
1 
 

Chapter 1 

Introduction 

        The term "outlier" can generally be defined as an observation that is 
significantly different from the other values in a data set.  
The outliers may be instances of error or indicate events. The task of 
outlier detection aims at identifying such outliers in order to improve the 
analysis of data and further discover interesting and useful knowledge 
about unusual events within numerous applications domain. 

        Outlier detection refers to the problem of finding patterns in data 
that do not conform to expected normal behavior. These anomalous 
patterns are often referred to as outliers, anomalies, discordant 
observations, exceptions, faults, defects, aberrations, noise, errors, 
damage, surprise, novelty, peculiarities or contaminants in different 
application domains. Outlier detection has been a widely researched 
problem and finds immense use in a wide variety of application domains 
such as credit card, insurance, tax fraud detection, intrusion detection for 
cyber security, fault detection in safety critical systems, military 
surveillance for enemy activities and many other areas. 

     The importance of outlier detection is due to the fact that outliers in 
data translate to significant (and often critical) information in a wide 
variety of application domains. 

        Outliers can also translate to critical entities such as in 
military surveillance, where the presence of an unusual region in a 
satellite image of enemy area could indicate enemy troop movement.  
Or anomalous readings from a space craft would signify a fault in some 
component of the craft. Outlier detection has been found to be directly 
applicable in a large number of domains. This has resulted in a huge and 
highly diverse literature of outlier detection Outlier detection methods 
can be classified into univariate methods and multivariate methods. 
    Or, one can classify them based on parametric methods (Hawkins, 
1980; 
Rousseeuw and Leroy, 1987; Barnett and Lewis, 1994) and non- 
parametric methods (Williams, Baxter, He, Hawkins and Gu, 2002). 
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1.1 Statement of the problem  

       Outlier in the data presents one of the main problems that usually 
face researchers. This is so since they can not usually be ignored and 
must be treated. This  mean that in any set of  data the  researcher  must 
test for the  presence  of  outliers if he  suspected  that there is  a 
possibility  of  their presence. Different methods are suggested in the 
literature for the detection of outliers. And although the efficiency of 
most of these methods are studied by many authors, yet there is still a 
need to investigate their performance under various conditions 
particularly under different sample size and different distributions. This is 
the problem that motivated this study. 

1.2 Research objective: 

The aim of this thesis is to: 

(1) Investigate the sensitivity of various outliers’ detection methods under 
different conditions. 

(2) Propose a new method for outlier detection. 

1-3 Research Approach 

The analytical approach is adopted in this thesis. Univariate 

techniques employed in outlier detection will be used. A simulation 

experiment is performed to enable the comparison of the different  

methods by using MATLAB Software. 

1.4 Structure of the Thesis:   

       The thesis is organized as follows:  

Chapter (1) contains the introduction , statement of the problem, research 
objective and research Approach. 

Chapters(2) presents different definitions of outliers and their sources and 
Classifications. It also discusses their importance and applications. 
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A chapter (3) reviews previous work in the literature on outlier detection.  

Chapter (4) a new method is proposed for detection of outliers. 

Chapter (5) compares through a simulation study different methods  

of outlier detections. 

Finally, in chapter (6) a conclusion is presented that contains the main 
research Findings. 
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CHAPTER 2 
 
 

2-1 Introduction: 
       Observed variables often contain outliers that have unusually large or 
small values when compared with others in a data set.  
Some data sets may come from homogeneous groups; others from 
heterogeneous groups that have different characteristics regarding a 
specific variable, such as height data not stratified by gender.  
Outliers can be caused by incorrect measurements, including data entry 
errors, or by coming from a different population than the rest of the data. 
In this chapter  the various Definition , Masking and Swamping effect are  
reviewed . Source and type of outlier and the importance of  detection 
outlier and some of the Applications of Outlier Detecting Techniques are 
also presented,Finally we discuss the Skewenss and Brokndownpoint.     
2-2  Defintions of outlier: 
        Hadi et al.(2009) stated, “There are numerous definitions of outliers 
in the statistical and machine learning literatures.” One commonly used 
definition is that outliers are a minority of observations in a dataset that 
have different patterns from that of the majority of observations in the 
dataset. The assumption here is that there is a core of at least 50% of 
observations in a dataset that are homogeneous (that is, represented by a 
common pattern) and that the remaining observations (hopefully few) 
have patterns that are inconsistent with this common pattern. However, 
given that there is currently no universally accepted  definition for an 
outlier, the seven most-commonly used definitions of outliers are 
provided.  

1. Grubbs (1969):  
       “defines outlier as one that appears to deviate markedly from other 
members of the sample in which it occurs”. 

2. Hawkins (1980):  
      “defines an outlier as an observation that deviates so much from other 
observations as to arouse suspicion that it was generated by a different 
mechanism”. 

3. Johnson (1992):  
     “defines an outlier as an observation in a data set which appears to be 
inconsistent with the remainder of that set of data”. 
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4. Mendenhall et al. (1993)  
       apply the term “outliers” to values “that lie very far from the middle 
of the distribution in either direction”. 

5. Barnet and Lewis (1994):  
        “Indicate that an outlying observation, or outlier, is one that appears 
to deviate markedly from other members of the sample in which it 
occurs”. 

6. Pyle (1999):  
       “states that an outlier is a single, or very low frequency, occurrence 
of the value of a variable that is far away from the bulk of the values of 
the variable”. 

7. Hair, Anderson, Tatham and Black, (2005, pg 64) : 
      “explains that outliers are observations with a unique combination of 
characteristics identifiable as distinctly different from the other 
observations“. 
These definitions all refer to an observation that is surprisingly different 
from the rest of the data. However, the words ”appears to deviate”, 
”arouse suspicion”, ”inconsistent” and ”distinctly different” imply some 
kind of subjectivity or preconceived ideas about what the data should 
look like. 
       The detection and study of outliers present a significant challenge to 
the data analyst in many areas of application. 
Sometimes, the outliers themselves may be of interest as they might lead 
to new knowledge and discovery. In other cases, the presence of outliers 
can be a problem as they can significantly distort classical analysis of 
data and the inferences drawn from that analysis. Thus outlier detection 
has received and continues to receive considerable attention both inside 
and outside of the statistics literature  
(see for example, Barnett (1978), Barnett and Lewis (1994), Cao et al. 
(2010), Cerioli (2010), Dang and Serfling (2010), Hawkins (2006), Louni 
(2008), Schwertman et al. (2004), Schwertman and de Silva (2007), 
Tukey (1977) ). 
2.3 Masking and Swamping effect: 
         There are many definitions of masking and swamping effect (see, 
Hawkins, 1980; Iglewics and Martinez, 1982; Davies and Gather, 1993; 
Barnett and Lewis, 1994,seo 2006) (( Nazrina Aziz ((2010))  
2.3.1 Masking effect:  
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      It is said that one outlier masks a second outlier, if the second outlier 
can be considered as an outlier only by itself, but not in the presence of 
the first outlier. Thus, after the deletion of the first outlier the 
second instance is emerged as an outlier. Masking occurs when a cluster 
of outlying observations skews the mean and the covariance estimates 
toward it, and the resulting distance of the outlying point from the mean 
is small. 
2.3.2 Swamping effect : 
      It is said that one outlier swamps a second observation, if the latter 
can be considered as an outlier only under the presence of the 
first one. In other words, after the deletion of the first outlier the second 
observation becomes a non-outlying observation. Swamping occurs 
when a group of outlying instances skews the mean and the covariance 
estimates toward it and away from other non-outlying instances, and the 
resulting distance from these instances to the mean is large, making them 
look like outliers. A single step procedure with low masking and 
swamping is given in (Iglewics and Martinez, 1982). 
2.4 type  of  outlier: 
     There are some of type of outlier as following : 
2.4. 1 Type I Outliers: 
      In a particular dataset an individual outlying instance is termed as a 
Type I outlier. That single point of data is an outlier because of its 
attribute value which is inconsistent with values taken by normal 
instances.  
         Many of the existing outlier detection schemes focus on this single 
outlier. These techniques analyze the relationship of this single point of 
data with regard to the rest of the points in the dataset. For example, in 
credit card data or medical data each data represents a single transaction 
or a single patient. 
2.4.2-Type II Outliers: 
      These outliers are caused because of the occurrence of an individual 
data instance in a specific context in the given data. These outliers are 
also individual data instances. But these type II outliers are in the context 
of a particular dataset especially in relation to its structure and problem 
formulation..  
2.4.3-Type III Outliers: 
       These are not individual observations but rather are an entire 
subset of the entire dataset which are outliers. Their occurrence 
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together constitute an anomalous formulation. They are usually 
meaningful when the data has a sequential nature. These outliers 
are either subgraphs or subsets. 
 
2.5 Source of outliers: 
   Outliers may arise coincidently without any anticipation by a 
researcher. Sometimes it cannot be explained. However, there are 
a few possible reasons for the existence of outliers in the data set.  
Barnett and Lewis (1994) classified outlier source into three types.  
The initial source is named as inherent variability, which implies a 
situation beyond one’s control since it might arise from the natural 
characteristics of the individual variable. 
   For example, if the data collection involves time duration, it 
may cause an occurrence of outliers since some of the 
observations might be influenced by any event that might occur 
unexpectedly throughout the period of the study.  
  The next cause is measurement error such as reading, computing 
and typing errors during the data entry process. This possibly 
makes the observation peculiar compared to the other 
observations in the data set. 
   The last reason is the execution error, related to the research 
design where one might choose a biased sample or include 
individuals that are not true representatives of the population that 
is to be sampled. 
  No matter what the causes of outliers are, the most important 
aspect of outlier issue is the technique to identify whether there 
are outliers in the data set or not.  
By identifying the existence of outliers, one may identify the 
source of the outliers. 
    Anscombe (1960) (cited by Beckman and Cook, 1983) divided 
outliers into two major categories. First, there might be errors in 
the data due to some mistake/error and second, outliers may be 
present due to natural variability. There might be the third 
category of outliers when they come from outside the sample.     
Ludbrook (2008) discussed a number of reasons of outlier‟s 
existence and methods of handling them.  
   Outliers can arise from several different mechanisms or causes.  
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  It is therefore important to consider the range of causes that may 
be responsible for outliers in a given set of data. 
1- Outliers from data errors:-  
      outliers are often caused by human error, such as errors in data 
collection, recording or entry. Data from an interview can be 
recorded incorrectly, or mistaken upon data entry. Errors of this 
nature can often be corrected by returning to the original 
documents or even the subjects if necessary and possible and 
entering the correct value. 
2-Outliers from intentional or motivated mis-reporting: -  
      There are times when participants purposefully report 
incorrect data to experimenters or surveyors. A participant may 
make conscious effort to sabotage the research, Huck (2000) or 
may be acting from other motives. Social desirability and self 
presentation motives can be powerful. This can also happen for 
obvious reasons when data are sensitive (e.g. teenagers under-
reporting drug or alcohol use, misreporting of sexual behaviour). 
If all but few teens under-report a behavior the few honest 
responses might appear to be outliers when in fact they are 
legitimate and valid scores. Motivated over-reporting can occur 
when the variable in question is socially desirable (e.g. income, 
educational attainment, grades, study times, church attendance, 
and sexual experience). Environmental conditions can motivate 
over-reporting or misreporting, such as if an attractive female 
researcher is interviewing male undergraduates about attitude on 
gender equality in marriage. Depending on the details of the 
research, one of two things can happen: inflation of all estimates, 
or production of outliers. If all subjects respond the same way, the 
distribution will shift upward, not generally causing outliers. 
However, if only a small subsample of the group responds this 
way to the experimenter, or if multiple researchers conduct 
interviews, then outliers can be created. 
 
 
3-Outliers from sampling error:-  
    another cause of outliers is sampling. It is possible that a few 
members of a sample were inadvertently drawn from a different 
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population than the rest of the sample. These cases should be 
removed as they do not reflect the target population. 
4-Outliers from standardization failure:- 
     outliers can be caused by research methodology, particularly if 
something anomalous happened during a particular subject 
experience one might argue that a study of stress levels in school 
children around the country might have found some significant 
outliers. Unusual phenomena such as a construction noise outside 
a research laboratory or an experimenter feeling particularly 
grouchy, or even events outside the context of the research 
laboratory ,such as a student protest, a rape or murder on campus, 
observations in the classroom the day before a big holiday recess 
and so on can produce outliers. 
Faulty or non-calibrated equipments is another common cause of 
outliers. These data can be legitimately discarded if the 
researchers are not interested in studying the particular 
phenomenon in question . 
5-Outliers from faulty distributed assumptions:-  
      incorrect assumptions about the distribution of the data can 
also lead to the presence of suspected outliers, Iglewieze and 
Hoaglin,(1993). may give rise to bimodal, skewed, asymptotic or 
fled is attributions, depending upon the sampling design. The data 
may have a different structure than the researcher originally 
assumed, and long or short-term trends may affect the data in 
unanticipated ways.  
Depending on the goal of the research, these extreme values may 
or may not represent an aspect of the inherent variability of the 
data, and may have a legitimate place in the data set. 
6-Outliers as legitimate cases sampled from the correct  
population:- 
    It is possible that an outlier can come from the population being 
sampled legitimately through random chance, it is important to 
note that sample size plays a role in the probability of outlying 
values. Within a normally distributed population, it is more 
probable that a given data point will be drawn from the most 
densely concentrated area of the distribution, rather than one of 
the tails Evans,(1999); Sachs, (1982). As a researcher casts a 
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wider net and the data set becomes larger, the more the sample 
resembles the population from which it was drawn and thus the 
likelihood of outlying values become greater. In other words, 
there is only about one percentage chance you will get an outlying 
data point from a normally distributed population, this means that, 
on the average, about one percentage of your subjects should be 
three standard deviations from the mean. In the case that outliers 
occur as a function of the inherent variability of the data, opinions 
differ widely on what to do. Due to the dexterous effect on power, 
accuracy and error rates that outliers can have, here it might be 
desirable to use a transformation or recoding/truncation strategy to 
both keep the individual in the data set and at the same time 
minimize the harm to statistical inference: Osborne, (2002). 
7-Outliers as potential focus of inquiry:- 
    we all know that interesting research is often as much a matter 
of serendipity as planning and inspiration. Outliers can represent a 
nuisance error, or legitimate data. They can also be inspiration for 
inquiry. When researchers in Africa discovered that some women 
were living with HIV just fine for years and years, untreated, 
those rare cases were outliers compared to most untreated women, 
who die fairly rapidly. They could have been discarded as noise or 
error, but instead they serve as inspiration for inquiry. This 
extreme score might shed light on an important principal or issue.    
Before discarding outliers, researchers need to consider whether 
those data contain valuable information that may not necessarily 
relate to the intended study, but has importance in a more global 
sense. The presence of outliers can lead to inflated error rates and 
substantial distortions of parameter and statistics estimates when 
using either parametric or nonparametric tests(Zimmerman, 1994, 
1995, 1998). Casual observation of the literature suggests that 
researchers rarely report checking for outliers of any sort. This 
inference is supported empirically by Osborne, Christiansen and 
Gunter (2001), who found that authors reported testing 
assumptions of the statistical procedures used in their studies – 
including checking for the presence of outliers – only eight per 
cent of the time. Given what we know of the importance of 
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assumptions to accuracy of estimates and error rates, this in itself 
is alarming. 
  Wainer (1976) also introduced the concept of the “froigelier” 
referring to “unusual events which occur more often than Seldom” 
(p.286). These points lie near three standard deviations from the 
mean and hence may have a disproportionately strong influence 
on parameter estimates, yet are not so obvious or easily identified 
as ordinary outliers due to their relative proximity to the 
distribution center.  
As fringeless are a special case of outliers, for much of the rest of 
this study we will use the generic term “outlier” to refer to any 
single data point of dubious origin or disproportionate influence. 
occurring in the data. 
 
2.6 Importance of Detecting Outliers: 
      Outlier detection plays an important role in modeling, 
inference and even data processing because outlier can lead to 
model misspecification, biased parameter estimation and poor 
forecasting (Tsay, Pena and Pankratz, 2000 and Fuller, 1987). 
Outlier detection as a branch of data mining has many important 
applications, and deserves more attention from data mining 
community. The identification of outliers may lead to the 
discovery of unexpected knowledge in areas such as credit card 
and calling card fraud, criminal behaviors, and cyber crime, etc. 
(Mansur and Sap, 2005). Detection of outliers in the data has 
significant importance for continuous as well as discrete data sets 
(Chen, Miao and Zhang, 2010). Justel and Pena (1996) proved 
that the presence of a set of outliers that mask each other will 
result in failure of the Gibbs sampling (In Bayesian parametric 
model Gibbs sampling is an algorithm which provides an accurate 
estimation of the marginal posterior densities, or summaries of 
these distributions, by sampling from the conditional parameter 
distributions) with the result that posterior distributions will be 
inadequately estimated.  
Iglewicz and Hoaglin (1994) recommend that data should be 
routinely inspected for outliers because outliers can provide useful 
information about the data. As long as the researchers are 
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interested in data mining, they will have to face the problem of 
outliers that might come from the real data generating process 
(DGP) or data collection process. Outliers are likely to be present 
even in high quality data sets and a very few economic data sets 
meet the criterion of high quality (Zaman, Rousseeuw and Orhan, 
2001). Some techniques designed for skewed distributions such as 
the boxplot introduced by Mia Hubert and Ellen Vandervieren 
(2008) and some other techniques introduced by Banner and 
Iglewicz (2007) are designed for large sample sizes but there are 
also some techniques which are designed for smaller sample size 
like Dixon test (Constantinos E. Efstathiou, 2006). Some 
techniques like 2SD (standard deviation) perform well in the 
symmetric distributions but fail in the skewed distribution due to 
the fact that they construct large intervals of critical values around 
the means of asymmetrically centered distributions on the 
compressed side while short it on the skewed side of the 
distribution according to the level of skewness. 
 
 2.7 Applications of Outlier Detecting Techniques:  
Outlier‟s detection can be applied on lot of data sets for various 
purposes. Some of which are discussed below:  
 
2.7.1 Intrusion Detection Systems:  
      In many host-based or networked computer systems, different 
kinds of data are collected about the operating system calls, 
network traffic, or other activity in the system. 
This data may show unusual behavior because of malicious 
activity.  
The detection of such activity is referred to as intrusion detection. 
2.7.2  Credit Card Fraud:  
      Credit card fraud is quite prevalent, because of the ease with 
which sensitive information such as a credit card number may be 
compromised. This typically leads to unauthorized use of the 
credit card. In many cases, unauthorized use may show different 
patterns, such as a buying spree from geographically obscure 
locations. Such patterns can be used to detect outliers in credit 
card transaction data. 



13 
 

2.7.3 Interesting Sensor Events: 
       Sensors are often used to track various environmental and 
location parameters in many real applications. 
The sudden changes in the underlying patterns may represent 
events of interest. Event detection is one of the primary 
motivating applications in the field of sensor networks. 
2.7.4 Medical Diagnosis:  
    In many medical applications the data is collected from a 
variety of devices such as MRI scans, PET scans or ECG time-
series. Unusual patterns in such data typically reflect disease 
conditions. 
2.7.5 Law Enforcement: 
     Outlier detection finds numerous applications to law 
enforcement, especially in cases, where unusual patterns can only 
be discovered over time through multiple actions of an entity.  
Determining fraud in financial transactions, trading activity, or 
insurance claims typically requires the determination of unusual 
patterns in the data generated by the actions of the criminal entity. 
2.7.6 Earth Science: 
        A significant amount of spatiotemporal data about weather 
patterns, climate changes, or land cover patterns is collected 
through a variety of mechanisms such as satellites or remote 
sensing. Anomalies in such data provide significant insights about 
hidden human or environmental trends, which may have caused 
such anomalies.  
2.8 Skewness:  
   Asymmetry in the probability distribution of the random 
variable is known to be the skewness of that random variable. 
Using the conventional third moment measure, the value of 
skewness might be positive or negative or may be undefined. If 
the distribution is negatively skewed, it implies that tail on the left 
side of the probability density function is longer than the right 
hand side of the distribution. It also shows that larger amount of 
the values including median lie to the right of the mean.   
Alternatively, positively skewed distribution indicates that the tail 
on the right side is longer than the left side and the bulk of the 
values lie to the left of the mean. If the value of the skewness is 
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exactly zero, this suggests symmetry of the distribution. The third 
moment is a crude measure of symmetry, and in fact highly 
asymmetric distributions may have zero third moment. In 
addition, the third moment is extremely sensitive to outliers, 
which makes it unreliable in many practical situations. It is 
therefore useful to develop alternative measures of skewness 
which are insensitive to outliers and more direct measures of 
symmetry ( Iftikhar 2011). 
 
2.9 Breakdownpoiont: 
       The notion of breakdown point was introduced by Hodges 
(1967) and Hampel (1968, 1971). It’s a robustness measure of an 
estimator such as the mean and median or a related procedure 
using the estimators. The breakdown point of an estimator 
generally can be defined as the largest percentage of the data that 
can be changed into arbitrary values without distorting the 
estimator. 
   For example, if even one observation of a univariate data set is 
moved to infinity, the estimators of the data set such as the mean 
and variance go to infinity. Thus, the breakdown point of these 
estimators is zero. In contrast, the breakdown point of the median 
is approximately 50% and it varies slightly according whether the 
sample size n is odd or even. The exact breakdown point of the 
median is 50(1-1/n) % and 50(1-2/n) % for odd sample size n and 
even sample size n, respectively. Therefore, if the breakdown 
point of an estimator is high, the estimator is robust. 
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CHAPTER 3 
 
3.1 Introduction: 
      An outlier is a data point which is significantly different from 
the remaining data Outliers are also referred to as abnormalities, 
discordants, deviants,or anomalies in the data mining and 
statistics literature. In most applications,the data is created by one 
or more generating processes, which could either reflect activity 
in the system or observations collected about entities. When the 
generating process behaves in an unusual way, it results in the 
creation of outliers, so in this chapter we review different methods 
for identify in outliers.   
3.2 A historical review of Detection methods of 
Univariatc Outliers: 
      Detection of outliers in the analysis of the data sets dates back 
to 18th century. Bernoulli (1777) pointed out the practice of 
deleting the outliers about 200 years ago. Deletion of outliers is 
not a proper solution to handle the outliers but this remained a 
common practice in past. To address the problem of outliers in the 
data, the first statistical technique was developed in 1850 
(Beckman and Cook, 1983).  
      Some of the researchers argued that extreme observations 
should be kept as a part of data as these observations provide very 
useful information about the data. For example, Bessel and Baeuer 
(1838) claimed that one should not delete extreme observations 
just due to their gap from the remaining data (cited in Barnett, 
1978). The recommendation of Legendre (1805) is not to rub out 
the extreme observations "adjudged too large to be admissible". 
Some of the researchers favored to clean the data from extreme 
observations as they distort the estimates. An astronomer of 19th 
century, Boscovitch, put aside the recommendations of the 
Legendre and led them to delete (ad hoc adjustment) perhaps 
favoring the Pierce (1852), Chauvenet (1863) or Wright (1884). 
Cousineau and Chartier (2010) said that outliers are always the 
result of some spurious activity and should be deleted. Deleting or 
keeping the outliers in the data is as hotly discussed issue today as 
it was 200 years ago.  
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Bendre and Kale (1987), Davies and Gather (1993), Iglewicz and 
Hoaglin (1994) and Barnett and Lewis (1994) have conducted a 
number of studies to handle issues of outliers. Defining outliers by 
their distance to neighboring examples is a popular approach to 
finding unusual examples in a dataset known to be distance based 
outlier detection technique.  
Saad and Hewahi (2009) introduced Class Outlier Distance Based 
(CODB) outlier‟s detection procedure and proved that it is better 
than distance based outlier‟s detection method.  
Surendra P. Verma (1997) emphasize for detection of outliers in 
univariate data instead of accommodating the outliers because it 
provides better estimate of mean and other statistical parameters 
in an international geochemical reference material (RM). 
Hadi and Simonoff (1993) provided distributional results for 
testing, multiple outliers in regression analysis. The test is based 
on the deletion residual. Beckman and Cook (1983) encountered a 
serious problem of “masking” if there are several outliers. 
Least square estimation of the parameter of the model may lead to 
small residuals for the outlying observations. Single detection 
methods (for example Cook and Weisberg,1982; Alkinson, 1985) 
may fail and the outliers will go undetected. 
      Hawkins (1983) argues for exclusion of all possible outlying        
observations, which are then tested sequentially for reinclusion. 
The drawback to this procedure is that it is unclear how many 
observations should be deleted,and because of masking, which 
ones, before reinclusion and testing begin. 
Carling (1998) introduces the median rule for identification of 
outliers through studying the relationship between target outlier 
percentage and Generalized Lambda Distributions (GLDs). 
GLDs with different parameters are used for various moderately 
skewed distributions. 
       The use of the forward search in regression is described in 
Atkinson and Riani (2000) whereas in Atkinson (1994) the 
emphasis oninformative plots and their interpretations. 
Although the forward search is a powerful general method for the 
detection of multiple outliers and unidentified clusters and of their 
influential effects.  
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       The interest here is in Atkinson (1994) on information plots 
and the information it provides about the adequacy of our simple 
approximation to the distribution of the test statistic. 
Possible sources of outliers are recording and measurement errors 
incorrect distributional assumptions, unknown data structure, or 
novel phenomenon (Iglewiez, 1993). 
A data set indicative of a novel phenomenon can be often labeled 
as an outlier. For instance, the measurements indicating existence 
of the hole in the ozone layer were initially thought to be outliers 
and they were automatically discarded.  
This join delayed the discovery of the phenomenon by several 
years (Berthouex,1994).  
       The first step in data analysis is to label suspected outliers for 
further study. 
Three different methods are available to the investigation for 
normally distributed data: z score method, (Iglewiez, 1993; 
Barnett,1984). All of the experimental observations are 
standardized and the standardized values outside a predetermined 
bound are labeled as outliers (Rousseeuw, 1987). 
Outliers can arise from several different mechanisms as causes. 
Anscombe (1960)sorts outliers into categories from intentional or 
motivated misreporting; a participant may make a conscious effort 
to sabotage the research (Huck, 2000) or may be acting from other 
motives. In outliers from faulty distributional assumptions, 
incorrect assumption about the distribution of the data can also 
lead to the presence of suspected outliers (Iglewiez and Hoaglin, 
1993). 
        Due to the deleterious effect on power accuracy, and error 
rates that outliers can have, it might be desirable to use a 
transformation or recording strategy to both keep the individual in 
the data set and at the same time minimize the harm to statistical 
inference (Osborne, 2002). 
     Rosner’s Test identifies outliers that are both high and low; it 
is therefore always two tailed (Gibbon, 1994).  
The R. Statistics is compared with a critical value (Gilbert, 1987). 
Rosner’s (1983) “many outlier” sequential procedures 
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is an improved version of Rosner’s (1983)“extreme studentized 
deviate” outlier test. 
Simonoff (1982) found this earlier well compared to other outlier 
test, although Rosner (1983) points out that it tends to detect more 
outliers than are actually present. 
Rosner’s (1983) method assumes that the main body of data is 
from a normal distribution. 
      Rosner’s tests are two tailed since the procedure identifies 
either suspiciously large or suspiciously small data. When a one 
tailed test is needed, that is when there is interest in detecting only 
large values or only small values, then the skewness test for 
outliers discussed by Barnett and Lewis (1994) is suitable. 
Hamilton, L.C. (1982) gove a graphical procedure for identifying 
outliers from bivariate normal or bivariate log normal 
distributions. 
       Rather than identifying outliers and discarding them before 
doing least square regression, one could do robust regression, as 
discussed and illustrated by Rousseeuw and Leroy (1987)who 
cautioned that robust regression should be applied only after the 
investigator is satisfied that less weight should be applied to the 
divergent data.  
       Non-parametric regression discussed by Holander and Wolfe 
(1973), and Reckhow and Chapra (1983) is an alternative to either 
standard least squares regression or robust regression. 
Methods for detecting outliers have received a great deal of 
attention recently Cook and Wainer, 1976 and Steven, 1984). 
Leverages are related to an alternate regression diagnostic, 
Mahalanobis distance (Stevens,1984). 
      Mixture regression occurs when there is an omitted categorical 
predictor like gender,species or location and different regression 
occur in each category. It has long been recognised that a lurking 
variable, a variable that has an important effect but is not present 
among the predictors under consideration (Box, 1966; Joiner, 
1981; Moore, 1997) can complicate regression analyses. 
Atkinson, (1994) have applied Akaike Criterion (AIC) in 
detection of outliers by using (quasi) Bayesian approach with 
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Predictive likelihood in place of the usual likelihood function 
otherwise, detection of outliers has a long history. The main 
theme, however, has been around univariate and single outliers. 
Recently, some promising results have been obtained in detecting 
multiple outliers also in multivariate analysi(Hadi, 1992). 
     An approach to the identification of aberrant points is the 
construction of outliers’diagnostics.  
These are quantities computed from the data with the purpose of 
pinpointing influential points, after which these outliers 
are to be removed or corrected, followed by a least square analysis 
on the remaining cases. 
      When there is only a single outlier, some of these methods 
work quite well by looking at the effect of deleting one point at a 
time (Atkinson, 1985 ;) Cook and Weisberg, 1982 and Hawkins, 
1980). Unfortunately, it is much more difficult to diagnose 
outliers when there are several of them, due to the so-called 
masking effect which says that one may mask another. The naira 
extensions of classical diagnostics to such multiple outliers often 
give rise to extensive computations. 
     Recent work by Atkinson (1986), Hawkins, Bradu 
and Kass (1984), and Rousseeuw and Van Zomeran (1999) 
indicates that one needs to use robust methods in one way or 
another to safely identify multiple outliers. 
Some researchers prefer visual inspection of the data. Others 
(Lornez, 1987) argue that outlier detection is merely a special case 
of the examination of data for influential data points.  
     In analysis of variance, the biggest issue after screening for 
univariate outliers is the issue within cell outliers or the distance 
of an individual from the subgroup. Standardised residuals 
represent the distance from the subgroup and thus are effective in 
assisting analysis in examining data for multivariate outliers. 
Tabachnick and Fidell (2000) discuss data cleaning in the context 
of other analyses. 
     Where outliers are illegitimately included in the data, it is only 
common sense that those data points should be removed (Barnett 
and Lewis, 1994). 
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Few should disagree with that statement. When the outlier is 
either a legitimate part of the data or the cause is unclear, the issue 
becomes unclear. Murkier Judd and McClelland (1989) make 
several strong points for removal even in these cases in order to 
get the most honest estimate of population parameters. (Barnett 
and Lewis, 1994). 
      One mean of accommodating outliers is the use of 
transformations (Osborne, 2002). 
 By using transformation extreme scores can be kept in the data 
set, and the relative ranking of scores remains yet the skew and 
error variance present in the variable can be recorded (Hamilton, 
1992). 
     However, transformations may not be appropriate for the 
model being tested or may affect its interpretation in undesirable 
ways. 
        Taking the logarithms of a variable makes a distribution less 
skewed, but it also alters the relationship between the original 
variables in the model (Newton and Rudestam, 1999; Osborne, 
2001). 
      Hodge and Austin (2004) have pointed towards the 
significance of outliers in various contexts such as making 
decision about the loan application of problematic customers, 
intrusion detection, activity monitoring, network performance, 
fault diagnosis, structural defect detection, satellite image 
analysis, detecting novelties in images, motion segmentation, 
time-series monitoring, medical condition monitoring, 
pharmaceutical research, motion segmentation, detecting image 
features moving independently, detecting novelty in text, 
detecting unexpected entries in database and detecting mislabeled 
data in a training data set besides many other situations. 
      Instead of transformation, researchers sometimes use various 
robust procedures to protect their data from being distorted by the 
presence of outliers. These techniques “accommodate the outliers 
at no serious inconvenience or are robust against the presence of 
outliers (Barnett and Lewis, 1994; p.35). Certain parameter 
estimates, especially the mean and least square estimates, are 
particularly vulnerable to outliers, or have “low breakdown” 
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values. For this reason, researchers turn to robust or “high 
breakdown” methods to provide alternative estimates for these 
important aspects of data. 
A common robust estimation method of the univariate 
distributions involves the use of trimmed mean, which is 
calculated by temporarily eliminating extreme observationsof both 
ends of the sample (Anscombe, 1960). 
    Alternatively, researchers may choose to compute a winsorized 
mean, for which the highest and lowest observations are 
temporarily censored, and replaced with adjacent values from the 
remaining data(Barnett and Lewis, 1994). 
     Assuming that the distribution of prediction errors is close to 
normal, several common robust regression techniques can help 
reduce the influence of outlying data points.  
The least trimmed squares (LTS) and the least median of squares 
(LMS) estimators are conceptually similar to the trimmed mean, 
helping to minimize the scatter of the prediction errors by 
eliminating a specific percentage of the largest positive and 
negative outliers (Rousseeuw and Leroy, 1987).  
While Winsorized regression smoothes Y-data by replacing 
extreme residuals with the next closest value in the dataset (Lane, 
2002). 
     In correlations, we are expected to see the effect of outliers on 
two different types of correlations. These are correlations close to 
zero (to demonstrate the effect of outliers on Type II error rates) 
correlations will be calculated in each sample both before removal 
of outliers and after. If a sample correlation leads to a decision 
that deviated from the “correct” state of affairs it was considered 
an error of inference. In most cases the incidence of errors of 
inference was lower with cleaned than unclean data. 
       For the T-test and Analysis of Variance (ANOVA) this deals 
with analysis that look at group mean differences, such as the t-
test and analysis of variance. For the purpose of simplicity these 
analyses are simple t-tests but these results would be generalized 
to any analysis of variance. For these analyses two different 
conditions are examined when there were no significant 
differences between the groups in the population and when there 
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were significant group differences in the population. For both 
variables the effects of having outliers in only one cell as 
compared to both cells were examined. 
        Removal of outliers will produce a significant change in the 
mean differences between two groups. It will also produce 
significant change in the t-statistics. Evidence of outliers may 
produce type I or type II errors. Removal of outliers may tend to 
have a significant beneficial effect on error rates. 
Most analysts argue that removal of extreme scores produces 
undesirable outcomes; they are in the minority especially when 
the outliers are illegitimate.  
When the data points are suspected of being legitimate, some 
authors Orr, Sacketts, P.R. and Du Bois(1991), argue that data are 
more likely to be 
representative of the population as a whole if outliers are not 
removed. Conceptually, there are strong arguments for removal or 
alteration of outliers. In some analyses the benefits of outliers’ 
removal are reported. 
       Both correlations and t-tests may show significant changes in 
statistics as a function of removal of outliers. In most cases errors 
of inference were significantly reduced, a prime argument for 
screening and removal of outliers.  
       It is straightforward to argue that the benefits of data cleaning 
extend to simple and multiple regressions to different types of 
ANOVA procedures. There are other procedures outside these but 
the majority of social science research utilizes one of these 
procedures. Other researches (e.g. Zimmerman, 1995) have dealt 
with the effects of extreme scores in less commonly used 
procedures, such as nonparametric analyses. 
         Thus, checking for the presence of outliers and 
understanding how they impact data analysis are extremely part of 
a complete analysis, especially when any statistical technique is 
involved. 
3.3 Influence Measures:  
The hat diagonal and residual measures are useful diagnostic 
measures to quantify an observation's remoteness in X-space and 
the distance of the regression surface. Influence diagnostic 
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measures have been developed to help in making the decision of 
what to do with an unusual observation. 
Cook (1977) proposed Cook’s squared distance CD

2
(i. This 

distance measure can be expressed in a general form as 
         CD

2
(i ˆ(i ˆ'( X' X) ˆ(iˆ	݌	ఙଶ , …..……. (3.1) 

for i 1,2, ,n. The point with CD
2
(i  1.0 

indicates that the i th observation has influence on the determination 
 of  ˆ. 
 Cook’s squared distance of the i th unit is ameasure based on the square 
of the maximum distance between the least-squaresestimate based on all  
n  points of ˆ, and (i)is the least-squares estimate of ˆ, withthe i th 
observation deleted.  
Cook and Weisber (1989) suggested that the caseswhere  
 CD

2
(i  1.0     Cܦ	௜   1.0 should always be carefully noted. 

Andrews and Predibon (1978) proposed the determinant ratio 
                        AP(1) = ୢୣ୲{	୸

ᇲ(ଵ)୸	(ଵ)}
ୢୣ୲{௭ᇲ௭}

 , …..……. (3.2) 
where Z is the X matrix with the response variables y i ,  
( z =  {( x11 ,… x1p, y1 ), ( x21 …., x2p, y2 ),…, ( xn1,….. xnp, yn ),  
and    ݖ(ூ)  is the part of Z obtained by deleting the 
rows corresponding to the indicated I . 
Rousseeuw and Leroy (1987) mentioned that Belsley et al., (1980) used 
                  DFFITS (1) hii

1/2 r1 ) / ( hii)) , ………. (3.3) 
for i 1,2, ,n, where hii is the ith diagonal element of  
X1 (X 1 X ) X.  
DFFITS isithe number of standard deviations from the i th component 
 of ˆy ˆy(i) .  
So  DFFITSi measures the influence on the prediction when an 
observation is deleted. The criterion suggests that when  

               DFFITS (I )ට
௣
௡

మ


attention to outliers is warranted. 
In another way, Belsey et al., (1980) defined a diagnostic measure based 
on the change in the jth

 regression  coefficient of  j. The statistic is 
 
         DFBETAS=   ஼௝୧

ට∑ 		ୡమ		୨୩೙
ೖసభ

						 ௥୧

஢(ഠ)
మ෢ (	ଵି୦ഠ	ഠ	)	

෣ 	, …………….. (3.4) 

 
where the n elements in the jth row of C produce the leverage element     
(X X ) 1 Xand h ii is the ith diagonal element of 
  .ଵ(X1 X ) Xݔ 
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Specifically, if DFBETAS ݆(௜)√݊   
then the ith observation warrants an examination for outliers.
Atkinson (1985) modified Cook’s squared distance and denoted 
Atkinson’s modified statistic as 
݊)]௜DFFITS(i)ܣ               − [	(݌

భ
మ. …………….……. (3.5) 

Atkinson’s modified statistic is closely connected to DFFITSi . The 
measure obtains another set related to Cook’s squared distance, 

suggesting that, when ܣ௜  ට݊ − ௡
௉

మ
 ,  

there should always be outliers. The measures  
(௜)ܦܥ

ଶ , DFFITSi and Atkinson’s modified statistic are very similar, 
therefore usually only one of them is used. 
The COVRATIO’s statistic measures the change in the determinant of a 
covariance matrix of the estimates by deleting the th i observation.  
Therefore, the design point i x would be affected if the ith case were 
deleted. any observation where i  
        COVRATOI 13p/ n    
 or    COVRATIO i 13p/ n  
warrants attention for outliers, where p is the number of parameters in the 
model and n is the number of observations used to fit the model. 
Kempthorne and Mendel (1990) discuss the inadequacies of these 
single row influence diagnostics when applied to multiple 
observations. 
Cook (1998) gives guidance on numerous other modern graphical 
procedures that can provide insight into outliers and influence in 
regression.the  problem is that they can fail if there are multiple 
outliers. 
 
 
 
3.4 Various methods for identification of outliers: 
         In the remainder of this chapter the various methods of 
outlier’s identification are discussed in some detail There are 
many methods available for the identification of outliers.  
All of these methods can basically be grouped into two categories, 
namely the univariate method and the multivariate method (see 
Hawkins, 1980; Barnett and Lewis, 1994).  
      The univariate method is performed independently on each 
variable, whereas the multivariate method investigates the 
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relationship of several variables (Franklin, Thomas and Brodeur, 
2000). One can also classify the methods in both categories into 
parametric and nonparametric approaches. 
       Other classifications of outlier detection methods can be 
found in Papadimitriou, Kitawaga, Gibbons and Faloutsos (2002), 
Hu and Sung (2003) and Acuna and Rodriguez (2004).  
This chapter will briefly explain outlier identification methods for 
high-dimensional data. Detailed explanations about those methods 
can be found in Hawkins (1980), Barnett and Lewis (1994), 
Papadimitriou et al. (2002), Hu and Sung (2003) and Acuna and 
Rodriguez (2004). 
         This chapter does not attempt to summarize literature 
covering the univariate method but some major concepts are 
reviewed before moving to the multivariate method. 
       Most univariate methods assume a known distribution of the 
data (i.e. often independent and identically distributed) and often 
assume that the distribution parameters and the type of expected 
outliers are also known (Barnett and Lewis, 1994). 
       Ben-Gal (2005) notes that these assumptions are often 
violated in the real world of data-mining applications. Seo (2006) 
wrote a thesis comparing different methods for detecting outliers 
in univariate data sets. Many methods have been proposed for 
univariate outlier detection. The test of discordance, i.e. a formal 
test, and outlier labeling methods, i.e. informal test are the most 
popular approaches. 
 
 
 
3.4.1 Test of discordance: 
       The test of discordance needs test statistics for hypothesis 
testing and it is usually based on the assumption of well-behaved 
distribution.  
       Normally the distribution is assumed to be identically and 
independently distributed. Additionally, the type of expected 
outlier and the distribution parameters are assumed to be known. 
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    From Barnett and Lewis (1994), there are hundreds of 
discordance tests that have been developed for different 
conditions depending on 
(i). the data distribution, i.e. whether the distribution parameters 
are known or not; 
(ii) the number of expected outliers; 
(iii) the types of expected outliers. 
The test of discordance is quite powerful since it is based on 
distribution assumption. However, it is noted that most real world 
data may not followa specific distribution or the distribution is 
unknown.  
The discordance test is thoroughly discussed in Barnett and Lewis 
(1994) and Iglewicz and Hoaglin (1993). Examples of discordance 
test are generalized extreme studentized deviate (ESD), kurtosis 
statistics and the Dixon test and Gurps test. 
3.4.1.1Grubs test:  
          Grubbs (1969) introduced a test for detection of outliers  
for the univariate normal distribution with the sample size greater 
than 3.  
Grubbs statistics is given as: 

(௫ି௫̅)     ݔܽܯ =ܩ                                  
ௌ஽

                                  (3.6) 
 
      Where ̅ݔ and SD are the sample mean and standard deviation 
respectively. Null hypothesis of Grubbs test is that data have no 
outliers while the alternative is that at least one outlier in the data 
is present.  
As given in the above statistics largest absolute value of G is 
suspected as the outlier and the decision whether the observation 
is outlier or not is made by looking it in the table of critical values 
(Grubbs, 1969). 
 3.4.1.2 Extreme Studentized Deviate (ESD): 
       The ESD test is suitable to use if we want to identify a single 
outlier in a normally distributed data. It is also known as the 
Grubb test. 
The maximum deviation from the mean is given as 

                        τ =   |୶౟ି	୶	ഥ|
ௌ஽

  													(3.7) 
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      where xi is the observation, ̅ݔand SD are the mean and 
standard deviation of the data set, respectively. Equation 2.9 is 
calculated for each observation and the value is compared to the 
critical value, τത at the selected α. If τ is greater than the  τത  (see 
Iglewicz and Hoaglin(1993) for ESD test critical values), then the 
observation under consideration is an outlier. 
3.4.1.3 Dixon test: 
      The Dixon test is based on the ratio of the ranges and it is g     
enerally used for detecting a small number of outliers. There are 
six test statistics from Dixon for normal univariate samples. It is a 
very simple test. The algorithm is as follows: 
• Step 1: Observations in the data set are sorted in ascending 
order, 
x(1) < x(2) < . . . < x(n) where x(1) is the lowest a 
• Step 2: Compute the suitable test statistics and depending on 
the number of suspected outliers, different test statistics are used 
to identify potential outliers. The corresponding test statistics 
are given in Table 3.1 
Tests r10, r11, r′ 11, r12 and r′ 12 are the test statistics for an extreme 
outlier, x(n) or x(1) in a normal sample with population variance 
unknown, whereas tests r20, r′ 20, r21, r′ 21, r22 and  
r′ 22 are for two extreme observations either the upper-pair x(n), 
x(n−1) or the lower-pair x(1), x(2) in a similar normal sample; 
• Step 3: Next the value of test statistics is compared to the critical 
value, r∗ for a given number of observations n . 
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Table 3.1 Dixon tests for univariate normal samples 
Applicability of test 

nmin − nmax Value(s) tested Test Statistics 

3-30 Upper x(n) r10=			
(୶(౤)	ି	୶(౤షభ))
(୶(౤)	ି	୶)(భ))

 

4-30 Upper x(n) r11 =			
(୶(୬)	ି	୶(୬ିଵ))
	(୶(౤)	ି	୶(మ)

 

4-30 Lower x(1) r′11 =			
(୶(మ)	ି	୶(భ)))

(୶(୬ିଵ)	ି	୶(ଵ))
 

5-30 Upper x(n) r 12 =			
(୶(౤)	ି	୶(౤షభ))
(୶(౤)	ି	୶୶(య))

 

5-30 Lower x(1) r′ 12 =			
(୶(మ) 	ି୶(భ))

(୶(౤షమ)	ି	୶(భ))
 

4-30 Upper pair x(n),x(n−1) r20=  
(୶(౤)	ି	୶(౤షమ))
(୶(౤)	ି	୶(భ))

 

4-30 Lower pair x(1),x(2)  r′20 =
(୶(య)	ି	୶(భ))
(୶(౤)ି	୶(భ)

 

5-30 Upper pair x(n), x(n−1) r21=
(୶(౤)ି	୶(౤షమ))
(୶(౤)ି	୶(మ)

 

5-30 Lower pair x(1),  x(2) r′ 21=
(୶(య)	ି	୶(భ))
(୶(౤షభ)	ି	୶(భ))

 

6-30 Upper pair x(n), x(n−1) r22 = 
	(୶(౤)	ି	୶(౤షమ))
(୶(౤)	ି	୶(య))

 

6-30 Lower pair x(1), x(2) 
r′	22

=
(x(ଷ) 	− 	x(ଵ))
(x(୬ିଶ) 	− 	x(ଵ))

 

 
given significance α. (The r∗ critical value can be found in Kanji 
(1993)); 
• Step 4: If the test statistic is less than the critical value r∗, there 
are no outliers present.  
However, if the test statistic is greaterthan the critical value, the 
null hypothesis is rejected and the conclusion is that the most 
extreme value is an outlier. The test is applied consecutively for 
other extreme values until the null hypothesis is true. 
3.5 Outlier labeling methods: 
         Outlier labeling methods use the interval for identification of 
outliers. The interval will separate outliers into ’good region’ and 
’bad region’. Bad region refers to the area outside the interval. 
Any observations that fall in the bad region are considered as 
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outliers. Normally, outlier labeling methods are appropriate to use 
if one is only interested in finding an observation that is extremely 
different from the majority data. This method is not suitable to be 
applied if one wants to identify the observation that violates the 
distribution assumption of statistical analyses, such as regression. 
Another reason for using the outlier labeling method is when we 
have a large data set. 
Note that it is difficult to identify the distribution of a large 
data set. Therefore, in this condition, the labeling method is 
appropriate for outlier detection rather than discordance tests Here 
will divide outlier labeling methods into two grubs as follows:- 
3.5.1  univariate outlier detection:  
3.5.1.1  STANDARD DEVIATION (SD) METHOD: 
       The simple classical approach to screen outliers is to use the 
SD (Standard Deviation) method. It is defined as 
     2 SD Method: x ± 2 SD        (3.8) 
     3 SD Method: x ± 3 SD,       (3.9)  
where the mean is the sample mean and SD is the sample standard 
deviation. 
The observations outside these intervals may be considered as 
outliers. According to the Chebyshev inequality, if a random 
variable X with mean μ and variance σ2 exists, then for any k > 0, 
     P[ |X −μ|] ≥ kσ ≤ ଵ

௞మ
 

     P[ |X −μ|] ≥ kσ ≤1- ଵ
௞మ

,    k > 0 

the inequality [1- ଵ
௞మ

] enables us to determine what proportion of 
our data will be within k standard deviations of the mean3. For 
example, at least 75%, 89%, and 94% of the data are within 2, 3, 
and 4 standard deviations of the mean, respectively. These results 
may help us determine the likelihood of having extreme values in 
the data.  
       Although Chebychev's therom is true for any data from any 
distribution, it is limited in that it only gives the smallest 
proportion of observations within k standard deviations of the 
mean. In the case of when the distribution of a random variable is 
known, a more exact proportion of observations centering around 
the mean can be computed. For instance, if certain data follow a 
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normal distribution, approximately 68%,95%, and 99.7% of the 
data are within 1, 2, and 3 standard deviations of the mean, 
respectively; thus, the observations beyond two or three SD above 
and below the mean of the observations may be considered as 
outliers in the data.  
3.5.1.2 Z-SCORE: 
Another method that can be used to screen data for outliers is the 
Z-Score, using the mean and standard deviation. 

                             Zi  = 
(	തݔ–	݅ݔ		)
ܦܵ

              (3.10) 

Where Xi ~ N (μ, σ2), and SD is the standard deviation of data. 
The basic idea of this rule is that if X follows a normal 
distribution, N (μ, σ2), then Z follows a standard normal 
distribution, N (0, 1), and Z-scores that exceed 3 in absolute value 
are generally considered as outliers. 
This method is simple and it is the same formula as the 3SD 
method when the criterion of an outlier is an absolute value of a 
Z-score of at least 3. 
       It presentsa reasonable criterion for identification of the 
outlier when data follow the normal distribution. 
According to Shiffler (1988), a possible maximum Z-score is 

dependent on sample size, and it is computed as (௡	ିଵ)	
௡

. Since no 
z-score exceeds 3 in a sample size less than or equal to 10, the z-
score method is not very good for outlier labeling, particularly in 
small data sets. Another limitation of this rule is that the standard 
deviation can be inflated by a few or even a single observation 
having an extreme value. Thus it can cause a masking problem, 
i.e., the less extreme outliers go undetected because of the most 
extreme outliers and vice versa. When masking occurs, the 
outliers may be neighbors.  
3.5.1.3THE MODIFIED Z-SCORE: 
      Two estimators used in the Z-Score, the sample mean and 
sample standard deviation, can be affected by a few extreme 
values or by even a single extreme value. To avoid this problem, 
the median and the median of the absolute deviation of the median 
(MAD) are employed in the modified Z-Score instead of the mean 
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and standard deviation of the sample, respectively(Iglewicz and 
Hoaglin, 1993). 
            MAD =  median{| ݔ௜	    (3.11)                     {| ݔ̅	−
 where ̅ݔis the sample median. 
The modified Z-Score (ܯ௜	 ) is computed as 

	௜ܯ              =	   
଴.଺଻ସହ(௫೔	ି	௫̅)

ெ஺஽
                (3.12) 

where E(MAD)=0.6745 σ for large normal data. 
Iglewicz and Hoaglin (1993) suggested that observations are 
labeled outliers when| ܯ௜	 |>3.5  
through the simulation based on pseudo-normal observations for 
sample sizes of 10, 20, and  40 The ܯ௜	 score is effective for 
normal data in the same way as the Z-score. 
3.5.2 Univariate Robust  methods:  
3.5.2.1 MADE METHOD: 
       The MADe method, using the median and the Median 
Absolute Deviation (MAD), is one of the basic robust methods 
which are largely unaffected by the presence of extreme values of 
the data set. This approach is similar to the SD method. However, 
the median and MADe are employed in this method instead of the 
mean and standard deviation. The MADe method is defined as 
follows; 
              2 MADe Method: Median ± 2 MADe              (3.13) 
             3 MADe Method: Median ± 3 MADe,         (3.14)   
where MADe=1.483×MAD for large normal data. 
MAD is an estimator of the spread in a data, similar to the 
standard deviation, but has an approximately 50% breakdown 
point like the median.  
          MAD= median (|xi – median(x)|)   i=1,2,…,n) 
When the MAD value is scaled by a factor of 1.483, it is similar to 
the standard deviation in a normal distribution. This scaled MAD 
value is the MADe. 
Since this  approach uses two robust estimators having a high 
breakdown point, i.e., it is not unduly affected by extreme values 
even though a few observations make the distribution of the data 
skewed, the interval is seldom inflated, unlike the SD method. 
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3.5.2.2 MEDIAN RULE: 
        The median is a robust estimator of location having an 
approximately 50% breakdown point. It is the value that falls 
exactly in the center of the data when the data are arranged in 
order. That is, if x1, x2, …, xn is a random sample sorted by order 
of magnitude, then the median is defined as: 
Median, ුݔ = xm when n is odd 
 2 when n is even/(xm+xm+1) =ݔු
 where m=round up (n/2) 
         For a skewed distribution like income data, the median is 
often used in describing the average of the data.  
The median and mean have the same value in a symmetrical 
distribution. 
Carling (1998) introduces the median rule for identification of 
outliers through studying the relationship between target outlier 
percentage and Generalized Lambda Distributions (GLDs). 
GLDs with different parameters are used for various moderately 
skewed distributions. 
        The median substitutes for the quartiles of Tukey’s method, 
and a different scale of the (IQR) is employed in this method. It is 
more resistant and its target outlier percentage is less affected by 
sample size than Tukey’s method in the non-Gaussian case. 
The scale of IQR can be adjusted depending on which target 
outlier percentage and GLD are selected. In my thesis, 2.3 is 
chosen as the scale of IQR; when the scale is applied to normal 
distribution, the outlier percentage turns out to be between 
Tukey’s method of 1.5 IQR and that of 3 IQR, i.e., 0.2 %. 
It is defined as: 
                  [C1, C2]=Q2 ± 2.3 IQR                       (3.15) 
where Q2 is the sample median. 
 3.5.2.3  Boxplot: 
        One of the well known and widely used labeling methods is 
the Boxplot. The Boxplot was introduced by Tukey in 1977.  
Tukey introduced the Boxplot as a graphical display on which 
outliers can be indicated. 
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The observation that falls between the inner fence and outer fence, 
or beyond the outer fence is labeled as an outlier. The inner fence 
is calculated as 
                  [Q1− 1.5 IQR, Q3 + 1.5 IQR],               (3.16) 
where IQR = Qଷ − Qଵ is the inter quartile range of the data set 
withܳଷand ଵܳ are the upper quartile of the data set and the lower 
quartile of the data set, respectively. One can compute the outer 
fence as 
                  [Q1 −3 IQR,	ܳଷ+ 3 IQR].                            (3.17) 
Notice that the upper and lower quartiles, ܳଷ and ଵܳ are used to 
obtain the robust measures for mean,(ொభାொయ)

ଶ
 and the 

standarddeviation,	ܳଷ −ܳଵ, which can replace തܺ and s in equation. 
The Boxplot is applicable to skewed data since it makes no 
distributional assumptions and it does not depend on a mean or 
standard deviation. However it is not suitable for a small sample 
size and it is noted that the more skewed the data are, the more 
observations may be detected as outliers. 
3.5.2.4 ADJUSTED BOXPLOT: 
Although the boxplot proposed by Tukey (1977) may be 
applicable for both symmetric and skewed data, the more skewed 
the data, the more observations may be detected as outliers, 
This results from the fact that this method is based on robust 
measures such as lower and upper quartiles and the IQR without 
considering the skewness of the data. 
Vanderviere and Huber (2004) introduced an adjusted boxplot 
taking into account the medcouple (MC), a robust measure of 
skewness for a skewed distribution. 
When Xn={ x , x ,..., xn  } is a data set independently sampled from 
a continuous univariate distribution and it is sorted such as n x ≤ x 
≤ ... ≤ x the MC of the data is defined as: 
 
	ܥܯ = ݉݁݀݅ܽ݊		ℎ ൫ݔ௜	,	ݔ௜	,൯( ,..., ) 1 ,where k med is the median of Xn,  
௜ݔ               	 ≤ 	 ݔ̅ 	≤ 	    ௜ݔ
௜ݔ                 ≠   ௜ݔ

                              h൫ݔ௝ݔ௝൯ = 
൫௫ೕష	௫	ഥ൯ି൫௫	ഥି	௫ೕ൯	

௫ೕି	௫ೕ
                        (3.18) 

and j have to satisfy i x ≤ k med ≤ j x , and i x ≠ j x . The interval 
of the adjusted boxplot is as 
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follows (G. Bray et al. (2005)): 
         [L, U] = [Q1-1.5 * e (-3.5MC) * IQR, Q3+1.5 * e (4MC) * IQR] if MC ≥ 0 ,   
       [Q1-1.5 * e (-4MC) * IQR, Q3+1.5 * e (3.5MC) * IQR] if MC ≤ 0, 
where L is the lower fence, and U is the upper fence of the 
interval. The observations which fall outside the interval are 
considered outliers. 
The value of the MC ranges between -1 and 1. If MC=0, the data 
is symmetric and the Adjusted   boxplot becomes Tukey’s box 
plot.  
If MC>0, the data has a right skewed distribution,Where as if 
MC<0, the data has a left skewed distribution. 
of the intervals of two boxplot methods, Tukey’s method and the 
adjusted boxplot, for the example data set.  
The vertical dotted lines are the lower and upper bound of the 
interval of each method. Although the example data set is artificial 
and is not large enough to explain their difference, we can see a 
general trend that the interval of the adjusted boxplot, especially 
the upper fence, moves to the side of the skewed tail, compared to 
Tukey’s method. 
Inner fences of Tukey Method (Q1-1.5*IQR, Q3+1.5*IQR) 
Outer fences of Tukey Method (Q1-3*IQR, Q3+3* IQR) 
Single fence of adjusted box plot  
              (ܳଵ-1.5 * e(ିଷ.ହ୑େ)* IQR, ܳଷ+1.5 * e(ସ୑େ)* IQR)   (3.19) 
      Van derviere and Huber (2004) computed the average 
percentage of outliers beyond thelower and upper fence of two 
types of boxplots, the adjusted Boxplot and Tukey’s Boxplot, for 
several distributions and different sample sizes. In the simulation, 
less observations, especially in the right tail, are classified as 
outliers compared to Tukey’s method when the data are skewed to 
the right.  
       In the case of a mildly right-skewed distribution, the lower 
fence of the interval may move to the right and more observations 
in the left side will be classified as outliers compared to Tukey’s 
method. This difference mainly comes from a decrease in the 
lower fence and an increase in the upper fence from ଵܳ and ܳଷ, 
repectively. 
3.5.2.5 Adjusted Boxplot: 
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           As a solution to the Boxplot, Vanderviere and Hubert 
(2008) presented an adjusted Boxplot. The difference 
between the former and latter Boxplot is the inner and outer 
fence. In the adjusted Boxplot, 

the medcouple (MC) is introduced. The MC value is between -1 
and 1. 
If MC = 0, the data is symmetric and the adjusted Boxplot 
becomesTukey’s Boxplot. In addition, if MC > 0, the data is right 
skewed; if MC < 0, the data is left skewed. 
Let X = x1, x2, . . . , xn be the independent sample of a continuous 
univariate distribution. Sort each observation inX, fromthe smallest 
value to the largest value, ݔ(ଵ)≤ x(2) ≤ . . . ≤ x(n). Therefore, one can 
define the MC as 

                       MC(ݔଵ, ݔଶ, . . . , xn) =  
୫ୣୢ(୶j	ି 	୫ୣୢ′)	ି	(୫ୣୢ′	ି 	௫೔)

௫೔ 	ି 	௫೔,
                  

where med’= the median of ݔ௜and j have to satisfy ݔ௜  ≤ med′ ≤ ݔ௜  

and ݔ௜ ௜ݔ ≠  . If MC ≥ 0 
one can develop the fence as below 
  If MC≥0 [(ܥܯ4݁∗ܴܳܫ∗1.5 +3ܳܥܯ3.5−݁∗ܴܳܫ∗1.5 −1ܳ]= ܷ ܮ										
  If MC≤0 [(ܥܯ3.5݁∗ܴܳܫ∗1.5 +3ܳܥܯ4−݁∗ܴܳܫ∗1.5 −1ܳ]= ܷ ܮ											
Observations situated outside the fence are labeled as outliers. 
3.5.2.6 (SSSBB) Boxplot: 
        Split Sample Skewness Based Boxplot test and its 
modifications are designed on the basis of first quartile for the 
lower side Q1L, third quartile for the lower side Q3L and inter-
quartile range for the lower side IQRL. \ 
Similarly, first quartile for upper side Q1R, third quartile for the 
upper side Q3R and inter-quartile range for the upper side IQRR In 
order to construct boundaries for labeling an observation as an 
outlier, 1.5 times IQRL is subtracted from Q1L for lower threshold 
and 1.5 times IQRR in added to the Q3L for upper threshold  
the boundaries for the complete data set are as under: 

      Q1L = 12.5th percentile, Q3R = 87.5th percentile,  

     IQRL =Q3L-Q1L=37.5th percentile - 12.5th percentile,  

     IQRR =Q3R–Q1R = 87.5th percentile - 62.5th percentile  
       Lower and upper boundaries are defined as  
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 (3.21)     [ܴܴܳܫ∗1.5 +3ܴܳ ܮܴܳܫ∗1.5 −ܮ1ܳ]= ܷ ܮ									
Where L is the lower critical value and U is the upper critical 
value of the data. An observation outside these boundaries ܮ ܷ 
would be labeled as an outlier. 
3.6  Multivariate methods: 
        Outliers become more difficult to detect in high dimensional 
data. One cannot claim multivariable observations as outliers if 
each variable is considered independently.  
Another scenario that could happen in multivariate cases is the 
masking and swamping problem. 
Recall that the masking problem occurs when the appearance of 
one outlier covers the appearance of another outlier, whereas the 
swamping problem arises when the observation is identified as an 
outlier even if it is not. In other words, swamping is the opposite 
of masking. 
    Instead of declaring too few outliers, the method declares more 
outliers than there actually are (Hawkins, Bradu and Kass, 1984). 
Some of the multivariate outliers have been modified from the 
univariate method, so that it can take into account a multivariable. 
Examples are the generalized distance with studentized residual 
(Siotani, 1959), the ratio of generalized distance with all 
observations (Wilk, 1963) and the W statistics for normality 
(Shapiro and Wilk, 1965). 
There are also examples of multivariate outlier detection method 
that are based on residuals.  
      Cook (1977) recommended using plot of residuals or 
examining the standardized residuals or studentized residuals.  
Other suggestions of multivariate outlier detection method that are 
based on residuals can be found in David (1978) and Cook (1986). 
3.6.1 Statistical methods: 
Observations that are situated far from the centre of the data 
distribution is labeled as outliers in the statistical method. One of 
the most widely used approaches for the detection of multivariate 
outlier in the statistical method is called the Mahalanobis distance.  
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According to Stevens (1984), the Mahalanobis distance is a 
measure of the distance in factor space. 
Let 
Xi = ܲ × 1 vector of observation for the ith unit 
X = matrix of the original data set with column centred by the 
mean 
ܲ = ݔ̅ × 1 dimensional vector with the means of each variable 
S = ଵ

୬	ି	ଵ
 covariances matrix of the p variables ,(ݔ	ଵݔ)  

Now, one can develop the Mahalanobis distance, D 

           MD(x, ̅ݔ) = {(x	 − 	 	Sିଵ(x`(ݔ̅ − {(ݔ̅	
భ
మ       (3.22) 

where D is the distance of x to the mean of the data set. For 
multivariate normally distributed data, the values of the 
Mahalanobis distance are approximately chi-square distributed 
with p degrees of freedom (χ2 p). 
 An observation with large Mahalanobis distance can be 
considered as an outlier. 
   The Mahalanobis distance works well when identifying 
scattered outliers (Rocke andWoodruff, 1996). However, it fails to 
perform when a data set contains clustered outliers. 
 This is supported by Filzmoser (2004), who mentions that a 
single extreme observation or a group of observations far away 
from the main data structures can have a significant influence on 
the Mahalanob is distance. 
They are subject both to the masking and swamping effect 
because both estimators, i.e. mean and covariance, are usually 
estimated in a non-robust manner, Robust estimators mean they 
are less affected by outliers.  
     Penny and Jolliffe (2001) explain the scenario of the masking 
and swamping effects if the Mahalanobis distance is used for 
identification of outliers. In the situation of masking effects, a 
value of Mahalanobis distance for outliers will decrease as the 
outliers will pull ݔ and S towards themselves.In contrast, in the 
swamping effect, Mahalanobis distance values for non outliers 
might increase since outliers attract ̅ݔ and blow S away from 
themajority of observations. 
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3.6.2 Multivariate robust measures: 
           As a consequence of the Mahalanobis distance and Wilk’s 
statistics problem in the statistical methods, many robust means 
and covariances have been introduced in previous studies. 
Examples are minimum volume ellipsoid (MVE) estimators 
(Rousseeuw and von Zomeren, 1990) and minimum covariance 
determinant (MCD) estimators by Rousseeuw and 
Driessen(1999).  
      These estimators have the desirable properties of high 
breakdown point and affine equivariance. 
Originally, the breakdown point definition was given by Hodges 
(1967), where the definition is limited to a one-dimensional 
estimation of location. 
     Nevertheless, Hampel (1971) proposed a much more general 
formulation. 
The breakdown point is a percentage of outliers which will make 
the estimator take on the large values. Therefore, estimators with a 
large breakdown point are more robust. It is noted that the highest 
breakdown point 
value can possibly reach 50%. If the value goes beyond 50%, one 
cannot 
decide which data are outliers and which are from the main 
distribution. 
Another desirable property of an estimator is affine equivariance.  
3.6.2.1 M-estimator 
         M-estimator is an early version of robust estimators, which 
are  developed by a simple adjustment of the classical estimators. 
Maronna (1976) studied affinely equivariant M-estimators for 
covariance matrices and Campbell (1980) proposed using the 
Mahalanobis distance computed using the M-estimators for the 
mean and covariance matrix. 
        To compute these estimators, each observation is given a 
weight. 
The given weight depends on the di(ݔ௜  values of each (ݔ̅ ,
observation. 
Observation with a high value of di(ݔ௜  .will be down weighted(ݔ̅ ,
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Full weight is given to the observations with normal di(ݔ௜ , 
 .value(ݔ̅
Note that the observations with the large value of di(ݔ௜  could(ݔ̅ ,
be considered as outliers. Therefore by giving a reduced weight to 
the outlying observation in the data set, it hardly influences the 
estimator. 
However, the M-estimator has a low breakdown point, which p+1.  
It means the performance of these estimators is not consistent. 
Considering the M-estimator has a low breakdown point, a                                            
different approach has been proposed to overcome the difficulty. 
3.6.2.2 Minimum Volume Ellipsoide (MVE) estimator 
       Minimum volume ellipsoid estimators are the mean and 
covariance matrix of subsample size h, where h≤ n. It minimizes 
the volume of the covariance matrix associated with the 
subsample. The basic idea of the MVE is to search among all such 
ellipsoids for the one having the smallest value. Therefore, the 
main problem of MVE is to find h that produces the smallest 
ellipse because the number of all subsamples containing half of 
the data is so large that determining the subsample with the 
minimum volume is impractical. It is noted that h is taken to be  
   h = (n	 + 	p	 + 	1)ଶ   which is the integer function. 
The h value can be assumed as the minimum number of instances 
that must not be outlying. Otherwise, one can state this approach 
has a breakdown point of approximately 50%. 
3.6.2.3 Minimum Covariance Determinant (MCD) estimator 
     The minimum covariance determinant (MCD) estimator also 
has a breakdown point of approximately 50%. The MCD 
estimator is the mean and covariance of a subsample of size h (h≤ 
n) that minimizes the determinant of the covariance matrix that 
corresponds to the subsample. As with MVE, it is impractical to 
consider all subsets of half of the data since it is computationally 
expensive. 
3.6.3 Application of multivariate robust measures: 
Rousseeuw and von Zomeren (1990) used theMVE estimators to 
develop a method for outlier detection. The method was based on 
the basic resampling algorithm and they named it the Robust 
Distance method. However, Hadi (1992) pointed out three 
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weaknesses of this method, particularly a problem related to the 
situation when the covariance matrix has a zero determinant. 
Therefore, he solved this weakness by presenting an idea that 
makes outliers appear in one subset, with the other subset highly 
unlikely to contain outliers.  
 The new approach still applies the MVE estimator, but it is easier 
to compute and the method is not dependent on the basic 
resampling algorithm. 
        Later, Hadi (1994) modified his idea by giving an alternative 
step to the existing algorithm. The findings of this approach were 
almost similar to the findings of the previous solution in 1992. 
        The minimum covariance determinant (MCD) estimator had 
been used by Hawkins in 1994 to develop a feasible solution 
algorithm (FSA) to discover outliers. This approach still uses the 
subset to divide a data set from outliers. The disadvantage of this 
method is that large number of subsets need to be constructed 
from a data set, especially when one has a data set with a large 
sample size and variables. Therefore, in order to solve this 
problem, Rousseeuw and Driessen (1999) suggested the fast 
algorithm using the MCD estimator called 
FAST-MCD. 
They introduced two techniques, which are, the selective iteration 
and the nested extension. They also presented C-Step where the 
’C’ means concentration.  
The word concentration could be interpreted as their focus on h 
observations with least distances. It also could be described as the 
most recent chosen subset that provides a minimum determinant. 
The C-Step has four steps which are repeated until the last process 
fulfils the latter definition of ’C’.Hawkins and Olive (1999) also 
tried to improve the FSA by adding acondition called C-
Condition. However, their approach still retainedthe similar 
computational complexity as FSA since it is only reducesthe 
computation time for studies that use the fixed sample size, i.e. 
asubset with the same sample size . 
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Chapter 4 

A proposed method for outlier detection 

4.1 Introduction: 

         As already stated an outlier is an observation that does not 
conform to normal behavior, but defining a normal behavior is 
very challenging. Some of the difficulties that are encountered in 
the process are : 

1- A normal region which will encompass all possible normal 
behavior  is difficult. 

2-A normal region which is defined at present may not be normal 
in the Future due to evolution of data. 
3- in many cases of malicious behavior the hacker often disguises 
the Hacking as normal behavior causing difficulty in 
identification. 
4-for those data which lie at the bordering area between normal 
and Outlier region represent difficulty in classification. 
5- Noise in data is often confused with outliers.  
Chapter(3)contains a review of these methods and numerous 
methods for the detection of outliers have been explored in 
disciplines like data mining ,machine, learning and statistics, 
however an important graphical technique that is often used as an 
aid in outlier detection is the boxplot ,it is easy to see that the 
boxplot produces a misleading data summary for bimodal data, 
since both the measures of central tendency and spread can be 
very far off descriptively. For example a mixture of N (0,1) data 
in equal proportion will be characterized as having a median of 5 
and spread (IQR) of 10 .these statistics do not describe either 
subpopulation distribution . it is suggested that different data 
summaries may be useful for different data  sets. Unimodality is 
an important assumption for boxplote .Thus a test for Unimodality 
, either formal or informal ,should  routinely accompany these 
boxplot. As shown in chapter (3) several method are suggested for 
the detection of outliers. In this chapter we propose a new method 
for outlier detection. The suggested method is a modification of 
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tukey's  method (tukey1977). in chapter (5) the new method is 
compared  with tukey's method and three other methods based on 
it. To see the proposed method and these four method brief review 
presented below for theus. 
4.2 Tukey's method: 

Tukey's method for outlier detection is based on the median and 
the interquarticl range (IQR),defined as the difference( Q3 – 
Q1)between 

The third quartile (Q3) and the first quartile( Q1), the method 
consist of two fence : 

An inner fence and an outer fence, the inner fence is defined as 

                         [Q1 − 1.5 IQR, Q3 + 1.5 IQR]     (4.1) 

While the outer fence is defined as 

                          [ܳ1 − 3 IQR, ܳ3 + 3 IQR]          (4.2) 

Formally ,the lower (L)and the upper(U) boundaries for the two 
fence can writer as:  

  [(IQR ,ܳ3+ ݃∗ IQR ∗݃ −1ܳ ]= ܷ ܮ                  
Where 

                             1.5 for inner fence    

                        3 for outer fence 
 

adjusting Tukey‟s fence at true 95% fence is possible by using the 
formula below:  

 (4.3)												[0.95∗ IQR	ܳ3+	IQR , ∗0.95	−1ܳ]=	ܷ	ܮ

since the introduction of Tukey's  method in (1977) several  
modification are suggested . Among these are the methods of 
kimber's , Hubert and Vanderviere, and Iftikhar. 
4.2.1 Kimber's method  

݃ 
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Kimber's (1990) modified Tukey's method by replacing the(IQR) 
by the difference (Q2-Q1) for the lower boundary and  (Q3-Q2)  for 
the upper boundary ,is the two fence as an attempt to solve the 
problem of showed Formally the modified form proposed by 
Kimber's is 
 (4.4)  [(2ܳ −3ܳ)∗1.5 +3ܳ ,(1ܳ− 2ܳ )∗1.5 −1ܳ]= ܷ ܮ                  
 where ܳ2 is the sample median. 
4.2.2 Hubert and Vandervieren method: 
           This method is based on the medcouple (MC) which range 
between -1 and +1 with symmetry a achieved for MC is zore 
 Hubert and Vandervieren (2008) proposed a technique for 
detection of outliers, called HV boxplot defined as  
 If MC≥0 (4.5) [(ܥܯ4݁∗ܴܳܫ∗1.5 +3ܳܥܯ3.5−݁∗ܴܳܫ∗1.5 −1ܳ]= ܷ ܮ							
 If MC≤0 (4.6) [(ܥܯ3.5݁∗ܴܳܫ∗1.5 +3ܳܥܯ4−݁∗ܴܳܫ∗1.5 −1ܳ]= ܷ ܮ							
when the value of MC is zero the HV method coincide with 
Tukey's method . 
4.2.3  SSSBB method 
Iftikhar (2011) proposed a methods for detection of outliers, 
called SSSBB boxplot defined as: 
  (4.7)        [ܴܴܳܫ∗1.5 +3ܴܳ , ܮܴܳܫ∗1.5 −ܮ1ܳ]= ܷ ܮ																		
Where L is the lower critical value and U is the upper critical 
value of the data. An observation outside these boundaries would 
be labeled as an outlier.  
adjusting SSSBB fence at true 95% fence is possible by using the 
formula below:  

 (4.8)												[ܴܴܳܫ ∗0.97	+	3ܴܳ	, ܮܴܳܫ ∗0.97	−	ܮ1ܳ	]=	ܷ	ܮ              

4.3 the proposed method 
    The suggested method is based on an upper fence and a lower 
fence and is intended to be more conservative than the previous 
methods. The steps for construction of boundaries of the fence are 
as follows: 
Step  1 
   The  absolute values of the data are obtained and the median M 
of absolute values calculated.  
Step  2 
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  With |XLL | and |XSL| the largest absolute value and smallest 
absolute value respectively to the left of the median, Calculate the 
deference: 
                    b =  |XLL | -  |XSL|          (4.9) 

Step  3 

      form the fence by adding  b to (ܳ1 − 1.5(ܴܳܫ)) to obtain  the 

lower boundary, and  subtract it form(ܳ3 - 3 ܴܳܫ) to obtain the 
upper boundary. i.e  the fence is given by: 

                 LU(ܳ1 − 1.5(ܴܳܫ) + b, (ܳ3 - 3ܴܳܫ)- b)      (4.10) 

 Where L is the lower boundary and U the upper boundary. 
 Any value outside this fence will be labeled as an outlier . 
   The above fence is found most suited for data distribution as 
chi-square and log normal . 
For  the beta  distribution data  the alternation form :  

                 LU[ (ܳ3 − 1.5(ܴܳܫ) - b, (ܳ1 – 1.5 ܴܳܫ)+ b)]  (4.11) 

  is formal more suited.  
4.4 methodology: 
        Outlier detection methods suggest a fence such that 
observations outside the fence would be labeled as outliers. Five 
percent probability of Type I error is allowed. We make the fence 
such that there is 5% chance of the random draw to be labeled as 
outlier when in fact it is not.  
  All points outside the central 95% fence are treated as outliers. In 
a distribution with no outliers, this leads to a 5% type I error 
probability. The main theme of this thesis is that the central 95% 
points are not symmetric around the median in skewed 
distributions. Tukey's technique is symmetric around the median 
and will therefore construct a fence which is too short on the right 
hand side and too long on the left hand side for a distribution 
which is skewed to the right. For any given distribution F, let 

  ݀݊ܽ %2.5 1−ܨ=ܸܥܮ																										

   %97.5 1−ܨ=ܸܥܷ																											
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then [LCV, UCV]  

are the true upper and lower fence values of the distribution F. 
    Different methods will be assessed according to their ability to 
approach these true values. As this thesis is dealing with skewness 
and outliers in skewed data sets, the performance will be different 
on the two sides. Only distributions skewed to the right will be 
considered. It is important to note that this thesis is adopting the 
95% fence to compare methods instead of comparing the 
percentage of outliers as in previous studies. This methodology 
has the advantage observing a 95% boundary as 95% fence is a 
robust measure than the extreme values True boundaries are 
considered at 95% central values of the distribution leaving 2.5% 
on each side of the distribution and fences of all methods are 
calculated by substituting theoretical values of the distribution in 
their respective formulae.  
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chapter 5 

 

5.1 introduction: 

      The purpose of this chapter is to provide a comparison of 
outlier detection methods through a simulation experiment. The 
comparison is based on the matching the fence with the true 
distribution of the data. the distributions considered are chi-square 
,beta and the lognormal distribution. If the distribution of the data 
is skewed, the classical outlier detection methods tend to treat 
symmetrically both sides of the data distribution. Therefore it 
leaves a lot of data on the long-tail side of the distribution and 
covers extra area on the shorter tail of the distribution. The 
theoretical fence is calculated by allowing 5% probability of type 
I error. That is 5% of the data is allowed to remain outside the 
fence with 2.5% on each side. The method investigated in the 
chapter is nonparametric methods. Non-parametric techniques 
make fewer assumptions; the range of applications of the non 
parametric techniques is therefore wider than that of parametric 
techniques. Another benefit of techniques is that these are often 
simpler than parametric techniques. The plan in remaining 
sections of this chapter is to compare the method for each of the 
three distributions.  , this is done for various sample size and 
different parameters of the distribution. The chi-square, beta and 
log normal are chosen because are skewed distribution .the 
simulation experiment is used to enable investigating the 
performance of the method and its sensitivity to change in 
parameters and sample size can than be ascertained . A method is 
more efficient the closer its fence to the true 95% fence of the 
distribution. The simulation is executed using MATLAB 
Software.  
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5.2 The chi square distribution: 

        For chi square six parameters are tried namely 2, 5, 10, 15, 20, and 

25. Samples of size 25,100 and 500 are taken. There are thus 18 

problems. Each problem is repeated 10.000 times. For each problem the 

lower and upper fence of χ2 Distribution are determined. The lower and 

upper fences for each of the five methods are calculated by using the 

formula in chapter (4). 

5.2.1 Small sample size : 

Table (5.1) shows the true lower and upper fences and the calculated 

fences by five methods (Adjusting Tukey's, Adjusting SSSBB, HV, 

Kimber's and our proposed) for 6 parameter of the χ2 Distribution when a 

small sample of size is used. 
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Table 5.1 Fences of five methods and True boundary in χ2 
Distribution at Small sample size(n=25) 

 

 

 

 

 

1.04 0.76 -0.45 1.50 1.06 1.54 skewenss  

25 20 15 10 5 2 parameter Sample size 

13.12 9.59 6.26 3.25 0.83 0.05 True lower fence (2.5%) 

12.25 6.95 3.65 
1.56 

-1.36 -0.55 
Adjusting  
Tukey's 

Sm
al

l s
am

pl
e 

si
ze

 

 

12.45 5.83 3.64 
0.54 

0.64 -0.92 
Adjusting 
SSSBB 

-1.77 9.34 4.46 0.78 -2.16 0.48 HV 

12.97 10.47 6.16 2.48 2.62 0.29 Kimber's 

16.23 11.24 5.40 4.31 4.66 -0.48 Our 
proposed 

40.65 34.17 27.49 20.48 12.83 7.38 True upper fence (97.5%) 

36.56 30.71 23.35 
15.80 

10.39 3.31 
Adjusting 
Tukey's 

Small 
sample 
size 

 

41.25 35.80 34.57 
24.54 

9.88 10.37 
Adjusting 
SSSBB 

35.79 50.95 35.31 21.10 10.77 19.39 HV 

33.92 30.96 23.18 14.76 10.39 3.62 Kimber's 

45.15 38.71 31.79 
20.40 

11.74 5.23 
Our 
proposed 
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 Inspection of Table (5.1) reveals the following facts:- 

   At parameter (2) all methods perform badly with respect to the 
lower fence with Kimber's method being the best.  

   As to the upper fence our proposed method's fence is closest to 
the true 95% fence, so it is the best compared to the   other 
methods while HV method's is the worst.  

   At parameter(5)in the  lower fence the Adjusting  SSSBB 
method is the closest to the true 95% fence, with the other's 
performing poorly.  

   However in the upper fence our proposed method is the closest 
to the true 95% fence, providing the best performance   while the 
Adjusting SSSBB method is the worst. 

  At parameter (10) in the lower fence Kimber's method has best 
performance followed by our proposed method, while the 
Adjusting SSSBB method is the worst.  

In the upper fence our proposed method is the closest to the true 
95% fence, followed by HV method, while the Adjusting SSSBB 
method is the worst. 

  At parameter (15) in the lower fence Kimber's method it is the 
best, followed by our proposed method. While the Adjusting 
Turkey’s and Adjusting SSSBB methods both have the worst 
performance.  

   In the upper fence the Adjusting Turkey’s is the nearest to the 
true boundary but can not be considered good, while the HV 
method is the worst. 

  At parameter (20) in the lower fence HV method has the best 
performance followed by Kimber's method, while the Adjusting   
SSSBB method is the worst.  

   In upper fence the Adjusting   SSSBB is the best, while HV 
method is the worst performs. 
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    At parameter (25) in the lower fence Kimber's method is the  
best followed by the Adjusting SSSBB method, while HV method 
is the worst.  

  But in upper fence the Adjusting SSSBB is the best, while 
Kimber's method i the  worst.  

5.2.2 Medium sample size: 

   Table (5.2) shows the true lower and upper fences and the 
calculated fences by five methods (Adjusting Tukey's, Adjusting 
SSSBB, HV, Kimber's and our proposed) for 6 parameter of the 
χ2 Distribution when a medium sample of size is used. 
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Table 5.2      Fences of the five methods and True boundary in χ2 
Distribution at medium sample size (n=100) 

 

 

 

 

0.28 0.34 0.13 0.60 0.71 1.37 Skewenss  

25 20 15 10 5 2 parameter Sample size 

13.12 9.59 6.26 3.25 0.83 0.05 True lower fence (2.5%) 

12.35 
10.18 

3.60 1.12 -0.50 -1.81    Adjusting  
Tukey's 

m
ed

iu
m

 sa
m

pl
e 

siz
e 

 

6.30 
6.20 

0.45 0.63 -0.69 -1.01 Adjusting 
SSSBB 

   11.66 5.18 0.51 1.30 0.21 -0.52 HV 

14.44 11.83 5.11 2.39 0.78 -0.62 Kimber's 

22.27 
16.75 

10.25 4.56 1.05 -1.99 Our 
proposed 

40.65 34.17 27.49 20.48 12.83 7.38 Trueupperfence(97.5%) 

38.85 
29.74 

24.49 17.70 10.05 5.03 Adjusting  
Tukey's 

medium 
sample 
size 

 

49.77 
40.23 

31.17 22.51 14.31 9.77 Adjusting 
SSSBB 

50.21 32.30 29.38 26.27 17.46 15.95 HV 

37.29 28.69 23.11 16.68 9.88 5.28 Kimber's 

42.64 
33.29 

28.65 22.83 13.95 8.76 Our 
proposed 
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From the Table (5.2) we see the following:- 

        At parameter (2) in lower fence all methods did not work as 
properly.  

   But in the upper fence our proposed method has the best performance 
with HV method showing the worst performance.  

   At parameter (5) in the lower fence Kimber's method showed   the best 
performance followed by our proposed method, while the Adjusting 
SSSBB method is the worst.  

    But in the upper fence it is our proposed which is the best, while HV 
method is the worst. 

    At parameter (10) in the lower fence Kimber's method is the best 
followed by our proposed method, while the Adjusting SSSBB method is 
the worst.   

    However in the upper fence it is the Adjusting   SSSBB which is best, 
While HV method is the worst. 

   At parameter (15) in the lower fence Kimber's method is the best, while 
the Adjusting SSSBB method is the worst.  

   In the upper fence it is our proposed method which is best other than 
methods; while HV method has the worst performance. 

   At parameter (20) in the lower fence the Adjusting turkey’s method is 
the best, while our proposed method is the worst.  

   But in the upper fence our proposed method is the best, while the 
Adjusting SSSBB method is the worst. 

    At parameter (25) in the lower fence the Adjusting Tukey's method is 
the best, while our proposed method is the worst.  

   But in the upper fence the Adjusting turkey’s method is the best, while 
HV method is the worst.  

5.2.3 Large Sample Size:  

   Table (5.3) shows the true lower and upper fences and the calculated 
fences by five methods (Adjusting Tukey's, Adjusting SSSBB, HV, 
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Kimber's and our proposed) for 6 parameter of the χ2 Distribution when a 
large sample of size is used 

Table 5.3      Fences of the five methods and True boundary in χ2 
Distribution at large sample size (n=500) 

 

 

0.55 0.91 0.72 0.79 1.27 1.96 Skewenss  

25 20 15 10 5 2 Parameter Sample size 

13.12 9.59 6.26 3.25 0.83 0.05 True lower fence (2.5%) 

11.67 8.09 4.29 1.28 
-0.92 -1.43 Adjusting  

Tukey's 

la
rg

e 
sa

m
pl

e 
siz

e 

 

4.15 2.29 -1.56 
-1.43    

-2.22 -1.39 Adjusting 
SSSBB 

8.09 7.17 3.78 1.24 -0.89 -0.67 HV 

13.77 9.78 6.44 2.91 0.15 -0.58 Kimber's 

22.39 15.61 12.37 
5.78    

1.19 -1.25 Our 
proposed 

40.65 34.17 27.49 20.48 12.83 7.38 True upper fence 
(97.5%) 

37.90 29.75 25.13 
18.05 

10.12 4.70 Adjusting  
Tukey's 

large 
sample 
size 

 

54.11 53.09 37.86 
31.30 

23.03 13.19 Adjusting 
SSSBB 

44.42 38.32 34.12 26.14 15.59 10.70 HV 

36.38 28.45 24.40 17.36 9.67 4.70 Kimber's  

40.75 33.43 27.84 
22.24 

13.27 7.70 Our 
proposed 
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From the Table (5.3) show the follow:- 

       At parameter (2) in the lower fence all methods did not work 
as perform properly.  

    But in the upper fence our proposed method is the best, While 
the Adjusting   SSSBB method is the worst. 

   At parameter (5) in the lower fence our proposed method is the 
best, While the Adjusting   SSSBB method is the worst.  

   However in the upper fence it is our proposed method which is   
best, while the Adjusting SSSBB method is the worst. 

   At parameter (10) in the lower fence Kimber's method is the 
best, while the Adjusting SSSBB method is the worst.  

   But in the upper fence it is our proposed method which is best, 
while the Adjusting SSSBB method is the worst. 

        At parameter (15) in the lower fence Kimber's method is the 
best, while the Adjusting   SSSBB method is the worst.  

    But in the upper fence is our proposed method which is best, 
while the Adjusting   SSSBB method is the worst. 

           At parameter (20) in the lower fence Kimber's method is 
the best, while the Adjusting   SSSBB method is the worst.  

   But in the upper fence it is our proposed method which is best, 
while the Adjusting   SSSBB method is the worst. 

At parameter (25) in the lower fence Kimber's method is the 
best, while our proposed method is the worst.  

  But in the upper fence it is our proposed method which is best, 
while the Adjusting SSSBB method is the worst. 

Form the Tables (5.1), (5.2) and (5.3) we conclude the following 
concerning the proposed method:- 

{1} Small sample size (Table 5.1)  
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A) At the lower fence the proposed method failed to be the best 
in nay parameter although it performed well in parameter (5) 
and (10) and is the worst in parameter (20) and (25). 

B) At the upper fence it performed best in parameters (2), (5) 
and (10) and reasonably well in parameter(15). 

{2} Medium sample size (Table 5.2) 

A) At the lower fence the proposed method failed to be superior 
in any parameter, but it performed relatively well in parameter 
(10) and is the worst in parameter (20) and (25).  

B)  At upper fence it showed the best performance in parameters 
(2), (5), (15) and (20). 

 {3} Large sample size (Table5.3) 

A) At the lower fence it is the best in parameter (5), and the 
worst in parameter (25). 

B) At the upper fence it is the best in parameters 
(2),(5),(10),(15), (20)and(25)be in all parameters . 

5.3 The lognormal Distribution: 

The log normal distribution used in the simulation are, lnN(0, 
0.2), lnN (0, 0.4), lnN (0, 0.6), lnN (0, 0.8),lnN (0, 1) with 
sample sizes of 25, 100 and 500 ,this yielded 15 problem in all. 
10.000 replicates are performed for each problem; the lower and 
upper fences for each of the five methods are calculated by 
using the formula in chapter (4). 

 
5.3.1 Small sample size:  

Table (5.4) shows the true lower and upper fences and the 
calculated fences by five methods (Adjusting Tukey's, Adjusting 
SSSBB, HV, Kimber's and our proposed) for 5 parameter of the 
lognormal Distribution when a small sample of size is used. 
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Table 5.4      Fences of the five methods and True boundary in 
lognormal Distribution at small sample size (n=25) 

 

 

 

1.81 2.43 1.03 0.07 -0.35 Skewenss  

0,1.0 0,0.8 0,0.6 0,0.4 0,0.2 parameter Sample size 

0.14 0.21 0.31 0.46 0.68 True lower fence (2.5%) 

0.54 0.69 
0.11 

0.08 0.61 Adjusting  
Tukey's 

Sm
al

l s
am

pl
e 

siz
e 

 

-0.34 -0.04 
0.30 

0.30 0.73 Adjusting 
SSSBB 

-0.09 0.58 0.51 -0.26 0.67 HV 

-0.08 -0.31 0.42 0.21 0.67 Kimber's 

-0.34 -0.61 
0.38    

0.36 0.75 Our 
proposed 

7.10 4.80 3.24 2.19 1.48 True upper fence (97.5%) 

2.69 2.78 
1.96 

1.86 1.27 Adjusting  
Tukey's 

Small 
sample size 

 

2.53 2.77 
3.06 

1.48 1.39 Adjusting 
SSSBB 

6.22 4.78 5.90 2.20 1.79 HV 

2.70 2.68 2.02 1.74 1.29 Kimber's 

4.16 4.49 
2.64 

2.51 1.48 Our 
proposed 
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Inspection of the table (5.4) leads to the following remarks:- 

   At parameter (0, 0.2) in the lower fence all methods performed 
equally well HV method and Kimber's method showing the best 
performance  

   But in the upper fence it is the proposed method which is best 
with the fence very close to the true are ,while HV method is the 
worst.  

   At parameter (0, 0.4) in the lower fence the proposed method 
is the best, while HV method is the worst.  

   But in the upper fence it is HV method that is best, while 
Adjusting SSSBB method is the worst. 

    At parameter (0, 0.6) in the lower fence Adjusting SSSBB 
method is the best, while Adjusting Tukey's method is the worst.  

   But in the upper fence it is the Adjusting SSSBB method 
which is best, while HV method is the worst. 

   At parameter (0, 0.8) in the lower fence HV method is the 
best, while the proposed method is the worst.  

   But in the upper fence it is the Adjusting SSSBB method 
which is best, while HV method is the worst. 

   At parameter (0, 1.0) in the lower fence the Adjusting Tukey's 
method is the best, while the proposed method and the 
Adjusting SSSBB method both the worst.  

   But in the upper fence HV method is the best, while the 
Adjusting SSSBB method is the worst. 

5.3.2 Medium sample size:  

Table (5.5) shows the true lower and upper fences and the 
calculated fences by five methods (Adjusting Tukey's, Adjusting 
SSSBB, HV, Kimber's and our proposed) for 5 parameter of the 
lognormal Distribution when a medium sample of size is used. 
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Table 5.5     Fences of the five methods and True boundary in 
lognormal Distribution at medium sample size (n=100) 

 

 

 

 

1.96 2.66 1.44 1.68 1.10 Skewenss  

0,1.0 0,0.8 0,0.6 0,0.4 0,0.2 parameter Sample size 

0.14 0.21 0.31 0.46 0.68 True lower fence (2.5%) 

-0.86 -0.49 -0.12 0.26 0.61 Adjusting  
Tukey's 

m
ed

iu
m

 sa
m

pl
e 

siz
e 

 

-0.19 -0.04 
0.18 

0.36 0.65 Adjusting 
SSSBB 

0.19 0.04 -0.06 0.37 0.49 HV 

0.03 0.002 0.13 0.44 0.67 Kimber's 

-0.82 -0.31 
0.23    

0.55 0.91 Our 
proposed 

7.10 4.80 3.24 2.19 1.48 True upper fence (97.5%) 

3.68 2.90 
2.24 

1.86 1.39 Adjusting  
Tukey's 

medium 
sample size 

 

7.11 3.70 
2.30 

2.02 1.34 Adjusting 
SSSBB 

14.91 7.17 3.56 2.98 1.57 HV 

3.94 2.92 2.16 1.82 1.34 Kimber's 

6.00 4.47 
3.10 

2.40 1.50 Our 
proposed 
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Table (5.5) reveals the following:-  

   At parameter (0, 0.2) in the lower fence Kimber's method is 
the best, while the proposed method is the worst.  

   But in the upper fence it is the proposed method which is best 
and it fence is very close to the true 95% fence, while HV 
method is the worst. 

   At parameter (0, 0.4) in the lower fence Kimber's method is 
the best, while the Adjusting Tukey’s method is the worst.  

   But in the upper fence it is the Adjusting SSSBB method 
which is best, while the HV is the worst. 

    At parameter (0, 0.6) in the lower fence the proposed method 
is the best, while the Adjusting Tukey's method is the worst.  

   But in the upper fence the proposed method is the best, while 
the Adjusting SSSBB method is the worst. 

   At parameter (0, 0.8) in the lower fence HV method is the 
best, while the Adjusting Tukey's method is the worst performs.  

   But in the upper fence the proposed method is the best, while 
HV method is the worst. 

   At parameter (0, 1.0) in the lower fence HV method is the best, 
while the Adjusting Tukey's ey method and the proposed method 
both are the worst.  

   But in the upper fence the Adjusting SSSBB method is the best 
of the other methods, while HV method is the worst. 

5.3.3 Large sample size:  

Table (5.6) shows the true lower and upper fences and the 
calculated fences by five methods (Adjusting Tukey's, Adjusting 
SSSBB, HV, Kimber and our proposed) for 5 parameter of the 
lognormal Distribution when a large sample of size is used. 
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Table 5.6 Fences of the five methods and True boundary in 
lognormal Distribution at large sample size (n=500) 

 

 

 

3.36 5.16 2.06 1.72 0.82 Skewenss  

0,1.0 0,0.8 0,0.6 0,0.4 0,0.2 parameter Sample size 

0.14 0.21 0.31 0.46 0.68 True lower fence (2.5%) 

-0.95 -0.49 -0.09 0.27 0.62 Adjusting  
Tukey's 

La
rg

e 
sa

m
pl

e 
siz

e 

 

-0.09 0.10 
0.17 

0.45 0.65 Adjusting 
SSSBB 

0.33 - 0.15- 0.11 0.23 0.58 HV 

-0.33 -0.07 0.16 0.42 0.68 Kimber's 

-0.78 -0.17 
0.30    

0.66 0.93 Our 
proposed 

7.10 4.80 3.24 2.19 1.48 True upper fence (97.5%) 

3.56 2.94 
2.19 

1.87 1.38 Adjusting  
tukey's 

large 
sample size 

 

4.73 4.18 
2.51 

2.16 1.39 Adjusting 
SSSBB 

8.45 5.82 4.00 2.55 1.66 HV 

3.56 2.98 2.13 1.80 1.34 Kimber's 

5.73 4.40 
2.98 

2.31 1.46 Our 
proposed 
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From Table (5.5) we see the following:- 

   At parameter (0, 0.2) in the lower fence Kimber's method is 
the best with fence very close to the true 95% fence, while the 
proposed method is the worst.   

    But in the upper fence it is our proposed method which is best 
with fence very close to the true 95% fence, while HV method is 
the worst. 

   At parameter(0,0.4) in the lower fence the Adjusting  SSSBB 
method is the best with fence very close to the true 95% fence, 
while HV method is the worst.  

   But in the upper fence the Adjusting SSSBB method is the 
best, while Kimber’s method is the worst. 

    At parameter (0,0.6) in the lower fence the proposed method 
is the best with fence very close to true 95% fence, while the 
Adjusting tukey's method is the worst  .   

   But in the upper fence the proposed method is the best, while 
kimber method is the worst. 

   At parameter (0, 0.8) in the lower fence the Adjusting SSSBB 
method is the best, while the Adjusting Tukey's method is the 
worst.  

   But in the upper fence our proposed method is the best, while 
the Adjusting Tukey's method is the worst. 

   At parameter (0,1.0) in the lower fence the Adjusting  SSSBB 
method is the best, while the Adjusting Tukey's key method is 
the worst  .  

   But in the upper fence the proposed method is best, while HV 
method is the worst. 

 Form tables (5.4), (5.5) and (5.6) we arrive at the following 
conclusion the proposed method:- 

{1} Small sample size form Table (5.4 
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A- At the lower fence it is not the best or the worst in any 
parameter. 

B-At the upper fence is the best in the parameter (0, 0.2), in the 
other parameters its performance is not good but not the worst. 

{2} Medium sample size form Table (5.5) 

A-At the lower fence it is the best in the parameter (0, 0.6), but 
the worst in the parameter (0, 0.2) and (0, 1.0). 

B- At the upper fence it is the best in the parameters (0, 
0.2),(0,0.6) and(0,0.8), while in the other parameter it performed 
well. 

{3} Large sample size form Table (5.6) 

A- At the lower fence it is the worst in (0, 0.2) and is not the 
best in any parameter. 

 B-At the upper fence it is the best in (0,0.2),(0,0.6) (0,0.8) 
and(0,1.0),and performed very good in the parameter(0,0.4). 

5.4 Beta Distribution: 

Beta distribution with the following values for the parameters α 
and β are used (35, 1), (35, 2), (35, 3), (35, 4), (35, 5), with 
sample sizes of 25, 100 and 500, the 15 problem are repeated 
10,000 time, The lower and upper fences for each of the five 
methods are calculated by using the formula in chapter (4).  

5.4.1 small sample size : 

Table (5.7) shows the true lower and upper fences and the 
calculated fences by five methods (Adjusting Tukey's, Adjusting 
SSSBB, HV, Kimber's and our proposed) for 5 parameter of the 
beta Distribution when a small sample of size is used. 

 

 

 



63 
 

 

Table 5.7      Fences of the five methods and True boundary in β 
Distribution at Small sample size (n=25) 

 

 

 

 

-0.77 -1.87 -0.91 -1.38 -1.30 skewness  

35,5 35,4 35,3 35,2 35,1 parameter Sample size 

0.76 0.79 0.82 0.85 0.90 True lower fence (2.5%) 

0.76 0.87 
0.85 

0.87 0.93 Adjusting 
Tukey's  

Sm
al

l s
am

pl
e 

si
ze

 

 

0.74 0.72 
0.77 

0.78 0.88 Adjusting 
SSSBB 

0.60 0.87 0.84 0.88 0.88  HV 

0.76 0.88 0.86 0.88 0.94 Kimber's 

0.92 0.83 
0.91    

0.89 0.96 Our 
proposed 

0.96 0.97 0.98 0.99 1.00 True upper fence (97.5%) 

1.00 0.98 
1.01 

1.01 1.02 Adjusting  
Tukey's 

Small sample 
size 

 

0.97 0.99 
1.01 

1.02 1.01 Adjusting 
SSSBB 

0.98 1.06 1.07 1.09 1.00 HV 

0.97 0.98 1.00 1.00 1.02 Kimber's 

0.83 1.01 
0.95 

0.98 1.00 Our 
proposed 
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From Table (5.7) we not the following:- 

   At parameter (35,1) in the lower fence HV and the Adjusting  
SSSBB method both are the best, while the proposed method is 
the worst.  

  But in the upper fence it is our proposed method which is best , 
while Kimber's and the Adjusting tukey's method both are the 
worst. 

   At parameter (35, 2) in the lower fence the Adjusting tukey’s 
method is the best, while the Adjusting SSSBB method is the 
worst.  

   But in the upper fence our proposed method is the best, while 
HV method is the worst. 

   At parameter (35, 3) in the lower fence HV method is the best, 
while our proposed method is the worst.  

  But in the upper fence our proposed method is the best, while 
HV method is the worst. 

   At parameter (35,4) in the lower fence our proposed method is 
the best, while Kimber's method is the worst  .  

   But in the upper fence kimber and the Adjusting tukey's 
method both are the best, while HV method is the worst. 

   At parameter(35,5) in the lower fence the Adjusting Tukey's 
and Kimber's method both are the best, while HV and our 
proposed method both are the worst  .  

   But in the upper fence Kimber's and the Adjusting SSSBB 
both are the best, while our proposed method is the worst. 

5.4.2 Medium sample size:  

Table (5.8) shows the true lower and upper fences and the 
calculated fences by five methods (Adjusting Tukey's, Adjusting 
SSSBB, HV, Kimber's and our proposed) for 5 parameter of the 
beta Distribution when a medium sample of size is used. 
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Table 5.8 Fences of the five methods and True boundary in β       
Distribution at medium sample size (n=100) 

 

 

 

-0.57 -0.75 -0.83 -0.86 -1.69 skewness  

35,5 35,4 35,3 35,2 35,1 parameter Sample size 

0.76 0.79 0.82 0.85 0.90 True lower fence(2.5%) 

0.80 0.80 0.85 0.88 0.94 Adjusting  
Tukey's 

M
ed

iu
m

 sa
m

pl
e 

si
ze

 

 

0.70 0.73 
0.76 

0.80  0.86 Adjusting 
SSSBB 

0.79 0.70 0.81 0.80 0.82  HV 

0.82 0.81 0.86 0.88 0.94 Kimber's 

0.85 0.83 
0.88    

0.91 0.93 Our 
proposed 

0.96 0.97 0.98 0.99 1.00 True upper fence (97.5%) 

0.96 0.98 
0.99 

1.01 1.02 Adjusting  
Tukey's 

Medium 
sample size 

 

1.00 1.00 
1.01 

1.01 1.01 Adjusting 
SSSBB 

1.02 0.98 1.01 1.01 1.01 HV 

0.96 0.96 0.98 1.00 1.01 Kimber's 

0.91 0.92 
0.97 

0.98 1.03 Our 
proposed 
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From table (5.8) we deduce the following:- 

   At parameter (35, 1) in the lower fence our proposed method 
is the best, while HV method is the worst.  

   But in the upper fence it is the Adjusting SSSBB, HV and 
Kimber's methods that are the best, while our proposed method 
is the worst.  

   At parameter (35, 2) in the lower fence the Adjusting Tukey's 
and Kimber's method both are the best s, while our proposed 
method is the worst.  

   But in the upper fence our proposed method is the best, while 
HV, the Adjusting SSSBB and the Adjusting Tukey's method 
are the worst.  

    At parameter (35,3) in the lower fence HV method is best, 
while our proposed and the Adjusting SSSBB method are both 
the worst  .  

   But in the upper fence Kimber's method is the best, while HV 
and the Adjusting SSSBB method are both the worst.  

    At parameter (35,4) in  the lower fence the Adjusting Tukey's 
method is the best while HV method is the worst  performs.  

   But in upper fence Kimber's method is the best, while our 
proposed method is the worst. 

    At parameter (35, 5) in the lower fence HV method is the best, 
while our proposed method t is the worst. 

    But in the upper fence Kimber’s and the Adjusting Tukey’s 
are both the best, while HV method is the worst. 

5.4.3 Large  sample size : 

Table (5.9) shows the true lower and upper fences and the 
calculated fences by five methods (Adjusting Tukey's, Adjusting 
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SSSBB, HV, Kimber's and our proposed) for 5 parameter of the 
beta Distribution when a small large of size is used. 

Table 5.9      Fences of the five methods and True boundary in β  
Distribution at large sample size(n=500) 

-0.80 -1.07 -0.95 -1.36 -1.77 skewness  

35,5 35,4 
35,3 

35,2 35,1 parameter Sample 
size 

0.76 0.79 
0.82 

0.85 0.90 True lower fence 
(2.5%) 

0.79 0.80 0.85 0.89 0.94 Adjusting  
Tukey's 

La
rg

e 
sa

m
pl

e 
siz

e 

 

0.64 0.60 
0.71 

0.75  0.82 Adjusting 
SSSBB 

0.68 0.70 0.80 0.81 0.84  HV 

0.80 0.81 0.86 0.89 0.94 Kimber's 

0.80 0.76 
0.84    

0.86 0.90 Our 
proposed 

0.96 0.97 
0.98 

0.99 1.00 True upper fence 
(97.5%) 

0.98 0.99 1.00 
1.01 1.02 Adjusting  

Tukey's 

Large 
sample 
size 

 

1.00 1.03 
1.02 

1.02 1.02 Adjusting 
SSSBB 

0.97 0.98 1.01 1.01 1.01 HV 

0.96 0.96 0.98 1.00 1.01 Kimber's 

0.96 1.03 
1.01 

1.03 1.06 Our 
proposed 
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From table (5.9) we absence the following:- 

   At parameter (35,1) in the lower fence our proposed method is 
the best, while the Adjusting SSSBB method is the worst.  

   But in the upper fence the Adjusting SSSBB and Kimber's 
methods are both better than   the other methods, while our 
proposed method is the worst.  

   At parameter (35, 2) in the lower fence our proposed method 
is the best, while the Adjusting SSSBB method is the worst.  

   But in the upper fence Kimber's method is the best, while our 
proposed method is the worst. 

    At parameter (35, 3) in the lower fence HV method is the 
best, while  the Adjusting SSSBB method is the worst  . 

    But in the upper fence Kimber's method is the best, while the 
Adjusting SSSBB method is the worst. 

    At parameter (35,4) in the lower fence the Adjusting Tukey's 
method is the best, while the Adjusting  SSSBB method is the 
worst  .  

   But in the upper fence Kimber's method is the best, while our 
proposed and HV method are the worst.  

   At parameter (35, 5) in the lower fence the Adjusting tukey's 
method is the best, while the Adjusting SSSBB method is the 
worst.  

   But in the upper fence Kimber's and our proposed are both the 
best, while the Adjusting SSSBB method is the worst.  

Form tables (5.7), (5.8) and (5.9) we concluded the following:- 

{1} Small sample size (Table 5.7) 
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A- At lower fence the proposed method is better in the 
parameter (35, 4) and is the worst in the parameter (35, 5) and 
work-well in the other parameters. 

B-At upper fence the proposed method is better in the parameter 
(35, 1) and (35, 2) and is worst in the parameter (35, 5) and 
work-well in the other parameters.  

{2} Medium sample size (Table 5.8)   

A- At the lower fence the proposed method is better in the 
parameter (35, 1) and is the worst in the  

parameters (35,2),(35,3)and(35,5) and well-work in the  

parameter (35,4). 

B- At upper fence the proposed method is better in the 
parameter (35, 2) and is the worst in the parameter (35, 1) and 
(35,4)and well-work in the other parameters .  

{3}- Large sample size (Table 5.9)  

A- At lower fence the proposed method is better in the 
parameter (35, 1) and (35, 2), and well-work in the other 
parameters.  

B- At upper fence the proposed method is better in the 
parameter(35,5) and is the worst in the parameter(35,1) 
,(35,2)and(35,4),and well-work in the parameter(35,3). 
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Chapter 6 

                                Conclusion 

6.1 Main results: 

        This thesis considered the problem of outlier  detection in 

univariate  data with skewed  distribution . Areviwe is  provided 

for parametric and nonparametric methods of outlier detection. 

Interest in the thesis is focused on nonparametric methods and in 

particular the methods Adjuseting tukey's ,  Adjuseting  SSSBB , 

Hubert and Vandervieren and Kimber's. 

      A new more conservative method is suggested. The 

performance of the new method relative to the four above 

mentioned methods is then studied under different distributional 

assumption and various sample sizes. 

        The distributions considered are the chi -square, log normal 

and beta distributions. Investigation of efficiency and sensitivinty 

of the methods is achieved through a suimulation experiment 

executed in MATLAB Software . 

          When the data is distributed as chi- square, the new method 

gave the best Performance (for all parameters considered) for 

large sample size with respect to the upper fence . For medium 

sample size the performance is the best for four  parameters ,while  

for small sample size it is the best for three parameters . The 
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performance with respect to the lower fence  ranges between good 

and worst.  

     For log -normally distributed data, the performance of the new 

method is in general the same as that for the chi -square 

distribution with slight improvement in the case of chi- square. 

      As for the beta distribution , the new method showed a 

relatively less efficiency with respect to the upper fence compared 

to chi -square and Lognormal distribution. 

       The general conclusion arrived at form the above discussion, 

is that the proposed  method can be recommended for data with 

shewed distribution (right skewness) particulary when the sample 

size is large. 

6.2 Recommendation for future work: 

More work is needed to generally the suggested method to the 

multivariate case. Also more research is needed to consider 

application of the methods to regression and time series datas.  
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APPENDIX 

MTALB PROGRAMS USED IN SIMULATIONS 

PROGRAMS 1 

function  [out1 out2  out3 out4]=outlir(e) 
m1=median(e); 

t=0; 
for i=1:length(e) 

    if e(i)<m1 
        t=t+1; 
d1(t)=e(i); 

    end 
end 

 tt=1; 
for i=length(d1)+1:length(e) 

    if e(i)>m1  
        tt+1; 

d2(tt)=e(i); 
    end 

end 
  

absd1=abs(max(d1)-min(d1)); 
absd2=abs(max(d2)-min(d2)); 

k1=absd2-absd1; 
% k2=absd2+absd1; 

iqr=quantile(e,0.75)-quantile(e,0.25); 
 if1=quantile(e,0.25)-1.5*iqr; 

 www1=if1+absd1; 
 of1=quantile(e,0.25)-3*iqr; 

 www2=of1+absd1; 
if2=quantile(e,0.75)+1.5*iqr; 

ww1=if2+absd1; 
ww2=if2+absd1; 

out1=ww1; 
out2=ww2; 

out3=www1; 
out4=www2; 
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PROGRAMS 2 
function  [out1 out2 out3 out4 out5 out6]=outlir(e) 

m1=median(e); 
t=0; 

for i=1:length(e) 
    if e(i)<m1 

        t=t+1; 
d1(t)=e(i); 

    end 
end 

 tt=1; 
for i=length(d1)+1:length(e) 

    if e(i)>m1  
        tt+1; 

d2(tt)=e(i); 
    end 

end 
  

absd1=abs(max(d1)-min(d1)); 
absd2=abs(max(d2)-min(d2)); 

k1=absd2-absd1; 
% k2=absd2+absd1; 

iqr=quantile(e,0.75)-quantile(e,0.25); 
 if1=quantile(e,0.25)-1.5*iqr; 

 wwww1=if1-absd1; 
 of1=quantile(e,0.25)-3*iqr; 

 wwww2=of1-absd1; 
if2=quantile(e,0.75)+1.5*iqr; 

ww1=if2-absd1; 
ww2=if2+absd1; 

of2=quantile(e,0.75)+3*iqr; 
www1=of2-absd1; 
www2=of2+absd1; 

mad=mean(abs(e-mean(e))); 
md=median(e)+3*mad;  

lr=k1+1.5*median(e); 
out1=ww1; 
out2=ww2; 

out3=www1; 
out4=www2; 

out5=wwww1; 
out6=wwww2; 
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PROGRAMS 3 

 
 

function  [out1 out2 out3 out4]=hebrv(e) 
mm=mc(e); 

iqr=quantile(e,0.75)-quantile(e,0.25); 
 

w1=quantile(e,0.75)+1.5*exp(3.5*mm)*iqr; 
 

w2=quantile(e,0.75)+1.5*exp(4*mm)*iqr; 
 

ww1=quantile(e,0.25)-1.5*exp(-3.5*mm)*iqr; 
 

ww2=quantile(e,0.25)-1.5*exp(-4*mm)*iqr; 
out1=w1; 
out2=w2; 

out3=ww1; 
out4=ww2; 

 
 

PROGRAMS 4 
Q1L=prctile(e,12.5) 
Q3R=prctile(e,87.5) 

 
Q3L=prctile(e,37.5) 

Q1R=prctile(e,62.5); 
TQRL=Q3L-Q1L; 
TQRR=Q3R-Q1R; 

L=Q1L-0.97*TQRL; 
U=Q3R+0.97*TQRR; 
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PROGRAMS 5 
 

function [out1 out2]=kimber(e) 
mm=median(e); 

w1=quantile(e,0.25)-1.5*(mm-quantile(e,0.25)); 
w2=quantile(e,0.75)+1.5*(quantile(e,0.75)-mm );  

out1=w1; 
out2=w2; 

 
 

PROGRAMS 6 
 

function [L U]=ninetypercent(e) 
Q1=quantile(e,0.25); 
Q3=quantile(e,0.75); 

TQR=quantile(e,0.75)-quantile(e,0.25); 
L=Q1-(0.95*(Q3-Q1)); 

U=Q3+(0.95*(Q3-Q1)); 
 
 

PROGRAMS 7 
 

function m = mc(e) 
  

m1=median(e); 
c1=1; 
c2=1; 

for i=1:length(e) 
    if e(i)<m1 
x1(c1)=e(i); 

c1=c1+1; 
    else 

         if e(i)>m1 
x2(c2)=e(i); 

c2=c2+1; 
end 

    end 
end 

 c=1;   
 for i=1:length(x1) 

     for j=1:length(x2) 
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             mm(j,i)=((x2(i)-m1)-(m1-x1(j)))/(x2(i)-x1(j)); 
             ff(c)= mm(j,i); 

             c=c+1; 
         end 

 end 
 m=median(ff); 

 
 
 
 

PROGRAMS 8 
 

function sk= skews(x) 
xbar=mean(x); 

s=std(x); 
n=length(x); 

for i=1:n 
    d=x(i)-xbar; 

    dd(i)=d^3; 
end 

sk=sum(dd)/(n-1)*s^3 
end 

  
 

 
 
 
 

  
 

 


