| dc.contributor.author | Mahgoub, Tasneem Mahmoud Salih | |
| dc.contributor.author | Supervisor - Omer E. H. Hamid | |
| dc.date.accessioned | 2014-06-01T11:08:58Z | |
| dc.date.available | 2014-06-01T11:08:58Z | |
| dc.date.issued | 2010-10-01 | |
| dc.identifier.citation | Mahgoub,Tasneem Mahmoud Salih .Discrimination of Four Classes in Brain-Computer Interface Based on Motor Imagery/Tasneem Mahmoud Salih Mahgoub;Omer E. H. Hamid .-Khartoum:Sudan University of Science and Technology,College of Engineering,2010.-62p. : ill. ; 28cm.-M.Sc. | en_US |
| dc.identifier.uri | http://repository.sustech.edu/handle/123456789/5358 | |
| dc.description | Thesis | en_US |
| dc.description.abstract | Brain–computer interface provides a voluntarily, non-manual control for artificial limb or device by translating brain activity patterns into control commands. The research investigated the classification of multiclass motor imagery for electroencephalogram (EEG)-based Brain-Computer Interface (BCI) using independent component analysis (ICA), principle component analysis (PCA) and support vector machine (SVM) techniques. The proposed techniques were evaluated by Cohen's kappa coefficient and gave average accuracy around (97+2%) in session one and (31+4%) in session two in classifying four different motor imageries (MI) from EEG measurements for nine subjects under investigating. | en_US |
| dc.description.sponsorship | Sudan University of Science and Technology | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Sudan University of Science and Technology | en_US |
| dc.subject | Brain - Computer Interface | |
| dc.subject | Biomedical Engineering | en_US |
| dc.subject | HUMAN BRAIN | en_US |
| dc.title | Discrimination of Four Classes in Brain-Computer Interface Based on Motor Imagery | en_US |
| dc.title.alternative | تمييز أربع إشارات حيوية في نظام الاتصال بين الدماغ البشري والحاسوب اعتماداً على إشارة الحركة التخيلية | en_US |
| dc.type | Thesis | en_US |