac muscle, called myocardium.
It also has striations similar to skeletal muscle. It consists of four
compartments: the right and left atria and ventricles. The heart is oriented so
that the anterior aspect is the right ventricle while the posterior aspect shows
the left atrium figure (2.2). The left atria form one unit and the ventricles
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another. The left ventricular free wall and the septum are much thicker than
the right ventricular wall.

The heart has four valves. Between the right atrium and ventricle lies the
tricuspid valve. The mitral valve lies between the left atrium and ventricle.
The pulmonary valve lies between the right ventricle and the pulmonary
artery, while the aortic valve lies in outflow tract of the left ventricle
(controlling the aorta).

The blood returns from the systemic circulation to the atrium and from there
goes through the tricuspid valve to the right ventricle. It is ejected from the
right ventricle through the pulmonary valve to the lungs.

Oxygenated blood returns from the lungs to the left atrium and from there
through the aortic valve to aorta the systemic circulation.

Supenorvena ca—va Aorta

Right pulmonary artery ‘/Lefmulmurrar:.rarte

Right atrium

.F'ulmn nary

Aortic valve
valve

Tricuspid valve —F8 ' Mitral valve

VBNa cava 2 | Papillary muscled

Right ventricle / ~ . Left ventricle

Figure (2.2): The Anatomy of the Heart and Associated Valves. [9]



2.1.3 Cardiac Cycle

The cardiac cycle is a synchronized sequence of contractions and relaxations
of the atria and ventricles during which major events occur, such as valves
opening and closing and changes in blood flow and pressure. Each
contraction and relaxation is referred to as systole and diastole, respectively.
Figure (2.3) shows the events related to the cardiac cycle [10].

Aortic valve
Aortic valve closes

opens / F .
——
a) Ventricula A°rtic valve Aortic valve
pressure opens closes
\ W d . 1"
=] N e

b) Ventricular \ \
| et
volume
R

QECG A~ P PN T

d) PCG W;l I152‘ |53 QW AT

Systole Diastole

Diastole

Figure (2.3): Signals Of Cardiac Cycle (A) Ventricular Pressure, (B)
Ventricular Volume, (C) ECG And (D) PCG (Heart Sounds). [10]

The diagram starts at late ventricular diastole. At this stage, the AV valves

are open and the ventricles near their maximum blood volume capacity.

Atrial systole will then occur, pushing the blood through the AV valves,
6



filling the ventricles even more, increasing their pressure and volume. Next,
as the ventricles begin to contract (ventricular systole), ventricular pressure
(VP) rises above atrial pressure (AP), forcing the AV valves to shut. Since
the semilunar valves are also closed, ventricular volume remains constant
during this small period, known as Isovolumetric Contraction, causing a
rapid increase in VP. When VP exceeds the pressure of the exit vessel
(pulmonary artery and aorta for the right and left heart, respectively) the
semilunar valves open, leading to the ejection of blood.

As the systole ends, the ventricular walls begin to relax (ventricular diastole)
causing VP to drop drastically, falling below the exit vessel pressure, which
causes the closure of semilunar valves. This period is referred to as
Isovolumetric Relaxation because both semilunar and AV valves are closed,
resulting in a constant ventricular volume and a further drop in VP. When
VP falls below AP, AV valves open and blood flows into the ventricles,
finally completing the cycle [10].

2.1.4 Heart Sounds

In a medical context the heart sound signal is collected from four main
regions on the chest wall as demonstrated in Figure (2.4) .The aortic (A),
between the second and third intercostal spaces at the right sternal border;
mitral (M), near the apex of the heart between the fifth and sixth intercostal
spaces in the mid-clavicular line; pulmonic (P), between the second and
third intercostal spaces at the left sternal border; and tricuspid (T), between
the third, fourth, fifth, and sixth intercostal space at the left sternal border

[11].

Figure (2:4): Auscultation Sites To Place Stethoscope. [11]
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2.1.4.1 Mechanism of Heart Sounds production

Heart sounds can be heard throughout the heart cycle and are caused by
several cardiac events such as ventricular filling, blood flow and, most of all,
valve movements [10].

2.1.4.2 Heart Sounds categories

There are four main heart sounds, called S1, S2, S3 and S4. Normally, only
two sounds are audible, S1 and S2 sounding like the words “lub — dub”. S3
and S4 are extra heart sounds heard in both normal and abnormal situations.

2.1.4.2.1 Normal heart sounds

The first sound S1 (lub) which corresponds to the R wave of the ECG, is
longer in duration, lower frequency, and greater in intensity than the second
sound. The closure of the mitral and tricuspid valve contributes largely to the
first sound; so it marks the beginning of systole (end of diastole). The
frequencies of this sounds are generally in the range of 30 to 100 Hz and the
duration is between 50 to 100 ms; it loudest at the apex.

The second sound S2 (dub) is higher in pitch than the first, with frequencies
above 100Hz and the duration between 25 to 50 ms. This sound is produced
by slight back flow of blood into the heart before the valves close and then
the closure of valves in the arteries leading out of the ventricles. This means
that occurs at the closure of aortic and the pulmonary valves; so it marks the
end of systole (beginning of diastole); it is loudest at the basic.

The heart also produces third and fourth sounds but they are much lower in
intensity and normally inaudible. The third sound produced by the inflow of
blood to the ventricles and fourth sound is produced by the contraction of the
atria. These sounds are called diastolic sounds and are generally inaudible in
normal adult but are commonly heart among children [12].



2.1.4.3 Abnormal Heart Sounds
e Murmurs

Are high-frequency, noise-like sounds that are heard between the two major
heart sounds during systole or diastole. They are caused by turbulence in the
blood flow through narrow cardiac valves or reflow through the
atrioventricular valves due to congenital or acquired defects. They can be
innocent, but can also indicate certain cardiovascular defects [11].

Murmurs are described as systolic or diastolic according to their timing in
the cardiac cycle. Thus, a murmur heard after the first heart sound and
before the second is a systolic murmur, and which comes after the second
and before the first is a diastolic murmur [13].

* Click and Snaps

Are associated with valves opening and indicate abnormalities and heart
defects. Opening snaps of the mitral valve or ejection sound of the blood in
the aorta may be heard in case of valve disease (stenosis, regurgitation). The
opening snap when present, occurs shortly after S2 with the opening of the
mitral and tricuspid valves [11]. Clicks are short high pitched sounds, and
have three types:

1. Ejection click: is the most common click, which occurs shortly after
S1 with the opening of the semilunar valves [11].

2. Aortic ejection clicks.

3. Pulmonic ejection clicks.

2.1.5 Heart Failure and diseases

Heart failure is Inability of the heart to pump a sufficient amount of blood to
metabolizing tissues or the ability to do so only with an increased filling
pressure.



Heart failure is a syndrome that can be caused by different heart
disease

In coronary artery disease (CAD), arteriosclerotic processes narrow the
coronary arteries (that supply blood flow to the heart), and thereby
restricting blood flow and adequate oxygenation of the myocardium. When
the oxygen supply is insufficient to meet the oxygen demand the
myocardium becomes ischemic, which may lead to infraction (tissue
damage).

Hypertension is ‘high blood pressure’. There is higher artery pressure
against which the heart should inject.

Cardiomyopathy is a disease of the heart muscle. In most cases,
cardiomyopathy causes the heart muscle to become weak.

There are two general types of cardiac valve defects:

Stenosis and insufficiency. Valvular stenosis results from a narrowing of
the valve orifice that is usually caused by a thickening and increased rigidity
of the valve leaflets, often accompanied by calcification. When this occurs,
the valve does not open completely as blood flows across it. Valvular
insufficiency results from the valve leaflets not completely sealing when the
valve is closed so that regurgitation of blood occurs (backward flow of
blood) into the proximal chamber.

Arrhythmia is a general term for different rhythm problems, including
bradycardia, tachycardia, atrial fibrillation, ventricular fibrillation.
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2.2 Stethoscope

A stethoscope is assist diagnostic instrument used by medical professionals
to listen a patient’s chest cavity, heart sounds and various pulse points.

Physicians use a stethoscope as part of a non-invasive examination
procedure. Commonly, doctors will listen for sounds of congestion in the
lungs and irregular heartbeats. Nurses may also use stethoscope to listen for
restored flow during blood pressure checks.

2.2.1 Acoustic Stethoscope

For centuries, physicians would literally place their ears directly on a
patient's chest or back as part of an examination, a procedure medically
called 'immediate auscultation'. It was not unusual for doctors to contract
communicable diseases through such intimate contact with sick patients. In
the early 19th century, a young French physician named Rene Theophile
Hyacinthe Laennec found examining female patient this way to be a little
discomforting. In 1816, Dr. Laennec fashioned a cylinder from several
sheets of paper and used it to examine a young female patient. He
discovered that internal sounds could be insulated and amplified through a
tube, making examinations less intrusive and easier to interpret [14, 15].

Figure (2.5): Laennec stethoscope. [15]
11



2.2.2 Electronic Stethoscope

The heart sound is usually detected by human ear using acoustical
stethoscope but this is sometimes not efficient because of the limitations of
the human's ear sensitively especially that heart sounds have low frequencies
and low intensity, this fact was realized scientists and companies to develop
the conventional stethoscope to be more sensitive and that led to inventing
the electronic stethoscope.

The first electronic stethoscopes became available in by Albert Abrams; he
developed a truly useable one, he was able amplify the sounds made by the
heart. By applying resistance gradually to the circuit, he could eliminate
certain sounds, thereby differentiating between the hearts muscular and
valvular movements [16].

Electronic stethoscope has more advantages over the conventional
stethoscope such as its sensitivity so that a variety of heart abnormalities can
be traces by an electronic stethoscope; also it has more flexibility to deal
with heart sounds by recording, processing the collected data and make a
computer aided analysis and diagnosis. It can be expected that within a few
years, the electronic stethoscope will have eclipsed acoustic devices.

Many of the Electronic stethoscope are designed by placing a microphone in
the chest piece, another method, used in Welch-Allyn's Meditron
stethoscope, comprises of a piezo-electric crystal at the head of a metal
shaft, the bottom of the shaft making contact with a diaphragm. 3M also uses
a piezo-electric crystal placed within foam  behind a thick rubber-like
diaphragm. Thinklabs' Rhythm 32 inventor, Clive Smith uses a like
diaphragm with an electrically conductive inner surface to form a capacitive
sensor. This diaphragm responds to sound waves identically to a
conventional acoustic stethoscope, with changes in an electric field replacing
changes in air pressure. This preserves the sound of an acoustic stethoscope
with the benefits of amplification.

12



2.3 Literature Reviews

In the last decade, many research activities were conducted concerning
automated and semi-automated heart sound diagnosis, regarding it as a
challenging and promising subject. Many researchers have conducted
research on the segmentation of the heart sound into heart cycles [17-19], the
analysis and of the first and the second heart sounds and the heart murmurs
[20], and also on feature extraction and classification of heart sounds and
murmurs [21-23].

In this section some of papers will be represented as the following:

Automatic heart sound signal analysis with Reused Multi-Scale Wavelet
Transform, by JiZhong and Fabien Scalzo, in International Journal Of
Engineering And Science, March 2013,they proposed a method to locate S1
and S2 heart sound features effectively using a multi-scale wavelet
transform and a threshold decision to increase the precision of the detection
process. The effectiveness of the framework to extract the features is
evaluated in experiments on 35 patients presenting various cardiac
conditions. The proposed algorithm reaches an accuracy of about 92% on
abnormal heart sounds and 100% on control [21].

Classification heart sounds based on the least squares support vector
machine, by Gur Emre Gurak and Harun Uguz, which published in
International Journal of Innovative during December 2011. In this study,
primarily, heart sound signals in numerical format were separated into sub-
bands through discrete wavelet trans-form. Next, the entropy of each sub-
band was calculated by using the Shannon entropy algorithm to reduce the
dimensionality of the feature vectors with the help of the discrete wavelet
transform. The reduced features of three types of heart sound signals were
used as input patterns of the least square support vector machines and they
were classified least square support vector machines. In the method used,
96.6% of the classification performance was obtained [22].

Feature extraction from heart sound signal for anomaly detection, which is
published in International Journal of Computer Science and Network
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Security during September 2011. By Jeyarani and JayaSingh Thomas Gupta
et al. determined the features of heart sounds by using wavelet transform.
Heart sounds were classified into three categories by Grow and Learn
network with a total performance of 96% [23].

Heart sound classification uses wavelet transform and incremental self-
organizing map, by Ziimray Dokur and Tamer Olmez, which published
during 2008, determined the features of heart sounds by using wavelet
transform and principle component analysis. The heart sounds were
classified into two categories by a neural network with a specificity of
70.5% and a sensitivity of 64.7% [24].

Wah W.Myint and Bill Dillard in their study at Collage of Engineering,
Auburn University in USA applied an algorithm on two specific systolic
murmurs, aortic stenosis and mitral regurgitation. The time-frequency
analysis was performed using the (specgram) function in MATLAB which
produces a local spectrum versus time. A spectrogram was produced for
both murmurs and help in diagnosis [25].

Parameswary A.P.Renta in his thesis for Master degree from Electrical and
Electronic Engineering Department, Collage of Engineering, University of
Kejuruteraan and Technology in Malaysia during 2006; design an amplifier
circuit which is used in electronic stethoscope (biomedical instrumentation).
In his study he was focusing mainly on the operational amplifier which is
used for multiple purposes. Basically the whole process is to amplify a small
signal into a larger signal with reduced noise so that the output signal was
amplified.. He mentioned that output was displayed in an oscilloscope to see
the amplified signal [26].

Detection of heart murmurs using wavelet analysis and artificial neural
networks, by N. Andrisevic, K. Ejaz, F.R. Gutierrez, R.A. Flores, They
proposed algorithm which consists of three main stages. First; denoising of
input data (digital recordings of heart sounds), via Wavelet Packet Analysis.
Second; input vector preparation through the use of Principal Component
Analysis and block processing. Third; classification of the heart sound using

an Artificial Neural Network. Initial testing revealed the intelligent
14



diagnostic system can differentiate between normal healthy heart sounds and
abnormal heart sounds (e.g., murmurs), with a specificity of 70.5% and a
sensitivity of 64.7% [27].

Analyzing heart murmurs using time-frequency methods, by P.R. White,
W.B. Collis, A.P. Salmon, in: Proceedings of the IEEE-SP International
Symposium, discussed methods developed heuristically based on a model of
heart sounds, but their connection to existing techniques is also presented.
The method exploits averaged versions of the Pseudo-Wigner-Ville
distribution (PWVD). The algorithms are shown to detect two types of heart
murmur and to be able to distinguish between them, a task which requires an
experienced human listener [28].

2.3.1 Summary of literature reviews

In the literature reviews, it is observed that wavelet transform is frequently
used to minimize noise and extract features of biological signals, and the
most recent studies has been applied in off line data (data base).

In this study, a real time Heart Sounds Recognition system is using an
electronic stethoscope to pick up signals from patient directly in a real time,
and transmitted it to PC to be processed, analyzed and classified.
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CHAPTER THREE
DESIGN AND IMPLEMENTATION

3.1 Introductory

This chapter discusses the design and implement of a real time heart sounds
recognition system, which integrated into two phases (offline data phase and
experimental real time phase).

3.2 Phase one: (off line data)

In this phase, 30 data files of heart sounds with different cases (aortic
stenosis, atrial fibrillation, aortic regurgitation, mitral fibrillation...etc) were
collected from medical students and doctors world website [29]. Then the
algorithm has been applied to process and analysis data.

The proposed algorithm includes three major stages i.e., preprocessing,
feature extraction, and classification, the respective descriptions of which are
provided in the following sections.

Preprocessing Feature | Classification Heart sounds

Heartsounds — | } o
Extraction recognition

Figure (3.1): Block Diagram of system Algorithm
3.2.1 Preprocessing

The purpose of this step is to eliminate noise and enhance heart sounds by
de-noising process.

De-noising

High quality signals are essential for correct recognition. Unfortunately, the
presence of noise in heart sounds signals is inevitable. Even when all
background noise is minimized there are always intrinsic sounds impossible
to avoid such as respiratory sounds, muscular movements and air flow.
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Therefore, the de-noising stage is extremely important, ensuring elimination
of noise and emphasizing relevant sounds [10].

Due to the overlapping nature of noise with the spectra of the heart sounds
signal, simple analogue filters are not effective for noise reduction.
However, decomposing the signal in narrower sub-bandwidths using the
wavelet transform. This enables the temporal noise reduction for the desired
bandwidth sections [11]. The mother wavelet implemented here is the
Debauches wavelet of order 5 (db5) figure (3.2). The choice is due to the
heart beat signal having most of its energy distributed over a small number
of db5 wavelet (scales), and therefore the coefficients corresponding to the

heart beat signal will be large compared to any other noisy signal figure
(3.3) [30]. The de-noising procedure involves three steps:
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Figure (3.3) Equivalent frequency responses of the DWT, over the heart
sounds spectrum.
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I. Decomposition

The heart sound in this step is divided into approximations and details,
where the approximations represent the slowly changing (low frequency-
high scale) features of the signal and details represent the rapidly changing
(high frequency— low scale) features of the signal [30].

A decomposition of level 5 with the (db5) wavelet was selected for the
decomposition part of the de-noising algorithm.

I1. Thresholding detailed coefficients

This step involves thresholding the detailed coefficients of the DWT and
then reconstructing the signal with the inverse discrete wavelet transform
(IDWT). There are two common methods for thresholding; soft thresholding
and hard thresholding. The method chosen is the soft thresholding, where it
produces better result than hard thresholding because it sets the elements
whose absolute values are lower than the threshold to zero and then the
nonzero coefficients remaining are shrunk and set to zero. In the other hand
hard thresholding sets the elements whose absolute values are less than the
threshold to zero.

III. Reconstruction

The last step in the de-noising procedure is to compute the wavelet
reconstruction through the summation of the original approximation
coefficients of the last level (levelS) and the modified detail coefficients of
levels 1 to 5 [30].

3.2.2 Features Extraction
The heart sounds is non-stationary signals and have features in both time and
frequency domain, some of them are statistics features such as (mean,

standard deviation, kurtosis, and variance), and others are graphical features
such as (spectrogram and power spectrum).
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3.2.2.1Graphical representation features

In the time domain, heart sounds (HSs) have to be represented graphically;
amplitude versus time. However, discriminatory information can be found in
the frequency-domain.

Spectrogram

Spectogram is a time-varying spectral representation that plots the variation
of spectral density with respect to time. Spectrogram is a two dimensional
graph, where horizontal axis represents time and vertical axis represents
frequency. A third dimension indicating amplitude of a particular frequency
is represented by the intensity or color of each point in the signal.

Power spectrum

From power and energy prospective, signals can be classified into three
broad categories, power signals, energy signals, or both. Heart sound signals
also have finite average power and fall into the category of power signals
shown in figures (4.6a, 4.13a, 4.7b, and 4.14b).

3.2.2.2 Representation of measured and calculated parameters

For numerical values, the presentation of the results appears in Table [4.1],
and Table [4.3] containing Kurtosis, Standard deviation, variance and mean
absolute value.

Kurtosis is gives the degree of peakedness of a probability distribution.
Mean is sum of absolute mean of wavelet coefficients.

Standard deviation related to deviation from mean and equal to sum of
absolute standard deviation of wavelet coefficients and Variance Returns the
variance of data from mean value.
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3.2.3 Classification process
Euclidean distance

Euclidean distance is the distance between two points, determines by:

3.1)

d(p.q)= \/21 (p,-q.)

Where, d is Euclidean distance, p and q are the arrays and n is the dimension
of arrays [31].

The distance (error) of power spectrum density (PSD) is calculated between
reference signal (control) and sample signal by using Euclidean distance.

In this stage the statistics features of the sample sound such as (mean,
variance, kurtosis, and standard deviation), and Euclidean distance error for
PSD, were compared with threshold and features that stored in the database
(control), and look-up table was applied to classify cases into normal and
abnormal.

3.3 Phase Two: Experimental designing and implementation
(real time data)

This section discusses the integrated system for experimental phase, real
data was recorded directly from patient (online data), and realized the
algorithms that applied in phase one (offline data phase).

As illustrated in block diagram bellow:

Design an electronic Preprocessing, Real time
stethoscope to features extraction workshop to
°P .  —— . . = p
record a real time and classification generate embedded
data process coder for CCS

Figure (3.4) general block diagram for Experimental phase (real time data)
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This section consists of three steps:

1. Step one: Design an electronic stethoscope system to record signal
directly from patient as the real time, and then transmit it to PC to be
analyzed and processed.

2. Step two: This step discusses the implementation using MATLAB
software. The decision-making process comprises of three main stages. At
the preprocessing, heart sounds are filtered from lung sounds by applying
adaptive filter LMS. DWT used to minimize background noise. Then the,
feature vector elements are formed by using statistics and graphical features.
Finally, classification process was accomplished by look-up table.

3. Step three: Convert script file (m.file) to embedded Coder.TLC to be
compatible with Code Composer Studio (CCS) software.

All these steps are described in details bellow:

3.3.1 Step one: Design of an Electronic Stethoscope
The system basically consists of:

1. Stethoscope electrode (sensor)

2. Microphone in frequency response range (30-20kHz)
3. Signal conditioning (amplification and filtration)

4. Speaker to listen sound and LED as alarm

As illustrated in block diagram below:

~
Stethoscope sensor Signal conditioning Output unit to display
with microphone to amplification and signal as audio and
pick-up signal filtration alarm as visible
vy

Figure (3.5): general block diagram of electronic stethoscope
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3.3.1.1 Stethoscope sensor and microphone

Stethoscope sensor is a device used to measure the heart sounds and
converts biological signal to an electric signal.

The microphone has Frequency response range (30Hz to 20 KHz) that can
detect heart sounds clearly [32].

+ connection OV connection

Figure (3.6): the microphone. [32]
3.3.1.2 Operational amplifier (op-amp):

Operational amplifier is an electronic piece have high impedance at the input
terminals (ideally infinite), and low output impedance (ideally zero) [33].

Operation amplifiers mostly used in signal conditioning stages to amplify
and filter signal from noise.

Since heart sounds are very week in amplitude and low in frequency, op-
amps are used to amplify and filter heart sounds.

The op-amp (TL072) was selected to amplify and filter HSs due to the
following specification:

TLO72 has Low power consumption, Wide common mode and differential
voltage ranges, Low input bias and offset currents, Low total harmonic
distortion ...0.003% Typ, High input impedance JFET input stage, Internal
frequency compensation and Common-mode input voltage range includes
Vee.
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Pin connections (top view)

1 - Output 1

2 - Inverting input 1

3 - Mon-inverting input 1
4 -Nee”

5 - MNon-inverting input 2
6 -Inverting input 2

7 - Qutput 2

8 -Vee©

Figure (3.7): pin configuration of operation amplifier (TL072).
3.3.1.3 Electronic Filters

Electronic or active filters are electronic circuits which perform signal
processing functions, specifically to remove unwanted frequency component
from the signal [33].

Using low pass filter which passes frequency lower than cut off frequency
and eliminate all frequencies high than cut off frequency; but this is ideal
and not real, the real low pass filter can’t filtering all frequencies that above
the cut off frequency, but attenuate them.

The second order low pass filter with a cut off frequency of (103Hz) was
used.

Magnitude (dB)

Freguency (Hz}

Figure (3.8): frequency response for second order LPF (fc=103Hz).
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3.3.1.4 The Output Units

Using an audio amplifier (LM386) and stereo headphone to listen sounds as
audible and LED as visible indicator.

The integrated circuit diagram has been described as figure bellow:

a
L3
g =
i
HiF

Figure (3.9): shows the integrated circuit diagram of Electronic stethoscope
Circuit Description:

e Ula operates as a low-noise microphone preamplifier. Its gain is
only about 3.9 because the high output impedance of the drain of the
FET inside the microphone causes Ula is effective input resistor to be
about 12.2K. C2 has a fairly high value in order to pass very low
frequency (about 20 to 30Hz) heartbeat sounds.

e Ulb operates as a low-noise reduction, Butterworth 2" order low
pass filter with a cutoff frequency of about 103Hz. R7 and R8 provide
a gain of about 1.6 and allow the use of equal values for C3 and C4 but
still producing a sharp Butterworth response.

e  The U3 circuit is optional and has a gain of 71 to drive the bi-color
LED.
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o——U4 is a 1/4W power amplifier IC (LM386) with built-in biasing and |
inputs that are referred to ground. It has a gain of 20. It can drive any
type of headphones including low impedance (8 ohms) ones. ‘

Figure (3.11): shows the implemented circuit of an electronic stethoscope

e Label 1: indicates to input source of stethoscope.

e Label 2: indicate to output which interfaced circuit with PC via Jack
as data transfer.

e Label 3: indicate to output which transmitted to stereo headphone.
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The output voltages for first and second stages are compatible to be accepted
and read as input signal for PC mic. Then, circuit is interfaced with PC via
(Jack) as data transfer, and a SIMULINK model is created to identify the
input source such as the following.

. <)
& s

Gain

Y

From Audio
Device

FDATool

Y
Y

9_, e tethoscope. wa

Digital =in To Wave File
Filter Design

To Workspace

¥

IR

Scope

Unbuffer

Figure (3.12): SIMULINK Model for input Source Identification.
MATLAB SIMULINK program is used to perform:

e Reading audio data from an audio device in a real time (from audio
device block).

Give gain (5) and gainl (2).

Filter signal from noise by using digital filter block (low pass filter
with F,=103Hz, Fg,,=110Hz).

Record the sound in .wave format (to wave file block).

Send the sounds to PC audio device (to audio device block).

Send recorded data to MATLAB workspace (to workspace block).

Display the sound samples in oscilloscope (scope block).
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3.3.2 Step Two: Preprocessing, Features extraction, and classification
for recorded electronic stethoscope output waves

This step consist four stages as the following:
3.3.2.1 First stage: lung sound cancellation using Adaptive filter:

The heart sounds and lung sounds have common sub band frequencies, the
frequency of HSs is (30 to 110Hz) where the lung frequency is (100 to
600Hz) [5].

The feature of heart sounds may be impure by lung sounds because the lung
and the heart sound overlap in terms of time domain and spectral content.
Low pass filtering (LPF) with an arbitrary cut-off frequency 100 Hz is not
efficient in this case, because heart sound have major components in that
region particularly at above 100 Hz. If we used the advanced Digital Signal
Processing more flexibility, it removes the lung sounds and predicts the gaps
successfully.

There are different methods can be applied for filtering lung sound from
heart sound recordings: wavelets, independent component analysis,
adaptative filtering with recursive least squares algorithm (RLS), adaptive
filtering with least mean square algorithm (LMS) [34].

In this research an adaptive filtering with least mean squares algorithm
(LMS) was used Figure (3.13). Adaptive filters adjust their values to achieve
the desired result. It does not require any other frequency response
information or specification and can be used to filter lung sound from heart
sound without altering the main characteristic features of heart sounds [35].
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Figure (3.13): Adaptive filter structure. [34]
Symbols:

(As they pertain to lung sound cancellation from heart sound): d(n)=heart
sound; x(n)=reference lung sounds; y(n)=adaptive filter output; e(n)=de-
noised heart sounds.

The methods which are discussed here are not fully free from the artifacts of
the lung sounds [34].

3.3.2.2 Second stage: minimized background noise using wavelet
transform and soft threshold denoisng.

Record in hospital by any type of sensor is affected by environmental noise,
and other physiological sound e.g. (muscles moving, blood flow, etc...).

Remove these type of noise without loses in signal component is very
difficult.

Nonparametric analysis such as Fast Fourier transform (FFT) has a serious
drawback. When transforming to the frequency domain, time information is
lost, and when looking at Fourier transform of a signal, it is impossible to
tell when a particular event took place.
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Signals usually contain both low frequency components and high frequency
component. High frequency component vary quickly with time and require
fine time resolution but coarse frequency resolution .Multi-resolution
analysis (MRA) method is used to analyze a signal that contains both low
and high frequency components.

Wavelet signal processing is naturally an MRA method because of the
dilation process. The DWT is well-suited for multi-resolution analysis. The
DWT decomposes high-frequency components of a signal with fine time
resolution but coarse frequency resolution, and decomposes low frequency
components with fine frequency resolution but coarse time resolution; which
make it a beneficial tool for de-noise and feature extraction applications for
non-stationary signals.

Therefore, discrete wavelet transform (DWT) was used to minimized back
ground noise (wavelet de-noise). (Such as phase one in this chapter).

3.3.2.3 Third Stage: feature extraction

Extract signal features in both time and frequency domain (graphically and
statistics features), which applied in phase of offline data.

3.3.2.4 Fourth Stage: classification process

Classify signal into normal and abnormal cases (using look-up table), which
was applied in the offline data as well.

3.3.3 Step three: Convert script file (m.file) to embedded coder

To convert m.file to embedded coder.tlc; firstly, convert m.file code to
SIMULINK model, then using Real Time Workshop (RTW) to generate
embedded coder.tlc which is compatible with Integrated Development
Environment (IDE) software called Code Composer Studio (CCS).
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3.3.3.1 Code Composer Studio (CCS):

Texas Instruments (TI) facilitates development of software for TI DSPs by
offering Code Composer Studio (CCS) Integrated Development
Environment (IDE). Used in combination with Target Support Package
software and Real-Time Workshop software, CCS provides an integrated
environment that, once installed, requires no coding.

Executing code generated from Real-Time Workshop software on a
particular target requires that you tailor the code to the specific hardware
target. A target-specific code includes I/O device drivers and interrupts
service routines (ISRs). The software must use CCS to compile and link the
generated source code in order to load and execute on a TI DSP. To help you
to build an executable, Target Support Package software uses Embedded
IDE Link™ software to start the code building process within CCS. After
you download your executable to your target and run it, the code runs
wholly on the target. You can access the running process only from the CCS
debugging tools or across a link using Embedded IDE Link software [36].

@ Code Composer™ Studio v5

TExAs
INSTRUMENTS

Figure (3.14): Code Composer Studio v5.1 Icon
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CCS project have the following types of files:

o .lib This TI library provides runtime support for the target DSP chip

« .c This file contains source code that provides the main functionality
of this project

o .h This file declares the buffer C-structure as well as define any
required constants

o .pjt This file contains all of your project build and configuration
options

« .asm This file contains assembly instructions

o .cmd This file maps sections to memory

w» Mew CCS Project le=nls= éJ

CCS Project 8

Create a new CC5 Project. j— -----

Project name:  RealtimeHS

Output type: | Executable '|

[#] Use default location

[ ]
]
1

ChlUsers\OmArworkspace v5_3\RealtimeHS

Device

Family: | 5500 v
Variant: 550 - | Tmsa20¢s509A -
Connection: |Spectrum Digital XD5510USE Emulator v|

b Advanced settings

» Project templates and examples

type filter text Creates an empty project fully initialized =
for the selected device.

a [Z| Empty Projects
[ Empty Project
[ Empty Project {with main.c)
[ Empty Assembly-only Project

= Empty RTSC Project

Figure (3.15): show how to create project on CCS software
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3.3.3.2 Simulation of Hardware design flow

The three steps involved in simulation of hardware design flow are described
below.

I. Convert m.file to SIMULINK model

SIMULINK model is generated by using the appropriate tool boxes from the
SIMULINK Library Browser.

Unbufferd

w
el

Output
AL ol ingut
= P o sign
A s Err

FOATaE  Desied
LLJ W ‘D_‘ B omarvey
l—){: ————— 2

Wis
7 echo LMS Filter @

Integer Del User

Device Filter Design Lt -

From Audio i Digh! G To Wave File
lung sound

To Workzpace

S Lqunoj" i Ftsb\-—){:
Scope

feature extraction dassification process Display

-

Figure (3.16): show integrated SIMULINK of system model
I1. Selecting an Embedded Code Target

Configure the Real-Time Workshop Embedded Coder software to generate
code for one of a variety of targets using code generation options and
parameters. The options and parameters are consolidated in the
configuration set of the model, which you can view in the standalone
Configuration Parameters dialog box or in the SIMULINK Model Explorer.
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% Configuration Parameters: simulinkomar/Configuration (Active)

Select: Target selection
-Solver
System target file: ert.tic Browse...
~Data Import/Export
~Optimization Language: c "
- Diagnostics Description: Real-Time Workshop Embedded Coder
- Sample Time
Data Validity Build process
~Type Conversion Compiler optimization level: | Optimizations off (faster builds) v]
- Connectivity ‘
- Compatibility TG ot
~Model Referencing Makefile configuration
~Saving [V] Generate makefile
~Hardware Implementation
~Model Referencing Make command: make_rtw
- Simulation Target Template makefile:  ert_default_tmf
- Symbols
_ Custu CE Data specification override
Reort ” [ Ignore custom storage classes [*] Ignore test point signals
- Comments
- symbols 2o Conpration Adisat | Disable all test points. Allow optimal buffer allocation for those signals. i
"--;uztum L Prioritized objectives: Execution efficiency, Traceability Set objectives ...
- Debug
~Interface Check model before generating code: |Dn (proceed with warnings) v Check model ... ]
~S1L and PIL Verification
cCodocle [ Corerate cod ogly [ Buld |

Figure (3.17): show the configuration parameters simulation

III. Configuring Code Generation Options Based on High-Level
Objectives

The Embedded Real-Time (ERT) target includes a utility to quickly specify
and prioritize code generation settings based on your objectives, such as
Execution efficiency, ROM efficiency, RAM efficiency, Traceability, Safety
precaution, and Debugging. Once specified, you run the utility to establish
settings and identify changes based on the objectives. You can check
whether the model meets your objectives by clicking Check model, or
check the model during the code generation build process by setting Check
model before generating code to On. The checks are provided within the
SIMULINK Model Advisor.
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Code Generation Advisor

Prigritized objectives: Execution efficiency, Traceability l Set objectives ... ‘
Check model before generating code: l_Dn (proceed with warnings) v] [ Check model ... |
:Oﬂ: - - 1
[7] Generate code only On | d W armings) ! Build |
| On (stop for warnings) I
[ OK ] I Cancel | | Help J Apply

Figure (3.18): show how to check code generation advisor
3.3.3.3 Generating Code and Viewing the Artifacts

Click Build to generate code. After code generation is complete, a detailed
code generation report opens. The report includes links to the generated code
and associated artifacts, including:

1. Source code and header files
2. Code interface report (global data and functions)
3. Traceability report (accounting for all the objects in the model)

4. Validation report (result of the code generation objective checks)

W Model Advisor -- C\Users\OmAr\Documents\MATLAB\slprj\modeladvisoricom_2emathworks_Zecgo_Z2egroup_\realtimeHS\report_293.html

- LM

Report name: Model Advisor - Code Generation Objectives
Simulink version: 7.5 Model version: 1.6
System: realtimeH S Current run: 07-Nov-2014 15:54:44

Run Summary
[¥] Pass ¥ Fail [¥IWarning [¥I Not Run Total

@ @0 g Elo 9

H Code Generation Objectives

Figure (3.19): show report of code generation
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CHAPTER FOUR

RESULTS AND DISCUSSIONS
4.1 RESULTS A: OFFLINE DATA

The algorithm has been applied for offline data which Collected 30 data of
heart sounds with different cases (aortic stenosis, atrial fibrillation, aortic
regurgitation, mitral fibrillation..., etc) from medical students and doctors
world website [29]. In preprocessing stage, wavelet transform was applied,
and wavelet coefficients are determined by using Daubechies-5 as a mother
function, level 5 for each heart sound signal. Then used (soft) thresholding
wavelet de-noising .And then extract features graphical and measurable
calculated features, which selected in classification process to distinguish
between these signals (normal or abnormal) .

4.1.1 Normal Heart Sound:

mFigurel |':'|E|—E:§—
File Edit View Insert Tools Desktop Window Help -

D S | k| RRROTIODENL- S| 0E | =

1 1 1 1 1
0 0.5 9 15 2 SF 3 35 4 45
% 10°

Figure (4.1a): original signal of normal heart sound.
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Wavelet decomposition

Computed DWT using db5, level five shown in Figure (4.2a)

m Figure 2
File Edit Wiew Insert Tools Desktop Window Help
Dode | h|ARRRD9EMA- 2| 0H D
Approximation AS
I
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
w0 Detail D1
I T T T T T T T T
_%I 1 1 [l i f [ "W -|
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Detail D2
U.U I T T T T T T T T
—U.UQI ] ] ] ] ] | t ] ] -|
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Detail D3
U.Uql T T T T T T L T T <|
_U-U I 1 1 1 1 1 | 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Detail D4
U.Uql T T T T T T J._I T <|
_U-U I 1 1 1 1 1 | T 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Detail D5
U.U I T T T T T T T T
_U-UEI 1 1 1 1 1 | wl 1 -I
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure (4.2a): wavelet coefficients using db5.

In wavelet analysis, a signal is split into an approximation (A) and a detail
(D). The approximation is then itself split into a second-level approximation
and detail, and the process is repeated. For the above figure the signal was
decomposed into 5-level (D1, D2, D3, D4, D5, and AS).
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Wavelet reconstruction

FigureE
File Edit View Inset Tools Desktop Window Help
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Figure (4.3a): signal for combination wavelet coefficients.

The figure interprets the other half of the wavelet transform, by how those
components can be assembled back into the original signal with no loss of
information. This process is called reconstruction, or synthesis. The
mathematical manipulation that effects synthesis is called the inverse
discrete wavelet transform (IDWT). The figure (4.3a) show how to
combination wavelet coefficient through the summation of the original
approximation coefficients of the last level (level5) and the modified detail
coefficients of levels 2 to 5.
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For de-noising signal

Of course, in discarding all the high-frequency information, we have also
lost many of the original signals sharpest features. Optimal de-noising
requires a more subtle approach called soft thresholding. This involves
discarding only the portion of the details that exceeds a certain limit.

Figure 3
File Edit View Inset Tools Desktop Window Help
Ddde | b RRAOVDEL- S 0EH D
0.8 T T T T T
0.6
0.4+
0.2+
0
02
N4t
D6
0.8 1 L | 1 1
0 1 2 3 4 5

Figure (4.4a): soft threshold to de-noising signal.

The method chosen here is the soft thresholding, where it produces better
result than hard thresholding because it sets the elements whose absolute
values are lower than the threshold to zero and then the nonzero coefficients
remaining are shrunk and set to zero.
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The Spectrogram of signal

mFigurEE =
File Edit View Insert Tools Desktop Window Help
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Figure (4.5a): spectrogram of the processed signal

Spectrogram is a time-varying spectral representation that plots the variation
of spectral density with respect to time. Spectrogram is a two dimensional
graph, where horizontal axis represents time and vertical axis represents
frequency. A third dimension indicating amplitude of a particular frequency
is represented by the intensity or color of each point in the signal.
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The signal Power Spectrum Density (PSD)

m Figure 3 = | B 2

File Edit View Inset Tools Desktop Window Help |
UDEdde | h|ARODEL-2|0H 0D

power spectrum
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Figure (4.6a): power spectrum of the signal

The power spectrum density of a signal gives the distribution of the signal
power among various frequencies.

It has been observed the peak value of PSD in normal case is less than
abnormal case, due to intensity of abnormal case is highest than normal case.
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Classification process

Figure 1

File Edit View Inset Tools Desktop Window Help o

_'ljuﬂéi [:3 .+m._'x€;r?@lh|z!jfv @-’ D EJQ

0.8

0.7

05+
normal
0.3r
0.2+

01F

Figure (4.7a): illustrates the classification of the signal

In the classification process the statistics features of the sample sound such
as(mean, variance, kurtosis, and standard deviation) and Euclidean distance
error for PSD, were compared with threshold and features that stored in
database (control), and look-up table was applied to classify cases into
normal and abnormal.
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4.1.2 Abnormal Heart Sound (murmur):

m Figure 1

ESEEER

File Edit View Inset Tools Desktop Window Help

Ndde | k| RRODE LS| 0EH

U.B T T T

m IO

0.6

0.4 H

Figure (4.8a): original signal of abnormal heart sounds.
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Then Computed DWT-db5 coefficients fifth level shown in Figure (4.9a) for
wavelet decomposition process.

Figurel
File Edit View Inset Tools Deskiop Window Help

Approximation A5

.S

Figure (4.9a): wavelet coefficients using dbS.
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Wavelet Reconstruction

u Figure 2

File Edit View Inset Tools Desktop Window Help
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Figure (4.10a): signal from combination wavelet coefficients.

In this figure (IDWT) was applied by combination wavelet coefficients
through summation of the original approximation coefficients of the last
level (level5) and the modified detail coefficients of levels 2 to 5.
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Denoising signal

m Figure 2

File Edit View Inset Tools Desktop Window Help o
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Figure (4.11a): soft threshold de-noising signal.

We note that the highest frequencies appear at the start of the original signal,
and the de-noised signal is flat initially. The method chosen here is the soft
thresholding, where it produces better result than hard thresholding.
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The spectrogram

B Figure 2 T
File Edit View Inset Tools Desktop Window Help o
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Figure (4.12a): spectrogram of the processed signal.

The Figure shows the time-varying spectral representation that plots the
variation of spectral density with respect to time which called spectrogram.
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The signal PSD

Figure3
File Edit View Inset Tools Desktop Window Help
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Figure (4.13a): power spectrum of the signal

The peak value of PSD in abnormal case is highest than normal case, where
the PSD means measurement of the energy at various frequencies.
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Classification process

mFigurel .':'iIEI
File Edit View Inset Tools Desktop Window Help o
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Figure (4.14a): illustrate the classification of the signal.

Due to comparative features the signal classified to abnormal case.
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Table [4.1]: Features of Heart Sounds (offline phase)

=

[ o~ ~ ~ = = 8

e | Z z £ T E 4 E = 3£ 8

Z | g 5 ': 284S S 2% %=

3 ¥, S 2= = 98 %

1 Heart beat 1 40.9437 | 0.0004 0.0348 | 0.0173 | 3.32 matched

2 Heart beat 2 40.9468 | 0.0004 0.0348 | 0.0173 | 3.42 matched

3 Heart beat 3 449798 | 0.0003 0.0321 | 0.0144 | 3.50 matched

4 Heart beat 4 37.7655 | 0.0004 0.0379 | 0.0158 | 2.85 matched

5 Heart beat_5 37.7655 | 0.0004 0.0379 | 0.0158 | 2.75 matched

6 Heart beat 39.1454 | 0.0000008 | 0.0009 | 0.00001 | 3.10 matched
speedingl

7 Heart beat 48.149 | 0.000008 | 0.005 | 0.0003 | 4.98 matched
speeding?2

8 3hs.wav 37.2948 |  0.0177 0.0026 | 0.1303 | 2.76 matched

9 3hs(1).wav 37.2948 | 0.0177 0.0026 | 0.1303 | 2.76 matched

10 3hs(2).wav 37.2948 | 0.0177 0.0026 | 0.1303 | 2.76 matched

11 4 hs .wav 27.6336 | 0.0198 0.0027 | 0.1520 | 2.53 matched

12 4hs(1).wav 27.6336 | 0.0198 0.0027 | 0.1520 | 2.53 matched

13 4hs(2).wav 27.6336 | 0.0198 0.0027 | 0.1520 | 2.53 matched

14 atrial 12.9443 | 0.0067 0.1502 | 0.0459 | 2.15 matched

fibrillation.wav
15 aortic 11.8347 | 0.0127 0.0922 | 0.0606 | 2.37 matched
regurgitation.wav

16 aortic 10.1013 | 0.1276 0.0236 | 0.0119 | 3.10 matched

stenosis.wav
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17 sumg.wav 26.7633 | 0.0169 0.0025 | 0.1316 | 3.00 matched

18 mitral 14.4113 0.0565 0.0152 | 0.0088 | 2.77 matched
regurgitation

19 mitral 20.6265 0.0180 0.0025 | 0.0011 | 2.85 matched
stenosis.wav

20 pericardial 44.7541 0.0017 0.0795 | 0.0505 | 2.15 matched

friction

21 summation 24.44 0.0118 0.1075 | 0.0293 | 0.22 | mismatched
gallop2.wav

22 summation 21.38 0.0113 0.1067 | 0.0288 | 0.18 | mismatched
gallopl.wav

23 normal.wav 24.74 0.0118 0.1085 | 0.0298 0 matched

24 normal(1).wav 23.84 0.0117 0.1075 | 0.0297 | 0.02 matched

25 normal(2).wav 22.70 0.0115 0.1069 | 0.0295 | 0.09 matched

26 normal(3).wav 20.71 0.0112 0.1063 | 0.0288 0.13 matched

27 normal(4).wav 21.64 0.0113 0.1067 | 0.0290 | 0.10 matched

28 normal(5).wav 24.74 0.0118 0.1085 | 0.0298 0 matched

29 normal(6).wav 24.74 0.0118 0.1085 | 0.0298 0 matched

30 | Normal new web | 21.3050 0.0024 0.0456 | 0.0158 | 2.30 | mismatched

From Table [4.1] the results features of normal cases at index number (23,
28, and 29) were selected as control signal features in order to accomplish
classification process. As well as if (Kurtosis<=24074 and Mean<=0.0298,
and Variance<=0.0118 and STD<= 0.1085 and EUC<=2) then classified to
normal case else classified to abnormal case.
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4.1.3 Verification result for offline data

4.1.3.1 Predictive values

Now to verify result of offline data, calculate the true positive value (TP),
false positive value (FP), true negative value (TN), and false positive value
(FN) from algorithm results which applied in offline data to calculate
sensitivity, specificity and accuracy of the system.

Table [4.2]: Predictive values (TP, TN, FP and FN) of the system

statement normal abnormal Total
Positive 07 20 27
(True Positive) | (True Negative) T Test Positive
Negative 01 02 03
(False Positive) | (False Negative) T rest Negative
08 22 30
Thormat Tabnormal Total

Prevalence of normal = Total ,,;ma \ Total *100

(1a)

Prevalence of normal cases = 08 \ 30 * 100 = 26.66%

4.1.3.2 Accuracy and sensitivity of the system algorithm:

Sensitivity is the probability that algorithm was classify mormal' among
those with the normal cases:

Sensitivity = 7/(7+1) x 100 = 87.5%
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Specificity is the fraction of those abnormal cases, which have a negative
algorithm result:

Specificity = FN / (FN +TN) % 100 (3a)
= Specificity = 02/(02+20) x 100 = 9.09 %
Accuracy:

Accuracy is how close a measured value is to the actual (true) value.

(4a)

Accuracy=27/30 *100 =90%
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4.2 RESULT B: (REAL TIME DATA)

The heart sounds were collected from Sudan Heart Center and Best-Care
Hospital; the recordings were made using the implemented FElectronic
Stethoscope for about 10 seconds each. A total of 30 volunteers aged from
18 to 75 years with 17 normal case and 13 various pathologies cases were
used in this current study. Heart sounds for abnormal cases were recorded
with assistance from the patients. In preprocessing stage, an adaptive filter
was used to filter heart sounds from lung sounds, due to lung sound
overlapped with heart sound in sub frequency band. Then, the background
noise was minimized using wavelet transform (db5, levelS). At the feature
extraction stage graphical and statistics features vector elements are formed
for both time and frequency domain. Finally, classification process was
accomplished by look-up table. The implementation of the proposed
algorithm produced accuracy of 80%, and sensitivity of 82.4%.

4.2.1 Simulation result of an electronic stethoscope circuit

=
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Figure (4.1b): illustrates the simulation result of integrated circuit.
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e Ula operates as a low-noise microphone preamplifier. Its gain is only
about 3.9.

e Ulb operates as a low-noise reduction, Butterworth 2™ order low pass
filter with gain of 1.6 and cutoff frequency of about 103Hz.

e The U3 circuit is optional and has a gain of 71 to drive the bi-color
LED.

e U4isa 1/4W power amplifier IC (LM386) with gain of 20. It can
drive any type of headphones including low impedance (8 ohms)
ones.

4.2.2 Original normal signal recorded by an electronic stethoscope

mFigurel lﬂl-g—hj
File Edit View Inset Tools Desktop Window Help o
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Figure (4.2b): original signal of normal case recorded in real time
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Adaptive filter for cancelation lung sound from heart sound

m Figure 2 =t =] &
File Edit View Inset Tools Desktop Window Help o
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Figure (4.3b): adaptive filter process for normal recorded case.

Due to features of heart sounds impure by lung sounds, because the lung and
the heart sound overlap in terms of time domain and spectral content. Then
the Adaptive filter was applied for cancelation Lung sound from original
normal recorded signal.
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Wavelet transform to minimize background noise

Figure 4 = | B |

File Edit View Inset Tools Desktop Window Help |

Ddde | h|RXNODEL- S 0H 0O

Figure (4.4b): minimized background noise using DWT for normal case.

Wavelet applied for purred normal signal to minimize background noise
such as muscle contraction blood flow and patient movement by applying
DWT (db5, level5) which decomposed signal into approximation and
details, then IDWT was applied to reconstruct signal by summing details and
AS.

56



Denoising signal

uFigurES -
File Edit View Insert Tools Desktop Window Help

Figure (4.5b): soft threshold de-noising for normal case.

The Soft threshold was selected to denoising the purred normal signal.

57



Then the Spectrogram for purred normal signal illustrated as figure
(4.6b).

u Figure 2
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Figure (4.6b): spectrogram of the processed recorded normal case.

Spectrogram is a time-varying spectral representation that plots the variation
of spectral density with respect to time. Spectrogram is a two dimensional
graph, where horizontal axis represents time and vertical axis represents
frequency. A third dimension indicating amplitude of a particular frequency
is represented by the intensity or color of each point in the signal.

It has been observed the signal which recorded in real time, has highest
intensity than offline data due to variation in power spectrum density.
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PSD for purred normal signal was extracted as figure (4.7a).

Figure3
File Edit View Inset Tools Desktop Window Help
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Figure (4.7b): power spectrum of normal recorded case.

It also observed, the peak value of PSD in normal recorded case is highest
than abnormal recorded case, where the PSD means measurement of the
energy at the various frequencies.
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Classification process

Figurel
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Figure (4.8b): illustrates the classification of normal recorded case.

The classification process was accomplished by comparing the features of
sample signal with threshold and features that stored in database (control
signal) and then signal was classify as illustrated in figure above.
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4.2.3 Original abnormal case (murmur) recorded by an electronic
stethoscope

m Figure 1
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Figure (4.9b): original signal of abnormal case in real time
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Adaptive filter for removing lung sound from heart sound

m Figure 3 = e
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Figure(4.10b): adaptive filter for lung sound cancelation from abnormal case

An adaptive filter was applied to remove lung sound from original abnormal
signal due to lung sound overlap with heart sound in sub frequency band.

62



Wavelet transform to minimize background noise

m Figure 5
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Figure (4.11b): minimized background noise using DWT for abnormal case.

Then wavelet applied for purred abnormal signal to minimize background
noise (db5, level5) for decomposition process, and then IDWT applied to
reconstruct signal by summing the details with approximation level5.
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For denoising signal

uFigureﬁ
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Figure (4.12b): soft threshold de-noising abnormal signal

Soft threshold was selected for de-noising purred abnormal signal, where it
produces better result than hard thresholding because it sets the elements
whose absolute values are lower than the threshold to zero and then the
nonzero coefficients remaining are shrunk and set to zero.
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The Spectrogram for purred abnormal signal was illustrated in figure
bellow.

ﬂ Figure 2 = -m
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Figure (4.13b): spectrogram of the processed abnormal signal.

Spectrogram is a time-varying spectral representation that plots the variation
of spectral density with respect to time, also here is highest than offline
abnormal case due to variation in power spectrum density (PSD).
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PSD of purred abnormal case

Figure3
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Figure (4.14b): power spectrum of abnormal signal.

The measurement of energy at the various frequencies, which called Power
spectrum density, was extracted for purred abnormal signal in above figure.

The highest peak value of PSD means the Euclidean distance is greater than
100.
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Classification process

mFigurel Dl@
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Figure (4.15b): illustrates the classification of abnormal signal.

From comparative features, the classification process was realized by look-
up table and classify signal into abnormal case which illustrated in above
figure.
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Table [4.3]: Features of Heart Sounds (Experimental phase-Real time)

g < S 5 g £
g 5 =1 1 TS 4 S |5 % g £
E g £ = £ 5% 2|82 2% 8%
2 2 £ @ = = |8 98 &
1 Volunteerl 33911 0.1269 0.3562 | 0.2062 16 matched
normal
2 Volunteer 2 33.988 0.0917 0.3029 | 0.1805 9 matched
normal
3 Volunteer3 16.607 0.1184 0.3441 0.2136 16 matched
normal
4 Volunteer4 18.189 0.1019 0.3192 | 0.1959 11 matched
normal
5 Volunteer5 25.072 0.0746 0.2731 0.1455 07 matched
normal
6 Volunteer6 17.145 0.0815 0.2856 | 0.1722 08 matched
normal
7 Volunteer? 32.457 0.1673 0.4091 0.2492 21 matched
normal
8 Volunteer8 26.840 0.1266 0.3557 | 0.2255 16 matched
normal
9 Volunteer9 36.94 0.1016 0.3188 | 0.1810 12 matched
normal
10 Volunteerl0 37.072 0.2182 0.4671 0.2427 27 matched
normal
11 Volunteerl 1 13.667 0.1329 0.4646 | 0.2474 19 matched
normal
12 Volunteer12 16.057 0.0852 0.2919 | 0.1795 09 matched
normal
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13 Volunteerl3 18.630 0.1032 0.3213 | 0.1604 10 matched
normal
14 Volunteerl4 18.402 0.2572 0.5071 0.2782 18 matched
normal
15 Volunteerl 5 542.37 1.1244 1.0604 | 0.2878 | 195.7 | mismatched
normal normal case
16 Volunteerl 6 165.45 0.3349 0.3002 | 0.3002 44 mismatched
normal normal case
17 Volunteerl7 28.336 0.4259 0.6526 0.3813 42 mismatched
normal normal case
18 Volunteerl8 80.7540 6.9392 2.6342 1.1301 112 matched
abnormal
19 Volunteer19 63.9222 | 7.45165 2.8543 1.3212 | 622 matched
abnormal
20 Volunteer20 | 220.0299 | 3.01080 1.7352 1.0123 | 531 matched
abnormal
21 Volunteer21 92.0420 | 58.5835 7.6540 1.7723 128 matched
abnormal
22 Volunteer22 75.8037 1.9649 1.4018 1.0001 | 221 matched
abnormal
23 Volunteer23 | 126.9965 | 2.6516 1.6284 1.0002 | 375 matched
abnormal
24 Volunteer24 | 422.6092 | 2.2290 1.4930 1.1021 | 396 matched
abnormal
25 Volunteer25 | 175.1813 | 3.2764 1.8101 1.1120 | 380 matched
abnormal
26 Volunteer26 | 289.6853 1.1672 1.0804 | 0.7493 | 258 matched
abnormal
27 Volunteer27 197.5645 | 0.5959 0.7719 | 0.4441 98 matched
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28 Volunteer28 17.5414 0.0742 0.2723 0.1720 09 mismatched
abnormal abnormal
case
29 Volunteer29 52.5287 0.0415 0.2036 0.0560 05 mismatched
abnormal abnormal
case
30 Volunteer30 44.5008 0.1074 0.3277 | 0.1432 08 mismatched
abnormal abnormal
case

The threshold for classification cases as normal case:

In order to classify real time cases, from experiments, it was frequently
observed for normal cases, the threshold for Euclidean distance is <=27, and
thresholds for (mean, standard deviation and variance are <= 1), where the
kurtosis threshold is <=40. Otherwise the case classified to abnormal case.

In classification stage, the control signal was selected from normal offline.
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W, Eurtosis (K}, Endidean
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ET=-27}
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Figure (4.16b): classification algorithm.




4.2.4 Verification result for experimental phase
4.2.4.1 Predictive values:

Now to verify result of online data, calculate the true positive value (TP),
false positive value (FP), true negative value (TN), and false positive value
(FN) from algorithm results which applied in real data to calculate
sensitivity, specificity and accuracy of the system.

Table [2.4]: Predictive values (TP, TN, FP and FN) of the system

statement normal abnormal Total
Positive 14 10 24
(True Positive) | (True Negative) T rest Positive
Negative 03 03 06
(False Positive) | (False Negative) T Test Negative
17 13 30
Tnormal Tabnormal TOtal
Prevalence of normal = Total ,;ma \ Total *100 (1b)

Prevalence of normal cases = 17\ 30 * 100 = 56.66%

4.2.4.2 Accuracy and sensitivity of the system algorithm:

Sensitivity is the probability that algorithm was classified 'normal' among
those with the normal cases.

Sensitivity = TP/ (TP+FP) x 100 (2b)
Sensitivity = 14/(14+3) x 100 = 82.4%

Specificity is the fraction of those abnormal cases, which have a negative
algorithm result.

71



Specificity = FN / (FN +TN) x 100 (3b)
Specificity = 03/(03+13) x 100 = 18.75%-

Accuracy:

Accuracy is how close a measured value is to the actual (true) value.

(4b)
Accuracy= 24/30 *100 =80%.
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4.3 RESULT C: Simulation Results for Hardware design flow

The three steps involved in simulation of hardware design flow are described
below.

(1) The SIMULINK model of the system is made using the appropriate tool
boxes from the SIMULINK library browser.

(i1)) From the simulation parameter tool bar the Real Time Workshop
(RTW) is used, and the box is filled by the Target System Configuration file.
The Run and built buttons are pressed. It will take the MATLAB main
window a few seconds to generate the .tlc file. Once it is finished Code
Composer Studio (CCS) opens automatically. Now user can link and copy
all files which generated by RTW into CCS project.

(ii1) CCS converts the source file to assembly code, with ability to loads the
generated machine code onto the DSP and runs the DSP automatically. The
assembly code can also be loaded manually on the target CPU (the chip) by
pressing the Load Program pop up menu in the file menu of CCS.

Configuration Parameters: simulinklast/Configuration (Active) =]

There are unapphed changes in the Configuration Parameter dialog. Do wou
wank to apply the changes, dizcard the changes, or cancel this operation?

&b Initializing... L= | (B | S
i Please wait...

B Plesse wait. Shk

Processing: Check model configuration settings against code generation ohjectives

Figure (4.1c): processing results for generating embedded coder.
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After code generation is complete, a detailed code generation report opens.
Now user can link and copy all files which generated by RTW into CCS
project. CCS Software converts the source file to assembly code, with ability
to loads the generated machine code onto the DSP and runs the DSP
automatically.

ve CCS Edit - RealtimeHS/realtimeHS.c - Code Composer Studio . 'T" e ' + l |

File Edit View Mavigate Project Run Scripts Window Help

|l=‘:v {‘%v ﬁv .;J'-'v 5 <;jv * Ej

Lg Project Explorer & | [ A\':D v 2R E‘\IT{RE;UUKE Explorer dﬂ realtimeHS h |£\| realtimeHs.c 12 =5
yl E_i} RealtimeHS A 17 :
b il Includes | 4 File: realtimeHs.c .
I+ [ Debug f

—+
=1

* Real-Time Workshop code generated for Simylink model realtimeHs.

4 (= targetConfigs

U readme.bit 6 * Model version i I
2 TMS320C55094, coxml [Acth 7 * Real-Time Workshop file version : 7.5 (R2010a) 25-Jap-2010
b [8] ert_mainc El 8 * Real-Time Workshop file generated on : Fri Noy 87 15:53:43 2014
| 9 * TLC version : 7.5 (Jap 19 2018)

+ [g) reattimeHS_data.c

G p——— .5 C/C+ source code generated on : Fri Noy @7 15:53:46 2014

b [W] reattimeHS typesh ‘; * Target selection: ert.tlc

b &; realtimeHS.c 13 * Embedded hardware selection: 32-bit Generic

.l realtimeHSh || P sgﬁE;alffcn cbce

b 18 tnonfintec 7 T*;‘eabm B

g _m tt_nonfiniteh 17 * Validation result: Passed (4), Warnings (5), Error (@)

b |g _rand.c 18 */

+ [ trandh - - i

B :ﬂ rtGetlnf.c : : 7 ‘
b [B] rtGetinfh El Console £ = 0§ Problems 5 =
4 '-ﬂ tGethal.c CDT Build Console [RealtimeH5] '|equr! W'!ygrami_n_gs,ﬂothers _ ‘
) @ rtGethahlh &g | L8 RE ||| # Bl v [0 7| Description ’ Resource

> [h] hutypesh ; Ay

.--'preproc':dependencp"rf_ra;d.pp" "..'./rt_rand‘c" 2 4 @ Errors (L item)

£ =
buildinfo mat 'Finished building: ../rt_rand.c'

£ codelnfomat
E| definesit - ||gmake: Target "all' not remade because of errors.

£ £5 could not open source file "HostLib_Audi realtimeHS,
b & Warnings (11 items)

Figure (4.2¢): CCS Results for building and running project.
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4.4 Summary of Results and Discussion

From literature reviews it was observed, the most recent studies have been
applied in off line data.

This project differs from other projects in many features: the sound signal is
transferred to PC in a real time, which enabling the user to hear sound
directly and record it. And also it introduced processing and analysis tools
to classify heart sound into normal and abnormal cases. While some of other
projects doesn’t support using PC such as parameswary retna project that it
requires only using oscilloscope instead to see the amplified signal in real
time.

Wah W. Myint and Bill Dillard in their study in USA also used (specgram)
function in MATLAB. They applied an algorithm on tow specific systolic
murmurs only. Where the abnormality in this study consist multi cases such
as ( atrial fibrillation, aortic stenosis, atrial stenosis , summation gallop,
and..etc).

This research introduced the designing methods for implementing a portable
module based on DSP-Processor, which support medical field in
telemedicine applications. Where the most recent studies introduced the
implementation algorithm based on PC.

In this study the implementation algorithm produced accuracy of 90%, and
sensitivity of 87.5% for offline data, where accuracy is 80% and sensitivity
is 82.4% for online data. The percentages of verification results differ on
offline and online data due to quality of recording signal, which effected by
environmental record and materials selected in order to design of electronic
stethoscope. On the other hand the system was a accomplished accuracy and
sensitivity more efficient than research of Heart sound classification uses
wavelet transform and incremental selforganizing map, by Ziimray Dokur
and Tamer Olmez (accuracy 64.7% and sensitivity 70.5%), and less than
research of Automatic heart sound signal analysis with Reused Multi-Scale
Wavelet Transform, by JiZhong and Fabien Scalzo (accuracy 92%).
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CHAPTER FIVE
CONCLUSIONS AND RECOMMENDATIONS

5.1Conclusions

A reliable Real Time Heart sounds recognition system has been introduced,
designed, implemented and successfully tested.

The system algorithm has been applied for offline data and real time data.

In preprocess stage, the signal was filtered from lung sounds and
background noise, then the graphical and statistical methods were used to
analysis the heart sounds and extract features to be applied in classification
process, finally the look-up table was used to classify heart sounds into
normal and abnormal cases.

The advanced steps to implement prototype module for embedded DSP
processor has been successfully achieved. By building SIMULINK system
model and using real time workshop to generate compatible embedded coder
for Code Composer Studio.

The algorithm produced accuracy of 90%, and sensitivity of 87.5% for
offline data. Where accuracy is 80% and sensitivity is 82.4% for online data.

5.2 Recommendations
The recommendations are to:

Build data base for different heart sounds, including normal and abnormal
sounds, to be used for students training and simulation of different heart
sounds.

Improve the classification process by identify the abnormality cases that
support the treatment decisions.

Implement a prototype module by using Embedded DSP platform
(TMS320VC5509A) which supports telemedicine applications.
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APPENDIX A

Al: FIR filter

Finite impulse response filter “digital filter” the design methods .Thus, no
previous outputs needs to be saved or to be used for computing .some of the
technical areas in which FIR filters are employed include speech
recognition and enhancement ,audio recording and equalization
,telecommunication ,signal and data smoothing ,and ultrasound imaging.

By selecting FIR filter using only the a coefficients, you usually require
many more coefficients than the corresponding IIR filters .The increase in
the number of coefficients from using an FIR filter instead of IIR filter
means that more memory and computations are required[37]

A2: IIR filter

This digital filter has a gain curve that approximates the filter characteristics
of a corresponding analog filter .IIR filters are used in many areas of many
technologies. Some of the application areas are for sound and music
enhancement telecommunication, video image processing, biomedical
instrumentation and radar and sonar processing.

They are used primarily where analog filters are used .However,
implementation on a processor allows much more flexibility ,eliminates
degradation, and produces a specific accuracy based on the number of bits
used, as well as perfect filter reproducibility[37]



APPENDIX B

B: Adaptive filters

An adaptive filter is a digital filter that has self-adjusting characteristics .It is
capable of adjusting its filter coefficients automatically to adapt the input
signal via an adaptive algorithm [34].

There are four main component of an adaptive filter Fig c.1. the input or
“reference” signal x(n); the output of the adaptive filter y(n); the desired
filter response or “primary “signal d(n); and the estimation error e(n), which
is the difference between the filter output and the desired response [34].

/ + |din)

il - afil
lll Linear Ellter A é‘ Sy
Adaptive
Alganthm

Figure (B.1): adaptive filter structure.

The output y(n) Fig.b.2 is generated as a linear combination of the delayed
samples of the input sequence x(n) according to the equation:

N-1

y(n) = Z w; (1) x(n — 1)

i=0
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Figure (B.2): y(n) generated as a linear combination of the delayed samples
of the input sequence x (n)

where the w,(n)s are the filter tap weights (coefficients) and N is the
filter length. We refer to the input samples x(n-1), fori=0,1,... ,N-1, as
the filter tap inputs. The tap weights, the w;(n) s, which may vary' in lime,
are controlled by the adaptation algorithm [20].

With many adaptive filters to choose from, two main consideration frame
the decision _ the filter job to do and the filter algorithm to use[34].

The most popular adaptive algorithms are the least mean square (LMS)
algorithm and the recursive least square (RLS) algorithm [11].

LMS

The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff
in 1959 is an adaptive algorithm, which uses a gradient-based method of
steepest decent. LMS algorithm uses the estimates of the gradient vector
from the available data. LMS incorporates an iterative procedure that makes
successive corrections to the weight vector in the direction of the negative of

the gradient vector which eventually leads to the minimum mean square
error [35].



RLS

The Recursive least squares (RLS) adaptive filteris an algorithm which
recursively finds the filter coefficients that minimize a weighted linear least
squares cost function relating to the input signals [37].

The standard RLS algorithm performs the following operations to update the
coefficients of an adaptive filter:

Calculates the output signal v(n) of the adaptive filter.

2. Calculates the error signal e(n) by using the following equation:
e(n) = d(n)-y(n).
3. Updates the filter coefficients using the following equation:
w(n+ 1) = wn) + e(n).K(n)

Where w(n) is the filter coefficients vector and K(n) is the gain vector.

P(n). u(n)
A+ uT(n).p(n).u(n)
Where 4 is the forgetting factor and P(n) is the inverse correlation matrix of
the input signal.

K(n) =

The RLS algorithm Don’t only depend on the initial value but also use the
previous value by using the forgetting factor. The value range of the
forgetting factor is (0, 1]. When the forgetting factor is less than 1, this
factor specifies that this algorithm places a larger weight on the current
value and a smaller weight on the past values

P(n) has the following initial value P(0):

Iﬁ_l - U ]
0 - &1

here ¢ is the regularization factor. [37]
pn+1)=x""pn) —x"TK@).u" (n).p(n)



APPENDIX C

C1: Fourier Transform

The Fourier transform is only able to retrieve the global frequency content of
a signal, the time information is lost. It’s the most popular transformation,
it’s decomposes a periodic wave in to its component frequencies.

Defined as:

X(f) = f (). o2

t = time parameter. = frequency parameter.
Disadvantages:

— Not suitable for transient signals with sharp changes.
— Time information difficult to retrieve.

C2: Short time Fourier transforms:

It’s calculates the Fourier transform of a windowed part of the signal and
shifts the window over the signal. The short time Fourier transform gives the
time-frequency content of a signal with a constant frequency and time
resolution due to the fixed window length. This is often not the most desired
resolution. For low frequencies often a good frequency resolution is required
over a good time resolution. For high frequencies, the time resolution is
more important. A multi-resolution analysis becomes possible by using
wavelet analysis. The continuous wavelet transform is calculated analogous
to the Fourier transform, by the convolution between the signal and analysis
function. However the trigonometric analysis functions are replaced by a
wavelet function.

Defined as:

Xt f) = f (). wlt — t).e-297 gt

— oo

\



APPENDIX D
D: Wavelet

A wavelet is a short oscillating function which contains both the analysis
function and the window. Time information is obtained by shifting the
wavelet over the signal. The frequencies are changed by contraction and
dilatation of the wavelet function. The continuous wavelet transform
retrieves the time-frequency content information with an improved
resolution compared to the STFT [38].

Daubechies Wavelets DbN:

This family consist the hear wavelet, dbl, which is the simplest and certainly
the oldest, it’s discontinuous, resembling acquire form.

The Hear wavelet is defined by
o(x) = 1if x =€ [0,0.5],¢(x) = —1if x € [0.5,1] and 0 if it not :
The associated scaling function is the function:
p(x)=1ifx€ [0, 1] and O if not [38].
Dbn properaties:
e Symmetric.
e The regularity increase with order.
e The analysis is orthogonal.
Three cases make wavelet the more useful

1- Wavelets constitute a mathematical “zoom” making it possible to
simultaneously describe the properties of a signal on several timescales.

2- Wavelets create very simple algorithms that, due to their adaptability, are
often more powerful and easy to tune than the traditional methods of
functional estimation. The principle consists of calculating the wavelet

\



transform of observations, then astutely modifying the coefficients profiting
from their local nature and, finally, inversing the transformation.

3- Wavelets constitute a very competitive method. Due to generally very
sparse representations, they make it possible to reduce the volume of
information to be coded.

e In 1D the signal is decomposed into two: an approximation and a
detail

Discrete wavelet transform

Discrete wavelet transform (DWT) uses filter banks to perform the wavelet
analysis. The discrete wavelet transform decomposes the signal into wavelet
coefficients from which the original signal can be reconstructed again. The
wavelet coefficients represent the signal in various frequency bands. The
coefficients can be processed in several ways, giving the DWT attractive
properties over linear filtering [38].

Wavelet Defined as:

y(s, 1) =f ey, (Od()
Inverse Wavelet Transform Defined as
fe) = J f y(s, D, (t)drd(s)

All wavelet derived from mother wavelet

T

)

1 t—
Y. lt)=—W
L (6) = - W

If h;(n) is an orthogonal filter and g;[n] = h,[-n] then we have an
orthogonal wavelet transform.
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Wavelet Decomposition:

» A single level decomposition puts a signal through 2 complementary
low-pass and high-pass filters

 The output of the low-pass filter gives the approximation (A)
coefficients, while the high pass filter gives the detail (D) coefficients

Magnitude Response

07
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Figure (D.1): low and high pass filter
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Figure (D.2): approximation and details
Wavelet Reconstruction:

The A and D coefficients can be used to reconstruct the signal perfectly
when run through the mirror reconstruction filters of the wavelet family[38].

Cecompeosition Reconstruction

Figure (D.3): decomposition and reconstruction
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The wavedec() function performs 1D multilevel Discrete Wavelet Transform
decomposition of given signal and returns ordered list of coefficients arrays
in the form:

[cA n,cD n,cD n-1...cD2, cDI1]



