SUST Repository

Free Holomorphic and Maximal Functions on the Unit Ball with Growth Coverings of Strongly Pseudoconvex manifolds

Show simple item record

dc.contributor.author Idriss, Younous Atim
dc.date.accessioned 2014-04-06T08:53:26Z
dc.date.available 2014-04-06T08:53:26Z
dc.date.issued 2013-01-01
dc.identifier.citation Idriss,Younous Atim .Free Holomorphic and Maximal Functions on the Unit Ball with Growth Coverings of Strongly Pseudoconvex manifolds/Younous Atim Idriss;Shawgy Hussein Abd Alla.-Khartoum:Sudan University of Science and Technology,College of Science,2013.-190p. : ill. ; 28cm.-PhD. en_US
dc.identifier.uri http://hdl.handle.net/123456789/4243
dc.description Thesis en_US
dc.description.abstract Multi-analytic operators on Fock spaces are considered. We show the Functional calculus and interpolation of noncommutative operators and transformations. We study the modeling theory for commuting and noncommuting contractive with dilations of commuting tuples. We show the theory of operators on noncommutative varieties. We discuss the free Holomorphic function on the unit ball of linear Bounded operators on Hilbert spaces. We obtain the convolution operators and maximal functions for Dunkl Transforms and weighted spaces on the unit sphere. We show the Holomorphic Hilbert space functions of slow growth on covering of Pseudoconvex domains in stein manifolds en_US
dc.description.sponsorship Sudan University of Science and Technology en_US
dc.language.iso en en_US
dc.publisher Sudan University of Science and Technology en_US
dc.subject Mathematics en_US
dc.subject Functions en_US
dc.subject Fock Spaces en_US
dc.title Free Holomorphic and Maximal Functions on the Unit Ball with Growth Coverings of Strongly Pseudoconvex manifolds en_US
dc.title.alternative الدوال تامة الشكل البلوري الحرة والاعظمية علي كرة الوحدة طبقاً لغطاءات نمو متعددات الطيات شبه المحدبة القوية en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share

Search SUST


Browse

My Account