

APPENDICES

APPENDICES A

Microcontroller

Microcontrollers come in many varieties. Depending on the power and features that are needed, one might choose a 4 bit, 8 bit, 16 bit, or 32 bit microcontroller. In addition, some specialized versions are available which include features specific for communications keyboard handling, signal processing, video processing, and other tasks. The examples of different types of commercial microcontroller devices are given in the following tables.

Table 1.1 4 Bit Microcontrollers

Model (Manufacturer)	I/O	Pins	RAM (bytes)	ROM (bytes)	Counters	Extra Features
COP400 Family (National)	23	28	64	1K	1	Serial bit I/O
HMCS40 (Hitachi)	10	28	32	512	-	10-bit ROM
TMS 1000 (Texas Instruments)	23	28	64	1K	-	LED display

Table 1.2 8 Bit Microcontrollers

Model (Manufacturer)	I/O	Pins	RAM (bytes)	ROM (bytes)	Counters	Extra Features
8048 (Intel)	27	40	64	1K	1	8k External memory
8051 (Intel)	32	40	128	4K	2	128k External memory, Boolean processing, serial port
COP800 Family (National)	24	28	64	1K	1	Serial bit I/O, 8-channel A/D converter
6805 (Motorola)	20	28	64	1K	1	PLL frequency synthesizer,
68hc11(Motorola)	40	52	256	8K	2	A/D, PWM generator, pulse accumulator
TMS370 (Texas)	55	68	256	4K	2	watchdog timer, Instruments) Serial ports, A/D (8 bit, 8 channel)
PIC (Micro Chip)	12	18	25	1K	0	small pin count, very low power consumption

Table 1.3. 16 Bit Microcontrollers

Model (Manufacturer)	I/O	Pins	RAM (bytes)	ROM (bytes)	Counters	Extra Features
80c196 (Intel)	40	68	232 8K	2		PWM generator, watchdog timer
HPC Family (National)	52	68	512 16K	4		PWM generator, watchdog timer, 8-channel A/D, serial port

AT mega 16 Feature:

1-High-performance, Low-power AVR® 8-bit Microcontroller.

2-Advanced RISC Architecture.

- 131 Powerful Instructions.
- Most Single Most Single.
- clock Cycle Execution.
- 32x 8 General Purpose Working Registers.
- Fully Static Operation.
- Up to 16 MIPS Throughput at 16 MHz.
- On-chip 2-cycle Multiplier.

3-High Endurance Non-volatile Memory segments:

- 16K Bytes of In-System Self-programmable Flash program memory.
- 512 Bytes EEPROM.
- 1K Byte Internal SRAM.
- Write/Erase Cycles: 10,000 Flash/100,000 EEPROM.
- Data retention: 20 years at 85°C/100years at 25°C.
- Optional Boot Code Section with Independent Lock Bits.

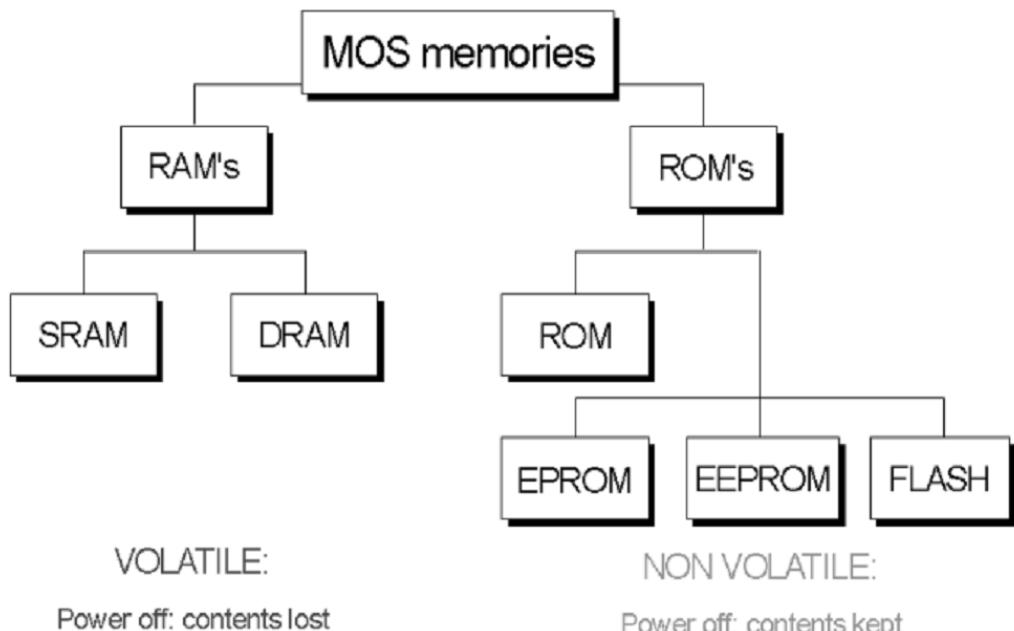


Figure :complementary metal-oxide-simeconductor(CMOS).

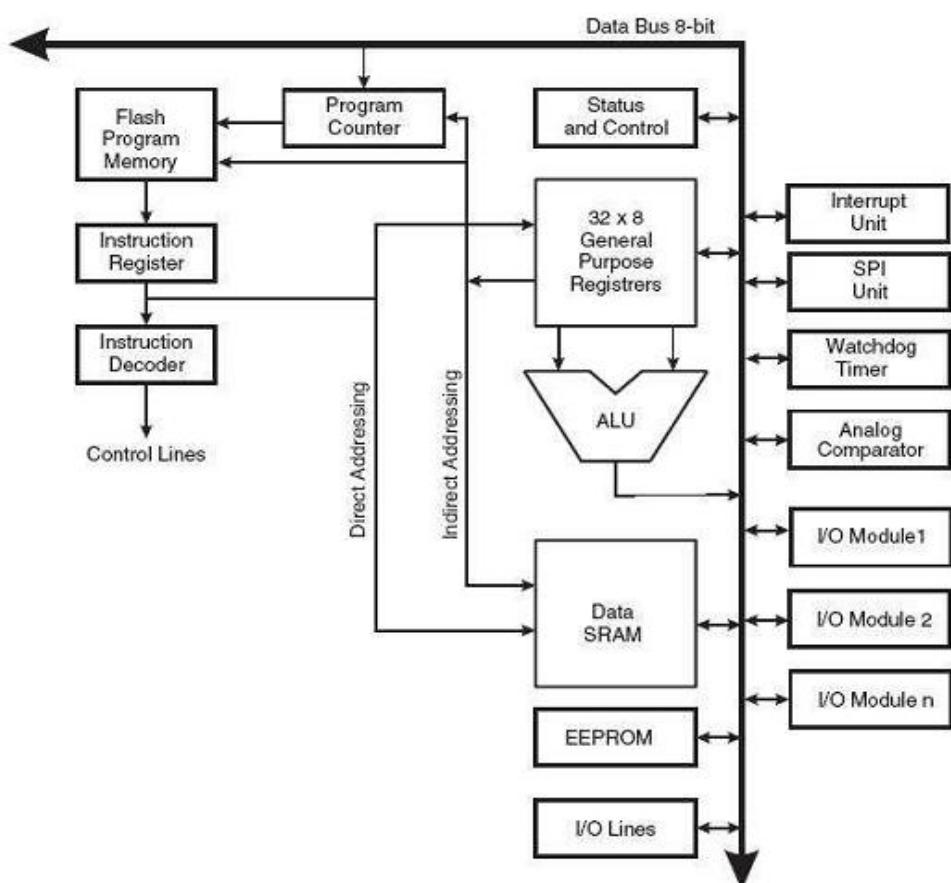


Figure: ATmega16 Architecture.

AVR Microcontroller

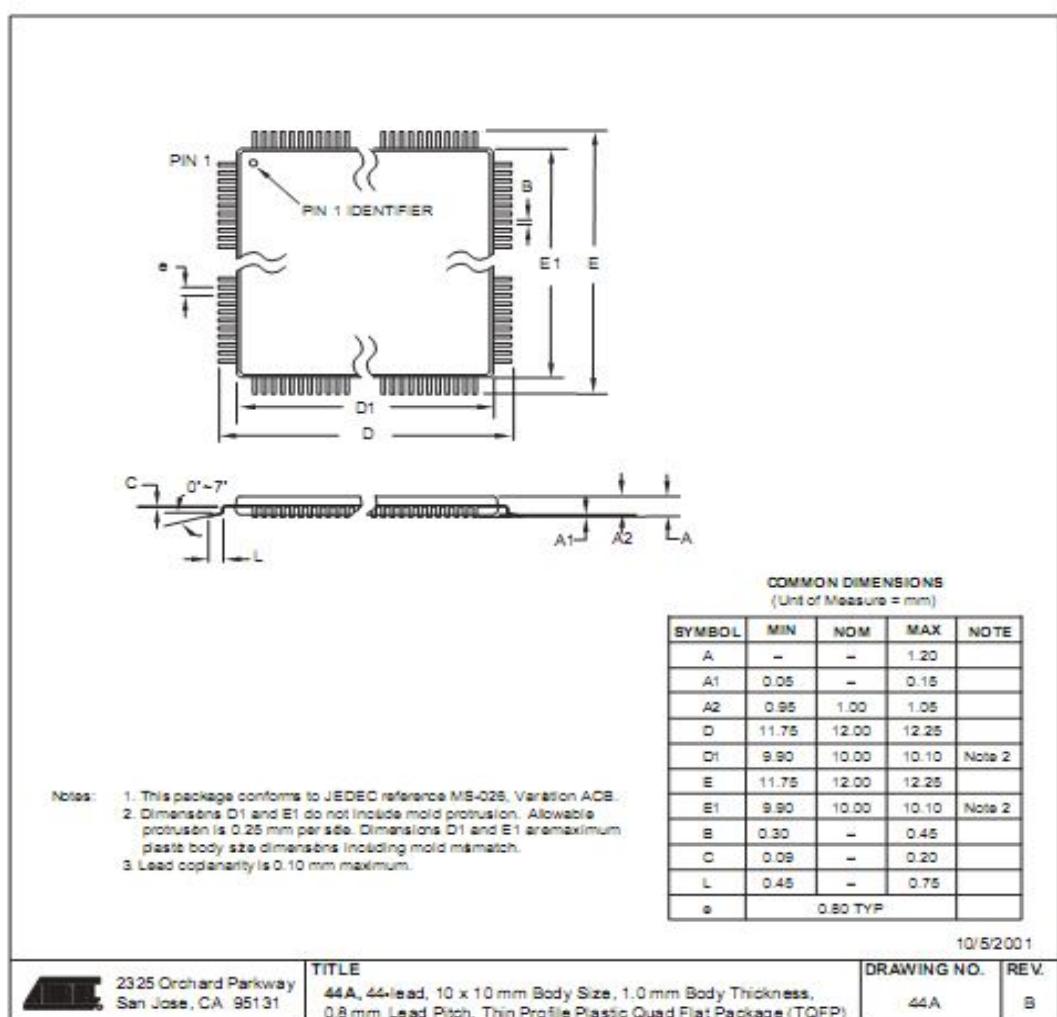
Register Summary

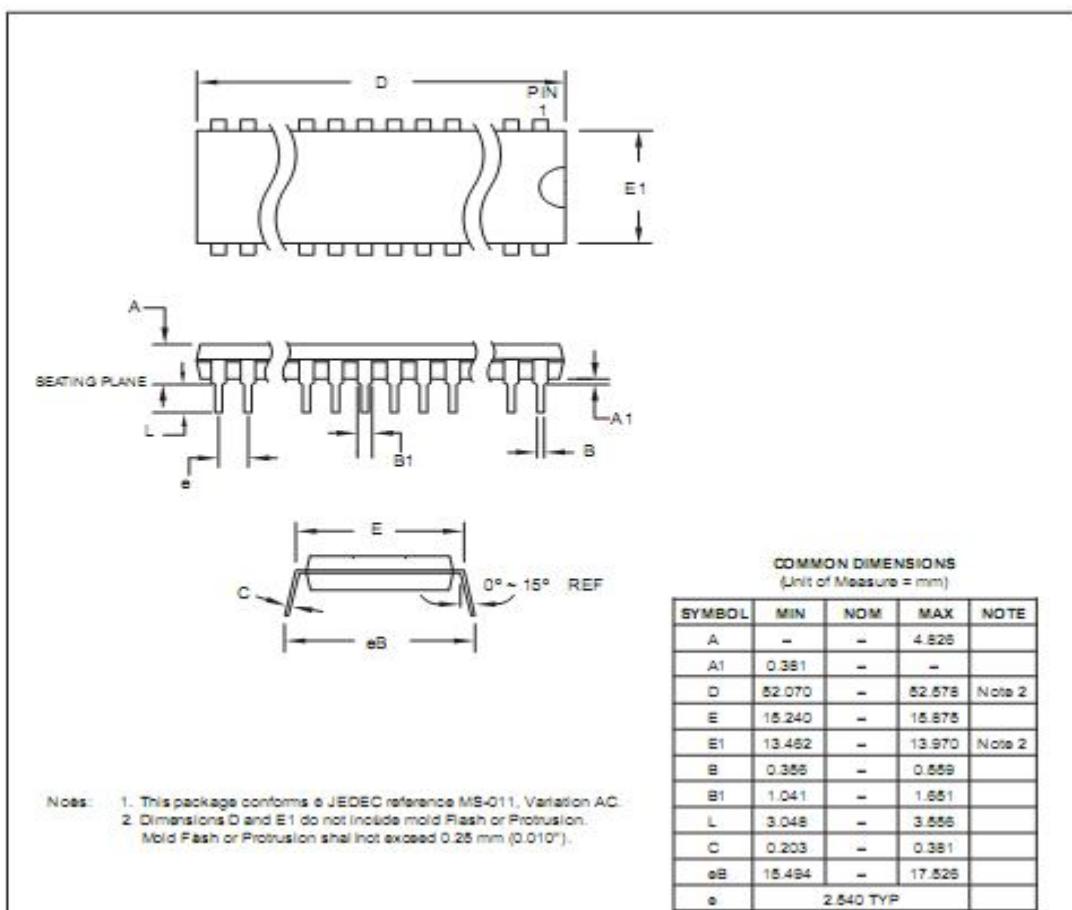
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$01 (\$21)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	179
\$00 (\$20)	TWBR	Two-wire Serial Interface Bit Rate Register								178

Notes:

1. When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this address. Refer to the debugger specific documentation for details on how to use the OCDR Register.
2. Refer to the USART description for details on how to access UBRRH and UCSRC.
3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
4. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

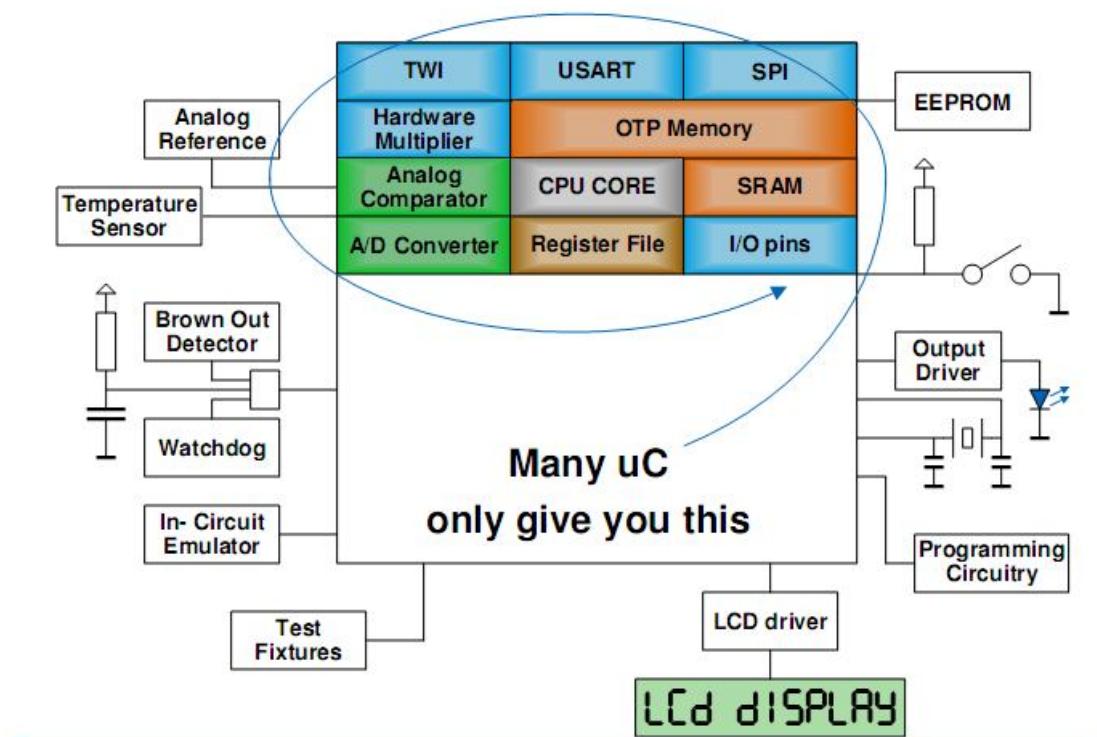
Instruction Set Summary


Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rd,K	Add Immediate to Word	$Rd(Rd \leftarrow Rd + Rr + K)$	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rd,K	Subtract Immediate from Word	$Rd(Rd \leftarrow Rd - Rr - K)$	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \wedge Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \wedge K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \vee Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow \text{SF} - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	$Rd \leftarrow \text{SF} - Rd$	Z,C,N,V,H	1
BSR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
BSR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \wedge (\text{SF} - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd + Rd$	Z,N,V	1
CIR	Rd	Clear Register	$Rd \leftarrow Rd \wedge Rd$	Z,N,V	1
SET	Rd	Set Register	$Rd \leftarrow \text{SF}$	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$R1:R0 \leftarrow (Rd \times Rr) \ll 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd \times Rr) \ll 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) \ll 1$	Z,C	2
BRANCH INSTRUCTIONS					
BRJP	X	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
BRJP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
JMP	X	Direct Jump	$PC \leftarrow k$	None	3
RCALL	X	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3
CALL	X	Direct Subroutine Call	$PC \leftarrow k$	None	4
RET		Subroutine Return	$PC \leftarrow \text{STACK}$	None	4
RETI		Interrupt Return	$PC \leftarrow \text{STACK}$	I	4
CPSE	Rd,Rr	Compare, Skip if Equal	$I(Rd = Rr) PC \leftarrow PC + k + 3$	None	1/2/3
CP	Rd,Rr	Compare	$Rd = Rr$	Z,N,V,C,H	1
CPO	Rd,Rr	Compare with Carry	$Rd = Rr - C$	Z,N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	$Rd = K$	Z,N,V,C,H	1
BRSC	Rr,b	Skip if Bit in Register Cleared	$I(Rn(b) = 0) PC \leftarrow PC + k + 3$	None	1/2/3
BRBS	Rr,b	Skip if Bit in Register is Set	$I(Rn(b) = 1) PC \leftarrow PC + k + 3$	None	1/2/3
BRSC	Rr,b	Skip if Bit in IO Register Cleared	$I(Rn(b) = 0) PC \leftarrow PC + k + 3$	None	1/2/3
BRBS	Rr,b	Skip if Bit in IO Register is Set	$I(Rn(b) = 1) PC \leftarrow PC + k + 3$	None	1/2/3
BRSS	a, k	Branch i Status Flag Set	$I(SREQ(a) = 1) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRSC	a, k	Branch i Status Flag Cleared	$I(SREQ(a) = 0) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRZ	k	Branch if Equal	$I(Z = 1) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	$I(Z = 0) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	$I(C = 1) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRCC	k	Branch if Carry Cleared	$I(C = 0) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRSH	k	Branch if Same or Higher	$I(C = 0) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRLO	k	Branch if Lower	$I(C = 1) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRVI	k	Branch if Minus	$I(N = 1) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRPL	k	Branch if Plus	$I(N = 0) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRGE	k	Branch i Greater or Equal Signed	$I(N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	$I(N \oplus V = 1) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	$I(H = 1) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	$I(H = 0) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRIS	k	Branch i If Flag Set	$I(T = 1) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRIC	k	Branch i If Flag Cleared	$I(T = 0) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRIS	k	Branch i Overflow Flag is Set	$I(V = 1) \text{ then } PC \leftarrow PC + k + 1$	None	1/2
BRVC	k	Branch i Overflow Flag is Cleared	$I(V = 0) \text{ then } PC \leftarrow PC + k + 1$	None	1/2


Mnemonics	Operands	Description	Operation	Flags	#Clocks
SBE	x	Branch If Emulator Enabled	$PC \leftarrow PC + x + 1$	None	1 / 2
BRD	x	Branch If Emulator Disabled	$PC \leftarrow PC + x + 1$	None	1 / 2
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd \leftarrow Rr \leftarrow Rr + 1:Rr$	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, -X	Load Indirect and Pre-Dec	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, -Y	Load Indirect and Pre-Dec	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDQ	Rd, Y#q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDQ	Rd, Z#q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, x	Load Direct from SRAM	$Rd \leftarrow (x)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	Xt, Rr	Store Indirect and Post-Inc	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	-X, Rr	Store Indirect and Pre-Dec	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	-Y, Rr	Store Indirect and Post-Inc	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
STD	Y#q, Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z#q, Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	x, Rr	Store Direct to SRAM	$(x) \leftarrow Rr$	None	2
UPW		Load Program Memory	$R0 \leftarrow (Z)$	None	3
UPW	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
UPW	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	None	3
SPW		Store Program Memory	$(Z) \leftarrow R1:R0$	None	-
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	$P \leftarrow Rr$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow Rr$	None	2
POP	Rd	Po Register from Stack	$Rd \leftarrow \text{STACK}$	None	2
BIT AND BIT-TEST INSTRUCTIONS					
BSI	P, b	Set Bit in I/O Register	$IO(P, b) \leftarrow 1$	None	2
BSI	P, b	Clear Bit in I/O Register	$IO(P, b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z, C, N, V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n), Rd(7) \leftarrow 0$	Z, C, N, V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z, C, N, V	1
ROD	Rd	Rotate Right Through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z, C, N, V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n), n \neq 8$	Z, C, N, V	1
SWAP	Rd	Swap Nibbles	$Rd(3, 0) \leftarrow Rd(7, 4), Rd(7, 4) \leftarrow Rd(3, 0)$	None	1
BSBT	x	Flag Set	$SREG(x) \leftarrow 1$	SREG(x)	1
BCUR	x	Flag Clear	$SREG(x) \leftarrow 0$	SREG(x)	1
BSI	Rd, b	Bit Store from Register to T	$T \leftarrow Rd(b)$	T	1
BLO	Rd, b	Bit Load from T to Register	$Rd(b) \leftarrow T$	None	1
BCO		Set Carry	$C \leftarrow 1$	C	1
BCO		Clear Carry	$C \leftarrow 0$	C	1
BNF		Set Negative Flag	$N \leftarrow 1$	N	1
CNF		Clear Negative Flag	$N \leftarrow 0$	N	1
BZ		Set Zero Flag	$Z \leftarrow 1$	Z	1
CZ		Clear Zero Flag	$Z \leftarrow 0$	Z	1
BSI		Global Interrupt Enable	$I \leftarrow 1$	I	1
CGI		Global Interrupt Disable	$I \leftarrow 0$	I	1
BTS		Set Signed Test Flag	$S \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$S \leftarrow 0$	S	1
BEV		Set Twice Complement Overflow	$V \leftarrow 1$	V	1
CLV		Clear Twice Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	$T \leftarrow 1$	T	1
CLT		Clear T in SREG	$T \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$H \leftarrow 1$	H	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
CLH		Clear Half Carry Flag in SREG	$H \leftarrow 0$	H	1
MCU CONTROL INSTRUCTIONS					
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR(timer))	None	1
BREAK		Break	For On-Chip Debug Only	None	N/A

Packaging Information


44A

Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
8	2.7 - 5.5V	ATmega16L-8AC	44A	Commercial (0°C to 70°C)
		ATmega16L-8PC	40P6	Industrial (-40°C to 85°C)
		ATmega16L-8MC	44M1	
	4.5 - 5.5V	ATmega16L-8AI	44A	Industrial (-40°C to 85°C)
		ATmega16L-8PI	40P6	
		ATmega16L-8MI	44M1	
16	4.5 - 5.5V	ATmega16-16AC	44A	Commercial (0°C to 70°C)
		ATmega16-16PC	40P6	Industrial (-40°C to 85°C)
	4.5 - 5.5V	ATmega16-16MC	44M1	
		ATmega16-16AI	44A	Industrial (-40°C to 85°C)
		ATmega16-16PI	40P6	
		ATmega16-16MI	44M1	

Code Size and Execution Time

Device	Max Speed [MHz]	Code Size [Bytes]	Cycles	Execution Time [μ s]
ATmega16	16	32	227	14.2
MSP430	8	34	246	30.8
T89C51RD2	20	57	4200	210.0
PIC18F452	40	92	716	17.9
PIC16C74	20	87	2492	124.6
68HC11	12	59	1238	103.2

APPENDICES B

Relays

A relay is an electrical switch that uses an electromagnet to move the switch from the off to one position instead of a person moving the switch. It takes a relatively small amount of power to turn on a relay but the relay can control something that draws much more power. Ex: A relay is used to control the air conditioner in your home. The AC unit probably runs off of 220VAC at around 30A. That's 6600 Watts! The coil that controls the relay may only need a few watts to pull the contacts together.

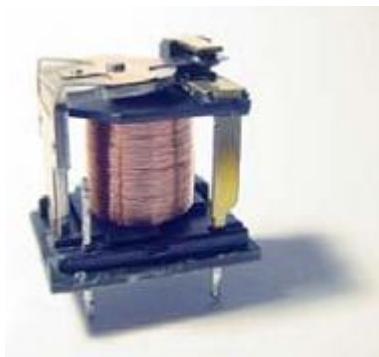
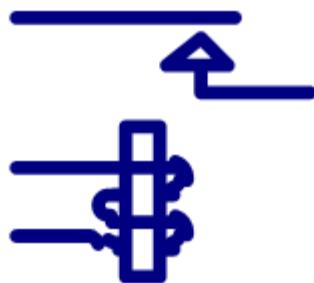



Figure: relay

This is the schematic representation of a relay. The contacts at the top are normally open (i.e. not connected). When current is passed through the coil it creates a magnetic field that pulls the switch closed (i.e. connects the top contacts). Usually a spring will pull the switch open again once the power is removed from the coil.

OPERATING PRINCIPLES

There are really only two fundamentally different operating principles:

(1) electro-magnetic attraction:

Operate by virtue of a plunger being drawn into a solenoid, or an armature being attracted to the poles of an electromagnet. Such relays may be actuated by d-c or by a-c quantities.

(2) Electromagnetic-induction relays:

Use the principle of the induction motor whereby torque

is developed by induction in a rotor; this operating principle applies only to relays actuated by alternating current, and in dealing with those relays we shall call them simply "induction-type" relays.

Relay Selection

Relays (and switches) come in different configurations. The most common are shown in figure .Single Pole Single Throw (SPST) is the simplest with only two contacts. Single Pole Double Throw (SPDT) has three contacts. The contacts are usually labeled Common (COM), Normally Open (NO), and Normally Closed (NC).

The Normally Closed contact will be connected to the Common

Contact when no power is applied to the coil. The Normally Open contact will be open (i.e. not connected) when no power is applied to the coil. When the coil is energized the Common is connected to the Normally Open contact and the Normally Closed contact is left floating. The Double Pole versions are the same as the Single Pole version except there are two switches that open and close together.[16]

Select a relay with contacts that can handle the voltage and current requirements of the load. Keep in mind that some loads (such as motors) draw much more current when first turned on than they do at

Steady state. Select a relay with a coil voltage and current that you can control easily. Ex: If you want to turn on the AC unit with a 12VDC power supply get a 12VDC coil. Note: Coils will be rated for either AC or DC operation.

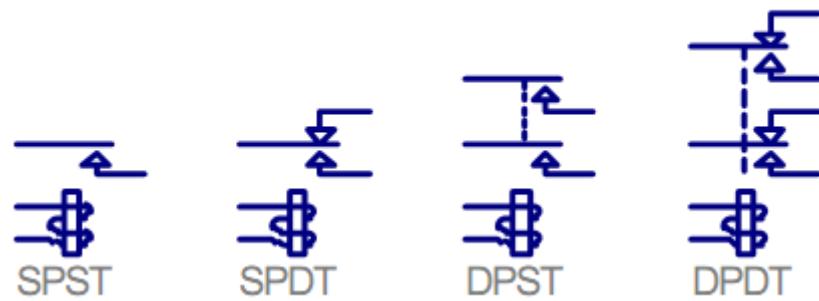
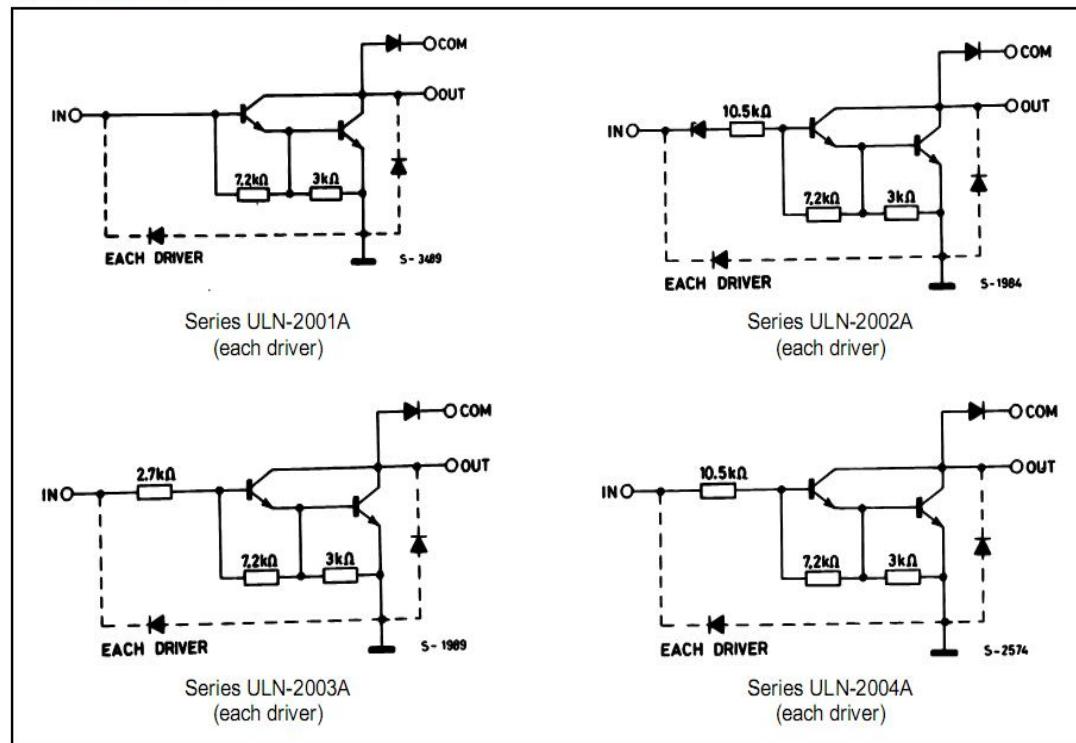


Figure: relays type.


Figure: relays parts.

APPINDICES C

ULN2003 A

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_o	Output Voltage	50	V
V_{in}	Input Voltage (for ULN2002A/D - 2003A/D - 2004A/D)	30	V
I_c	Continuous Collector Current	500	mA
I_b	Continuous Base Current	25	mA
T_{amb}	Operating Ambient Temperature Range	- 20 to 85	°C
T_{stg}	Storage Temperature Range	- 55 to 150	°C
T_j	Junction Temperature	150	°C

THERMAL DATA

Symbol	Parameter	DIP16	SO16	Unit
$R_{th,j-amb}$	Thermal Resistance Junction-ambient	Max.	70	°C/W

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^\circ\text{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit	Fig.
I_{CEX}	Output Leakage Current	$V_{CE} = 50\text{V}$ $T_{amb} = 70^\circ\text{C}$, $V_{CE} = 50\text{V}$			50 100	μA	1a 1a
		$T_{amb} = 70^\circ\text{C}$ for ULN2002A $V_{CE} = 50\text{V}$, $V_i = 6\text{V}$ for ULN2004A $V_{CE} = 50\text{V}$, $V_i = 1\text{V}$			500	μA	1b
$V_{CE(\text{sat})}$	Collector-emitter Saturation Voltage	$I_C = 100\text{mA}$, $I_B = 250\mu\text{A}$ $I_C = 200\text{mA}$, $I_B = 350\mu\text{A}$ $I_C = 350\text{mA}$, $I_B = 500\mu\text{A}$		0.9 1.1 1.3	1.1 1.3 1.6	V	2 2 2
				1.3		V	
$I_{(on)}$	Input Current	for ULN2002A , $V_i = 17\text{V}$		0.82	1.25	mA	3
		for ULN2003A , $V_i = 3.85\text{V}$		0.93	1.35	mA	3
		for ULN2004A , $V_i = 5\text{V}$		0.35	0.5	mA	3
		$V_i = 12\text{V}$		1	1.45	mA	3
$I_{(off)}$	Input Current	$T_{amb} = 70^\circ\text{C}$, $I_C = 500\mu\text{A}$	50	65		μA	4
$V_{(on)}$	Input Voltage	$V_{CE} = 2\text{V}$ for ULN2002A $I_C = 300\text{mA}$			13	V	5
		for ULN2003A $I_C = 200\text{mA}$			2.4		
		$I_C = 250\text{mA}$			2.7		
		$I_C = 300\text{mA}$			3		
		for ULN2004A $I_C = 125\text{mA}$			5		
		$I_C = 200\text{mA}$			6		
		$I_C = 275\text{mA}$			7		
		$I_C = 350\text{mA}$			8		
h_{FE}	DC Forward Current Gain	for ULN2001A $V_{CE} = 2\text{V}$, $I_C = 350\text{mA}$	1000				2
C_i	Input Capacitance			15	25	pF	
t_{PLH}	Turn-on Delay Time	0.5 V_i to 0.5 V_o		0.25	1	μs	
t_{PHL}	Turn-off Delay Time	0.5 V_i to 0.5 V_o		0.25	1	μs	
I_R	Clamp Diode Leakage Current	$V_R = 50\text{V}$ $T_{amb} = 70^\circ\text{C}$, $V_R = 50\text{V}$			50 100	μA	6 6
V_F	Clamp Diode Forward Voltage	$I_F = 350\text{mA}$		1.7	2	V	7

TEST CIRCUITS

Figure 1a.

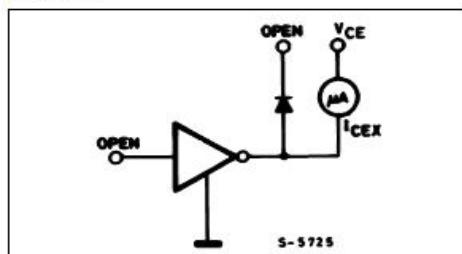


Figure 1b.

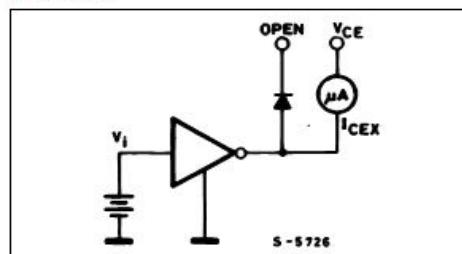


Figure 2.

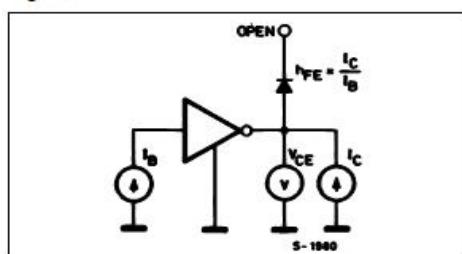


Figure 3.

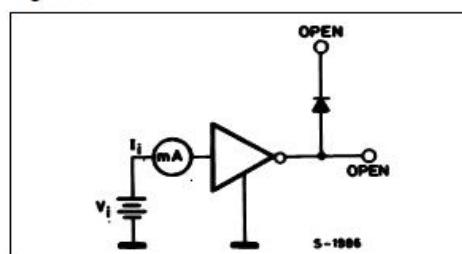


Figure 4.

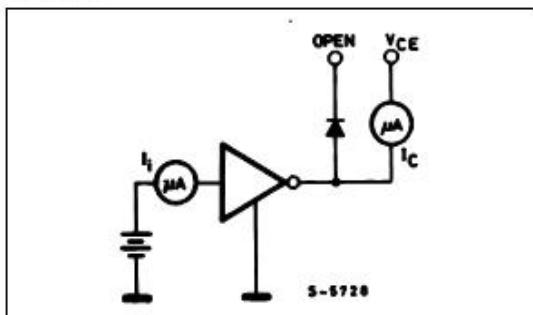


Figure 5.

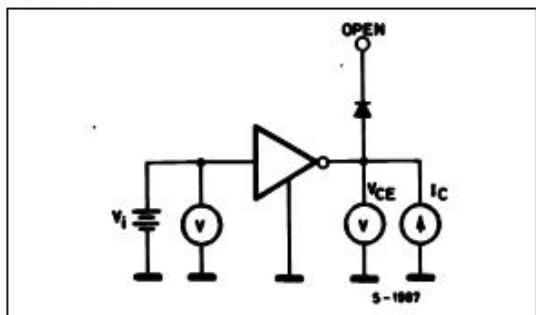


Figure 6.

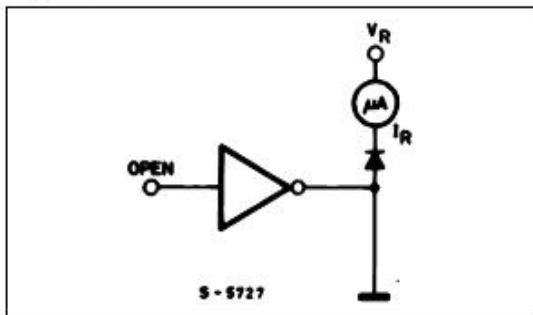


Figure 7.

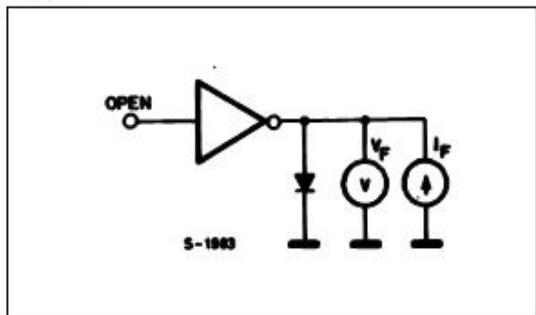


Figure 10: Peak Collector Current versus Duty Cycle

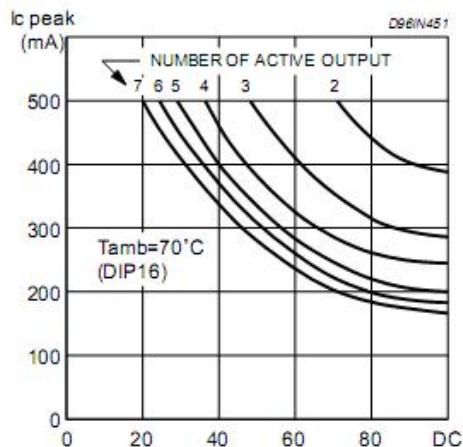


Figure 11: Peak Collector Current versus Duty Cycle

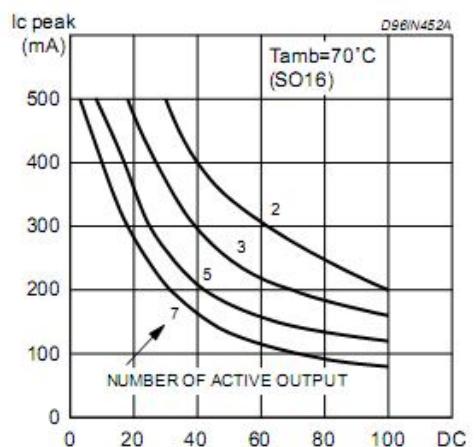


Figure 8: Collector Current versus Input Current

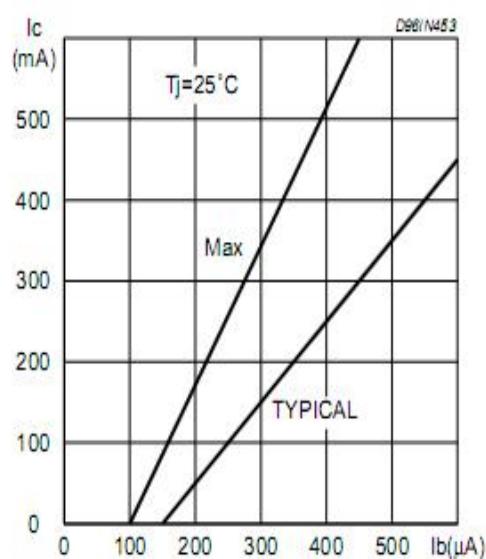
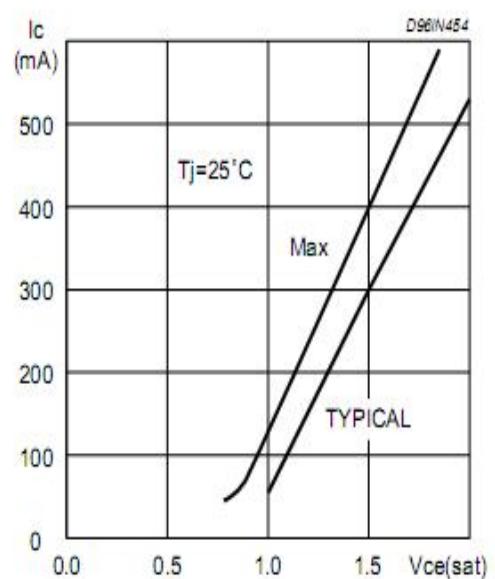
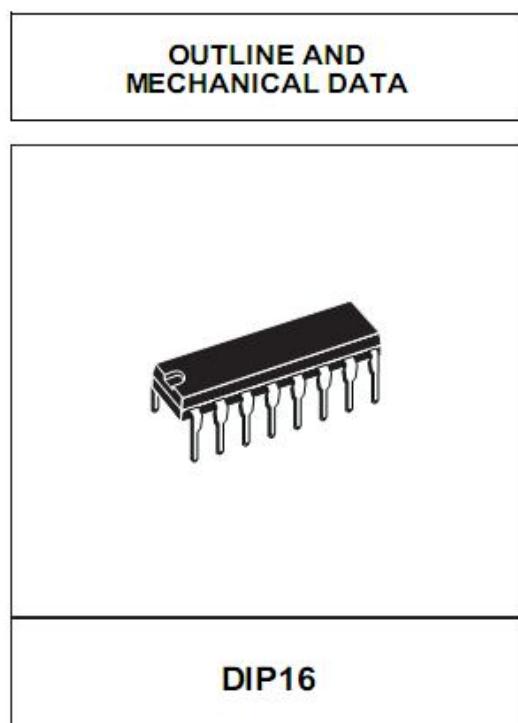
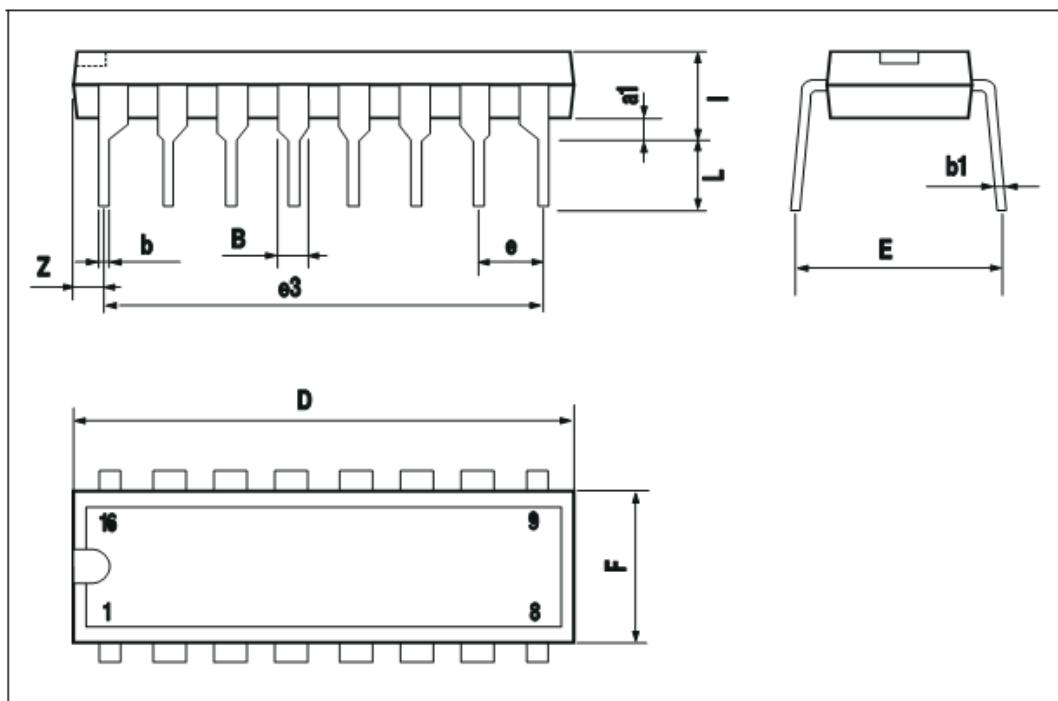





Figure 9: Collector Current versus Saturation Voltage


DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
e		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.75			0.069
a1	0.1		0.25	0.004		0.009
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.020	
c1	45° (typ.)					
D (1)	9.8		10	0.386		0.394
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F (1)	3.8		4	0.150		0.157
G	4.6		5.3	0.181		0.209
L	0.4		1.27	0.016		0.050
M			0.62			0.024
S	8°(max.)					

OUTLINE AND MECHANICAL DATA

SO16 Narrow

(1) D and F do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm (.006inch).