SUST Repository

Local Spectral Functions of Self-adjoint Operators

Show simple item record

dc.contributor.author ElShami, Samar Samir Bayoumi
dc.date.accessioned 2013-11-28T07:59:23Z
dc.date.available 2013-11-28T07:59:23Z
dc.date.issued 2010-01-01
dc.identifier.citation ElShami,Samar Samir Bayoumi.Local Spectral Functions of Self-adjoint Operators/Samar Samir Bayoumi ElShami;Shawgy Hussein Abd Alla.-Khartoum:Sudan University of Science and Technology,College of Science,2010.-279p.: ill. ; 28cm.-PhD. en_US
dc.identifier.uri http://hdl.handle.net/123456789/2526
dc.description Thesis en_US
dc.description.abstract We study some extensions of Loewner's theory of monotone operator functions. We diagonalize operators with reflection symmetry, that is we provide an operator theoretic model of a given structure of pure shift of infinite multiplicity and we describe the spectrum of the self-adjoint operator interms of structural properties of an operator in a Hilbert space. We discussed the Krein-like formula for singular perturbations of self-adjoint operators with applications for elliptic pseudo-differential operators. We characterized the linear maps, operators and linear transformations on symmetric matrices that preserve commulativity. We establish a local spectral theory for operators on a Banach space with spectral theory of commuting self-adjoint partial differential operators. We also consider a trace formula for self-adjoint operators associated to canonical differential expressions. We investigate some conditions that two self-adjoint operators to commute or to satisfy the Weyl function. The structure of the anticommutating self-adjoint operators restricted to injectivity is studied. We show that the compact self-adjoint operators commuting when satisfying the limit of the product of the parameterized exponentials of such operators. We consider the self-adjoint block operator matrices with non-separated diagonal entries and investigate correspondingly their Schur complements. We introduce and study the self-adjoint analytic operator functions and their local spectral function. en_US
dc.description.sponsorship Sudan University of Science and Technology en_US
dc.language.iso en en_US
dc.publisher Sudan University of Science and Technology en_US
dc.subject Selfadjoint Operaters en_US
dc.title Local Spectral Functions of Self-adjoint Operators en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share

Search SUST


Browse

My Account