SUST Repository

atic Continuity of Orthogonality Preserving between C^*-Algebras and von Neumann Algebras on L^P - Spaces

Show simple item record

dc.contributor.author Mogalli, Faiz Mohammed Abdullah
dc.date.accessioned 2015-01-20T11:09:08Z
dc.date.available 2015-01-20T11:09:08Z
dc.date.issued 2014-09-11
dc.identifier.citation Mogalli,Faiz Mohammed Abdullah.atic Continuity of Orthogonality Preserving between C^*-Algebras and von Neumann Algebras on L^P - Spaces /Faiz Mohammed Abdullah Mogalli;Shawgy Hussein Abd Alla.-khartoum:Sudan University of Science and Technology,College of Sciences,2014.-110p:ill;28cm.-M.Sc. en_US
dc.identifier.uri http://repository.sustech.edu/handle/123456789/10067
dc.description Thesis en_US
dc.description.abstract We show that every biorthogonality preserving linear surjection between two dual or compact C^*-algebras or between two von Neumann algebras is automatically continuous . Consequently, every complete (semi-norm on a von Neumann algebra or on a compact C^*-algebra is automatically continuous .We study orthogonality preserving surjective linear maps from a unital C^*-algebra with non-zero socle to a C^*-algebra . We show that an orthogonality-to-p-orthogonality preserving linear bijection from the Lebesque space to a Banach space is automatically continuous, whenever the von Neumann algebra is a separably acting von Neumann algebra. en_US
dc.description.sponsorship Sudan University of Science and Technology en_US
dc.language.iso en en_US
dc.publisher Sudan University of Science and Technology en_US
dc.subject Mathematics en_US
dc.subject C^*-Algebras en_US
dc.subject L^P - Spaces en_US
dc.subject von Neumann Algebras en_US
dc.title atic Continuity of Orthogonality Preserving between C^*-Algebras and von Neumann Algebras on L^P - Spaces en_US
dc.title.alternative الاستمراريه الذاتيه الحافظه للتعامديه بين جبريات –C^* و جبريات فون نيومان على فضاءات- L^P en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SUST


Browse

My Account