الآية

بسم الله الرحمز الرحيم

﴿قُلْ هُوَ اللَّهُ أَحَدٌ ۞ اللَّهُ الصَّمَدُ ۞ لَمْ يَلِدْ وَلَمْ يُولَدْ ۞ وَلَمْ يَكُنْ لَهُ كُفُوًا أَحَدٌ ۞ ﴾ .

(حدق الله العظيم)

سوره الإخلاص

Dedication

• First I dedicated to my families specially my parents

- To my college and teachers and my colleagues in the university and my teachers in my every step
 - To my friends

Acknowledgement

I would like to express my deepest gratitude to my supervisor **Dr. Nagm Eldeen Abdo Mustafa Hassanin** for his invaluable, inestimable guidance and support advice throughout the study.

I would like to thank all teachers for their Encouragements. Special thanks to my class mate for their encouragements and continuous support during the study,

Without their support this work could not be completed

I extend my thanks to all faculty and non-faculty members of the Department of electrical engineering for their help directly or indirectly.

ABSTRACT

An induction generator is a type of electrical generator that is mechanically and electrically similar to an induction motor. Induction generator produce electrical power when their shaft is rotated faster than the synchronous speed of the equivalent induction motor. To excite the generator, by feed reactive power can be supplied from the grid as it used in double feed induction generator or from the external capacitor bank connected on its terminal as it used in squirrel cage (self excited induction generator).

In this thesis, control schemes for the self-excited induction generator are developed using MATLAB/SIMULINK. The mathematical model of IM is developed and capacitor excitation is determined .Two control scheme are applied one for The extracting maximum power from the wind turbine from cut-in to rated wind velocity by sensing only dc link power, (boost converter). Second control strategy is developed to regulate voltage and frequency to give constant voltage-constant frequency to an isolated load. The results are obtained and discussed .

المولد ألحثي هو نوع من أنواع المولدات الكهربائية يعمل علي تحويل الطاقة الميكانيكية إلي طاقة كهربائية المولد ألحثي ينتج الطاقة الكهربائية عندما يدار عضوه الدوار بسرعة اكبر من سرعة التزامن. تثار المولدات الحثية إما بواسطة تغذيتها من الشبكة كما في حالة النوع ذو الحلقات المنزلقة أو بواسطة مكثفات خارجية توصل علي أطرافة كما في حالة النوع ذو القفص السنجابي .

في هذه الأطروحة، تم التحكم في المولد ألحثي الذاتي الإثارة باستخدام برنامج MATLAB/SIMULINK. حيث تم تمثيل النموذج للماكينة الحثية بمعادلات رياضية وطورت المعادلات، كما تم حساب قيمة المكثف المناسبة لإثارة الماكينة، تم استخدام متحكمتين الأولي لإعطاء أقصي طاقة ممكنة في حالة تغير سرعة الهواء وذلك من خلال سرعات التوليد المتاحة، بعد تحويل الجهد المتردد إلي جهد مستمر باستخدام مقوم لتقويم الموجة المترددة، و الثانية لتنظيم الجهد والتردد لإعطاء جهد وتردد ثابتين لحمل معزول. تمت مناقشة النتائج.

Table of Contents

Description	Page No
Quran Verse	I
Dedication	II
Acknowledgement	
Abstract	IV
مستخلص البحث	V
Table of contents	VI
List of Figures	IX
Chapter One	1
Introduction	
1.1Introduction	1
1.2 Problem Statement	4
1.3 Objective	4
1.4 Methodology	4
1.5 Thesis Layout	4
Chapter Two Literature Review	6
2.1Introduction	6
2.1.1 Development Of Wind Energy System	
2.1.2.Wind Power	8
2.1.3.Wind Energy	9
2.1.4.The kinetic energy	11
2.2. Generators	11
2.2.1.Induction Generators	13
2.2.2.Rotor Circuit Model	14

2.2.3 Operation of Induction Generator	
2.2.4Analysis of Induction generator	15
2.2.5 Excitation of three phase induction generator	16
2.2.6 Capacitor Calculation	18
2.3 Power electronic	19
2.3.1 Soft-starter	23
Chapter Three Mathematical Model	24
3.1 Introduction	24
3.2 Mathematical Model Of Induction Machine	24
3.2.1 The Transformation Of 3-phase To Two Phase Of IM	28
Machine	
3.2.2. Model of self excited induction generator	34
3.3 .Calculation of Shunt Capacitor for SEIG	37
3.3.1Loop impedance method	38
3.3.2. Nodal analysis method	39
3.4. Modeling of gear	42
3.5. Modeling of Wind Turbine (WT)	
3.6. Modeling of VSC	
3.7.Control Scheme based on SVM	
3.8. Diode Bridge Rectifier and DC Link	49
3.9.Maximum power point tracking (DC-DC boost converter)	49
3.10.PWM Invert	52
Chapter Four	54
Result And Discussion 4.1 Introduction	54
4.2 System Configuration	54
4.3 Results	56

Chapter Five	64
Conclusion And Recommendations	
5.1. Conclusion	64
5.2 Recommendations	64
References	65
Appendixes	69
Appendix (A)	69
Appendix (B)	70

List of Figures

Figure NO	Description	Page NO
2.1	The global wind energy market	8
2.2	Actual WTG output power with the wind speed	10
2.3	Interfacing of SCIG to electric utility via diode bridge rectifier and LCI.	16
3.1	the Idealized Three-Phase Induction Machine	25
3.2	Schematic Representations of Stationary and Rotating Axis	32
3.3	d-q representation of self-excited induction generator (SEIG)	35
3.4	Detailed d-q model of SEIG in stationary reference frame (a) q- axis circuit (b) d- axis circuit	36
3.5	Loop impedance method	38
3.6	Nodal analysis method	39
3.7	Typical gear of wind turbine	42
3.8	The relationship of d turbine ame and stationary dq reference frame	45
3.9	Basic switching vector and sector	46
3.10	Power Circuit topology combined with control structure	49
3.11	Mechanical power versus rotor speed characteristics	50
3.12	the relation among generated mechanical powers and rotor speeds for different wind speed	51
4.1	complete simulation circuit diagram	55
4.2	turbine characteristics(pitch angle=0deg)	56
4.3	Variation of Speed for the wind turbine	57
4.4	Generated voltage of SEIG	58
4.5	Generated current of SEIG	59
4.6	Load voltage before filtered	60
4.7	Load current before filtered	60
4.8	Load power before filtered	61
4.9	Load voltage after filtered	61
4.10	Load current after filtered	62
4.11	Load frequency	62
4.12	power of the Load after filtered	63