Abstract:
We formulated space-time in terms of twistors. In this formulation
the points of space-time (events) are derived from twistors. So twistors
are shown to be the primitive objects from which all concepts of spacetime
arise. Differential equations, describing conformal fields may be
written in twistor terms. We utilized complex structure in 𝑅3 to construct
geometrical solutions for Laplace equation, wave equation and monopole
equation. The complex space used is the so called mini – twistor space
and the solutions in all the above cases is given by a contour integral of
a twistor function over a bundle space of one–dimensional complex
projective space.