Contents

Iten	1	Page
الآية		I
Dedic	cation	II
Ackn	owledgement	III
Conte	ents	IV
List o	of figures	VII
List o	of tables	IX
List o	of charts	X
Notat	ions	VIII
Abstr	ract	XVI
تخلص	المستخلص	
	Chapter One	
	Introduction	
	Introduction	
	2	
1-3	Objectives	5
1-4	Overview	5
	Chapter Two	
	Edge supported slabsstructural behavior, and design	
2-1	Introduction	6
2-2	One-way slabs	6
2-2-1	Structural behavior	6

2-2-2	Analysis and design	7	
2-2-2-1	Analysis and design for flat one way slab	7	
2-2-2An	alysis and design for one way ribbed slab	10	
2-3 Two-way edge supported slabs			
2-3-1	2-3-1 structural behaviour		
2-3-2	analysis and design		
2-3-2 -1	method of coefficient	14	
	Chapter Three		
	column supported slabsstructural behavior, and design		
3-1 Introduction 2			
3-2 Structural behaviour		20	
3-3Analysis and design		26	
3-3-1 Analysis and design of coffered floor		35	
3-3-1-1Approximate Method		36	
	Chapter Four		
	Analysis and Design Applications		
4-1 Introdu	action	39	
4.2	Analysis and design calculations	39	
4.2.1 Design	gn assumptions	39	
4.2.2Design calculations for(6×8)m edge-supported slab			
4.2.3Design calculations for(7×7)m flat slab			
4.2.4 Design calculations for(6×8)m one-way ribbed slab			

4.3 Comparison between slabs	55
4.3.1 Materials (Concrete + reinforcement)	55
4.3.2Form works	57
4.3.3Cost	59
4.4 Conclusion	59
4.4.1 Flat Slab	
4.4.2 Slab with beam	59
4.4.3 Ribbed slab	
1.1.5 Ribbed slab	60
Chapter Five	
Conclusion and recommendation	
5-1 Conclusion	62
5-2 Recommendations	63
References	64
Appendix	65

List of figures

FigTitlePage

1.1Types of st	ructure slabs4			
2.1	Deflection shape of uniformly loaded one-way slab7			
2.2	Unit strip for flexural design8			
2.3	Two-way slab on simple edge support: (a)bending of 11			
Center strips	s of slab; (b) grid model of slab.			
2.4	Moment and moment variations in uniformly loaded 14			
slab with simp	ple supports on four sides.			
 Variation of moments across the width of critical sections 16 assumed for design. Plane of typical two-way slab floor with beams in column lines. special reinforcement at exterior corner of a beam 18 				
supported two	-way slab.			
3.1(a)	Column supported two-way slabs: (a) with beams.21			
3.1(b) Columi	n supported two-way slabs: (b) without beams.22			
3.2	Moment variation in column-supported two-way slabs24			
without beam	: (a) critical moment sections. (b) moment			
variation along	g a span. (c) moment variation across the			
width of critic	al sections.			
3.3 Moment v	ariation in column-supported two-way25			
slabs with bea	m: (a) critical moment sections.			
(b) Moment va	ariation along a span. (c) Moment			

variation across the width of critical sections.

1	1	Dortion	of slab 1	to haina	المماميا	with	haam?	7
.1	.4	Portion	OT SIAD I	ro neinc	maea	wirn	neam /	/

3.5	Distribution of total static moment M_o to critical 28			
sections fo	or positive and negative bending.			
3.6	Conditions of edge restraint considered in distributing 29			
total static	moment M_o to critical sections in an end			
span: (a) e	xterior edge unrestrained, e.g. supported			
bya mason	ry wall. (b) slab with beams between all			
supports. (c) slab without beams. (d) slab without			
beamsbetv	veen interior supports but with edge			
beam. (e)	exterior edge fully restrained, e.g. by			
monolithic	concrete wall.			
3.7	Tributary areas for shear calculation.		33	
3.8 Types (of grid-floors.	36		
3.19Deflection of ribbed slabs. 38		38		
4.1Section	and plan for two way edge supported slab	41		
	(a) Partial floor plan			
	(b) Typical cross section (xx)			
4.2 Section and plan for two way slab floor without 47		47		
beam on c	olumn lines			
	(a) Partial floor plan			
	(b) Typicalcross section (xx)			
4.3Section	and plan for ribbed slab. 51			

List of Tables

TableTitlePage

2.1	Minimum thickness of non pre-stressed one-way slab	os <mark>9</mark>			
2.2	Minimum ratios of temperature and shrinkage 19				
reinforcem	ent in Slabs based on gross concrete area.				
3.1	Distribution factors applied to static moment for positive 29				
and negativ	ve moments in end span.				
4.1	Show panel dimension and live load.				
4.2 Coefficients for negative and positive moments.42					
4.3 Analysis and design results for edge supported 47					
rectangular slabs.					
4.4 analysis and design results for edge supported square 47					
slabs					
4.5 Distribu	ation of moment into column strips and middle strip49				
4.6 Analysis and design results for square panel of flat slabs 50					
4.7 Analysi	s and design results for square panel of flat slabs50				
4.8 Analysis and design results for one-way ribbed slabs54					
4.9 Show the	he amount (mm ²) and percentage of steel required55				
4.10	Show the amount (m ³) and percentage of concrete require		56		
4.11	Show the amount (m ²) and percentage of formwork required58				
	(a) cross section (xx)				

List of charts

ChartTitlePage

- **4.1**Showthe percentage of steel in the (flat slab and ribbed slab) 56 to percentage of steel in (slab with beam
- **4.2**Show the percentage of concrete in the (flat slab and ribbed slab) 57 to percentage of concrete in (slab with beam)
- **4.3**Show the percentage of formwork in the (flat slab and 58 ribbed slab) to percentage of formwork in (slab with beam)

Notations

Notation for chapter two and three

- w_a Share of load w carried in the short direction
- w_b Share of load wearried in the long direction
- M_{\circ} Total static moment
- M_{ν} Factored moment
- M_{ab}, M_{cd}, M_{ef} The moment across AB, CD, EF
- M_{ac} , M_{bd} , M_{gh} The moment across AC, BD, GH
- E Young modulus
- I second moment of inertia
- α_f Parameter of the relative stiffness of beam and slab
- E_{cb} , E_{cs} Modules of elasticity of the beam and slab
- I_b , I_s Moment of inertia of the effective beam and the slab
- β_t Parameter of relative restraint
- C Pertains to the torsional rigidity of effective transverse beam
- l_1 The span is the direction of the moment analysis
- l_2 The span in the lateral direction measured center to center of the support
- w_{Du} Uniform distributed dead load in short direction
- w_{lu} Uniform distributed live load in short direction
- w'_{Du} Uniform distributed dead load in long direction
- q_1 , q_2 The load shard in the x and y direction s
- a Short dimension of grid

- a_1 , b_1 The spacing of the rib in the x and y directions
- q Total load per unit area
- δ Deflection of the rib

Notation for chapter four

f'ccompressive strength of concrete

fyyield strength of reinforcement

d.l dead load

1.1 live load

Wu design load

h thickness

L span

L_a span of short direction

L_bspan of long direction

m' ratio of panel $(L_a \setminus L_b)$

 M_{aneg} negative moment at short direction

 M_{bneg} negative moment at long direction

M_{a posdl}dead load positive moment at short direction

M_{bposdl} dead load positive moment at long direction

 $M_{a posll}$ live load positive moment at short direction

 $M_{b posll}$ live load positive moment at long direction

Mu factored moment

Mn nominal flexural strength

b width

d depth

Rndisgn strength

preinforement ratio

p_{max}max reinforement ratio

 p_{min} min reinforement ratio

As area of reinforcement

As_{min} min area of reinforcement

ØVc shear strength for concrete

ØVs shear strength for steal

Ec modulus of elasticity

I moment of inertia

 Δd deflection due to dead load

 ΔL deflection due to live load

Ln clear span

M_o total factored static moment

β_tParameter of relative restraint

α ratio between relative stiffness of beam to relative stiffness of slab

Vu factor]\]ed shear force

b^o parameter of critical section for shear

Ac area of concrete section

Vc nominal shear strength

Ø strength reduction factor

a leaver arm

b_E effective width

C compression force

T tension force

bw width of web

S spacing

Av area of shear reinforcement

Abstract

Slabs are surface structures which can derive their spatial configuration through continues three dimensional surfaces, and the loads are resisted by the surfaces themselves. These structures carry tension, compression and inplane shear within the surface as membrane forces. Bending and transverse shear are carried either normal to or within the surface, depending on the loading and the surface orientation

Reinforced concrete slabs are used in floors, roofs in building, deck of bridges...ect. The floor system of a structure can take many forms such as in situ solid slabs, ribbed slabs or precast units. Slab may span in one direction or in two directions and they may be supported on monolithic concrete beams, steel beams, walls or directly by the structure's columns.Normally they carry uniformly distributed loads. Slabs also tend to work as a diaphragm for lateral loads, it provide the overall structure stability by bracing columns.

Slabs are much more difficult to analyze because the surface geometry and the three dimensional material properties must taken into account. Slabs which are rectangular can be analyzed using the elastic analysis by idealization into strips or beams spanning one way or a grid with the strips spanning two ways, method of coefficients which is used for the two-way systems that supported on non-yielding beams and the direct design method which can be used for column supported slabs.

Slabs provide some of the most efficient structural systems in terms of material usage, cost, time, formwork and this leads to inherent economies.

المستخلص

تعتبر البلاطات من المنشأت السطحية وهي عبارة عن منشأت لها أسطح مستمرة ثلاثية الأبعاد ومقاومة الأحمال تكون عن طريق الأسطح نفسها. هذه المنشأت تتحمل الشد، الضغط و القص في مستوى السطح في شكل قوى سطحية. العزوم والقص العرضي تتحملهما البلاطة في إتجاه السطح او عمودياً عليه حسب إتجاه السطح والتحميل.

تستخدم البلاطات الخرسانية في عمل الأسقف, أرضيات المباني,الجسور...ألخ. البلاطات يمكن أن تأخذ عدة أشكال وأنواع مثل البلاطات المسطحة و البلاطات المعصبة، كما أنها يمكن أن تكون مصبوبة في الموقع أو مسبقة الصب. يمكن تصنيف البلاطات إلى البلاطات ذات الإتجاه الواحد و ذات الإتجاهين، على حسب توزيع الأحمال كما يمكن أن تستند على أبيام خرسانية أو فولاذية، حوائط أو مباشرة على الأعمدة. تعمل البلاطات على تحمل الأحمال و توزيعها و تعمل على نقل الأحمال الجانبية و تثبيت الأعمدة.

توجد صعوبه في تحليل البلاطات، وذلك لأنه يجب الأخذ في الإعتبار شكل السطح و خصائص المادة ثلاثية الأبعاد البلاطات مستطيلة الشكل يمكن تحليلها بإستخدام طرق التحليل المرن عن طريق تقسيمها الي شرائح او عارضات في إتجاه واحد أو إتجاهين، تستخدم طريقة المعاملات لأنظمة البلاطات ذات الإتجاهين التي تستند على عارضات ذات جساءة عالية كما تستخدم الطريقة المباشرة للبلاطات المسندة على أعمدة.

تعتبر البلاطة أحد أكثر الأنظمة الإنشائية كفاءةً ممن ناحية إستخدام المواد, تكلفه ,زمن و فرم مما يوفر ويؤدي الى الإقتصادية.