

الآلية

بسم الله الرحمن الرحيم

قال تعالى:

لَا يُحِلُّ لِلَّهُ نَفْسًا إِلَّا وُسِّعَهَا حَمَّا مَا يَعْسِيْنَاهُ وَعَلَيْهَا مَا
لَمْ يَعْسِيْنَاهُ قُلْ رَبُّنَا لَهُ تُوْلَى خَطْنَا إِنْ تَسْتَأْنِ أَوْ أَخْطَلْنَا حَمَّا وَلَا
تَعْلَمْ عَلَيْنَا أَصْرَارًا بِمَا حَمَّلَتْهُ حَلَّ الظَّيْنَ مِنْ قَتْلَنَا حَمَّا وَلَا
تُحِلْنَا مَا لَا طَلَاقَةَ لَنَا بِهِ وَلَا عُفْنَا وَلَا غُفرَنَا وَلَا حَمَّنَا
أَنْتَ مَوْلَانَا فَانصُرْنَا حَلَّ الْقَوْمِ الْكَافِرِينَ

سُورَةُ الْأَلْيَةِ

البقرة (٢٨٦)

Dedication

To my mother who candle the light to my life.....

To my father who spend all their life to help me.....

To my sisters,brother& all our families.....

To my teachers.....

To my colleagues.....

Acknowledgement

I thank God first and foremost to give the health and strength until it reached this stage, it is beyond thanks go to my teacher and supervisor Dr. FathElrahman Hassan Gameel.

Also I like to thank the staff at the Radioisotops Center, Khartoum Teaching Hospital, Military Hospital.

Also I would like to thank who contributed to or participated with me in this research, to every member of my family who have precious me, and who supported me financially or morally.

Abstract

Radiation technicians are at risk of varying degrees of radiation exposure during their work and changes in hematological parameters and exposure to benzene depression of peripheral blood cells is a well-known indicator of benzene hematotoxicity.

The aim of this study to evaluate radiation effect and benzene toxicity on haematological parameters and the results of the present study suggest that in radiation effect and toxicities of benzene depend on the time of exposure.

This is a descriptive, cross sectional study to determine changes of some haematological parameters in radiation and benzene station workers, people recruited for this study were age (18-52 years), male and female Sudanese radiation and benzene station workers, duration of work range from 1-30 years ,these people work for 3 dayes/week to benzene equivalent to 18 hours/day and about 8 hours /day to radiation in Khartoum state. The study period extended from March 2014 to May 2014. This study was conducted using special questioner and taken 150 venous blood samples (50 radiation,50 benzene and 50 control) in EDTA containers, were taken to laboratory for investigation CBC for study subjects and healthy volunteers

as controls, investigations were performed by using sysmex and manual thin blood film.

Result show that CBC parameters of radiation workers there was significant difference between radiation workers and control on platelets count (Mean = 173 ± 59),(P value=.000), thrompocytopenia increased when increased the number of years of work, while all CBC parameters of benzene workers significantly decreased in TWBCs(Mean = $3.4\pm.6$)(P value = .00), RBCs (Mean = $3.4\pm.6$)(.00), Hb (Mean = $12.5\pm.9$)(P value =.00), HCT(Mean = 38 ± 2)(P value =.00),MCV(Mean = 77 ± 8)(P value =.00), MCH(Mean = 27 ± 9)(P value =.00),MCHC(Mean = 32 ± 7), PLTs(Mean= 125 ± 32)(P value = .00), N(Mean = 54 ± 11)(P value=.00), L(Mean = 37 ± 9)(P value =.00), M(Mean = 13 ± 6)(P value = .00) when compared to correspondent parameters of the control subjects but with the exception in counts of eosinophil (Mean = 5 ± 3)(P value =0.1) and basophil (Mean = $.4\pm.6$) (P value = 0.8) which were higher than that control ,and observed association between exposure to benzene and pancytopenia which increase by working duration.

CBC parameter show that there was significant difference between radiation workers and control on platelets count, thrompocytopenia increased when increased the number of years of work and observed association between exposure to benzene and pancytopenia which increase by working duration

ملخص الدراسة

اجريت هذه الدراسة الوصفية المقطعة لمعرفة وقياس التغيرات في بعض قياسات الدم لعاملين في حقول الاشعاع ومحطات البنزين وتقدير تأثير الإشعاع وسمية البنزين في البشر ، الفئة التي تم عليها البحث اعمارهم بين (18-52) عاما من الذكور والإناث السودانيين ويعملون داخل ولاية الخرطوم ، فترة البحث امتدت من مارس 2014 الى مايو 2014 م، ولقد اجريت هذه الدراسة بملء فورمات خاصة بالبحث واخذ 150 عينة (50) من العاملين بالأشعاع 50 من عمال البنزين و 50 من اصحاب متطوعين (من الدم الوريدى فى حافظات بها مادة مانعة للتجلط واخذت للمعمل لإجراء التعداد الخلوي الكلى ومعاملات كرات الدم الحمراء بجهاز sysmex) والمسحة الدموية الرقيقة.

فى للعاملين الدم تحليل نتائج فى فرق هنالك أن إلى تشير الاحصائى التحليل بعد الدراسة هذه نتائج = المتوسط) الدموية الصفائح فى فقط قليلة النتائج لأن الدموية الصفائح على والسيطرة الاشعاع حقول نتائج كل بينما ، العمل سنوات عدد بزيادة مرتبطة القلة وهذه (.00 = المعنوية القيمة) (59 ± 173) الدم كريات وجد حيث ، ملحوظ بشكل انخفضت البترول محطات فى للعاملين الكلى الدم تحليل = المتوسط) الحمراء الدم كريات ، (.00 = المعنوية القيمة) (3.4 ± 6.0 = المتوسط) البيضاء ، (.00 = المعنوية القيمة) (12.5 ± 9 = المتوسط) الهمقلوبين ، (.00 = المعنوية القيمة) (3.4 ± 6.0 ، كريات حجم ، (.00 = المعنوية القيمة) (38 ± 2 = المتوسط) البلازم فى الحمراء الدم كريات نسبة حمراء دم كرية فى الهمقلوبين كمية ، (.00 = المعنوية القيمة) (77 ± 8 = المتوسط) الحمراء الدم المتوسط) الحمراء الدم كريات كل فى الهمقلوبين كمية ، (.00 = المعنوية القيمة) (27 ± 9 = المتوسط) = المعنوية القيمة) (125 ± 32 = المتوسط) الدموية الصفائح ، (.00 = المعنوية القيمة) (32 ± 7 = الليمفاوية الخلايا ، (.00 = المعنوية القيمة) (54 ± 11 = المتوسط) المتعادلة والخلايا ، (.00 = المعنوية القيمة) (13 ± 6 = المتوسط) الوحيدة الخلايا ، (.00 = المعنوية القيمة) (37 ± 9 = المتوسط)

= المتوسط) الحمضية الخلايا في الملحوظة الزيادة باستثناء القياسية العينات مع بالمقارنة, (00. 5±3 = المعنوية القيمة)(3. 1. = المعنوية القيمة)(4.±6.) المتوسط) القاعدية الخلايا و, () التعرض بين الملاحظ والارتباط, القياسية للعينات الكلى الدم تحليل نتائج من اعلى نتائجهم ظهرت العمل فترة بزيادة الكريات وقلة البنزين لمادة.

Contents

Contents	Page
الاية	I
Dedication	II
Acknowledgement	III
English abstract	IV
Arabic abstract	VI
List of contents	VII
List of Tables	XI
List of Abbreviations	XII
Chapter 1: Introduction and literature review	
1.1 Introduction	1
1.1.1 Definition of blood	1
1.1.2 Blood components	1
1.1.3 Function of blood	1
1.1.4 Haemopoiesis	1
1.1.5 Development of Haemopoiesis	2
1.1.6 Stages of haemopoiesis	2

1.1.6.1 Erythropoiesis	2
1.1.6.1.1 Proerythroblast	3
1.1.6.1.2 Basophilic erythroblast	3
1.1.6.1.3 Polychromatic"intermediate"erythroblast	3
1.1.6.1.4 Orthochromatic erythroblast	4
1.1.6.1.5 Reticulocyte	4
1.1.6.1.6 Mature red blood cells	4
1.1.6.2 Granulopoiesis	4
1.1.6.2.1 The Myeloblast	5
1.1.6.2.2 The Promyelocyte	5
1.1.6.2.3 The Myelocyte	5
1.1.6.2.4 The Metamyelocyte	5
1.1.6.2.5 The Band form (Stab)	5
1.1.6.3 Lymphopoiesis	6
1.1.6.3.1 The lymphoblast	6
1.1.6.3.2 The large lymphocyte	6
1.1.6.3.3 The Small lymphocyte	6
1.1.6.4 Thrombopoiesis	6
1.1.6.4.1 Megakaryoblast	6
1.1.6.4.2 Promegakaryocyte	7
1.1.6.4.3 Megakaryocyte	7
1.1.6.4.4 The platelets	7
1.1.7 Haemoglobin	7
1.1.8 Anaemia	7

1.1.8.1 Classification of anaemia	8
1.1.9 Leucopenia	8
1.1.10 Thrombocytopenia	8
1.1.11 Pancytopenia	8
1.1.12 Complete Blood Count(CBC)	9
1.1.13 Radiation	10
1.1.13.1 Ionizing radiation	11
1.1.13.2 Alpha radiation	11
1.1.13.3 Beta radiation	11
1.1.13.4 Neutron radiation	11
1.1.13.5 Photon radiation	11
1.1.13.6 Uses of radiation In medicine	12
1.1.13.7 Exposure To Radiation	12
1.1.13.8 Effects of ionizing radiation on human body	13
1.1.14 Benzene	13
1.1.14.1 Definition	13
1.1.14.2 Physical properties	13
1.1.14.3 Chemical properties	13
1.1.14.4 Benzene structure	14
1.1.14.5 Distribution of benzene	14
1.1.14.6 Metabolism of benzene	14
1.1.14.7 Benzene exposure in the work place	15

1.1.14.8 Hazard effects of exposure to benzene	15
1.1.14.9 Long-term exposure to benzene	15
1.1.14.10 Benzene related to leukaemia	15
1.2 Literature Review	17
1.3 Rational	19
1.4 Objective	20
1.4.1 General objective	20
1.4.2 Specific objective	20
Chapter 2: Material and Methods	
2.1 Study design	21
2.2 Study population	21
2.3 Inclusion and Exclusion criteria	21
2.4 Data Collection	21
2.5 Data analysis	21
2.6 Ethical consideration	22
2.7 Sample collection	22
2.8 Materials	22
2.9 Principle of sysmex	22
2.10 Methods of sysmex	23
2.10.1 Whole blood mode	23
2.11 Method of preparation and staining of blood films	23
2.11.1 Requirements	23
2.11.2 Procedure	23
2.11.3 Staining of the blood film	24

2.11.3.1 Principle of RAL stain	24
2.11.3.2 Kits components	24
2.11.3.3 Staining procedure	24
Chapter 3: Result	
3. Result	26
Chapter 4: Discussion ,Conclusion and Recommendation	
4.1 Discussion	32
4.2 Conclusion	35
4.3 Recommendations	32
References	37
Questionnaire	39

List of Tables

Tables	Page
Table (3.1): Study population according to age and sex	26
Table (3.2): Frequency of Age group in studied patients group (Radiation and Benzene)	26
Table (3.3): Frequency of Working duration in studied patients group (Radiation and Benzene)	26
Table (3.4): Comparison of CBC parameters between working in Radiation, Benzene and Control group	27
Table (3.5): Comparison CBC parameters between Radiation and Benzene	28
Table (3.6): Measure of Association between age group and pathogenicity of Radiation and Benzene	29
Table (3.7): Measure of Association between working duration and Radiation , Benzene effects	30

List of Abbreviations

Abbreviations	Full word
AA	Aplastic Anaemia
Ab	Absorption
AML	Acute myeloid leukaemia
BFU-E	Brust forming unit erythroid
BM	Bone Marrow
CBC	Complete blood count
CD	Cluster of differentiation
CFU-E	Colony formic unit-erythroid
CFU-S	Colony formic unit-stem
Ch	Carbon hydrogen
CLL	Chronic lymphocytic leukaemia
CNS	Central nervous system
DNA	Deoxy nucleic Acid
EDTA	Ethylene Diamine Tetra Acetic Acid
FBC	Full blood count
Hb	Haemoglobin
HCT	Haematocrit
IARC	International Agency system for Research on cancer
MCH	Mean Cell Haemoglobin
MCHC	Mean Cell Haemoglobin Concentration
MCV	Mean Cell Volume
MDS	Myeloid dysplastic syndrome
NCI	National Cancer Instiute
PCV	Packed cell volume
Ph-H	Benzene
PLTs	Platelets
PM	Particular Matter
RBCs	Red blood cells

RDW	Red cell distribution width
RES	Reticulo endothelial system
RNA	Ribonucleic Acid
Std	Standard deviation
WBCs	White blood cells