SUST Repository

AComputer Aided Diagnosis Systemforthe Detection ofPulmonary Nodules in CT Scans Images

Show simple item record

dc.contributor.author Khairy, Samah AbdElkhaleg Mohamed Nour
dc.contributor.author Supervisor, Zainab Adam Mustafa
dc.date.accessioned 2019-12-17T08:08:59Z
dc.date.available 2019-12-17T08:08:59Z
dc.date.issued 2019-02-10
dc.identifier.citation Khairy, Samah AbdElkhaleg Mohamed Nour . AComputer Aided Diagnosis Systemforthe Detection ofPulmonary Nodules in CT Scans Images / Samah AbdElkhaleg Mohamed Nour Khairy ; Zainab Adam Mustafa .- Khartoum: Sudan University of Science and Technology, college of Engineering, 2019 .- 52p. :ill. ;28cm .- M.Sc en_US
dc.identifier.uri http://repository.sustech.edu/handle/123456789/24132
dc.description Thesis en_US
dc.description.abstract Lungcancer (both smallcelland non-smallcell)isthe second most co mmon cancerin both men and women (not countingskin cancer).In men,prostate cancer ismore common,whileinwomen breast cancer ismore common.About14%ofallnewcancersare lungcancers. The American Cancer Society’sestimatesforlungcancerinthe Unit ed Statesfor 2018are:about234,030newcasesoflungcancer (121,68 0in men and 112,350inwomen) ,about154,050deathsfromlungcan cer (83,550in men and 70,500inwomen). Use CTscanners tostudydetectedoflungcancerwith alarger nu mber of thinnerslices,resultingin the detectionof more nodules.Thi sincreasein thenumber of imagesperCT examination makesthepr ocessof CT interpretation more time consumingand boringfor the r adiologist.Thiscanlead to decreased detectionsensitivityfor nodules ,apart fromthefactthat the majorityofthescreeningcasesare nor mal, and hence diagnostic readingerrorsmanybehard toavoid.The refore,computerized methodsfor nodule detection toassistthe radiol ogist became important. Computer-aided diagnosis(CAD) system;First,The CT imagesin D ICOMformatwereread bythesystem,and thelungswere extracted fromthethoraxtominimize the Region OfInterest (ROI),Finally,se veralfeatures(geometricand texture)were extracted, tobeused in t he classificationstage. In classification stagewe used three types(SVM, ANNandKNN). The CADsystemwasable toachieve anaccuracyof SVM92%, AN N87%and KNN86% . en_US
dc.description.sponsorship Sudan University of Science and Technology en_US
dc.language.iso en en_US
dc.publisher Sudan University of Science and Technology en_US
dc.subject Biomedical Engineering en_US
dc.subject Pulmonary Nodules en_US
dc.subject CT Scans Images en_US
dc.subject AComputer Aided en_US
dc.title AComputer Aided Diagnosis Systemforthe Detection ofPulmonary Nodules in CT Scans Images en_US
dc.title.alternative نظام للتشخيص بمساعدة الكمبيوترللكشف عن العقيدات الرئوية في الصور المقطعية en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share

Search SUST


Browse

My Account