SUST Repository

Short-Term Load Forecasting Using Artificial Neural Network Technique

Show simple item record

dc.contributor.author HUSSAIN, AL HUSSAIN MUHAMMAD AL HASSAN AL
dc.contributor.author DAFALLA, DAFALLA ELRASHEED ELGAILY
dc.contributor.author ABAAS, OSAAMA ABAAS MUHAMMAD
dc.contributor.author IDRIS, SHAIKH IDRIS JAMAL ALDEEN AL SHAIKH
dc.contributor.author Supervisor-, Mohammad Osman Hassan
dc.date.accessioned 2017-12-10T07:21:23Z
dc.date.available 2017-12-10T07:21:23Z
dc.date.issued 2017-10-01
dc.identifier.citation HUSSAIN, AL HUSSAIN MUHAMMAD AL HASSAN AL .Short-Term Load Forecasting Using Artificial Neural Network Technique/AL HUSSAIN MUHAMMAD AL HASSAN AL HUSSAIN...{etal};Mohammad Osman Hassan.-Khartoum: Sudan University of Science and Technology , College of Engineering , 2017.-56 p. :ill;28cm.- Bachelors search. en_US
dc.identifier.uri http://repository.sustech.edu/handle/123456789/19306
dc.description Bachelors search en_US
dc.description.abstract This project focused on short-term load forecasting [STLF] in power system operations. Load forecasting is future demand prediction, which assumes an essential part ofpower system management. Short term load forecasting [STLF] provides load predictionhelps in generation scheduling, maintenance, and unit commitment decisions. Therefore, [STLF] plays significant role in power system planning, and the performance of the economic system. This project deal with most power ful Artificial Intelligent [AI] whichis Artificial Neural Network [ANN], ANN model designed and compared with one of the statistical methods, which is time series model. MATLAB SIMULINK software is used to accomplish ANN model.This model used Multilayer Feed Forward ANN using MatlabR2016b NN-Tool is trained and examined using data of period from (1/7/2014 to 31/7/2014) . At the end, both methods shows that the STLF using artificial neural network [ANN] more accuratethan the statistical technique en_US
dc.description.sponsorship Sudan University of Science and Technology en_US
dc.language.iso en en_US
dc.publisher Sudan University of Science and Technology en_US
dc.subject Neural Network en_US
dc.subject Artificial Neural Network en_US
dc.subject Short-Term Load Forecasting en_US
dc.title Short-Term Load Forecasting Using Artificial Neural Network Technique en_US
dc.title.alternative التنبؤ بالأحمال قصيرة المدى باستخدام تقنية الشبكات العصبية الاصطناعية en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share

Search SUST


Browse

My Account