dc.contributor.author |
Ahmed, Hind Mohammed Ibrahim |
|
dc.contributor.author |
Supervisor, - Shawgy Hussein AbdAlla |
|
dc.date.accessioned |
2019-04-01T12:38:24Z |
|
dc.date.available |
2019-04-01T12:38:24Z |
|
dc.date.issued |
2016-11-10 |
|
dc.identifier.citation |
Ahmed, Hind Mohammed Ibrahim . Logarithmic Bump with Bilinear T (B) Theorem and Maximal Singular Integral Operators / Hind Mohammed Ibrahim Ahmed ; Shawgy Hussein AbdAlla .- Khartoum: Sudan University of Science and Technology, college of Science, 2018 .- 158p. :ill. ;28cm .- M.Sc. |
en_US |
dc.identifier.uri |
http://repository.sustech.edu/handle/123456789/22514 |
|
dc.description |
Thesis |
en_US |
dc.description.abstract |
We show that if a pair of weights (u,υ) satisfies a sharp Ap - bump condition in the scale of all log bumps certain loglog bumps , then Haar shifts map L^p (υ) into L^p (u) with a constant quadratic in the complexity of the shift . This in turn implies the two weight boundedness for all Calderón – Zygmund operators. We obtain a generalized version of the former theorem valid for a larger family of Calderón – Zygmund operators in any ambient space . We present a bilinear Tb theorem for singular operators Calderón – Zygmund type. Extending the end point results obtained to maximal singular. Another consequence is a quantitative two weight bump estimate. |
en_US |
dc.description.sponsorship |
Sudan University of Science and Technology |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Sudan University of Science and Technology |
en_US |
dc.subject |
Mathematics |
en_US |
dc.subject |
Integral Operators |
en_US |
dc.subject |
Maximal Singular |
en_US |
dc.subject |
Logarithmic Bump with Bilinear |
en_US |
dc.title |
Logarithmic Bump with Bilinear T (B) Theorem and Maximal Singular Integral Operators |
en_US |
dc.title.alternative |
النتوء اللوغريثمي مع مبرهنة T (B) ثنائية الخطية ومؤثرات التكامل الشاذة الأعظمية |
en_US |
dc.type |
Thesis |
en_US |