SUST Repository

Banach Algebra on L^P-Space and Finite Dimensional Invariant Subspace with Property T of Group Homeomorphism

Show simple item record

dc.contributor.author Ali, Fatima Mohammed Ahmed
dc.contributor.author Supervisor, - Shawgy Hussein Abd Alla
dc.date.accessioned 2020-09-02T10:06:47Z
dc.date.available 2020-09-02T10:06:47Z
dc.date.issued 2019-10-10
dc.identifier.citation Ali, Fatima Mohammed Ahmed . Banach Algebra on L^P-Space and Finite Dimensional Invariant Subspace with Property T of Group Homeomorphism / Fatima Mohammed Ahmed Ali ; Shawgy Hussein Abd Alla .- Khartoum: Sudan University of Science and Technology, college of Science, 2019 .- 251p. :ill. ;28cm .- PhD. en_US
dc.identifier.uri http://repository.sustech.edu/handle/123456789/24976
dc.description Thesis en_US
dc.description.abstract The Leavitt path algebras and simplicity of lie algebras associated to Leavitt algebras are considered. We give the crossed products of l^p-operator algebras, the k-theory of Cuntz algebras generated on l^p- spaces. The character amenability, ∅-amenability, character pseudo- amenability for a class of Banach algebras are characterized with finite-dimensional invariant subspace property for algebras of linear operators . The property (T) for C^*-algebras ,pairs of topological groups , unital C^*-algebras and of group homomorphism’s are studied and also with property (T_(l^p )). en_US
dc.description.sponsorship Sudan University of Science and Technology en_US
dc.language.iso en en_US
dc.publisher Sudan University of Science and Technology en_US
dc.subject Mathematics en_US
dc.subject Group Homeomorphism en_US
dc.subject Banach Algebra en_US
dc.subject on L^P-Space en_US
dc.subject Finite Dimensional Invariant en_US
dc.title Banach Algebra on L^P-Space and Finite Dimensional Invariant Subspace with Property T of Group Homeomorphism en_US
dc.title.alternative جبر باناخ علي فضاءات -L^p والفضاءات الجزئية اللامتغيرة ذات البعد المنتهي مع خاصية (T) لهومورفيزم الزمرة en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share

Search SUST


Browse

My Account