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ABSTRACT

Heart Rate Variability (HRV) Represent one of the most promising
markers which represent anon invasive way of measuring autonomic
nervous system(ANS), it describes the variation over time of both
instantaneous heart rate and the interval between consecutive heart

beats.

Previously traditional methods had been used for calculating heart beat
as using hand with time , and after the appearance of the new method
and devices those depend on computer program the HRV analysis
become more easier and more accurate, thus this is the primary purpose
of use the statistical methods to analyze HRV using Mat lab program.
New method has been proposed to analyze HRV using statistical
methods by using the matlab program. HRV analysis was divided into
four phases ,in the first phase a pre processing was done to remove
power line interference and the base line wander using second order
lIR notch filter "pole-zero placement" and fourth order chebyshev band
pass filter "bilinear transformation" respectively. Secondly, discrete
wavelet transformation was applied on ECG signals as one of the robust
features ,which were subsequently used for next phase. The third
phase detection of R peak and RR interval were calculated from the
wavelet vector, different statistical features were calculated as an input
for classification phase. Finally, classifier was designed to differentiate
between normality and abnormality. Results obtained from this work are
acceptable when compare it with previous studies results and result in

the same data base, the accuracy of this work represent 95% .
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Chapter one

Introduction

1.1 Introduction

HRYV represent one of the most promising markers, which represent a non
invasive way of measuring autonomic nervous system. HRV computed by
analyzing beat-to-beat interval time series derived from an electrocardiogram
(ECG).

1.1.1 Heart Rate Variability ( HRYV)

Heart rate variability (HRV) represents one of the most promising such
markers, HRV is computed by analyzing beat-to-beat interval time series
derived from an electrocardiogram (ECG), an arterial pressure tracing, or a
plethysmographic pulse wave signal. A variety of metrics have been proposed
for measuring HRV. These metrics can broadly be classified into time [1],

frequency [2], fractal [3], and nonlinear [4] domain measures of HRV.

Heart rate variability is non invasive way of measuring autonomic nervous
system dynamics as influenced by ones emotional state by studding beat to beat
variation [5]. it describe the variation over time of both instantaneous heart
rate and the interval between consecutive heart beats ,the rhythm of the heart is
modulated by SA node which is largely influenced by both the sympathetic and
Para sympathetic branches of the ANS as shown in figure( 1.1) bellow [6] :

ifl“'\. AI /_J

R
Parasympathetic Sympathetic = ,J‘ ]‘ "J
- N . |ﬂ"_;(

Dacraasi IrErFis
Huart Nata Hearl Raln

il
e

Figure 1.1 autonomic regulation of heart result in HRV



Heart rate variability (HRV) analysis is an important application with many
research and clinical use, which give information about the autonomic heart
modulation mechanism [7], the normal one-cycle of electrocardiogram ( ECG)

signal consists of several waves, as shown in Figure( 1.2).

RR Interval

Figure 1. 2 R Peaks and RR Intervals of an ECG Signal

Figure ( 1.2 ) illustrate that the wave with the highest amplitude is the R wave,
An RR interval is the time elapsed between two successive R waves, The

waves with the lower amplitudes are the P wave, the T wave and the U wave

[8].

1.1.2 Introduction to Electrocardiography (ECG)

The various propagating action potentials within the heart produce a current
flow, which generates an electrical field that can be detected, in significantly
attenuated form, at the body surface, via a differential voltage measurement
system. The resulting measurement, when taken with electrodes in standardized
locations, is known as the electrocardiogram (ECG), Electrocardiogram , an
electrical recording of the heart and is used in the investigation of heart disease

[9].

An electrocardiogram (ECG) is a graph produced by an electro cardio graph that
provides information about an individual cardiac health [7]. it is diagnosis tool that

reported the electrical activity of heart recorded by skin electrode, the morphology



and heart rate reflects the cardiac health of human heart beat, it 1S anon invasive
technique that means this Signal is measured on the surface of human body, which
is used in identification of heart disease [10].anther definition of the noninvasive
technique meaning that this signal can be measured without entering the body at all.
Electrodes are placed on the user's skin to detect the bioelectric potentials given off
by the heart that reach the skins surface. The ECG detection which shows the
information of the heart and cardiovascular condition is essential to enhance the
patient living quality and appropriate treatment. It is valuable and an important tool
in the diagnosing the condition of the heart diseases [11]. Any disorder of heart rate
or thythm or Change in the morphological pattern is an indication of cardiac
arrhythmia which could be detected by analysis of the recorded ECG wave form and
duration of the P-QRS-T wave contains useful information about the
nature of disease afflicting the heart [10].
The electrical wave is due to the depolarization and re polarization of Na and

k ions in the blood as shown in figure bellow [10].

]
1

BT i

Figure 1.3 Peaks in ECG signal



The importance of HRV is to detect the healthy subject and it use in clinical
cases such as myocardial infarction, hypertension, chronic obstructive

pulmonary disease, diabetic neuropathy and apnea [12].

Signal analysis technique help in obtain information which completely change

the way in diagnosis disease, when it is not possible to imagine

Situation related to the heart without obtain information from bio electrical

signal delivered from the heart.
1.2 Problem Statement:

Heart rate variability is a more sensitive tool to detect abnormalities of the
heart, it establish itself as a non-invasive methods and clinical tool for
indirectly investigating both cardiac and autonomic system function in both

normal and abnormal.

1.3 Objectives:
The general objective of the research is:

1- To evaluate the usefulness of analysis of heart rate variability (HRV) to be
a useful method of assessing cardiovascular autonomic control, between
normal and abnormal .

2- To evaluate the sensitivity of HRV to detect diagnosis information in

different cases between normal and abnormal.
The specific objective:

1- To propose a new method ECG analysis by features extraction  (using

wavelet transform).

2- To use accuracy means of methods for analysis heart rate variability (using

statistical methods).



1.4 Organization of the thesis:

the thesis contain in chapter one introduction to heart rate variability ,chapter
two literature reviews ,chapter there analysis for (HRV) using statistical
methods, chapter four result and discussions, chapter five conclusion and

recommendation and finally Reference and Appendix.






Chapter Two

Literature review

2.1 Theoretical Background

Study of heart rate variability is being used to identify the relationship between
autonomic nervous system and heart , but direct gathering information is not
available , in contrast most researcher depend on data provided from ECG
measuring system. This system proposed to study HRV is composed of the

following component parts.
1- ECG Signal

2-ECG database

3- Noise in ECG signal
4-Wavelet transform

5-Statistical analysis

[ ECG Signal ][ ECG Data base ][ Noise in ECGsignal ][ Wavelet transform ] [ Statistical analysis ]

2.1.1 ECG Signal

ECG signal is an electrical signal that obtained from the heart by surface
electrodes ,the standard ECG has 12 leads which include 3 bipolar leads ,3
unipolar leads and cheats leads(precordial ),a lead is pair of electrodes
(+positiveve & - negative ) placed on the body in designated anatomical

location and connected to an ECG record [13].

A normal ECG recorded by the electrode consist of p wave ,QRS complex and
T waves .the QRS complex include three separate waves Q,R&S all these are
generated when the cardiac impulse goes through the ventricles .in the ECG
signal waves Q and S are generally significantly less prominent than the wave

lengths of p and sometimes may be missing ,the P wave depends on electrical

6



current generated when the atria depolarize before contraction and the QRS
complex is produced by currents arising when the ventricles depolarize prior to
contract .there for P wave as well as component of the QRS complex
corresponded to depolarization ,the T wave which is caused by current arising
when the ventricles recover from the depolarization state is known as the
repolarization wave. in essence ,the ECG signal is composed of wave of
depolarization and repolarization as show in figure ( 2.2 ) and (2.3) .QRS
complex are present in most of heart beats that are associated with ventricular
electrical activity and contain important clinical information so it is signal to
noise ratio is the highest among all waves present in the ECG signal . The P
wave reflects the depolarization of the right and left atria. Its amplitude is
normally less than 300 pV, and its duration is less than 120 ms. The QRS
complex reflects depolarization of the right and left ventricles. Its duration is
normally about 70-110 ms. it has the largest amplitude of the ECG waveforms,
sometimes reaching 2-3 mV. The T wave reflects ventricular re polarization
and extends about 300 ms [13] . QRS complex corresponds to the current that
causes contraction of the left and right ventricles [5],the figure (2.1) below

shown the QRS complex.

L) oRs compiex
b
Figure 2.1 QRS complex [14]
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The interpretation of the ECG signal is an application of pattern recognition. The
purpose of pattern recognition is to automatically categories a system into one of a
number of different classes. An experienced cardiologist can easily diagnose various
heart diseases just by looking at the ECG waveforms printout. In some specific
cases, sophisticated ECG analyzers achieve a higher degree of accuracy than that of

cardiologist [15].

2.1.2 Masschusetts Institute of Technology Beth Israel Hospital
Arrhythmias database ( MIT-BIH)

The MIT/BIH arrhythmia database is used in the study for performance
evaluation. The database contains 48 records, each containing two-channel
ECG signals for 30 min duration selected from 24-hr recordings of 47
individuals there are 116,137 numbers of QRS complexes in the database .The
subjects were taken from, 25 men aged 32 to 89 years, and 22 women aged 23
to 89 years and the records 201and 202 came from the same male subject. Each
recording includes two leads; the modified limb lead II and one of the modified
leads V1, V2,V4 or V5. Continuous ECG signals are band pass-filtered at 0.1—
100 Hz and then digitized at 360 Hz. Twenty-three of the  recordings
(numbered in the range of 100-124) are intended to serve as a representative
sample of routine clinical recordings and 25 recordings (numbered in the range
of 200-234) contain complex ventricular, junctional, and supraventricular
arrhythmias. And another kind of record contain 18 records as rythmia ECG

signal.

The database contains annotation for both timing information and beat class

information verified by independent experts.

MIT-BIH heartbeat types are combined according to Association for
the Advancement of Medical Instrumentation (AAMI) recommendation of
classifying ventricular ectopic beats (VEBs) from the non-
ventricular ectopic beats . AAMI also recommends that each ECG beat can

be classified into the following five heartbeat type as shown in the table (2.1)



Each class includes heartbeats of one or more types. Class N contains normal

and bundle branch block beat types and escape Beat, class S contains

supraventricular ectopic beats (SVEBs), class V contain Premature ventricular

contraction beats and ventricular Escape beat, class F contains beats that result

from fusing normal and VEBs, and class Q contains unknown beats including

paced beats [12].

Table 2.1 Mapping the MIT-BIH arrhythmia database heart beat types to the
AAMI heartbeat classes .

AAMI heartbeat

Description

MIT/BIH heartbeat types

Group of arrhythmias
N

Normal signal

Normal (N),Left Bundle
Branch Block (LBBB ),

Right Bundle Branch Block
(RBBB), Atrial Escape
(AE), Nodal (junctional)
escape beat(NE )

Group of arrhythmias
type Sv

Supraventricular ectopic

beat

Atrial Premature (AP),

Aberrated Atrial Premature

(aAP )9

Nodal (junctional)
Premature (NP),

Supraventricular Premature

(SP),

Group of arrhythmias
v

Ventricular ectopic beat

Premature Ventricular

Contraction (PVC),

10




Ventricular escape (VE )

Group of arrhythmias | Fusion beat Fusion of ventricular and

F normal (fVN),

Fusion of paced and normal

beat (fPN )
Group of arrhythmias | Unknown beat Paced (P ), Unclassified
Q Q)

To download ECG signals from the data base go to WWW.PhysioNet.org,
After that PhysioBank / Signal Archives/ ECG/ MIT-BIH Arrhythmia

Database. To read all ECG signals files(.atr annotation files, .dat binary signal

files, .hea header files) used matlab code.
2.1.3 Noise in ECG signal

ECG signal is often contaminated by different types of noises and artifacts that
can be within the frequency band of ECG signal, which may change the
characteristics of ECG signal.

The corruption of ECG signal is due to following major noises:
2.1.3.1 Power line interferences

Power line interferences contains 60 Hz pickup. It is indicated as an impulse or
spike at 60 Hz/50 Hz harmonics, and will appear as additional spikes at integral
multiples of the fundamental frequency. Its frequency content is 60 Hz/50 Hz
and its harmonics, amplitude is up to 50 percent of peak-to-peak ECG signal

amplitude.

Naturally precautions should be taken to keep power lines as far as possible or

shield and ground them, but this is not always possible [12] .

11
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Figure 2.4 Electrocardiographic mixed with 60Hz powerline

interference.

2.1.3.2 Baseline wander

Base-line drift may be caused in chest-lead ECG signals by coughing or
breathing with large movement of the chest, or when an arm or leg is moved in
the case of limb-lead ECG acquisition. Base-line wander can sometimes caused

by variations in temperature and bias in the instrumentation and amplifiers.

The variation of the baseline with respiration can be represented as a
sinusoidal component and the frequency of respiration added to the ECG
signal. The variation could be reproduced by amplitude modulation of the ECG

by the sinusoidal component that is added to the base line.

The magnitude of the undesired wander may exceed the amplitude of the QRS
complex by several times. Its spectral content is usually confined to an interval
well below 1 Hz. but it may contain higher frequencies. Removal of baseline
wander is required in order to minimize changes in beat morphology This is
especially important when unnoticeable changes in the "low-frequency" ST-T
segment are analyzed for the diagnosis of ischemia. The baseline wander in

ECG causes problems in detection peaks [12].

12
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Figure 2.5 ECG with baseline wander.
2.1.3.3 Motion artifact

Motion artifacts are transient base line changes in the electrode skin impedance
with electrode motion. The shape of the base line disturbance caused by the
motion artifacts can be assumed to be a biphasic signal resembling one cycle of
a sine wave. The peak amplitude and duration of the artifacts are variables. The
duration of this kind of noise signal is 100-500ms with amplitude of 500%
peak-to-peak ECG amplitude [12].

2.1.4 The Wavelet Transform

Most signals are represented in the time domain. More information about the
time signals can be obtained by applying signal analysis, the time signals are
transformed using an analysis function. The transform of a signal is just another
form of representing the signal. It does not change the information content

present in the signal.

The Fourier transform is only able to retrieve the global frequency content of a
signal, the time information is lost. This is overcome by the short time Fourier
transform (STFT) which calculates the Fourier transform of a windowed part of
the signal and shifts the window over the signal. The short time Fourier

transform gives the time-frequency content of a signal with a constant
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frequency and time resolution due to the fixed window length. For low
frequencies often a good frequency resolution is required over a good time
resolution. For high frequencies, the time resolution is more important.

A multi-resolution analysis becomes possible by using wavelet analysis ,The
wavelet transform (WT) is designed to address the problem of non-stationary
ECG signals. It derived from a single generating function called the mother
wavelet by translation and dilation operations. The main advantage of the WT
is that it has a varying window size, being broad at low frequencies and narrow
at high frequencies, that is leading to an optimal time-frequency resolution in
all frequency ranges. The WT of a signal is the decomposition of the signal
over a set of functions obtained after dilation and translation of an analyzing
wavelet [11], The first step of wavelet decomposition is to select an appropriate
wavelet for the signal to be analyzed. Appropriate wavelets should have a wave
shape, which is close to the analyzed or filtered signal. Convolving the wavelet
function with the original signal produces the equivalent of a high-pass filter
(or a low-pass filter), resulting in the details (or the approximation) of the
signal. figure(2.6) shows the wavelet decomposition for each level of
decomposition the signal is filtered into approximate information of the signals
(lower frequencycomponent) and detail information (higher frequency

component). If this procedure is repeated N times, a filter bank is created with

N filters.
s

r CAE CDE

Cﬂﬂ CDQ

Figure 2.6 Wavelet Decomposition
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2.1.4.1 The Types of Wavelet
2.1.4.1.1 The Continuous Wavelet Transform(CWT)

The continuous wavelet transform is calculated analogous to the Fourier
transform, by the convolution between the signal and analysis function.
However the trigonometric analysis functions are replaced by a wavelet
function. Time information is obtained by shifting the wavelet over the signal.
The frequencies are changed by contraction and dilatation of the wavelet
function. The continuous wavelet transform retrieves the time-frequency

content information with an improved resolution compared to the STFT.
2.1.4.1.2 The Discrete Wavelet Transform (DWT)

The discrete wavelet transform (DWT) is uses filter banks to perform the
wavelet analysis. The discrete wavelet transform decomposes the signal into
wavelet coefficients from which the original signal can be reconstructed again.
The wavelet coefficients represent the signal in various frequency bands.

The DWT is sufficient for most practical applications and for the
reconstruction of the signal. The DWT provides enough information, and offers
a significant reduction in the computation time. Here, we have discrete function

f (n) and the definition of DWT is given by:
Wi(a,b)=c(j,k)=2n=, f(n)'¥j.k(n) (1)

Where ¥j.k(n) is a discrete wavelet defined as:
¥j.k(n)=2"*¥(27 n-k) )
Equations (1), (2) from [16].

In the DWT analyses, the signal at different frequency bands and at different
resolutions i1s decomposed into a 'coarse approximation' and 'detailed
information'. Two sets of functions are employed by the DWT, the scaling
functions (associated with the low pass filter) and the wavelet functions

(associated with the high pass filter). The signal is filtered by passing it through
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successive high pass and low pass filters to obtain versions of the signal in
different frequency bands.

The fundamental idea behind wavelets is to analyze according to scale.
Wavelets are functions that satisfy certain mathematical requirements and are
used in representing data or other functions. Wavelet algorithms process data at
different scales or resolutions. If we look at a signal with a large window, we
would notice gross features. Similarly, if we look at a signal with a small
window, we would notice small features. The result in wavelet analysis is to
see both the forest and the trees, so to speak.

DWT has different families such as Haar Wavelet, Daubechies Wavelets,
Symlets Wavelets, Coiflets Wavelets, Biorthogonal Wavelets, Meyer Wavelet,
Mexican Hat Wavelet and so on.

In this work we used Daubechies Wavelet (db4) which it looks like ECG
signal. In dbN, N is the order ,Some authors use 2N instead of N [17].

i = =5 ==

Figure 2.7 Daubechies (db4) [17]

2.1.5 Statistical analysis

In this last point we use the statistical methods such as mean (Mi) ,standard

deviation (Std) and roots mean squirts (RMS) to evaluate the result.
2.2 Previous studies

The auther of this paper ( using lab view for heart rate variability analysis )

using time series analysis, time-domain measurements, They extract many
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measurements from the original RR interval signals to show changes in the
autonomic nervous system (ANS). The Biomedical Toolkit contains the HRV
Statistics VI and the HRV Histogram VI. They use these two Vs to extract

several commonly used measurements, as shown in table ( 2.2).

Table 2.2 Time-Domain Measurements of Heart Rate Variability

Variable Unit Description

Statistical Measurements

RR Mean & Std 'S Mean and standard deviation of all RR intervals.

HR Mean & Std  1/min Mean and standard deviation of all heart rates.

RMSSD Ms Square root of the mean of the sum of squares of
differences between adjacent RR intervals.

NN50 Count N/A  Number of pairs of adjacent RR intervals differing
by more than 50 ms in all the measurements.

pNNS50 % NN50 count divided by the total number of all RR
intervals.

Geometric Measurements

HRYV Triangular N/A  |Total number of all RR intervals divided by the

Index height of the histogram of all RR intervals.

TINN Ms Baseline width of the minimum square difference
triangular interpolation of the highest peak of the
histogram of all RR intervals measured on a discrete

scale with bins of 7-8125 ms (1/128 s).

They found in the result that the proposed technique heart Rate Variability
Analyzer application to acquire these measurements. Figure( 2.5) illustrate RR

interval in HRV signal [8].
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Figure 2.8 Detraining process for RR interval signal in HRV

Ulrich Mehnert,* Peter A. Knapp, Nicole Mueller, Andre” Reitz, and Brigitte
Schurch, discuss an objective measure of autonomic activity and bladder
sensations during urodynamics using heart rate variability. They use a
volunteer sample of healthy female subjects a standard FC at 25 ml/min was
performed using an 8 Fr micro tip catheter with integrated pressure
transducers. During FC, subjects had to indicate first Sensation of fling
(FSF), first desire to void (FDV) and strong desire to void (SDV). A 3-lead
electrocardiogram was continually recorded ,continuously recorded. After 5 h
all measurements were repeated. Power spectrum analysis was used to
analyze HRV, to obtain low frequency (LF) and high frequency (HF)
parameters, from which the LF/HF ratio was derived. finally they found 12
subjects with a mean age of 23.3 2.3 years could be included. 11 of 12
subjects completed both measurement sessions. One subjects had to be
excluded, due to irritating urethral discomfort following cathe- terisation.
The LF/HF ratio showed a reproducible activation pattern in the healthy
subjects with a stable sympathovagal balance until FDV Before SDV was
indicated the sympathovagal balance started to shift towards sympathetic

activation and caused a significant increase in LF/HF [18].

Szi-Wen Chen discuss A Wavelet-Based Heart Rate Variability Analysis for
the Study of No sustained Ventricular Tachycardia, they proposed work
investigated Wavelet analysis methods. These methods represent the temporal
characteristics of a signal by its spectral components in the frequency domain,

and the next step they describe Analysis Scheme which use WT-based analysis
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scheme for short-time HRV assessments. and suggested that the proposed
technique could effectively extract features, which differentiate between the
types of heart diseases analyzed and also for normal heart signal their test

results [19].

P. Sasikala, Dr. R.S.D. Wahidabanu, Salem, discuss the robust R Peak and
QRS detection in Electrocardiogram using Wavelet Transform by using matlab
program for preprocessing and feature extraction using digital filters in pre
processing and wavelet transform in feature extraction. they found on their
result the information about the R Peak and QRS complex obtained is very
useful for ECG classification, analysis, diagnosis, authentication and
identification performance. The QRS complex is also used for beat detection
and the determination of heart rate through R-R interval estimation. This
information can also serve as an input to a system that allows

automatic cardiac diagnosis [16].

R. Harikumar, S.N. Shivappriya, discuss Analysis of QRS Detection Algorithm
for Cardiac Abnormalities they use in their methods The ECG Beat
Classification will consist of 5 modules. ECG (ventricular arrhythmia) signals
used for the research were obtained from the Physionet Database (Physio
Bank) ]. A set of programs from the Physionet website were used to import
ECG records each signal component consists of data file, attribute file
and header file written in Ma lab code. Mat lab and its Wavelet Toolbox were
used for ECG signal processing and analysis. The five module for HRV signal
are:Preprocessin  Module,Feature Extraction Module,Feature Reduction,
Classifier and Optimizer Module and the Output module which gives the

performance metrics of the of Analyzer and diagnosis result [20].
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Chapter Three

Methodology

3.1Methodology

The HRV analysis represent four steps as shown in this block diagram below
which describe the ECG pre-processing, ECG feature extraction and the

statistical methods.

Read the ECG signals files(.atr annotation files,
.dat binary signal files, .hea header files) by

matlab software.

Remove power line interference

(Digital filter)

3 J L

Remove baseline wander (Digital filter)

J L

Apply discrete wavelet transform (DWT)

( Daubechies Wavelets)

4 J L

Detect ECG peaks, compute the RR intervals

t 17

Apply the statistical methods(meen, sd and rms )
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3.2 Read ECG Signals

We are read ECG signals from MIT-BIH database by using matlab code .

20 ECG signals were used, they have normal and abnormal signals.

Table(3.1):The ECG Signal Read

The ongenal ECG signal

3 A N O P RN A B
[1}] 1 1 1 1 1 1 1 1
E ““"M LJH L*“jl WL**J ;LJL-JH L‘*‘!Z "“*L'JZ
e I I \ I I I I I I
E 1000 | | | | | | | | |
’ 0 100 200 300 400 500 600 700 800 900 1000

sampling frequency

Figure 3.1 The reading of racord16265

The origenal ECG signal
? 5[][] | | | | | | | | |
E A N T e A TR
R e e S S S
T I T T R T A R N
" 0 100 200 300 400 500 600 700 GO0 900 1000

- samplingfrequenc?f |

Figure 3.2 The reading of racord16272
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The onigenal ECG signal
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Figure 3.3 The reading of racord16273
The origenal ECG signal
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Figure 3.4 The reading of racord16420
The onigenal ECG signal
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Figure 3.5 The reading of racord16483
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amplitude (m*”) amplitude(m™

amplitude ()

The origenal ECG signal
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Figure 3.6 The reading of racord16786
The origenal ECG signal
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A
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sampling frequency
Figure 3.7 The reading of racord17453
The anigenal ECG signal
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Figure 3.8 The reading of racord18184
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The origenal ECG signal
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Figure 3.9 The reading of racord19088
The origenal ECG signal
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Figure 3.10 The reading of racord19830
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Figure 3.11 The reading of racord100
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The origenal ECG signal
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Figure 3.12 The reading of racord115
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Figure 3.13 The reading of racord118
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Figure 3.14 The reading of racord122
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The ongenal ECG signal
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Figure 3.15 The reading of racord201

The origenal ECG signal
> 1200
£
il
21000
o0 I N O T R R A
EBIIII

0 100 200 300 400 500 600 700 800 900 1000
sampling frequency

Figure 3.16 The reading of racord205
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Figure 3.17 The reading of racord220
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The ongenal ECG signal
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Figure 3.18 The reading of racord230
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Figure 3.19 The reading of racord231

The origenal ECG signal
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Figure 3.20 The reading of racord234
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3.3 Preprocessing

3.3.1 (ECG Filtering)

HRV depend on ECG signal which a major diagnostic tool for the
cardiologists and ECG signal provides almost all the information about
electrical activity of the heart. So care should be taken while doing the ECG
filtering.

3.3.1.1 Powerline Interference
Powerline Interference at ECG signals from MIT-BIH database is (60 Hz),to
reduction it there were Designed a band stop ( notch) filter second order IR
with the following specification using the pole-zero placement

e Sampling rate( fs) 600 Hz.

e 3dB band width BW Hz.

e Centred of pass band (narrow) fo

The design formulas for band stop filters are given in the following equation:
r =1-(BW3q/fy)*n 3)
for 0.9 <r<l1
which is the required magnitude of the poles.

6 = (fy/f))*360° 4)
We use the center frequency to obtain the angle of the pole location in(3.2)
above.
Then we calculate the scale factor to adjust the band stop filter to have a unit
pass band gain given by:
k=(1-2rcos6+12)/(2-2c0s6) (%)
finally we obtain the transfer function as follows:
H(z)=(z2 — 2zcos6+1)/(z2 — 2rzcos6+12) (6)
All equations of power line interference from [21]

Figure show the remove of power line interference
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Figure 3.21(a) A second order IIR band stop ( notch) filter frequency response
of 60Hz(magnitude).
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Figure 3.21(b) A second order IIR band stop ( notch) filter frequency response

of 60Hz (phase).
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Figure 3.22(a) A second order IIR band stop ( notch) filter frequency response
of 120Hz(magnitude).
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Figure 3.22(b) A second order IIR band stop ( notch) filter frequency response
of 120Hz(phase).
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Figure 3.23(a) A second order IIR band stop ( notch) filter frequency response
of 180Hz(magnitude).
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Figure 3.23(b) A second order IIR band stop ( notch) filter frequency response
of 180Hz(phase).
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3.3.1. 2 Baseline wander

We need to remove DC drift and to filter muscle noise which may occur at
approximately 40Hz or more, if we consider the lowest heart rate as 30 beats

per minute the corresponding frequency is 30/60 which equal 0.5Hz [21].

Now we use the band pass fourth order chebyshev filter using the bilinear

transformation which is the best methods in HRV [21].
There are three steps to design the filter:
e Given the digital filter frequency specification, pre warp the digital
N :% tan @gD (7)

O] :% tan” (Wal) (8)
2

The tow equassion above for low pass and high pass filter, and for band pass

and band stop filter we use:

(ON] :2 tan _(Q|T (9)
T 2
op=2 tan _(WnT) (10)
T 2
Where
©)=_| ©a®an (11)
And

W:(Dah-(Da] (12)

e Perform the prototype transformation using the low pass prototype

Hp(s).
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From low pass to band pass:

H(s)=Hp(s) .-~ ‘==2 (13)
sW
Where the first-order lowpass prototype filter given by:

_ 1
oo~ ) (14)

e Substitute the BLT to obtain the digital filter:

H(z)=H(s)l- 2 = (15)

T z+1

All equations of DC drift from [21].
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Figure 3.24(a) A band pass fourth order chebyshev filter frequency

response(magnitude).
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Figure 3.24 (b) A band pass fourth order chebyshev filter frequency

response(phase).
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3.4 ECG Feature Extraction

ECG wave commonly change their statistical properties over time, tending to
be non stationary. For analyzing this kind of signal wavelet transforms are a
powerful tool. The main tasks in ECG signal analysis are the detection of

QRS complex , and estimation of another peaks potions.

Wavelet transform provide simultaneous time and frequency information. The
wavelet transform decomposes the Electrocardiogram (ECG) signal into a set
of frequency band. In the wavelet based algorithm, the ECG signal has been
denoised by removing the corresponding wavelet coefficients at higher scales.
The analysis has been done on ECG data files of the MIT-BIH Arrhythmia and
Rhythmia Database.

3.4.1 Daubechies Wavelets

Wavelets classified into two classes: (a) orthogonal and
(b) biorthogonal. Based on the application, either of them can be used

Features of orthogonal wavelet filter banks

The coefficients of orthogonal filters are real numbers. The filters are of the

same length and are not symmetric. The low pass filter, G0 and the high pass
filter, H0 are related to each other by

Ho(2)=z" Go(-Z") (16)

Orthogonal filters offer a high number of vanishing moments. This property is
useful in many signal and image processing applications. They have regular
structure which leads to easy implementation and scalable architecture.

Daubechies represents a family of orthogonal wavelets characterized by a
maximal number of vanishing moments for some given support’s length.The
elements of the Daubechies’ family most used in practice are db2-db20. The
index refers to the number of vanishing moments. The number of vanishing
moments is equal with half of the length of the support in the case of

Daubechies family of mother wavelets. For example, dbl (the Haar wavelet)
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has one vanishing moment, db2 has two, etc. The Daubechies mother wavelets

are not symmetric.

Table (3.1): General characteristics for Daubechies

for psi

Short name Db
Order N N strictly positive integer
Orthogonal Yes
Biorthogonal Yes
Compact support Yes
DWT Possible
CWT Possible
Support width 2N-1
Filters length 2N
Regularity about 0.2 N for large N
Symmetry far from
Number of vanishing moments N

3.4.2 Feature description

By Matlab code Q R S peaks were detected and then then RR intervals were

computed .

3.5 Statistical methods

The Matlab code were used and then calculate the statistical parameter such as

the mean (Mi) ,standard deviation (Std) and roots mean squirts (RMS) to

evaluate the HRV between normal and abnormal cases.
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Chapter Four

The Results and Discussions

The ECG signals from MIT-BIH database ,the beats were selected from the
recordings of 20 patients which correspond to the following
files:100,115,118,122,201,205,220,230,231,234,16265,16272,16273,16420,16

483,16786,17453,18184,19088 and 19830. In this chapter the results of each
steps of analysis for different signals were shown , after that the analysis of

HRYV by using the statistical methods were evaluations.
4.1 The Signal Pre processing Results

Two filters designed to remove the noises, A band stop ( notch) filter second
order IIR filter designed and implemented to remove the power line
interference with a cut off frequency fc 60 Hz and its harmonic, The filter
design showed in chapter 3 section (3.3.1) and the frequency response
displayed in figure (3.1),(3.2) and (3.3), The anther filter is the band pass fourth
order chebyshev filter designed and implemented to remove the baseline
wander from signals, The filter design showed in chapter 3 section (3.3.2) and
its frequency response displayed in figure (3.4).The results of two filters were

shown at record 16265,16272,115 and 205 for examples.
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ECG signal after remaving power line interference
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ECG signal after removing baseline wander
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Figure 4.1 Apply the pre processing filters at record 16265
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Figure 4.2 Apply the pre processing at record 16272
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Figure 4.3 Apply the pre processing at record 115

Date No (4) - (205)
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Figure 4.4 Apply the pre processing at record 205

In figures (4.1),(4.2),(4.3) and (4.4).A second-order IIR band stop filter are
used to remove the power line interference 60Hz, and A fourth-order band pass

chebyshev filter designed to remove the baseline wander.
4.2 ECG Feature Extraction Results

Discrete wavelet transform DWT ( Daubechies Wavelets “db4”) was applied
at filtered signals to detect the QRS peaks from ECG signals, compute or
detect the RR intervals, the choose of db4 depend on the previous studies.
The results of 16273,18184 ,100 and 231 records were presented.

4.2.1 Results of Daubechies 4 at filtered signals

Date No (5) - (16273)

v CA using wavelet transform
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v CD using wavelet transform
5[] T 1 T 1 1

amplitude(m\/)

1 | 1 | |
0 100 200 300 400 500 600
sampling frequency

Figure 4.5 Db4 at record 16273 and extracted the coefficients (y CD,y CA)

The detail and approximation as shown below
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Figure 4.6 Detail and approximation depends on db4 at record 16273
Then computes the vector of reconstructed coefficients, based on the wavelet

decomposition structure as shown below
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Figure 4.7 The approximation A8 at record 16273
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Figure 4.8 Db4 at record 18184 and extracted the coefficients (y CD,y CA)

The detail and approximation as shown below
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Figure 4.9 Detail and approximation depends on db4 at record 18184

Then computes the vector of reconstructed coefficients, based on the wavelet

decomposition structure as shown below
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Figure 4.10 The approximation A8 at record 18184

41



Date No (7) - (100)

v CA using wavelet transform

sampling frequency

g 2000 . . . . .

LiE]
= 0 M -
=

e 2000 1 1 1 1 1

® 0 100 200 300 400 500 600

sampling frequency
y CD usir;g u;aveltﬂ:t tran’sﬁ:rrm

= 50 . . . . .

E,

2 ofoe i
g 50 1 ] ] 1 1

0 100 200 300 400 500 600

Figure 4.11 Db4 at record 100 and extracted the coefficients (y CD,y CA)

The detail and approximation as shown below
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Figure 4.12 Detail and approximation depends on db4 at record 100
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Then computes the vector of reconstructed coefficients, based on the wavelet

decomposition structure as shown below
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Figure 4.13 The approximation A8 at record 100
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Figure 4.14 Db4 at record 231 and extracted the coefficients (y CD,y CA)
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The detail and approximation as shown below
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Figure 4.15 Detail and approximation depends on db4 at record 231
Then computes the vector of reconstructed coefficients, based on the wavelet

decomposition structure as shown below
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Figure 4.16 The approximation A8 at record 231
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In figures (4.5), (4.6) ,(4.7) ,(4.8),(4.9),(4.10),(4.11),(4.12),(4.13),(4.14).(4.15)
and (4.16) Daubechies Wavelets “bd4” was applied at filtered signals. The
output signals are decomposed depend on(D3,D4 and D5). Therefore details
are reduced and QRS complex is preserved, and extracted the Coefficients after

the transform.

4.2.2 Results of Peaks Detection

The R peaks were detected at the decomposed signals .The values which are
greater than 60% of the max value of the actual signal are represent R peaks,
depended on R peaks in MATLAB software. the result illustrated in record
16273,18184,100 and 231 as example as shown in figures below.
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Figure 4.17 The QRS Complex Detection in record 16273
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Figure 4.19 The QRS Complex Detection in record 18184
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Figure 4.21 The QRS Complex Detection in record 100
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Figure 4.23 The QRS Complex Detection in record 231
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Figure 4.24 The R peaks in record 231

4.3 Result of statistical methods

The result of applying the statistical method well be illustrated in the table

below:

Table(4.1):Result of Analysis for HRV depend on RR Interval in ECG signal.

Number Record Mi(s) Std(s) RMS(s) HRV (bpm)
1 16265 0.6633 0.25 0.6633 90.45
2 16272 0.8433 0.40 0.8433 71.14
3 16273 0.6738 0.25 0.6738 89.04
4 16420 0.9200 0.27 0.9200 65.21
5 16483 0.5670 0.25 0.5670 105.82
6 16786 0.7900 0.32 0.7900 75.94
7 17453 0.7323 0.27 0.7323 81.93
8 18184 0.7929 0.37 0.7929 75.69
9 19088 0.6076 0.13 0.6076 98.74
10 19830 0.4983 0.28 0.4983 120.40
11 100 1.0688 0.99 1.0688 56.13
12 115 1.0155 0.94 1.0155 59.08
13 118 0.9572 1.00 0.9572 62.68
14 122 0.5844 0.86 0.5844 102.66
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15 201 0.7644 0.98 0.7644 78.49
16 205 1.0577 1.34 1.0577 56.72
17 220 1.0344 1.22 1.0344 58.00
18 230 1.0222 1.12 1.0222 58.69
19 231 1.1500 1.25 1.1500 52.17
20 234 1.0000 1.03 1.0000 60.00

4.4 Discussions

The result in section 4.3 above illustrate the sensitive of HRV, and the
MATLAB code used illustrate this sensitivity of the HRV.

In the paper of the Using Lab View the result of this paper [8] were shown
below to compare it with our result.

Table (4.2):The result of HRV analysis using Lab View

RR mean RR Std RMS HRV

0.78 ms 0.045 ms 5.4 ms 77bpm

The results which shown from table 4.1 in section 4.3 above the high sensitive
of analysis HRV by using MATLAB code where the record number
(5,10,11,12,14,16,17,18,19) represent abnormal cases_ ,and the other record
(1,2,3,4,6,7,8,9,13,15,20) represent normal cases ,this result illustrate that in
normal cases the value of the mean of RR and RMS fell between (0.60s -
1.00s) and the HRV value is 60 <HRV>100 which represents the normal value
of HRV ,and Std represents a value between (0.25-1) ,but on the other hand
the mean of RR and RMS below to (0.60) which represents abnormal cases
known (Bradycardia) and the Std ware calculated given value between (0.94-
1.34 ), where another abnormal cases the mean of RR and RMS for it is up to
(0.100) which represents abnormal cases of HRV known as (Tachycardia) and
the Std from it between (0.25-0.86 ).

The result is acceptable when compare this result with the result in MIT-BIH

data base .
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Chapter Five

Conclusions and Recommendations

5.1 Conclusions:

HRV represent one of the most promising markers, which represent a non invasive
way of measuring autonomic nervous system. HRV computed by analyzing beat-to-
beat interval time series derived from an electrocardiogram (ECQG).
In this project the statistical methods (the mean, standard deviation and the roots
mean squirt) was proposed, and then calculate the HRV.
20 records from the MIT-BIH arrhythmias database are used to evaluate the
HRV.
The proposed project consists of three main phases. First phase the pre
processing: remove the power line interference and baseline wander , second
phase: the feature extraction, the DWT (Daubechies Wavelets db4) is applied
on filtered signal and features extracted.
The result of HRV is classified as:

e The Normal case

e Bradycardia

e Tachycardia
The value of each case is equal the HRV =+ sd

5.2 Recommendations:

The analysis of HRV give a result discuss previously was showed statistical
analysis of ECG signal which represent RR interval value which determined
heart status (Bradycardia, Tachycardia and Normal).

future work, first, increase the set of data which will be analysis and increase
the statistical which will be used, because the HRV in the near future represent

a useful parameter to diagnosis ECG signal lock like blood pressure.
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Appendix (A)

1-The matlab code to analysis HRV

%1lst:read ECG signal from MIT database
PATH='C:\Users\Dell\Documents\MATLAB\signals'; % path, where data are
saved

HEADERFILE= '231.hea';

o

header-file in text format
ATRFILE= '231l.atr'; attributes-file in binary format
DATAFILE='231.dat"'; data-file

SAMPLES2READ=650000; % number of samples to be read

in case of more than one signal:
% 2*SAMPLES2READ samples are read

o

o

o

R LOAD HEADER DATA === === mm mm m e e e e e
$fprintf (1, "\\n$> WORKING ON %s ...\n', HEADERFILE) ;

signalh= fullfile (PATH, HEADERFILE) ;
fidl=fopen (signalh, 'r');
z= fopen (fidl);
A= sscanf(z, '%*s %d %d %d', [1,3]1); %$#ok<NASGU>
nosig= 1; % number of signals
sfreg=12; % sample rate of data
clear A;
for k=l:nosig
z= fopen (fidl);
A= sscanf(z, '%*s %d %d %d %d %d', [1,5]); %#ok<NASGU>

dformat (k)= 1; S#ok<* AGROW> format; here only 212 is
allowed
gain(k)= 1; % number of integers per mV
bitres (k)= 3; % bitresolution
zerovalue (k)= 0; % integer value of ECG zero point
firstvalue (k)= 2; % first integer value of signal (to test
for errors)
end;
§—————— LOAD BINARY DATA ———— === —— oo o o e
Sfprintf (1, "\\n$> WORKING ON %s ...\n', DATAFILE);
%if dformat~= [212,212], error('this script does not apply binary
formats different to 212.'); end; %#o0k<BDSCA>
signald= fullfile (PATH, DATAFILE); % data in format 212

fid2=fopen (signald, 'r');

A= fread(fid2, [3, SAMPLES2READ], 'uint8'"')';
matrix with 3 rows, each 8 bits long = 2*12bit
fclose (fid2) ;

M2H= bitshift(A(:,2), -4);

M1H= bitand(A(:,2), 15);

PRL=bitshift (bitand(A(:,2),8),9); % sign-bit

PRR=bitshift (bitand(A(:,2),128),5); % sign-bit

E( : , 1)= bitshift (M1H,8)+ A(:,1)-PRL;

MM( : , 2)= bitshift (M2H,8)+ A(:,3)-PRR;

fprintf (1, '\\n$>finished:read ECG signal %s ...\n', DATAFILE);

F=E (1:1000) ;

%

$Notch filter Second-order IIR to remove 60Hz
%,120Hz,180Hz using Pole-zero placement



$method: * ok x
$3 dB bandwidth for each filter: 4 Hz

$r=1- (BWdB/fs) *pi

su=(£0/£fs) *360
$K=(1l-(2*r*cos(u))+(r*2))/ (2-(2cos (u)))

SHz=K (Z"2-(2*Z*COS (u+1)) )/ (2°2- (2*r*Z*cos (u) + (r~2)))
$£f0=60,120,180

$fs=600

bl = [0.9803 -1.5862 0.9803];

al = [1 -1.5842 0.95806];

$Notch filter to remove 60 Hz: * %
b2 = [0.9794 -0.6053 0.9794];

a2 = [1 -0.6051 0.95806];

% Notch filter to remove 120 Hz: * %
b3 = [0.9793 0.6052 0.97937];

a3 = [1 0.6051 0.9586];

% Notch filter to remove 180 Hz: * %

yl = filter(bl,al,F);
%The first filtering
y2 = filter (b2,a2,yl);
%The Second filtering
y3 = filter (b3,a3,y2);
%$The Third filtering
%$freqgz (bl,al, 512, fs);
$freqz (b2,a2,512,fs);
$freqgz (b3,a3,512,fs);

o

%Bandpass filter IIR Chebyshev fourth order using Bilinear
transformation

smethod: KA
%Passband frequency range: 0.25-40 Hz

%Passband ripple: 0.5 dB

fs =600 ;

%sampoling rate

T =1/600;

% Sampling interval

% BLT design

wdl =2*pi*0.25;

wd2 =2*pi*40;

wal = (2/T)*tan(wd2*T/2);
wa2 =(2/T)*tan (wd2*T/2) ;
[B,A] =1p2bp(1.4314, [1 1.4652 1.5162],sqgrt(wal*wa2),wa2-wal);
[~,a] =bilinear (B,A, fs);

b = [0.046361 0 -0.092722 0 0.046361];

$numerator coefficients

a = [1 -3.352292 4.255671 -2.453965 0.550587] ;

%$denominator coefficients

y =filter(b,a,yl);

%Bandpass filtering

%$freqz(b,a,512,fs);

t =1:1000 ;

subplot(3,1,1);plot(t,F),;grid;ylabel (' (a)');

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

title('The origenal ECG signal');

subplot(3,1,2);plot(t,yl) ;grid;ylabel (' (b)");

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

title ('ECG signal after removing power line interference '");



subplot (3,1,3) ;plot(t,y) ;grid;ylabel (' (c)');

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

title ('ECG signal after removing baseline wander '");

o

%tht wavelet transform using daubechies
method xx

%[c,1]= wavedec(y,4,'db4d");
%$extract the coefficients after the wavelet transform

%cal=appcoef (c 'db4' 1);
%caz2=appcoef (c dbd',2);
%cal3=appcoef (c 'db4',3);
%cad=appcoef (c 'db4',4);
$figure (2)

%subplot(4,1,1) ;plot(cal);
$subplot(4,1,2);plot(ca2);
%subplot(4,1,3) ;plot(cal);
$subplot(4,1,4) ;plot (cad);

%

%tht wavelet transform using daubechies

method el

[cA,cD]=dwt (y, "db4");

figure, subplot(3,1,1), plot(cA) ;title('y CA using wavelet
transform')

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot(3,1,2),plot(cD) ;title('y CD using wavelet transform')
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

% 2 Detect COEF of ECG(y)

[C,L] = wavedec(y,8,'db4d");
[cD1l,cD2,cD3,cD4,cD5,cD6,cD7,cD8] = detcoef(C,L,[1,2,3,4,5,6,7,81);
figure, subplot(3,3,1),plot(cDl);title('y Detail CD1"'")
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,2),plot(cD2);title('y Detail CD2"'")

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,3),plot (cD3);title('y Detail CD3"'")

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,4),plot(cD4);title('y Detail CD4"')

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,5),plot (cD5);title('y Detail CD5'")

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,6),plot(cD6);title('y Detail CD6'")

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,7),plot (cD7);title('y Detail CD7")

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,8),plot (cD8);title('y Detail CD8')



xlabel ('sampling frequency');
ylabel ('amplitude (mV) ") ;

cA8 = appcoef (C,L, "db4',8);
xlabel ('sampling frequency');
ylabel ('amplitude (mV) ') ;

subplot (3,3,9),plot (cA8);title('y CA8")

xlabel ('sampling frequency');
ylabel ('amplitude (mV) ") ;

% 3 Reconstruct
COEF

A8 = wrcoef ('a', C, L,'db4",
%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

D1 = wrcoef ('d', C, L,'db4",
%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

D2 = wrcoef ('d', C, L,'db4",
%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

D3 = wrcoef ('d', C, L,'db4",
%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

D4 = wrcoef ('d', C, L,'db4",
%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

D5 = wrcoef ('d', C, L,'db4",
%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

D6 = wrcoef ('d', C, L,'db4",
%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

D7 = wrcoef ('d', C, L,'db4",
%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

D8 = wrcoef ('d', C, L,'db4",
%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

8);

1);

2);

3);

4);

5);

6);

1)

8);

figure, Subplot (9, 1, 1);plot (A8)

%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 2);plot(Dl) ;title

%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 3); plot(D2) ;title

%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 4); plot(D3) ;title

%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 5); plot(D4) ;title

%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 6); plot(D6) ;title

%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 7); plot(D7) ;title

%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 8); plot(D8) ;title

;title ("Approximation A8'");

('Detail D1'");

('Detail

('Detail

('Detail

('Detail

('Detail

('Detail

D2');
D3");
D4");
D6") ;
D7');
D8");



%xlabel ('sampling frequency');
Sylabel ("amplitude (mV) ") ;

%

%QRS Complex
Detection: * *

s=D3+D4+D5;

figure, Subplot (2, 2, 1);

plot(s);

title ('Detail D3+D4+D5'");

xlabel ('sampling frequency');
ylabel ('amplitude (mV) ") ;

Rl=max (s);
thresholdl=0.2*max (s) ;

for i=l:1:1length(s)

if s(i)< thresholdl

s (1)=0;

end

end

Subplot (2, 2, 2); plot(s);title ('s after thresholding');
xlabel ('sampling frequency');
ylabel ('amplitude (mV) ") ;
thresholdr =max(0.6*s);
RPeaks=find (s>=thresholdr);
R2=RPeaks;

R3=R2"';

for i=1:1:1length (R3)
Rrange=R3 (i) -3:R3 (1) +3;
Rmax=max (s (Rrange) ) ;
R no=find (s (Rrange)==Rmax) ;
Rloc=Rrange (R _no) ;
Rvalues (i)= Rmax;
Rlocation (i) =Rloc;
end
figure ,plot ( Rlocation, Rvalues, 'go'),hold on, plot(s)
xlabel ('sampling frequency');
ylabel ('amplitude (mV) ") ;
title('R peaks');

o

$To find the RRinterval we

use: o
for i=l:length(R3)-1 ;
RRs = Rlocation(i+l)- Rlocation(i);
RR(i)= RRs ;
end
p=1;

for a=l:length(R3)-1 ;
if (RR(1,a)~=0)
r(l,p)=RR(1,a);
p=p+1;
else
end;

end;



meanRR=mean (r)
Mi=mean (r)
stdRR=std (r)
rms=sqrt (Mi"2)
MDi=median (r)

2-The matlab code to analysis HRV

%1lst:read ECG signal from MIT database

PATH='E:\Rythmia'; % path, where data are saved

HEADERFILE= '18184.hea’; % header-file in text format
ATRFILE= '18184.atr'; attributes-file in binary format
DATAFILE='18184.dat"'; % data-file

SAMPLES2READ=650000; % number of samples to be read

in case of more than one signal:

% 2*SAMPLES2READ samples are read

o

o

R LOAD HEADER DATA === === = mm mm m e e e e
Sfprintf (1, "\\n$> WORKING ON %s ...\n', HEADERFILE) ;

signalh= fullfile (PATH, HEADERFILE) ;

fidl=fopen (signalh, 'r');

z= fopen (fidl);

A= sscanf(z, '%*s %d %d %d',[1,3]1); %$#ok<NASGU>

o)

nosig= 1; % number of signals
sfreg=12; % sample rate of data
clear A;
for k=l:nosig
z= fopen (fidl);
A= sscanf(z, '%*s %d %d %d %d %d', [1,5]); %#ok<NASGU>

dformat (k)= 1; S#ok<* AGROW> format; here only 212 is
allowed
gain(k)= 1; % number of integers per mV
bitres (k)= 3; % bitresolution
zerovalue (k)= 0; % integer value of ECG zero point
firstvalue (k)= 2; % first integer value of signal (to test
for errors)
end;
=== LOAD BINARY DATA —-————=————=———————————————————————————————————
$fprintf (1, "\\n$> WORKING ON %s ...\n', DATAFILE);
%if dformat~= [212,212], error('this script does not apply binary
formats different to 212.'); end; $%$#o0k<BDSCA>
signald= fullfile (PATH, DATAFILE) % data in format 212

fid2=fopen (signald, 'r');

A= fread(fid2, [3, SAMPLES2READ], 'uint8'"')';
matrix with 3 rows, each 8 bits long = 2*12bit
fclose (fid2) ;

M2H= bitshift(A(:,2), -4);

M1H= bitand(A(:,2), 15);

PRL=bitshift (bitand(A(:,2),8),9); % sign-bit

PRR=bitshift (bitand(A(:,2),128),5); % sign-bit

E( : , 1)= bitshift (M1H,8)+ A(:,1)-PRL;

MM( : , 2)= bitshift (M2H,8)+ A(:,3)-PRR;

fprintf (1, '\\n$>finished:read ECG signal %s ...\n', DATAFILE);
fs =600 ;

T =1/600;

F=E (1:1000) ;



ff=length(F);
pp=(ff-1)*T ;
tt=0:T:pp;

figure ,plot(tt,F)

%

$Notch filter Second-order IIR to remove 60Hz
%,120Hz,180Hz using Pole-zero placement

$method: * ok x
$3 dB bandwidth for each filter: 4 Hz

$r=1- (BWdB/fs) *pi

su=(£0/£fs) *360
$K=(1l-(2*r*cos(u))+(r*2))/(2-(2cos (u)))

SHz=K (Z°2- (2*Z*COS (u+1)))/ (2"2-(2*r*Z*cos (u) + (r"2)))
$£f0=60,120,180

$fs=600

bl = [0.9803 -1.5862 0.9803];

al = [1 -1.5842 0.95806];

$Notch filter to remove 60 Hz: * %
b2 = [0.9794 -0.6053 0.9794];

a2 = [1 -0.6051 0.95806];

% Notch filter to remove 120 Hz: * %
b3 = [0.9793 0.6052 0.97937];

a3 = [1 0.6051 0.9586];

% Notch filter to remove 180 Hz: * %

yl = filter(bl,al,F);
%The first filtering
y2 = filter (b2,a2,yl);
%The Second filtering
y3 = filter (b3,a3,y2);
%$The Third filtering
%$freqgz (bl,al, 512, fs);
$freqz (b2,a2,512,fs);
$freqgz (b3,a3,512,fs);

o

%Bandpass filter IIR Chebyshev fourth order using Bilinear
transformation

%method: KA
%Passband frequency range: 0.25-40 Hz

%Passband ripple: 0.5 dB

fs =600 ;

%sampoling rate

T =1/600;

% Sampling interval

% BLT design *x

wdl =2*pi*0.25;

wd2 =2*pi*40;

wal (2/T) *tan (wd2*T/2) ;
wa2 =(2/T)*tan (wd2*T/2) ;
[B,A] =1p2bp(1.4314, [1 1.4652 1.5162],sqgrt(wal*wa2),wa2-wal);
[~,a] =bilinear (B,A, fs);

b = [0.046361 0 -0.092722 0 0.046361];
$numerator coefficients

a = [1 -3.352292 4.255671 -2.453965 0.550587] ;
%$denominator coefficients

y =filter(b,a,yl);

%Bandpass filtering

$freqz(b,a,512,fs);



t =1:1000 ;

figure ,subplot(3,1,1);plot(t,F),;grid;ylabel (' (a)');
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

title('The origenal ECG signal');
subplot(3,1,2);plot(t,yl) ;grid;ylabel (' (b)");

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

title ('ECG signal after removing power line interference ');
subplot (3,1,3);plot(t,y) ;grid;ylabel (' (c)');

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

title ('ECG signal after removing baseline wander '");

%

%tht wavelet transform using daubechies
method el

%[c,1]= wavedec(y,4,'db4d");

%extract the coefficients after the wavelet transform
%cal=appcoef (c,1,'db4d"',1);

%caz2=appcoef (c,1,'db4d"',2);

%cal3=appcoef (c,1, 'db4d"',3);

%cad=appcoef (c,1, 'db4d’',4)
$figure (2)
%subplot(4,1,1
%subplot(4,1,2
%subplot(4,1,3
%subplot(4,1,4

%

’

;plot
;plot
;plot
;plot

cal);
caz2);
) .
)

’

ca3
ca4

’

)
)
)
)

o~~~ —
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%tht wavelet transform using daubechies

method K

[cA,cD]=dwt (y, "db4");

figure, subplot(3,1,1), plot(cA) ;title('y CA using wavelet
transform')

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot(3,1,2),plot(cD) ;title('y CD using wavelet transform')
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

% 2 Detect COEF of ECG(y)

[C,L] = wavedec(y,8,'db4d");

[cD1l,cD2,cD3,cD4,cD5,cD6,cD7,cD8] = detcoef(C,L,[1,2,3,4,5,6,7,81);

figure, subplot(3,3,1),plot(cDl);title('y Detail CD1"'")
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,2),plot(cD2);title('y Detail CD2"')
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,3),plot (cD3);title('y Detail CD3"'")
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,4),plot(cD4);title('y Detail CD4"')
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,5),plot (cD5);title('y Detail CD5'")



xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,6),plot(cD6);title('y Detail CD6')
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,7),plot (cD7);title('y Detail CD7")
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,8),plot (cD8);title('y Detail CD8"')
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

cA8 = appcoef (C,L, "db4',8);

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

subplot (3,3,9),plot (cA8);title('y CA8")

xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

% 3 Reconstruct

COEF *x

A8 = wrcoef ('a', C, L,'db4', 8);
xlabel ('sampling frequency');
ylabel ('amplitude (mV) ") ;

D1 = wrcoef ('d', C, L,'db4', 1);
D2 = wrcoef ('d', C, L,'db4d', 2);
D3 = wrcoef ('d', C, L,'db4', 3);
D4 = wrcoef ('d', C, L,'db4d', 4);
D5 = wrcoef ('d', C, L,'db4', 5);
D6 = wrcoef ('d', C, L,'db4', 6);
D7 = wrcoef ('d', C, L,'db4', 7);
D8 = wrcoef ('d', C, L,'db4', 8);
figure, Subplot (9, 1, 1);plot(A8) ;title('Approximation A8'");

%xlabel ('sampling frequency');

Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 2);plot(Dl) ;title ('Detail D1');
%xlabel ('sampling frequency');

Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 3); plot(D2) ;title ('Detail D2");
%xlabel ('sampling frequency');

Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 4); plot(D3) ;title ('Detail D3");
%xlabel ('sampling frequency');

Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 5); plot(D4) ;title ('Detail D4");
%xlabel ('sampling frequency');

Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 6); plot(D6) ;title ('Detail D6'");
%xlabel ('sampling frequency');

%ylabel ("amplitude (mV) ") ;

subplot (9, 1, 7); plot(D7) ;title ('Detail D7");
%xlabel ('sampling frequency');

Sylabel ("amplitude (mV) ") ;

subplot (9, 1, 8); plot(D8) ;title ('Detail D8");
%xlabel ('sampling frequency');

Sylabel ("amplitude (mV) ") ;

%

%QRS Complex
Detection: * *




s=D3+D4+D5;

figure, Subplot (2, 2, 1);

plot(s);

title ('Detail D3+D4+D5'");

xlabel ('sampling frequency');
ylabel ('amplitude (mV) ") ;

Rl=max(s) ;
thresholdl=0.2*max (s) ;

for i=l:1:1length(s)

if s(i)< thresholdl

s (1)=0;

end

end

Subplot (2, 2, 2); plot(s);title ('s after thresholding');
xlabel ('sampling frequency');
ylabel ('amplitude (mV) ") ;
thresholdr =max(0.6*s);
RPeaks=find (s>=thresholdr) ;
R2=RPeaks;

R3=R2"';

for i=1l:1:1length(R3

)
Rrange=R3 (i) -3:R3 (1) +3;
Rmax=max (s (Rrange) ) ;

R no=find (s (Rrange)==Rmax) ;

Rloc=Rrange (R _no);

Rvalues (i)= Rmax;
Rlocation (i) =Rloc;
end

figure ,plot ( Rlocation, Rvalues, 'go'),hold on, plot(s)
xlabel ('sampling frequency');

ylabel ('amplitude (mV) ") ;

title('R peaks');

$To find the RRinterval we

use: o
for i=l:length(R3)-1 ;
RRs = Rlocation(i+l)- Rlocation (i) ;
RR(i)= RRs ;
end
p=1;

for a=l:length(R3)-1 ;
if(RR(1,a)~=0)
r(l,p)=RR(1,a);
p=p+1;
else
end;
end;
meanRR=mean (r)
Mi=mean (r)
stdRR=std (r)
rms=sqrt (Mi”"2)
MDi=median (r)



Appendix (B)

Equation Equation Numper Equation Page
W (a,b)=c(j,k)=> n=: 1 15
f(n)¥j.k(n)
Wj,k(n)=2"*W¥(27 n-k) 2 28
r =1-(BWsgu/fs)* 1™ 3 28
© = (fo/fs)*360° 4 28
k=(1-2rcose+r2)/(2- 3) 28
2c0se)
H(z)=(z2 - 6 28
2zcose+1)/(z2 —
2rzcose+r2)
Wa = %tan (waT) 7 31
2
Wy =2 tan' wam) 8 31
T 2
Wy = tan (M 9 31
2
Wan = tan’ (@) 10 31
2
Wo=  WaWah 11 31
W=wah-wa| 12 31
H(s)=Hp(s) |s= 202 13 32
1 14 32

Hp(s)=  (s+1)




15

32

16

33




