SUST Repository

Logarithmic Bump with Bilinear T (B) Theorem and Maximal Singular Integral Operators

Show simple item record

dc.contributor.author Ahmed, Hind Mohammed Ibrahim
dc.contributor.author Supervisor, - Shawgy Hussein AbdAlla
dc.date.accessioned 2019-04-01T12:38:24Z
dc.date.available 2019-04-01T12:38:24Z
dc.date.issued 2016-11-10
dc.identifier.citation Ahmed, Hind Mohammed Ibrahim . Logarithmic Bump with Bilinear T (B) Theorem and Maximal Singular Integral Operators / Hind Mohammed Ibrahim Ahmed ; Shawgy Hussein AbdAlla .- Khartoum: Sudan University of Science and Technology, college of Science, 2018 .- 158p. :ill. ;28cm .- M.Sc. en_US
dc.identifier.uri http://repository.sustech.edu/handle/123456789/22514
dc.description Thesis en_US
dc.description.abstract We show that if a pair of weights (u,υ) satisfies a sharp Ap - bump condition in the scale of all log bumps certain loglog bumps , then Haar shifts map L^p (υ) into L^p (u) with a constant quadratic in the complexity of the shift . This in turn implies the two weight boundedness for all Calderón – Zygmund operators. We obtain a generalized version of the former theorem valid for a larger family of Calderón – Zygmund operators in any ambient space . We present a bilinear Tb theorem for singular operators Calderón – Zygmund type. Extending the end point results obtained to maximal singular. Another consequence is a quantitative two weight bump estimate. en_US
dc.description.sponsorship Sudan University of Science and Technology en_US
dc.language.iso en en_US
dc.publisher Sudan University of Science and Technology en_US
dc.subject Mathematics en_US
dc.subject Integral Operators en_US
dc.subject Maximal Singular en_US
dc.subject Logarithmic Bump with Bilinear en_US
dc.title Logarithmic Bump with Bilinear T (B) Theorem and Maximal Singular Integral Operators en_US
dc.title.alternative النتوء اللوغريثمي مع مبرهنة T (B) ثنائية الخطية ومؤثرات التكامل الشاذة الأعظمية en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share

Search SUST


Browse

My Account