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Abstract

The aim of this study is to introduce tools from local bifurcation theory which will
be necessary in the following sections for the study of neural field equations. In a first
step, we deal with a basic manifold, elementary bifurcations in low dimensions such as
saddle-node, trans critical, pitchfork and Hopf bifurcations. Bifurcation analysis for
infinite dimensional systems is subtle and can lead to difficult problems. If it is possible,
the idea is to locally reduce the problem to a finite dimensional one. This reduction is
called the center manifold theory and it will be the main theoretical result of this study.
The center manifold theory requires some functional analysis tools which will be
recalled, especially the notions of linear operator, spectrum, resolve, projectors etc...
We also present some extensions of the center manifold theorem for parameter-
dependent and equivarient differential equations. Directly related to the center
manifold theory is the normal form theory which is a canonical way to write differential

equations. We conclude this study by some applications.
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Introduction
In this study we focus on two specific methods that arise in the analysis of
local bifurcations in infinite-dimensional systems, namely the center manifold reduction
and the normal form theory. Center manifolds provide a powerful method of analysis of
such systems, as they allow one to reduce, under certain conditions, the infinite-
dimensional dynamics near a bifurcation point to a finite-dimensional dynamics,
described by a system of ordinary differential equations. An efficient way of studying
the resulting reduced systems is with the help of normal form theory, which consists in
suitably transforming a nonlinear system, in order to keep only the relevant nonlinear
terms and to allow easier recognition of its dynamics. The combination of these two
methods led over the recent years to significant progress in the understanding of
various problems arising in applied sciences, and in particular in the study of nonlinear
waves. A common feature of many of these problems is the presence of symmetries, as
for instance reversibility symmetries. It turns out that both the center manifold
reduction and the normal form transformations preserve symmetries, allowing an
efficient treatment of such problems. In addition, they provide a detailed
comprehensive study near a singularity in the solution set of the system, which might
also orient a numerical treatment of such problems. The study is organized as follows.
We start in Chapter one with a manifolds, define basic concepts, chart and atlas and
differentiable manifolds. Chapter two bifurcations for one- and two-dimensional
ordinary differential equations, Elementary bifurcation and Stability Test, saddle-node,
pitchfork, Hopf, and steady bifurcations in the presence of a simple symmetry group.
The purpose of this particular choice is to some of the techniques and notations used in
the next chapters. Chapter three is devoted to the center manifold theory. Linear
systems. We present the strategy for center manifold reduction for infinite-dimensional
systems, together with simple examples and exercises illustrating the variety of possible
applications.
The aim is to declare that the subject to use this reduction method simply by

checking some clear assumptions. Chapter four is concerned with the normal form



theory. In particular, we show how to systematically compute the normal forms in
concrete situations. We illustrate the general theory on different bifurcation problems,
for which we provide explicit formulas for the normal form, allowing one to obtain
quantitative results for the resulting systems. In Chapter five the normal form theory is
applied to the study of reversible bifurcations, which appear to be of particular
importance in applications, as this is shown in Chapter six. We focus on bifurcations of
co-dimension 1, i.e., bifurcations involving a single parameter, which arise generically
for systems in dimensions 2, 3, and 4. In all cases, we give the normal forms and collect
some known facts on their dynamics. Finally, in Chapter six we present some
applications of the methods described.

Historical Background: Many authors refer to the work of C. G. J. Jacobi from
1834, on equilibria of self gravitating rotating ellipsoids, as a first reference in the field
of bifurcation theory. However, it seems that the first serious works on bifurcation
problems were by Archimedes and Apollonius over 200 years BCE. Archimedes studied
the equilibria of a floating paraboloid of revolution. In today’s terminology his results
would correspond to a pitchfork bifurcation which breaks a flip symmetry, or to a steady
bifurcation with O(2) symmetry, when taking into account the invariance under
rotations about the paraboloid axis. Apollonius studied the extreme a of the length of
segments joining a point of the plane to a given conic . The number of solutionschanges
from one to three in crossing the envelope of the normal to the conic. Here again, due
to the symmetry of the conic, we have an example of a pitchfork bifurcation. Finally, it
seems that the French word “bifurcation” was introduced by Poincaré in 1885
Intuitively, a manifold is a generalization of curves and surfaces to higher dimensions. It
is locally Euclidean in that every point has a neighborhood, called a chart,
homeomorphic to an open subset of R™. The coordinates on a chart allow one to carry
out computations as though in a Euclidean space, so that many concepts from R", such
as differentiability, point-derivations, tangent spaces, and differential forms,carry over
to a manifold. Like most fundamental mathematical concepts, the idea of a manifold did

not originate with a singlepers on, but is rather the distillation of years of collective



activity. In his masterpiece Disquisitiones generales circa superficies curvas (“General
Investigations of Curved Surfaces”) published in 1827, Carl Friedrich Gauss freely used
local coordinates on a surface, and so he already had the idea of charts. Moreover, he
appeared to be the first to consider a surface as an abstract space existing in its own
right, independent of a particular embedding in a Euclidean space. Bernhard Riemann’s
inaugurallecture UberdieHypothesen, welche der Geometriezu Grundeliegen (“On the
hypotheses that underliegeometry”) in Géttingen in 1854 laid thefoundations of higher-
dimensional differential geometry. Indeed, the word “manifold” is a direct translation of
the German word “Mannigfaltigkeit,” which Riemann used to describe the objects of his
inquiry. This was followed by the work of Henri Poincaré in the late nineteenth century
on homology, in which locally Euclidean spaces figured prominently. The late nineteenth
and early twentieth centuries were also a period of feverish development in point-set
topology. It was not until 1931 that one finds the modern definition of a manifold based
on point-set topology and a group of transition functions Normal form theory for
differential equations can be traced back to the original work of one hundred years ago,

and most credit should be given to Poincaré [1879].



Chapter 1
Manifold Theory

The notion of a manifold S defined in the following chapter assumes S to be a
subset of a Euclidean space R™. However, a more axiomatic and abstractapproach to
differential geometry is possible, and in many ways preferable.

Of course, a manifold in R™ must satisfy the axioms that we set up for anabstract
manifold. Our axioms will be based on properties of charts. From the point of view of
differential geometry the most important property of a manifold is that it allows the
concept of a smooth function. We will define this notion and the more general notion of

a smooth map between abstract manifolds.

Section (1.1): Basic Concepts:

The study of curves and surfaces in Geometry was mainly through
parameterizations and measures, important examples of curves and surfaces arise
more naturally as level sets, for example the circle {(x,,y) | x2 + y? =1} and the
sphere {(x,y,2) | x% + y2 4 z2 = 1}. In order to deal with such sets, we shall define a
notion of manifolds, which applies to subsets in R" without the specification of a
particular parameterization. The new notion will take into account the possibility that
the given subset of R™ is not covered by a single parameterization. It is easy to give
examples of subsets of R® that we imagine as surfaces, but whose natural
parameterizations do not cover the entire set (at least if we require the
parameterizations to be regular) For example, we have seen that for the standard
spherical coordinates on the sphere there are two singular points, the poles. In order to
have a regular parameterization we must exclude these points. A variation of the
standard spherical coordinates with interchanged roles of y and z will have singular
poles in two other points. The entire sphere can thus be covered by spherical
coordinates if weallow two parameterizations covering different, overlapping subsets of

the sphere.
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Definition (1.1.1). A parameterized manifold in R™ is a smooth map f:U — R", where
UcR™ is a non-empty open set. It is called regular at x € U if the m X n Jacobi matrix
Df (x) has rank m (that is, it has linearly independent columns), and it is called regular if
this is the case at all x € U. An m-dimensional parameterized manifold is a
parameterized manifold f: U — R™ with UcR™, which is regular (that is, regularity is
implied at all points when we speak of the dimension)

Clearly, a parameterized manifold with m = 2 and n = 3is the sameas a
parameterized surface, and the notion of regularity is identical to theone introduced in
Geometry. For m = 1 there is a slight difference withthe notion of parameterized
curves, because in Geometry we have requireda curve y:I — R" to be defined on an
interval, whereas herewe are justassuming U to be an open set in R. Of course there are
open sets in R which are not intervals, for example the union of two disjoint open
intervals. Notice however, that if y: U = R™ is a parameterized manifold with UcR,
then for each t, € U there exists an open interval I around ¢, in U, and there striction
of ¥ to that interval is aparameterized curve in the old sense. Infuture, when we speak
of a parameterized curve, we will just assume that itis defined on an open set in
R.Perhaps the case m = 0 needs some explanation. By definition R° is thetrivial vector
space {0}, and a map f:R® - R™ has just oneu value p = f(x). By definition the map
0 — p is smooth and regular, and thus a 0-dimensionalparameterized manifold in R™is a
pointp € R™[9]

Example (1.1.1). Let 0(u, v) = (cosu,sinu,cosv,sinv) € R*. Then
—sinu 0 \
DA, v) = cosu O

0 —siny

0 cosv
has rank 2, so that ¢ is a 2-dimensional manifold in R*. [9]
Example (1.1.2). The graph of a smooth function h:U — R™"™™, is manifold in R™.
Leto(x) = (x,h(x)) € R™, then Da(x) is an n X m matrix, of which the first mrows

comprise a unit matrix. It follows that Da(x) has rank m for all x, sothat o is regular.
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Many basic results about surfaces allow generalization, often with proof
sanalogous to the 2-dimensional case. Below is an example. By definition, are-
parameterization of a parameterized manifold o: U — R™ is a parameterizedmanifold of
the form t = o o @ where @: W — U is a diffeomorphism of open sets.

Definition (1.1.2). Is a differentiable mapping that has a differentiable inverse. Two sets
are diffeomorphically equivalent if there is a diffeomorphism of one onto the other. For
example, the reals and the interval (0, ) are diffeomorphically equivalent, since the
diffeomorphism [9]

fi:R— (0,00):f(x) = e*
has aninverseg : (0,)—=> R: g(x) = logx
Theorem (1.1.1). Let : U — R™ be a parameterized manifold with Uc R™, and assume
it is regular at p € U. Then there exists a neighborhood of p in U, such that the
restriction of o to that neighborhood allows are parameterization which is the graph of
a smooth function, where n-m among the variables x;,...,x, are considered as
functions of the remaining m variables.
Definition (1.1.3). Let AcR™ and BcR™. A map f: A = B which iscontinuous, bijective
and has a continuous inverse is called a homeomorphism.

The sets A and B are metric spaces, with the same distance functions as the

surrounding Euclidean spaces, and the continuity of f and f~! isassumed to be with
respect to these metrics. [9]
Definition (1.1.4). A regular parameterized manifold o:U = R™ which is
ahomeomorphism U — a(U), is called an embedded parameterized manifold. We shall
define a concept of manifoldswhich applies to subsets of R™ rather than to
parameterizations. In orderto understand the definition properly, we begin by the case
of curves in R?.

The idea is that a subset of R? is a curve, if in a neighborhood of each of itspoints
it is the image of an embedded parameterized curve
Example (1.1.4). The graph of a smooth function h: U = R™*™™, where UcR™ is open, is

an embedded parameterized manifold in R™. It is regular by Example 1.1.2, and it is
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clearly injective. The inverse map o(x) — x isthe restriction to d(U) of the projection
R*3x |- (xq,...,%Xm) € R™ on the first m coordinates. Hence this inverse map is
continuous.

Example (1.1.5). Consider the parameterized curve y(t) = (cost,costsint) in R2. It

is easily seen to be regular, and it has a self-intersection in (0, 0), which equals y (%") for

all odd integers k (see the figure below).The interval I = ]_7" ,37" contains only one of

the values 7", and the restriction of ytol is an injective regular curve. The image y (1) is

the fullset C in the figure.1 below.[9]

Figure 1.

The restriction y llis not a homeomorphism from / to C. The problem occurs in the point
(0,0)=vy (g) Consider an open interval V = E —€ ,g + e[ where 0 < € <m. The image
y(V)is shown in the figure, and it does not havethe form CNW for any open set W< R?,

because W necessarily contains points from the other branch through (0, 0). Hence y i
is not an embeddedparameterized curve.

It is exactly the purpose of the homeomorphism requirement to exclude the
possibility of a ‘hidden’ self-intersection, as in Example 1.1.4 Based on the example one

can easily construct similar examples in higher dimension.
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Definition (1.1.5). A curve in RZ%is a non-empty set CcR? satisfying thefollowing for
eachp € C. There exists an open neighborhood W—R? of p, an open setI € R, and an
embedded parameterized curve y: I - R? withimage

y)=CnWw.

Figure 2.

Shows an embedded parameterized curve.

The definition of a curve allows the following useful reformulation [9].
Example (1.1.6). The image C = y(l) of an embedded parameterized curveis a curve. In
the condition above we can take W = R2.
Example (1.1.7). The circle € = S = {(x,y) | x* + y? = 1}is a curve. In order to
verify the condition in Definition 1.1,5 let p € C be given. For simplicity we assume that
p = (x9,Y9) With xy > 0.
Example (1.1.8). An 8-shaped set like the one in Example 1.1.5 is not a curve in R?. In
that example we showed that the parameterization by (cos t, cos t sin t) was not
embedded, but of course this does not rule out that some other parameterization could
satisfy the requirement in Definition 1.1.5 That this is not the case can be seen from
Lemma 1.1.1 below.

It is of importance to exclude sets like this, because there is not a well defined
tangent line in the point p of self-intersection. If a parameterization is given, we can

distinguish the passages through p, and thus determine a tangent line for each branch.
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However, without a chosen parameterization both branches have to be taken into
account, and then there is not a unique tangent line in p. The definition of a curve
allows the following useful reformulation.

Lemma (1.1.1). Let CcR? be non-empty. Then C is a curve if and only if it satisfies the
following condition for each p € C: There exists an open neighborhood W c R? of p,
such that C N W is thegraph of a smooth function h, where one of the variables x3, x; is
considered a function of the other variable.

Proof. Assume that C is a curve and let p € C. Let y:I - R? be an embedded
parameterized curve satisfying Definition (1.1.5) and with y(t,) = p. By the following
Theorem 1.1.1 Let o: U—>R? be a parameterized manifold d with U € R?, and assume it
isregularat p € U. Then there exists a neighborhood of p in U, such that the restriction
of o to that neighborhood allows a reparameterization which is the graph of a smooth
function, where (n — m) among the variables (xy, . . ., xn) are considered as functions of
the remaining m variables) in the special case m = 1, we find that there exists
neighborhood V of tgin | such that y|V allows a re-parameterization as a graph. It follows
from Theorem (1.1.1) that there exists an open set W'c R such that y(V) =y() n
W' = CnW nW'.Theset W N W'has all the properties desired of W in the lemma.
Conversely, assume that the condition in the lemmaholds, for a givenpoint p say
withC NW = {(t,h(t)) |t € I}, where ] c R isopenand h:I — R is smooth. The
curve t = (t, h(t)) has the image C N W, and according to parameterized manifold in
R" it is an embedded parameterizedcurve. Hence the condition in definition 1.1.1 holds,
and Cis a curve. [9]

Theorem (1.1.2). Let f:£2 — R be a smooth function, where 2 c R? is open, and let
c € R. If it is not empty, the set C = {p €2 | f(p) = ¢, pisnotcritical} is a
curve in R®

Proof. By continuity of the partial derivatives, the set of non-critical points in Q is an
open subset. If we replace 2 by this set, the set C can be expressed asa level curve
{fp €2 | f(p) = c}, to which we can apply the implicit functiontheorem. It then

follows from Lemma 1.1.1that C is a curve
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Example (1.3.9). The set C = {(x,¥) | x> +y? = c} is a curve in R* for each ¢ > 0,
since it contains no critical points for f(x,y) = x% + y? [9]

Definition (1.1.6). A surface in R? is a non-empty set S c R? satisfying thefollowing
property for each point p €S. There exists an open neighborhoodW < R3 of p and an

embedded parameterized surface 0: U — R3 withimagea(U) = S NnW

Fig 3

Shows for a given point p with S NW the surface has image according to Lemma 1.1.1 is
non-empty
Example (1.1.10). The image S = d(U) of an embedded parameterized surfaceis a
surface in R>. In the condition above we can take W = R3
Theorem (1.1.3). Let f:2 — R be a smooth function, where 2 c R3 is open,and let
c € R.Ifitis not empty, the set

S =1{p €| f(p) = ¢, pisnotcritical }is a surface in R3.
Proof. The proof, which combines geometry,with Lemma 1.1.2 below, is entirely similar
to that of Theorem 1.1.2
Example 1.1.11 Let us verify for the sphere that it contains no criticalpoints for the
function f(x,y,z) =x% + y? 4+ z% The partial derivativesare f'x = 2x,f'y =
2y,f'z = 2z, and they vanish simultaneously only at (x,y,z) = (0,0,0). This point
does not belong to the sphere, hence it is asurface. The verification for the cylinder is

similar
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Lemma 1.1.2. Let S © R3 be non-empty. Then S is a surface if and only ifit satisfies the
following condition for each p € S: There exist an open neighborhood W c R3 of p,
such that S N W isthe graph of a smooth function h, where one of the variables

X1, X5, X3 is considered a function of the other two variables [9].

Section (1.2): Chart and atlas:

As mentioned in the introduction there exist surfaces, for example the sphere,
which we have seen that for the standard spherical coordinates on the sphere there are
two singular points, the poles. In order to have a regular parameterization we must
exclude these points. A variation of the standard spherical coordinates with
interchanged roles of y and z will have singular poles in two other points. The entire
sphere can thus be covered by spherical coordinates if we allow two parameterizations
covering different, overlapping subsets of the sphere. Note that in contrast, the
standard parameterization of the circle by trigonometric coordinates is everywhere
regular, in general overlapping, parameterizations. This makes the following concepts
relevant [9]

Definition of chart 1.2.1 another word for graph (Differential geometry) also called
(local) coordinate system. a neighborhood of a point in a manifold together with its
mapping into Euclidean n-space; formally, a pair (U, f))where U; is an element of a
cover of the manifold and , fjis a homeomorphism that maps it to an open subset of R".

A collection of charts that cover the manifold is called an atlas.

Definition1.2.2 Let S be a surface inR3. A chart on S is an injective regular
parameterized surface o:U — R3® with image o(U) € S. A collectionof charts
o;:U; > R® on S is said to cover S if S = U,0;(U;). In that casethe collection is called an
atlas of S.

Examplel.2.1. The image S = o(U) of an embedded parameterized surfaceas in
Example 1.1.7 has an atlas consisting just of the chart itself.

Example 1.2.2. The mapo(u,v) = (cosv,sinv,u),u,v € R is regular and covers the
cylinder S = {(x,y,z) | x> +y? = 1}, butitis notinjective. Let U; = {(u,v) € R*| -t <

v < m},U, = {(u,v) €R?*|0< v < 2m},and let g; denote the restriction of o to U; for

17



i = 1,2. Then o; and o, areboth injective,g; covers S with the exception of a vertical
line on the backwhere x = —1, ando; covers with the exception of a vertical line on
the frontwhere x = 1. Together they cover the entire set and thus they constitute

anatlas

ARYN

Figure 4.

describes cylinder S copse of two charts g; and o, as described in Example 1.2.2

Example 1.2.3. The spherical coordinate map|[9]

o(u,v) (cos u cos v, cos u sin v, sin u),

=< u <7 F<wv <Zanditsvariation

6(u,v) = (cosucosv,sinu,cos usinv),

=< u<J0<wv<2m

Figure 5. /
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are charts on the unit sphere. The restrictions on u and v ensure that they are regular
and injective. The chart o covers the sphere except a half circle (a meridian) in the xz-
plane, on the back where x < 0, and the chart dsimilarly covers with the exception of a
half circle in the xy-plane, on the front where x > 0 (half of the ‘equator’). As seen in
the figure5 theexcepted half-circles are disjoints. Hence the two charts together cover
thefull sphere and they constitute an atlas

Theorem 1.2.1 Let S be a surface. There exists an atlas of it.

Proof: For eachp € S we choose an embedded parameterized surface o as in [9]
Definition 1.2.3 Since a homeomorphism is injective, this parameterization isa chart on
S. The collection of all these charts is an atlas

Definition 1.2.4 An m-dimensional manifold in R™ is a non-empty setS < R" satisfying
the following property for each pointp € S. There existsan open neighborhoodW < R"
of p and an m-dimensional embedded follows from Definitionl.2.2parameterized
manifold o: U — R" with image 6(U) = SN W.

The surrounding space R" is said to be the ambient space of the manifold.
Example 1.2.4. The case m = 0. It was explained in Section 1.1 that a0-dimensional
parameterized manifold is a map R° = {0} — R", whose imageconsists of a single
point p. An element p in a set S  R"is called isolatedif it is the only point from S in
some neighborhood of p, and the set S iscalled discrete if all its points are isolated. By
going over Definition 1.2.1 forthe case m = 0 it is seen that a 0-dimensional manifold
in R™is the same asa discrete subset.

Example 1.2.5 If we identify R™ with the set {(xy,...,x,,0...,0)} € R™,it is an m-
dimensional manifold in R™.

Example 1.2.6 An open set 2 € R"is an n-dimensionalmanifold in R™. Indeed, we can
take W = 2 and o = the identitymap in Definition 1.2.1.

Example 1.2.7 Let S © S be a relatively open subset of an m-dimensionalmanifold in
R™. Then S’ is an m-dimensional manifold in R™.

The following lemma generalizes Lemmas 1.1.2 and 1.2.1

19



Lemma 1.2.1 Let S © R™be non-empty. Then S is an m-dimensionalmanifold if and only
if it satisfies the following condition for each p € S: There exist an open neighborhood
[9]. W < R™of p, such that S N W is thegraph of a smooth function h, where n — m
of the variables x4, ..., x,, are considered as functions of the remaining m variables.
Proof. The proof is entirely similar to that of Lemma 1.2.1

Theorem 1.2.2 Let f: 2 — R¥be a smooth function, where k < n and whereQ c R%s
open, and letc € RX. If it is not empty, the set S = {p € Q |f(p) = c, rank Df(p) =
k}is an (n — k) —dimensional manifold in R™.[9]

Proof. Similar to that of Theorem 1.2.1 for curves, by means of the implicit function
theorem and Lemma (1.1.1) [8].

Intuitively, a smooth manifold is a space that, when examined closely enough,
looks like Euclidean space. In this regard, manifolds provide a natural setting for defining
many of the usual notions of calculus, including differentiation, tangent spaces, vector
fields, differential forms, and integration. To begin our discussion, we need the
definitions of a diffeomorphism and a k-dimensional manifold in R":

Definition 1.2.5 If U and V are open sets in R", a diffeomorphism is a smooth(i.e.,
infinitely differentiable) function h : U —V with a smooth inverse h™1 : V —>U.
Definition 1.2.6 A subset M of R" is called a k — dimensional manifold (in R")if for
every point X eM, there is an open set U containing x, an open set VcR"and a
diffeomorphism h : U —>V such that

h(UnM) = VA (R*X {0}) = {(y1,---,¥n) € V : Y41 = =y = O},
In other words,U M is equivalent to RX, ‘up todiffeomorphism.We will use this
definition of a manifold as we formally build up the machinery required to integrate on
a manifold. However, it should also be noted that our definition need not rely (depend)
on R™ as an ambient (surround )space. In fact, it is possible to define diffeomorphism
and manifolds in this abstract sense:
Definition 1.2.7A function f is a diffeomorphism if it is bijective and smooth and if its

inverse is also smooth.
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Section (1.3): Differentiable manifolds:

Definition 1.3.1 An abstract manifold of dimension k is a second countableHausdorff
space M, together with an open cover (U;) of M, and homeomorphisms ¢; : U;—>RK
such that each ¢; and @; tisadiffeomorphismfrom; (UinU;) to @;(U;nU; ).

Now, for a subset in R, the Euclidean definition of a manifold and the abstract
definition of a manifold (Definition 1.3.1) are equivalent. Onedirection of this fact is
proven below:

Theorem 1.3.1. Suppose M is a set in R". If M satisfies the Euclidean definitionof a
manifold, then M satisfies the abstract definition of a manifold as well.

Proof. We know that for each point x € M, there is a diffeomorphism h: U—>V
between setsU, V eR"Mas in Definition 1.3.1 (Note that here we are
using“diffeomorphism” as we have defined it in Definition 1.3.1). Take (u;);€] , which
isan open cover of M. For each U;i, we define ¢, = h|UinM : UinM —-Vin (R x {0}).
Clearly is a bijective, continuous function whose inverse is also continuous. Thuse, €] is a

collection of homeomorphisms. For alli,j € ], we have the map(p]&(pj‘ldefined on an

open subset ofV]-m(Rk x {0}). We can extend this map’s domain to anopen subset of V;
with the functionh and h™!. Since this function is a diffeomorphism,one can show that
its restriction ;&®; 'is also diffeomorphism.

The other direction of the proof — that Definition 1.5 implies Definition 1.2—
makes use of the Whitney embedding theorem, which states that any manifold can be
smoothly embedded in R™ [8]

Definition 1.3.3. A coordinate chart on a set X is a subset UcX together with abijection

¢:U—>@(u) ER™ onto an open set @(u) in R™ we now consider the situation where X
is covered by such a chart and satisfies some consistency(strong) condition we have
Definition 1.3.4. An n-dimensional atlas on X is a collection of coordinate
charts{ Uy, @, } €1 such that

1- Xis covered by the{ Uy }ael

2- Foreacha, Bel, @ (u,)Nu,) isopenin R™
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3- The map @@g’ : @u(Ug N @)—>@p (Uy N @g) is CPwithC Cinverse

Definition 1.3.5. two atlases {(uq, ¢ ) ,{Vi,v,;}are compatible if their union is on
atlases.

It means that the extra maps ,wicpglmust be smooth compatibility is clearly an
equivalence relation and we have the following
Definition 1.3.6. A differentiable structure on X is an equivalence class of atlas. Finally
we come to the definition of a manifold:
Definition 1.3.7. An n-dimensional differentiable manifold is a space X with
differentiable structure.

To prove something is a manifold, all you need is to find one atlasthe definition
of manifold take in to account the existence of more atlases.

Proposition 1.3.8. with the topology aboveo :u,—¢(u,) is homeomorphism [1].

Proof. if V < U, is open theng, (V) = @, (vNU,) is open by the definition of the
topology (the intersection of any two open set is open) so @lis certainly continuous .
Now we letwcg, (U,)be an open set, then@y!(w) SU,and Ua is open in M so
we need to prove that the @z (w) is open in M. But
@p N (@z' (W) NUg) = @z (WN @a(Uq N Up)) (1)
From definition @, N (U N Ug ) is open and hence its intersection with the open set w
is open .Now (pﬁcpgl is C*inverse and so certainly a homeomorphism , and it follows
the right hand side of equation (1) is open thus the left hand sideqg N (@' (W) N
Ug) is open and by definition of topology ,this means that @z1(w) is open henceq, is
continuous. To make any reasonable further progress, we have to make two
assumptions about this topology which will hold for the rest of these notes the manifold
topology is Hausdorff (any two separated sets there existxeV ,yeU.(V N U = @)in this
topology we have countable basis of an open sets . Without these assumptions
manifold are not even metric spaces, and there is not much analysis that can reasonably

be done on them. [1]
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Basic Definitions (1.3.8): An- manifold M, is a topological space with a maximal atlas or
a maximal smooth structure.

There are two virtually identical definitions. The standard definition is as follows:

There is an atlas A consisting of maps F, : Uy,—R™4 such that
(1) Uyis an open covering of M.
(2) Fyis a homeomorphism on to its image.=F, (U)
(3) The transition functions

FOF; :Fg (Uy NUg) = F (U, N Ug) arediffeomorphism.

In condition 3 it suffices to show that the transition functions are smooth as they
are already forced to be homeomorphisms.

A smooth structure is a collection D consisting of continuous functions whose
domains are open subsets of M with the property that, For each p eM, there is an open
neighborhood p €U and functionsX; eD,i = 1,...,n such that

(1) The domains of X; contain U.
(2) Themap F = (x4,...,%,) : U —>R"™is a homeomorphism oreach f: O >R in

A there is a smooth function h: VN F (0O) - R suchthat f = h (xy4,...,x,) on

Uno.

Note that h = f °F~1in condition 3, but it is usually possible to findh withouthaving to
invert F. The map in 2 in both definitions is called a chart or coordinatesystem on U. The
topology of M is recovered by these maps.

Note that it is very easy to see that these two definitions are virtually identical.
Definition 1.3.9 (i) A topological manifold of dimension m is a topological space with the
property that every point has a neighborhood homeomorphic to an open set in R™. It is
usual to insist also that M be Hausdorff and second-countable (i.e. having a countable
dense subset), and we will impose this requirement. We will also impose the
requirement that M be para compact: every open cover has a locally finite refinement
(A refinement of an open cover {U} is an open cover {V} such that each V lies entirely in
some U). Every subset of RMis Hausdorff, second countable and Para compact, so these

requirements hold automatically for the manifolds contained in RN [1]
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(ii) A homeomorphism @ : U — V, where U is openin M and V is open in R™, is called a
chart, and a collection A = {¢,: U, — V,} of charts such that M = U, is called an
atlas for M.

(iii) An atlas {da: Uqa = Vo) is smooth if whenever U, N Ug#®, the crossover
homeomorphism &g ° @z 1: da(Us N Ug) > dp(Ue N Ug) is smooth.

(iv) If M is a manifold equipped with a smooth atlas A, thenamapf: M - R*is smooth
with respect to A at a point x € M if f °p,tis smooth, whereg, € Ais a chart defined
onsome neighborhood of x. And a map f : R > M is smooth with respect to A
aty € RFif(dy ° f )is smooth at y, for some chart ¢, whose domain contains
f(y).Because of the smoothness of the crossover maps of charts in A, the criteria for
smoothness described in (iv) are independent of the choice of chart ¢, € A used to
verify them.When M c RV is a manifold, any two of its charts (whichwe required to be
smooth (new)) automatically enjoyed the crossover property described in (i) and so an
atlas of such charts was automatically smooth in the sense of (iii). Here, in our new
more abstract situation, it makes no sense to speak of smooth (new or old) maps from
M to R* without reference to the charts of a smooth atlas, because M is not embedded
in any bigger space already equipped with a notion of differentiability.

Examples of manifolds: We need better ways of recognizing manifolds than struggling

to find explicit coordinate charts.

Figure 6
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Figure 6 shows how we can use stereographic projection to get an atlas.
For example, the sphere is amanifoldand although we can use stereographic

projection to get an atlas, there are other ways. Here is one. [1]
(1,00

[_1 ] [1,}',1]
=| a
b

X—-1

Z

(0.4

Theorem 1.3.2 Let F : U - R™ be a C”function on an open set U SR™*" andtake
c €R™. Assume that for each a eF~1(c), the derivativeDF, : R™*™ — R™is surjective.
Then F~1(¢) has the structure of an n-dimensional manifold which is Hausdorff and has
a countable basis of open sets.
Proof: Recall that the derivative of F at a is the linear map DF, : R™*™ — R™such that
F(a+ h) = F(a) + DFa(h) + R(a, h) where

R(a, h)/||h|| >0 as h—0.

If we write F(xq,...,Xpem) = (Fi,...,E,) the derivative is the Jacobian matrix

oF; . . . - .
a—x‘(a)lsl < m, 1<j < n+m that this is surjective, so the matrix has rank m. Therefore
J

. . . OF;
byreordering the coordinates xy, ..., X;,.nWe may assume that the square matrix a_xl (a)
J

1<i < m, 1<j < mis invertible.
Now define
G: U->F"™mbyG(xy, ... Xnom) = (Fiooois By Xmmats -+ or Xmam)- (2)
Then DGa is invertible. We now apply the inverse function to G, a proof of which is
given, tells us that there is a neighborhood V ofa, and W of G(a) such that G : VoW is

invertible with smooth inverse. Moreover, the formula (2) showsthat G maps
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V \ F71(c) to the intersection of W with the copy of R™ given by {x eR"*™:x; =
¢, 1 < i < m}. This is therefore a coordinate chart ¢ If we take two such charts
®a@p thenp~lis a map from an open set in {x eR™™:x; =¢;,1 < i < m} to
another one which is the restriction of the map Gopo_l of (an open set in) R™*™to itself.
but this is an invertible C*map and so we have the requisite conditions for an atlas.

Finally, in the induced topology fromR™*", Ga is a homeomorphism, so open
setsin the manifold topology are the same as open sets in the induced topology.
SinceR™*™is Hausdorff with a countable basis of open sets, so is F1(c) has structure of
m-dimensional manifold,We can now give further examples of manifolds [1]
Examples 1.3.1: Lets™ = {x € R"*1:Y"*1x2 = 1} be the unit n-sphere. Define
F:R"™! > RbyF(x) =X x2

This is aC®map andDF,(h) = 2); a;h;is non-zero (and hence surjective in the
1-dimensional case) so long as ais not identically zero. If F(a ) = 1, then)1t1x? =
1#0 so a+0 and we can apply Theorem 1.3.2 and deduce that the sphere is a
manifold.
Example 1.3.2: Let O(n) be the space of n x n orthogonal matrices: AAT = 1. Take the
vectorspace M" of dimension n? of all real n x n matrices and define the function
F(A) = AATto the vector space of symmetric n x n matrices. This has dimension

n(n +1)/2. Then 0(n) = F~1(I).

Differentiating F we have DF,(H) = HAT + AH?T and putting H = KA this
isKAAT + AATKT = K + KT if AAT = |, i.e.if A € F~1(I). But given any symmetric
matrix S, taking K = S/2shows that DF; is surjective and so, applying Theorem 2.2 we
find that O(n) is amanifold. Its dimension isn? — n(n + 1)/2 = n(n — 1)/2.[1]
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Chapter 2

Bifurcation Theory

The goal of this chapter is to study the bifurcation relating with manifold, which
allows us to introduce centre manifold (CM) theory and its importance in normal form

theory.

Section (2:1) Elementary bifurcation:

Definition 2.1.1: In dynamical systems, a bifurcation occurs when a small smooth
change made to the parameter values (the bifurcation parameters) of a system causes a
sudden qualitative" or topological change in its behavior. Generally, at a bifurcation, the
local stability properties of equilibria, periodic orbits or other invariant sets changes [5].
The change in the qualitative character of a solution as a control parameter is varied is
known as a bifurcation. This occurs where a linear stability analysis yields an instability
(characterized by a growth rate o of a perturbation of the base solution with Re ¢ = 0).
The connection is through the implicit function theorem, the solution can be continued
smoothly except where the Jacobean is singular. Typically a new solution develops at
this point.

In practical applications that involve differential equations is very often happens
that the differential equation contains parameters and the value of these parameters
are often only known approximately. In particular they are generally determined by
measurements which are not exact. For that reason it is important to study the behavior
of solutions and examine their dependence on the parameters. This study leads to the
area referred to as bifurcation theory. It can happen that a slight variation in a
parameter can have significant impact on the solution. Bifurcation theory is a very deep
and complicated area involving lots of current research. A complete examination of the
field would be impossible. A fixed point (or equilibrium point) of a differential equation
y' = f(y) is a root of the equation f(y) = 0. As we have already seenfor
autonomous problems fixed points can bevery useful in determining the long time

behavior of solutions.Qualitative information about the equilibrium points of the
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differential equation y, = f(y)can be obtained from special diagrams called phase
diagrams.
line segment with labels for so-called sinks, sources or nodes , one for each root

f(y) = 0i.e. each equilibrium.

Sources sink

pd N ~ e

\- 7~ ~ - o~
Y1Yo

The names are borrowed from the theory of fluids and they are defined as follows

1. Sink an equilibrium yo which attracts nearby solutions at
t = o i.e., there existsM > 0 so that if [y(0) —yo| < M, then |y(x) —yo| —
0 whent — o

2. Source an equilibrium y; which repels nearby solutions at
t = oi.e., here exists M > 0 so that if |y(0) —y;| < M,then |[y(x) — y,|
increasesast — oo,

3. Node An equilibrium y, which is neither a sink or a source. In fluids, sink means

fluid is lost and source means fluid is created

Section (2.2): Stability Test:

The term stable means that solutions that start near the equilibrium will stay
nearby as t — oo. The term unstable means not stable. Therefore, a sink is stable and a
sourceis unstable. Precisely, an equilibrium y, is stable provided for givene >
0 thereexists some § > 0 such that |y(0) —y,| < & impliesy(t) exists for
t = 0and |y(t) —yo| < €.

Lemma 2.2.1 If a system is structurally stable in a region D, with the boundary B, and
all its orbits point strictly inside B, then it is strictly structurally stable in U = D,,.

(Proof of Lemma 2.2.1): (a) Prove that a smooth planar system x* = f(x), x € R?,is
topologically equivalent (in fact, diffeomorphic) in a region U, that is, free of equilibria
and periodic orbits and is bounded by two orbits and two smooth curves transversal to

orbits to the system
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Y,

Fig 2.1: Phase portraits in U and V are equivalent.

Fig. 2.2 Saddles are topologically equivelent.

(@) intheunitsquare V = {(y1,¥,) ¢ |y1] < 1,|y,| < 1} (Figure 2.1)

(b) Generalize this result to n-dimensional systems and prove Lemma 2.2.1.

(c) Prove, using part (a),that two hyperbolic saddle points on the plane have locally
topologically equivalent phase portraits. Figure 8Where is the differentiability
lost?

Lemma 2.2.2 The system
x = a+ x? + 0(x3) (1)
is locally topologically equivalent near the origin to the system

X = a + x2. (2)
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Proof: The proof goes through two steps. It is based on the fact that for scalar systems a
homeomorphism mapping equilibria into equilibria will also map their connecting orbits.
Step 1 (Analysis of equilibria). Introduce a scalar variable y and write the first system as

y =F@ya) =a+y+9@oa), (3)
where { = O(y3) is a smooth functions of (y,a) near (0, 0). Consider the equilibrium
manifold of (2.2.3) near the origin (0, 0) of the (y,a)-plane, M = {(y,a): F(y,a) =
a + y? + Y(y,a) = 0}.The curve M passes through the origin F(0,0) = 0. By the
Implicit Function Theorem (since Fa(0,0) = 1),it can be locally parameterized by y:

M = {(ya,a =g}
where g is smooth and defined for small |y|. Moreover,
g = —y* + 0y°)

Thus,for any sufficiently small a« < 0,there are two equilibria of (3) near the origin in
(3), ¥1 (@) and y, (a),which are close to the equilibria of (1),i.e., X;(a) = +v/—oand x,(a)

= —+/—,for the same parameter value . fig 9

yaice) _
x(ce)

Ay, o) =0
Fig 2.3 Fold bifurcation for the perturbed system.

Step 2 (Homeomorphism construction). For small |a|,construct a parameter- dependent

map y = ha(x) as following. For & = 0 take the identity map h,(x) = x. Fora < 0
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take a linear transformation h.(x) =a(a) + b(a)x, where the coefficients a, b are
uniquely determined by the conditions
he(xj(a)) =yjla),j=1, 2, (4)
The constructed map h, :R'>R? is a homeomorphism mapping orbits of x = a + x%=
f(x, a). (3) near the origin into the corresponding orbits of (3), preserving the direction of
time. Although it is not required in the study for the homeomorphism h.,to depend
continuously on a,this property holds here, since ha tends to the identity map as
negative
a—> 0.
Theorem 2.2.1 (Stability Conditions). Let fand f’ be continuous. The equation
y' = f(y)has a sink aty =y, provided f(y,) =0 and ' (y,) < 0. An equilibrium
y = y;is a sourceprovided f(y;) = 0 and f' (y;) > 0. There is no test when f'is
zero at an equilibrium.
Equilibria.[5]
let x=f(x) ....> (5)
where x is the variable subject to change. Note, that when x depends on time t, we call
Equation (1) an autonomous system If we know the value of x at time t = 0, we have an
initial value problem
x = f(x),x(0) = x5 . > (6)
where xq is the known value. When we plot the change in x during time we have an
orbit .All orbits together with the direction of arrows gives a phase portrait. It is
possible that for t — oo all orbits converge to a single value of x, denoted as x*. We call
this value a stable equilibrium of Eqn. (5). Equilibria can also be unstable; orbits then go
into the direction away from x*. Of course, when time is reversed the equilibrium can be
perceived as stable again. To find an equilibrium all one has to do is set Eqn. (5) equal to
zero and solve the resulting equation. To investigate the stability of the found equilibria
linearization is needed, i.e. we need to differentiate the function. Now, if f'(x) < 0,
the equilibrium is stable. Vice versa, if f'(x) > 0 the equilibrium is unstable. If

f'(x) = 0 we cannot sayanything about the equilibrium at this point.[5]

31



Now consider a dynamical system that depends on parameters. In thecontinuous-time

case we will write it as

x = f(x ), (6)
while in the discrete-time case it is written as
x = f(x,q), (7

where x € R™ and a € R™ represent phase variables and parameters, respectively.
Consider the phase portrait of the system. (consider the phase portrait in a parameter-
dependent region Uy, € R™.) As the parametersvary,the phase portrait also varies.
There are two possibilities: either thesystem remains topologically equivalent to the
original one,or its topology changes.
Definition 2.2.1. The appearance of a topologically nonequivalent phase portrait under
variation of parameters is called a bifurcation.
Thus, a bifurcation is a change of the topological type of the system as its
parameters pass through a bifurcation (critical) value.
Example 2.2.1. Consider the following planar system that depends on one parameter:
X, = ax; — x5 — x.(xf + x2),
Xy =x; +ax, —x,(x2 +x3) (8)
Equivalence and Bifurcations: in polar coordinates (p, 8) it takes the form
p- = pla—p?),0 =1, (9)

and can be integrated explicitly , Since the equations for

a< 0a=00>0

FIGURE 2.4. Hopf bifurcation.
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p and O are independent in (2.2.9),we can easily draw phase portraits of the system in a
fixed neighborhood of the origin, which is obviously the only equilibrium point (see
Figure 2.4). For a< 0,the equilibrium is a stable focus, since p° < 0 and p(t) = 0,if we
start from any initial point. On the other hand, if a> 0,we have p’ > 0 for small p> 0 (the
equilibrium becomes an unstable focus),and p° < 0 for sufficiently large p. It is easy to
see from (2.2.9) that the system has a periodic orbit for any @ > 0 of radius p, = Va
(at p = powe have p° = 0). Moreover,this periodic orbit is stable,since p° > 0 inside
and p° < 0 outside the cycle. Therefore, « = 0 is a bifurcation parameter value.
Indeed,a phase portraitwith a limit cycle cannot be deformed by a one-to-one
transformationinto a phase portrait with only an equilibrium. The presence of a limit
cycleis said to be a topological invariant. As aincreases and crosses zero, wehave a
bifurcation in system (2.2.8) called the Andronov-Hopf bifurcation.[12]

It leads to the appearance, from the equilibrium state, of small-amplitude
periodic oscillations. As should be clear, an Andronov-Hopf bifurcation can be detected
if we fix any small neighborhood of the equilibrium. Such bifurcations are called local.
One can also define local bifurcations in discrete-time systemsas those detectable in any
small neighborhood of a fixed point. We will often refer to local bifurcations as
bifurcations of equilibria or fixed points, although we will analyze not just these points
but the whole phase portraits near the equilibria. Those bifurcations of limit cycles
which correspond to local bifurcations of associated Poincare maps are called local
bifurcations of cycles.

There are also bifurcations that cannot be detected by looking at small
neighborhoods of equilibrium (fixed) points or cycles. Such bifurcations are called
global.

Example 2.2.2. (Heteroclinic bifurcation) Consider the following planar system that
depends on one parameter:
X, = 1—x% —ax;x,,

X, = X%, + a(l —x?). (10)
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The system has two saddle equilibria x(1) = (—1,0),x(2) = (1,0),for all values of a
(see Figure 2.2). At a = 0 the

ww
'

a>0a=0a<0

FIGURE 2.5. Heteroclinic bifurcation [12]
horizontal axis is invariant and, therefore, the saddles are connected by an orbit that is
asymptotic tone of them for t - +ocand to the other for t->-oo. Such orbits are called
heteroclinic. Similarly,an orbit that is asymptotic to the same equilibriumas t - +e= and
t—>-oo is called homoclinic. For a = 0, the x;-axis is nolonger invariant,and the
connection disappears. This is obviously a globalbifurcation. To detect this bifurcation
we must fix a region U covering bothsaddles.

There are global bifurcations in which certain local bifurcations are involved .In
such cases, looking at the local bifurcation provides only partial information on the
behavior of the system. The following example illustrates this possibility.

Example 2.1.3. (Saddle-node homoclinic bifurcation) Let us analyze the following system
on the plane:[12]

X = x(1 —x2—x2) — x,(1 + a + xy),

X, = x(1 + a + x1) + x,(1 — x2— x2), (11)
where a is a parameter. In polar coordinates (p, 8) system (9) takes the form p =

p(1 —p?),

6 =1+a + pcosb. (12)
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Fix a thin annulus U around the unit circle {(p,0) : p = 1}. At a = 0, there is a no
hyperbolic equilibrium point of system (2.2.10) in the annulus: x, = (pg,0y) =
(1,m)(see Figure 2.3). It has eigenvalues .;, = 0,4, = —2 For small positive values of
a the equilibrium disappears, while for small negative a it splits into a saddle and a node

(this bifurcation is called a saddlenodeor fold bifurcation[12]

\

/ -
/_\
a<0a=0a>0
FIGURE 2.6. Saddle-node homoclinic bifurcation
Local Bifurcation Theorem: In scientific fields as diverse as fluid mechanics, electronics,
chemistry and theoretical ecology, there is an application of what is referred to as
bifurcation analysis; the analysis of a system of ordinary differential equations (ODE’s)
under parameter variation. Performing a local bifurcation analysis is often a powerful
way to analysis the properties of such systems, since it predicts what kind of behavior
(system is in equilibrium, or there is cycling) occurs where in parameter space. With
local bifurcations linearization in state space at the critical point of the parameter space
provides sufficient information..[7]
In this chapter we formulate conditions defining the simplest bifurcationsof
equilibrium in n-dimensional continuous-time systems: the fold and the Hopf
bifurcations. Then we study these bifurcations in the lowest possible dimensions: the

fold bifurcation for scalar systems and the Hopf bifurcation for planar systems.[6]

35



Section (2.3): Simplest bifurcation conditions:

Consider a continuous-time system depending on a parameter
x' = f(x,a),x € R",a € RY,

where f -fis smooth with respect to both x and «a. Letx = x, be a
hyperbolic_equilibrium in the system for @ = . under a small parameter variation the
equilibrium moves slightly but remains hyperbolic. Therefore, we can vary the
parameter further and monitor the equilibrium. It is clear that there are, generically only
two ways in which the hyperbolicity condition can be violated. Either a simple
realeigenvalue approaches zero and we haved; = 0 (see Figure 2.4(a)),or apair of
simple complex eigenvalues reaches the imaginary axis and we have A ; =iwo, we> 0 (see
Figure 2.4(b)) for some value of the parameter. It is obvious (and can be rigorously
formalized) that we need more parameters to allocate extra eigenvalues on the
imaginary axis. Notice that this mightnot be true if the system has some special
properties, such as a symmetry

One-Parameter Bifurcations of Equilibrium

FIGURE 2.7 Codim 1 critical cases.
Definition 2.3.1 The bifurcation associated with the appearance of A; = Ois called a fold
(or tangent) bifurcation.
Remark: This bifurcation has a lot of other names, including limit point, saddle

nodebifurcation, and turning point.
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Definition 2.3.2 The bifurcation corresponding to the presence of 4,, = * iw,, wy >
0, is called a Hopf (or Andronov-Hopf) bifurcation.

Notice that the tangent bifurcation is possible if n > 1,but for the Hop bifurcation
we need n = 2.[6]
Definition 2.3.3. The appearance of a topologically nonequivalent phaseportrait under
variation of parameters is called a bifurcation.
Thus, a bifurcation is a change of the topological type of the system as itsparameters
pass through a bifurcation (critical) value. [6].
Saddle Node Bifurcation: We begin with the Saddle Node bifurcation (also called the
blue sky bifurcation) corresponding to the creation and destruction of fixed points. The
normal form for this type of bifurcation is given by the examplex’ = r + x?2

The three cases ofr < 0, r = 0and r > 0 give very different structure for

JAR

r<0r=0r>0

the solutions.

¥

Figure 2.8

We observe that there is a bifurcation at r = 0. For r < 0 there are two fixed points
given by x = ++/—r. The equilibrium x = —+/—r is stable, i.e., solutions beginning
near this equilibrium converge to it as time increases. Further, initial conditions near
V—r divergefrom it.At r = 0 there is a single fixed point at x = 0 and initial
conditions less than zero givesolutions that converge to zero while positive initial
conditions give solutions that increase without bound.

Finally if r > 0 there are no fixed points at all. For any initial condition solutions

increasewithout bound.[6]
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There are several ways we depict this type of bifurcation one of which is the so

called bifurcation diagram

Figure 2.9
Note that if instead we considerx, = r — x? the the so-called phase line can be drawn

as

o [ =20 r >0

Figure 2.10
We return now to a general discussion of bifurcations in a parameter-dependent system
(1) (or (2)). Take some value @ = «a, and considera maximal connected parameter set
(called a stratum) containing x, andcomposed by those points for which the system has
a phase portrait that is topologically equivalent to that at . Taking all such strata in
the parameter space R™, we obtain the parametric portrait of the system. For example,
system (5) exhibiting the Andronov-Hopf bifurcation has a parametric portrait with two
strata: {a < 0} and {a> 0}. In system (7) there are three strata: {& < 0}, {a = 0},and
{a > 0}. Notice, however, that the phase portrait of figure (2.1) for a < 0 is
topologically equivalent to that for &« > 0. The parametric portrait together with its

characteristic phase portraits constitute a bifurcation diagram.
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Definition 2.3.5. A bifurcation diagram of the dynamical system is a stratification of its
parameter space induced by the topological equivalence, together with representative
phase portraits for each stratum.

It is desirable to obtain the bifurcation diagram as a result of the qualitative
analysis of a given dynamical system. It classifies in a very condensed way all possible
modes of behavior of the system and transitions between them (bifurcations) under
parameter variations. Note that the bifurcation diagram depends, in general, on the
region of phase space considered.

Remark: If a dynamical system has a one- or two-dimensional phase space and depends
on only one parameter, its bifurcation diagram can be visualized in the direct product of
the phase and parameter spaces, R%? x R! with the phase portraits represented by
one- or two-dimensional slices a = const.Consider,for example,a scalar system [6]

X = ax —x3,x ERY,a eR?

X =0, simply x;, = FVa This system has an equilibrium x, = 0 for all a. This
equilibrium is stablefor a < 0 and unstable for &« > 0 (a is the eigenvalue of this
equilibrium). For a > 0,there are two extra equilibria branching from the origin
(namely, x;, = FVa) which are stable. This bifurcation is often called a
pitchforkbifurcation,the reason for which becomes immediately clear if one has a look
at the bifurcation diagram of the system presented in (x, @)-space(see Figure 2.11).
Notice that the system demonstrating the pitchfork bifurcation is invariant under the
transformation

X — —X.
| x,

X2

Figure 2.11



In the simplest cases, the parametric portrait is composed by a finite number of regions
in R™. Inside each region the phase portrait is topologicallyequivalent. These regions
are separated by bifurcation boundaries, which are smooth submanifolds in R™(i.e.,
curves,surfaces). The boundaries can intersect, or meet. These intersections subdivide
the boundaries in to subregions, and so forth. A bifurcation boundary is defined by
specifying phase object (equilibrium, cycle, etc.) and some bifurcation conditions
determining the type of its bifurcation (Hopf, fold, etc.). For example, the Andronov-
Hopf bifurcation of an equilibrium is characterized by one bifurcation condition namely
,the presence of a purely imaginary pair of eigenvalues of the Jacobian matrix evaluated
at this equilibrium Re A; , = 0.When a boundary is crossed, the bifurcation occurs.
Example 2.3.1 (Saddle fixed points in R?) Suppose in x, = 0 is a fixed point of a two-
dimensional discrete-time system (now n = 2). Assume thatn_ = n, = 1,s0 that
there is one (real) multiplier p outside the unit circle (|uy] > 1) and one (real)
multipliery, inside the unit circle(|p;| < 1). In our case,there are two invariant
manifolds passing throughthe fixed point,namely the one-dimensional manifoldW3(x,)
formed byorbits converging to x, under iterations of f,and the one-dimensional
manifoldW™ (x,) formed by orbits tending to x, underiterations of f~1. Recallthat the
orbits of a discrete-time system are sequences of points. All orbitsnot belonging to the
aforementioned manifolds pass near the fixed pointand eventually leave its
neighborhood in both “time” directions. Figure 2.9 shows two types of saddles in R?. In
the case (a) of positivemultipliers,0 < pu, < 1 < p;,an orbit starting at a point on
W?*(x,)converges to x, monotonously. Thus,the stable manifold W*(x,) is formedby
two invariant branches, W*;,(x,),separated by x,. The same can besaid about the
unstable manifold W*(x,) upon replacing f by its inverse.

The restriction of the map onto both manifolds preserves orientation. If the
multipliers are negative (case (b)figure 4), u; < —1 < u, < 0,the orbits on the
manifolds “jump” between the two components W**, ,separated by x,. The map
reverses orientation in both manifolds. The branches W**, ;are invariant with respect

to the second iteratef? of the map.[6]
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Wzs
FIGURE 2.12. Shows Invariant manifolds of saddle fixed points on the plane: (a)

positive multipliers; (b) negative multipliers

Definition 2.3.6. The codimension of a bifurcation in system (2.2.3) or (2.2.5) is the
difference between the dimension of the parameter space and the dimension of the
corresponding bifurcation boundary. Equivalently, the codimension (codim for short) is
the number of independent conditions determining the bifurcation. This is the most
practical definition of the codimension. It makes it clear that the codimension of a
certain bifurcation is the same in all generic systems depending on a sufficient number
of parameters.

Remark: The bifurcation diagram of even a simple continuous-time system in a bounded

region on the plane can be composed by an infinite number of strata. The situation
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becomes more involved for multidimensional continuous-time systems (with n > 3). In
such systems the bifurcation values can be dense in some parameter regions and the
parametric portrait can have a Cantor (fractal) structure with certain patterns repeated
on smaller and smaller scales to infinity. Clearly, the task of fully investigating such a
bifurcation diagram is practically impossible. Nevertheless, even partial knowledge of
the bifurcation diagram provides important information about the behavior of the

system being studied.[6]
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Chapter 3

Centre Manifold

Center manifolds theory is of fundamental importance in the study of nonlinear
dynamical systems when analyzing bifurcations of a given type. In fact, this theory
allows us to reduce the study of a differential equation with delay near a non-hyperbolic
equilibrium point to that of an ordinary differential equation on a finite-dimensional
invariant manifold.

One of the most useful non-linear methods to reduce systems at near-
equilibrium point is the centre manifold approach [10]. This approach assumes that then
on-linear dynamical system at near-equilibrium point is governed by the dynamics on
the centre manifold when certain eigenvalues have zero real parts (and all other
eigenvalues have negative real parts). It may be noted that the centre manifold appears
to be an extremely powerful method due to the fact that if m eigenvalues of the n
eigenvalues of the non-linear system have zero real parts, then the number of equations
for the non-linear system is reduced to( n — m )by applying the centre manifold
approach. However, this method can only be used for model reduction when the system
has an eigenvalue with zero real parts at an equilibrium point. Usually, the centre
manifold has complicated non-linear terms. In this case, the non-linear system can be
simplified by using further non-linear coordinate transformations [10]. The normal form
theory is often applied after the centre manifold approach. The main objective of the
method of normal forms is to obtain the simplest possible non-linear system by the use
of successive non-linear co-ordinate transformations [10]. At the end of these non-linear
transformations, only the resonant terms are retained: they cannot be eliminated and
are essential to the non-linear system dynamics.(we will discus Normal forms in chapter
four).

Section (3.1): Linear systems [4]:
Consider the following system of linear differential equations:

x = Ax, x eR™. (1)

43



where A eR™™. The global behavior of equation (1) and the stability ofthe zero
solution are completely determined by the eigenvalues of A, let o(A)denote the
spectrum of A(the value of all eigenvalues of ). Then we have
0(A) = o04(A) vo,(A) uo.(A), where

0s(A) = {Aec(A) |Rer < 0}

0,(4) = {Aeo(4)|Rer > 0}

0.(A) = {Ae 6A) |Rer = 0}
let the corresponding (generalized) eigenspaces be denotednow suppose that we add
nonlinear terms to Eq (1)

x = A(D)x + f(x,A),x eR¥%, AeR* (2)
where f(x,A) eC*, k > 2, and £(0,0) = Df(0,0) = 0. Then 0 is still a solutionto
equation (2). We now must ask how the behavior of the nonlinear system (2) is related
to that of the linear system (1). The answer is easy if the system is hyperbolic
o.(A) =@ ;), the phase portraits are topologically equivalent by theGr obman-
Hartman theorem. The answer is not so simple if g.A #@, This isthe topic of the center
manifold (CM) theory.[4]

In the non-hyperbolic case there exists invariant manifolds M;, M, and
Mc.analogous to the generalized eigenspaces.Since we are usually interested in the
stability of the zero solution, it willbe assumed that 6,A = @ ;. While this assumption is
notnecessary for theformulation of the center manifold theorem, o, A #0; guarantees
that the zerosolution is unstable.lt can be useful to include this case since an
unstablesolution can undergo a secondary bifurcation and become stable.

We write R" = E€ @ E" and rewrite equation (2) as

x = Ax + f(x,y)

y =By + g(xy) (3)
where dA = 0.4 and 0B = o,B. Note that we still have f(0,0) = g(0,0) = 0 and
Df(0,0) = Dg(0,0) = 0. The re-use of the matrix A is clearlyan abuse of notation,
but its use should be clear in context. We assume A eR“*“and B eR*Swhere

n = c + s. We can now state the center manifold theorem [4].
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Theorem 3.1.1: (Center Manifold Theorem). Given system (3) with the zero solution and
0A = o,Aand 0B = o,B, then there exists (locally) aninvariant center manifold
M*€(0) that can be represented as

M<(0) = {(x,y) |y = h(x),h(0) = Dh(0) = 0,[x|] < a}
for some sufficiently small o. Moreover, M¢(0) eC¥, same as f,g.The notation
M*€(0) is used to emphasize the local nature of the center manifold.From now on it will
simply be referred to as M€.A few notes on the CM theorem:[4]
1. With y = h(x), we can reduction of the dynamics of (2) to the CM isgiven by:

u = Au + f(u, h(u)).

The use of the variable u is to emphasize the fact that the CM is in generalnot a linear
subspace. Use of the variable x would not make this specific.
2. The condition that h(0) = Dh(0) = 0implies that the CM is tangent toEc at the
origin.
3. The CM is C* whenever f, g eC*with the exception of some cases whenk = oo ,this
is due to the local nature of the CM. ask =00, theneighborhood on which the CM is
defined can shrink such that a C'manifold does not exist.
4. The center manifold is not unique! However, in practice this non-uniquenessdoesn’t
really pose a problem.
5. The CM has similar properties to that of E€: M€ must contain all solutionscontained in
a small neighborhood of zero, including fixed points,small periodic solutions, homo- and
hetero-clinic orbits.let x,be a point of the intersection. By Definition,it belongs to both
invariant manifolds. Therefore, the orbit starting at this point converges to the saddle
point xyunder repeated iteration of either f orf™1: f¥(x%) — x, as k - Foo. Each
point of this orbit is a point of intersection of W?*(x,) and W*(x,). This infinite number
of intersections forces the manifolds to “oscillate” in a complex manner Near x,,as
sketched in Figure 3.1(b). The resulting “web” is called the Poincare homoclinic

structure.
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The orbit starting atx,is said to be homoclinic to x,. It is the presence of the homoclinic
structure that can make the intersection of W*,u(x,) with any neighborhood of the

saddle x,highly nontrivial.[4]

y=h(x)

Y=h(x) is (CM) W

Figure 3.2 [4]
Theorem (Local Center Manifold Theorem) 3.1.2: Let f €C"(E), where E is an open
subset of R" containingthe origin and r > 1. Suppose that f(0) = 0 and that Df(0) has
c eigenvalues with zero real part, ands = n — c eigenvalues with negative real part.
The system (1) then can be written in diagonal form
x'= Cx + F(x,y)
y' =Py + G(xy) (4)
where (x,y) eR°xR?®,C is a square matrix with c eigenvalues with zero real parts, P is a
square matrix with s eigenvalues with negative real parts, and F(0) =G(0) =
0,DF(0) = DG(0) = 0; furthermore, there exists o > 0 and a function h C"(No(0)),
h(0) 0,Dh(0) = 0 defines the local center manifold W.(0):= {(x; y)eR xRSy =
h(x) for|x| < o}and satisfies
Dh(x) [Cx F(x,h(x))] = P.h(x) + G(x, h(x)) (5)
for |x| < o; and the flow on the center manifold W¢(0) is defined by the system of
differential equations
x'= Cx + F(x,h(x)) (6)
forall x eR° with x| < o.

This theorem can be used to determine the flow near nonhyperbolic equilibrium points.
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Section (3.2): The strategy:

To do this:
(1) Convert the equation (1) in diagonal form equation (4)
(2) Use a series expansion for the components of h(x) (up to the degree cof
accuracy we need, providedthat r is sufficiently large)
(3) Determine the components of the expansion of h(x)(without constants a linear
terms in order to satisfy) using (5)
(4) Substitute this approximate expression of h(x) into (6) to determine the flow.[3]
To solve equation (5), equate the coefficient of different term in the polynomials
on both sides and we obtain a system of algebraic equations for the coefficients of the
polynomial. By solving these equations, we obtainan approximation to the centre
manifold y = h (x). After h is identified, the reduced order structural dynamicmodel,
which is only a function of x', is given byx’ = Cx + F(x,h(x))[10]
Example 3.1.1 [11]: Consider the systemx = ax?+ xbTy + x3+...,x € R},
y = By + dx% +...,y € R™. Where B is a matrix without imaginary eigenvalues. The
Taylor expansion for center manifold should have form
y = h(x) = 0x? + 0(x3)
with yet unknown vector coefficient a.y = 20xx + 0(x*)
Substitute this y into the second equation of the system, we get
20x(ax? + xbTy + cx3+...)+...= B(ox? + 0(x3)) + dx? +..).
Equating terms of order x> weget B + d = 0.Thuso = —B~1d.
Reduced onto the center manifold equation is
x = ax? + (¢ — bTBd)x® + 0(x*).
Example 3.1.2: Consider an ODEx = Ax + O(|x|?),x € R™ with the right hand side
of smoothness C" , r < 1. Assume that the matrix A hasng ,n, andn, eigenvalues in
the left complex half-plane, right complex half-plane and on imaginary axis
respectively,n, + n, + n. = n. Denote T° ,T"%and T¢ the corresponding invariant

n  u N n u, n

planes of A . (Note: “s” is for “stable”, “u” is for “unstable”, “c” is for “center ”).
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Local Center Manifolds:

Hypotheses:

Let X, Z, Y be (real or complex) Banach spaces such that
Z Y - X,

with continuous embeddings. We consider a differential equation in X of the form
== Lu+R(w), (7)
in which we assume that the linear part L and the nonlinear part Rare such that the
following holds.
Hypothesis 3.1 We assume that L and R in (7) have the following properties:
(HL € L(Z,X)
(ii) for some k > 2, there exists a neighborhood V  Z of 0 such that R € CX (V,Y )and
R(0) = 0,DR(0) = 0.
Hypothesis 3.2 (Linear equation) Foranyn € [0,y ] and any
f € Ly (R, Yy)the linear problem

Sh = Ly, + £(1), (8)
has a unique solution u, = Ky f € L;, (R, Ly,). Furthermore, the linear map Khbelongs
to L(L, (R, Yn), Ly (R,Zy)), and there exists a continuous map C : [0,y ] = Rsuch that

|IKn I|L(Ly (R, Yn), Ly (R, Zp)) < L.
Theorem (3.1.3) (Center manifold theorem) Assume that Hypotheses 3.1, 3.2, and
spectrum of A hold. Then there exists a map¥ € L (E, Zy,), with

Y(0) = 0,D¥Y(0) = 0, (9)

and a neighborhood O of 0 in Z such that the manifold

My = {ug + ¥Y(ug),uy € Eg} c Z (10)
has the following properties:
(i) M, is locally invariant, i.e., if u is a solution of (7) satisfying u(0) € My N O
and u(t) € O forallt € [0,T], then u(t) EMO for all t € [0, T].

(ii)M, contains the set of bounded solutions of (7) staying in O for allt €R, i.e.,ifuis a

solution of (3.1.7) satisfying u(t) € O for all t € R, then u(0) EM,,.
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Proof of theorem (3.1.3) (Center Manifolds)
Consider system (7), and assume that Hypotheses 3.1, 3.2, and spectrum of A
hold. For any u € Z we set
u = uy+uh € Z,uy, = Pju € Ej,u, = Byu € %,
and rewrite the system (7) as

du,
dt
duh

F_ Lhuh = PhR(u) (Bl)

— Loug = PyR(u)

Modified System

We take a cut-off function x : E; = Rof class C such that

_(1for|lull <1
x(u0) _{Ofor||u0|| > 2

x(up) € [0,1] for all uy € E,.
Since E; is finite-dimensional such a function always exists. We use this function to
modify the nonlinear terms R(u) outside a neighborhood of the origin, in order to be
able to control the norm of the u0-component of the system (B.1) in the space of
exponentially growing functions L, (R,E;). We set
R® (W) =x(COR(u) for all e € (0,),
where g is chosen such that
{u = U +up, ||uol|Eo < 2¢, ||uh||Zh = 50} cv,
with V the neighborhood of the origin in Hypothesis 3.1. Then R? is well definedin the
closed set
0. = Eo X Be (Zn), B¢ (Zn) = {(un€Zy, |lunl|se},
and satisfies
Re(u) = R(u)forallu € O, ||ug]|<e.
Consider the modified system

du, .
E_ Louo = PoR (u)

S Ly, = RRE(W). (B.2)

The nonlinear terms in this system now satisfy
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So(e) & supyeo, ([IPR*WINEo | IBREWIY,) = 0(e*)
81(€) supyeo, (I|DuPR*WI|L(Z , Eo),
| IDuB,RE W)|IL(Z,YR)I| = O(e). (B.3)
We prove below the existence of a “global” center manifold for this system which,due
to the fact that R® and R coincide for ||uy||E, < €, will give the local centermanifold for
the system (7) in the Theorem).
Integral Formulation:

We replace system (B.2) by the integral formulation
t
Up(t) = Soe (u,t,up(0)) & elofuy(0) +feL0(t‘S)PORS (u(s))ds
0

up = Spe (u = K,PR® (u). (B.4)
The first equation in this system is obtained by the variation of constant formula from
the first equation in (B.1). Here uy(0) € E,is arbitrary, and the exponential eot exists
since E is finite-dimensional. The second equation in (B.4) is obtained from Hypothesis
3.2, used with f € L, (R,yy).. It is now straightforward to checkthat this integral system
is equivalent to (B.2) for

u = (up,up) €Ny € Ly (REp) X Ly(R B¢(Zp)),
with 0 <n <y and e € (0,¢p). Notice that Nn,e is a closed subspace ofL, (R,Z) so
that it is complete when equipped with the norm ofL,, (R, Z).
Fixed Point Argument:

Our aim now is to show that (B.4) has a unique solution u = (ug,uy) € N, ¢, for any

nes
uy(0) € E,. For this we use a fixed point argument for the map
Se wuo@) = (Soe (wug())Shie () S (uo(0)) * Nne = Ny
We show that S¢ y,(0y) is well defined and that it is a contraction with respect to the
norm ofL,, (R,Z). forn € (0,y ], with y the constant in Hypothesis 3.2, and esufficiently
small.
First, Hypothesis 2.4 implies that for any 6 > 0 there is a constant c6 > 0 such

that
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|lebot||L(Ey) < cbedltl forallt € R.(B.5)
Using this equality with & =n, we find
SupteR(e_nltl||3L°tuo(0)||Eo) < Ln||u0(0)||E0 ,
which shows that the first term in S, ¢, 0))belongs to Ly (R, Eo), for any n > 0.

Next, foranyu € N we have the estimates

ne
||P0Rs(u)||Eo < 8y (e), ||PhR£(u(t))||Yh < 8o(e),

which together with (B.5) for § = 1/2, and Hypothesis 3.2 imply

t t
supgen(e M| [ o IRRE(u())ds llgy) < cso(eIsupeen (e [ e 1-slds
0 0

< 2cn/2860(¢) '
n

and
[IKnPaR® (W]|Ly (R, Zp) < C(0)5(e).

This shows that S¢ (y,(0)) € Npe, ProvidedC(0)8,(e)) < €, which holds for esufficiently

nes
small since §,(e) = 0(g?).
Now we show that the map Sy, o)) is @ contraction with respect to the norm

ofL, (R,Z) forn € (0,y ] and sufficiently small € . From equality (B.3) we find that
1R (1) — RE(u)l|Ly (R y) = supper (e ||R®(14; () = Ré(u,(®)]| 1)
< 81 (e)super(e MM luy (1) — uz(01|Z)
< 81(8)[luy —uyl|Ly (R,Z)
for any u;,u,€N, .. Now, using (B.5) with 6 =n/2 we obtain
| |So,s (ug,up(0)) — So,s (uz,uO(O))IILn (R Ep)

< Cs 51(3)5uPteR(e_n|t|(| fot enlsi+é lt_sldSD [lug_u,| |Ln (R, Z))

< 2cn/280(¢g)

22wy — wllLy (R 2),

and using the estimate in Hypothesis 3.2 we find
| |SO,S (uy) = SO,S (up) I ILn (R, Zh)
SC(I’]) 81(8) Ilul - uzlan (R, Z)r

Since 6,(€)=0(e ) foranyn € (0,y ], we can choose € small enough such that
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10,6 o (@) ~ Soe (upuo (@) 1n (RZ) < 5 [lug — ual[Ly (R, Z).
Consequently, the map S,u,(0)) is a contraction in the complete metric space Ny, . .
Applying the fixed point theorem we now have the existence of a unique solution of
(B.4),

u & d(uy(0)) € Npe
for any uy(0) €E,, for any n € (0,v], and € sufficiently small. Clearly, this is also a
solution of (B.2).

Properties of @: Recall that € is chosen such that

C(0)8o(e)) < e, wgé.cm)&(e) S%

Then the continuity on [0,y ] of the map n -C(n) in Hypothesis 3.2 implies that for
anyf] € (0,y), we can choose € > 0 such that these inequalities hold for all n €
[1, Y]-Consequently, for anyn” € (0,y ), there exists € > 0 such that the uniquefixed
point ®(uy(0)) belongs to N, for any n € [f},y]. This property is used later when
showing that the center manifold is of class C .

Next, notice that the map ug(0) = S ¢.(u,ue(0)) is Lipchitz from Ejinto
L, (R Ep) , so that the mapuy(0) = S o (u,u(0)) is also Lipchitz. Consequently, ® is a
Lipchitz map. In addition, the uniqueness of the fixed point implies that

®(0) = 0.
Construction of W: We define now the mapW : E, — Z,in the Theorem, through
(uo (0), ¥ (uo) = P(uo)(0) forallu, € Ey,
i.e., by taking the component inZ;, of the fixed point ®(u,)(0)) at t = 0. Since @ is a
Lipchitz map, we have thatW is also a Lipchitz map, and since ®(0) = 0, we have
w(0)=0.

We prove now thatW has the properties (i) and (ii) in the theorem.

First, we show that the manifold
Mpe = {(uo (0), ¥ (uo) , up € Eo}

is a global invariant manifold for the flow defined by (B.2). We define the shiftoperator

['sthrough
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(F'su)(t) = u(t +s)forallt,s €R.
Since system (B.2) is autonomous, it is equivarient under the actionl s for any s €R, so
that if u is a solution of (B.2), then T su is also a solution of (B.2). Moreover,I'su € N, .
when

u € Nn,¢.
Consider a solution u of (B.2) with u(0) = {(ug(0), ¥(uy) (0)) for someuy(0) € E,. Then
u=®(uy(0)) € Nn, e, and since I' su € Nn), is also a solution, from the uniqueness of
the fixed point we conclude that
['su = ®(uy(s)) foralls € R.

Consequently,

u(s) = (ug (s), P(ug) (s)) forall s €R,
which shows thatM, . is globally invariant under the flow defined by (B.2). Sincethe
system (B.1) coincides with (B.2) in O, = B .(Ey) X B¢ (Z;,),this proves part (i) of the
Theorem with My, = M, .and O = Og. Indeed, assume that u is a solution of (B.1) such
thatu(0) € MyNnOandu(t) € Oforallt €[0,T].

Then u satisfies (B.2) for all t €[0,T], and since u(0) EM,, cand M, . is an invariant

n,€
manifold, we have u(t) € M, = Myforallt €[0,T].

Consider now a solution u of (B.1) which belongs to O = O, for all t €R. Then
u N, cand it is also a solution of (B.2). Consequently, u = ®(u,(0)), so that u(0) €

M, . = M, which proves part (ii) of the Theorem

n
Regularity of W: We have proved so far thatW is a Lipchitz map. Notice that for this
proof we have only used the fact that R is of class C 1. It remains to show thatW is of
class C *when R is of class C ¥. For this, it is enough to prove that @ is of class C ¥.

The major difficulty in proving this property comes from the fact that the
Nemitsky operator

R®: L, (R,Z) » L, (Ry)

is not continuously differentiable, due to the growth of

u €L, (RZ)ast — Foo.
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()R®: Ly (R,Z) - Ls (R, yis continuous foranyn = 0and ¢ > 0;
(i)R® : L, (R,Z) » L: (RyyisofclassCkforany0 <n <{ /kand>0.
We point out that the kth order derivative exists for n = ( /k, but this derivative is
continuous only ifn < ¢ /k.
the integral system (B.4) is written as
u = S,,(0) + KR*(u),(B.6)
with S and K linear maps defined by
( Sue (0)(t) = eMotu, (0),
and
(KV)(O) = [, e IRy (v(s))ds + (KpPy(v))(D).
We already showed that
S € L(Eo Lg(REp)), 156, (O]| Ly (R Eo) < Cyallug(O)][Es, and that KRE:

N, e = Ny ¢ is @ contraction for anyn € [fj,y], when 7 € (0,y)and ¢ is sufficiently

ne
small.

The idea is to consider the fixed point u = ®(uy(0) € Ny, .CL;, (R,Z) of
(B.4)found for n € [f,v], withfjtaken such that 0 < %) <y /k, and to show that the
map ® : E; - L, (R, Z)is of class Ck foralln € (kfj,y], with

DP®(uy(0)) € LP (Ep, Lk (R, Z)).
Here LP (Eo, Ly (R, Z)) denotes the Banach space of p-linear continuous maps from E,
into Lkﬁ(R,Z ). Several proofs of this result are available in the literature, all being quite
long and technical. While we refer to these works for further details, we only point out
that the derivative ®(u(0))is the fixed point in L (Eg, Lk(R,Z)) of the linear
equation
D®(uo(0)) = S+ KDyR*(®(u(0))DP(u0(0)),

which may be differentiated up to order k. In particular, this implies thatDP,®(0) = 0
and D¥(0) = 0, and ends the proof of Theorem 3.1.2.[30]

Theorem 3.1.3 (The center manifold theorem: Pliss-Kelley-Hirsch-Pugh-Shub)in some

neighborhood U of the origin this ODE has C”"-smooth invariant manifolds W* , W% and
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C"~1-smooth invariant manifold W¢, which are tangent at the origin to the planes T*,
T" andT “respectively. Trajectories in the manifolds W* and W*" exponentially fast tend
to the originast — 400 andt - —oo respectively. Trajectories which remain in U for all
t >0(t <0)tend to W€ as t —» +oo(t » —0). WS , W* andW*€are called the
stable, the unstable and a center manifolds of the equilibrium zero respectively.[11]

Remarks: Behavior of trajectories on W€ is determined by nonlinear terms

i o o e T

|
’
'
1

‘.
Tu
Figure 3.3
1- If the original equation has smoothnessC® or C®, then WSand W*" also have
smoothness C” or C“. However W€ in general has only a finite smoothness.
2- Ifng = 0orn, = 0and the original equation has smoothness C",r < oo, then
W€ has smoothness C" .[11]
Theorem 3.1.4 The smooth system
y =x+y? + 00°) (6)
is locally topologically equivalent near the origin to the system
x =« + x2. (7)
Proof: The proof involves two steps. It is based on the fact that for scalar systems a
homeomorphism mapping equilibria onto equilibria will automatically map their
connecting orbits onto each other
Step 1 (Analysis of equilibria). Write system (6) as
Yy = F@y,0 = +y + y>¥(y,), (7)
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where is a smooth function of (y, «) near (0, 0). Consider the equilibrium manifold of
(7) near the origin (0, 0) of the (y, _)-plane:
M = {(y,®): F(y,®) =x +y? + y*¥(y,«) = 0}
The curve M passes through the origin (F(0, 0) = 0). By the Implicit Function
Theorem, it can be locally parameterized by y (since F,(0,0) = 1 # 0)
M = {(y,«):x= g}
where g is smooth and defined for small |y|. Moreover,
gy) = —y* + 0(y®).
Thus, for any sufficiently small < < 0, there are two equilibria of (3.1.7) near the
origin, y; () and y, (), which are close to the equilibria of (3.1.6), i.e., x;(x)= —/—o
and x,(x) = v/—«, for the same parameter value.
Step 2 (Homeomorphism construction). For small | o< |, construct a parameter-
dependent map y = h.(x) as follows. For «« > 0 take the identity map h,(x) = x.
For « < 0 take a linear transformation
hy(x) = A(x) + B(x)x,

where the coefficients A,B are uniquely determined by the conditions h.(x;(x)) =

yj(oc),j =1, 2.
Namely,
A() = V2 (<) ‘2*‘ y1(x)
B(e) = V2 (<) ; y1(x)

Notice that A(x) — 0 and B(x) — 1 asx T 0. The map h() : R = Rthus,
constructed is a homeomorphism mapping orbits of (7) near the origin into the
corresponding orbits of (3.1.8), preserving the direction of time.

Remarks:
(1) Although we do not require for the homeomorphismh.,to depend continuously on
«, this property holds here. In particular, h( tends to the identity map as o« T 0.

2

(2) The equivalence between y =o—y?2+0(y3)and x =o —x? can be

established by similar arguments.
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Theorem 3.1.5 Suppose that a one-dimensional system
x = f(x,X),x € R,XE R, (8)
with smooth f, has at < = 0 the equilibrium x = 0, and is such that A = f£,(0,0) = 0.
Assume that the following two conditions are satisfied:
(A1) £:x(0,0) # O;
(A.2) f(0,0) = 0.
Then there are invertible smooth coordinate and parameter changes transforming the
system into
y =By + 007). (9)
Remark: One can reformulate the statement of the theorem by saying that near the
origin (8) is locally smoothly conjugate to (9).
Proof of Theorem 3.1.5:
Step 0 (Taylor expansion). Write the right-hand side of (8) asf(x,«) = fy(c<) +
fi(ex + f,()x? + 0(x3), where
fo(0) = f(0,0) = 0,£,(0) = £(0,0) = 0,

£00) =5 £(0,0).
Step 1 (Shift of the coordinate). Perform a linear coordinate shift by introducing a new
variable &:

x =¢+ 6, (10)
Where § = &(a) is an a priori unknown function that will be defined later. We will see
that § = O(a) asx—0. The inverse coordinate transformation is& = x - § Substituting
(10) into (8) we find
E=x" = fo(e) + fi()(E + &) +

fE(E + 8)7 +

Therefore,
§=[fo() + f1()8 + fo(a)8 + 0(8%)]+
[fil@) + 2fa(a) + 0(69)]¢ +
[f,(@) + 0(8)] +0(&D.

Assumption (A.1) implies that
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£(0) = 2£(0,0) # 0
Then, according to the Implicit Function Theorem, there is a smooth function §(a)that
annihilates the& -term in the equation above for all sufficiently small | « |. Indeed, the
condition for the _-term to vanish can be written as
F(x,6) = fi(a) + 2f,(@)d + 62W(x,8) = 0
with some smooth function . We have
F(0,0) = 0,F5(0,0) = 2f,(0) # 0, F,(0,0) = f{(0)

which implies (local) existence and uniqueness of a smooth function § = §(a)such that

6(0)=0and F(a,6(a)) = 0. Itfollowsthat 6(a) = %((00))0( + 0(a?) (cf. (5.7)). The
2

equation for & now no longer contains any &-term. Since f; () = f{(0) + 0(x?), we can
write
= [£(0) + 0(x®)] + [f2(0) + O(x)JE" + O(&Y). (11)
Step 2 (Introduce a new parameter). Consider as a new parameter u = u(x) the
constant (-independent) term of (11), that we can write in the form
1= f30) x +o? B(x),
for some smooth function @. We have:
(@) u(0) = 0;
(b) 1(0) = f5(0) = £ (0,0).
Since f«(0,0) = 0 due to (A.2), the Inverse Function Theorem implies local existence
and uniqueness of a smooth inverse function « =« (u) with « (0) = 0. Therefore,
equation (11) now reads
E=pu+ awé& + 0(&),
where a(u) is a smooth function with due to the first assumption a(0) = f2(0) #
0(A.1).
Step 3 (Final scaling). Lety = |a(u)|éand f = |a(u)|u. Then we get
y =B+ sy? + 007,
where s = sign a(0) = %1.This is equation (11).
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Chapter 4

Normal Forms Theorem

Section (4.1): The Normal forms simplification:

As explained in chapter 3, the centre manifold reduces the non-linear system on
the centre variables. However, the associated centre manifold equations can have
complicated on-linear terms due to the approximation of the stable variables in a power
series in centre variables and their substitutions in the centre manifold equations. For
such systems, non-linear successive coordinate transformations can be used to reduce
this non-linear system to its simplest form, called the normal form. The idea of the
normal transformation comes from Poincare in year ([145] and [146]). The main idea of
the normal form approach is to eliminate as many non-linear terms as possible through
a non-linear change of variables [10].

This normal forms theory is a very powerful tool for the analysis of the local
dynamical behavior near a singularity.

The general idea of normal form is to put a complicated system into a form as
simple as possible by means of change of coordinates. depending on the purpose of
simplification and this concept may vary greatly. It depend on the change of coordinates
that are tolerated( linear, polynomial, formal series, smooth , analytic) and on the
possible structures that preserved (i.e. simplistic, volume-preserving, symmetric,
reversible)[2]

Definition 4.1.1. A cycle is a periodic orbit, namely a non -equilibrium orbit L, such that
each point x, € L, satisfies ¢p**Tox, = ¢tx, withsomeT, > 0,forallt € T [12].

Let us restrict on local normal forms, i.e. in the vicinity of a stationary point of a
vector field or a diffeomorphism (the latter can be applied to the Poincare 1879 [17]
map of a periodic orbit) .We concentrate on the simplification of the Taylor series. The
general idea is to apply consecutive polynomial changes of variables; at each step we
simplify terms of a degree higher than in the step before. The ideal simplification would

be to put all higher order terms to zero, which would (at least at the level of formal
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series) linearize the system. But as soon as there are resonances, this is impossible the

planar system 2xd/dx + (v + x2)d/dy cannot be formally linearized.

Section (4.2) Setting:
Let X be a C"*1vector field defined on a neighborhood of0 € R™, and denote
A = dX(0) (its linear approximation at zero). The Taylorexpansion of X at 0 takes the

form

X(x)=A.x+ ]; Xe(x) + 0(x|™) (1)

Where X, € H*, the space of vector fields whose components are homogeneous
polynomials of degree k. The classical formal normal form theorem is as follows.We
define the operatorL,onH"*by putting L,h(x) = dh(x).A.x — A.h(x) , onecalls L, the
homological operator. One checks that L,(H*)cH*. One alsodenotes this by add
A(h)(x). Let R" be the range of L, i.e. R* = L, (H¥). Let G* denote any complementary
subspace toR¥in H¥. The formal normal form theorem states, under the above
settings.[2]

Main Theorem: We consider a differential equation in R" of the form

du
i Lu + R(u), (2)

in which L and R represent the linear and nonlinear terms, respectively. More precisely,
we assume that the following holds.
Hypothesis 4.1 Assume that L and R in (2) have the following properties:
(i) Lis a linear map in R™
(ii) for some k > 2, there exists a neighborhood V < R™ of 0 such that R €
Cck (V,RMand R(0) = 0, DR(0) = 0.

Our purpose is to transform this system, in a neighborhood of the origin, in such
a way that the Taylor expansion of the transformed nonlinear vector field contains a
minimal number of terms at every order. The following result shows the existence of a
polynomial change of variables leading to a transformed vector field, has this property.

Theorem 4.2.1(Normal form theorem) Consider the system (2) and assume that
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Hypothesis 4.1 holds. Then for any positive integerp, 2 < p < k, there exists a
polynomial @ : R™ — R™of degree p, with ®(0) = 0,D®(0) = 0, and such that
the change of variable

u=v+ov) (3)
defined in a neighborhood of the origin in R™ transforms the equation (2) into the

“normal form”

L= L+ N®) +p(), (4)
with the following properties:
()N : R™ = R™is a polynomial of degree p, satisfying
N(0) = 0,DN(0) = 0.
(ii) The equality
N(etr*v) = e N(v), (5)

holds for all (t,v) € R X R", where L* represents the adjoint of L.
(iii) p is @ map of class C* in a neighborhood of 0, such that

p(v) = o(|v|?).
Proof of Theorem 4.2.1: Consider the Taylor expansion of R,

R@) = ) Ry(w®)+o([ullP)
2sqsp

foragivenp,2 < p < k, whereu® = (u,...,u) € (R™)Y, with u € R™ repeated q

times, and R, is the g-linear symmetric map on (R™)? given through
1
R, w@) = aD(q)R(O) (u(@).
Similarly, we write the polynomials ® and N in the form

D) = ) GUOLNE) = ) Nyv®),

2=q<p 2=q<p

with®, and Ngq-linear symmetric maps on (R™)9 Differentiating (3) with respect to t
and replacing du/dt and dv/dt from (2) and (4), respectively, leads to the identity
(I+D®(v)) (Lv+ N(v) +p(v)) = L(v+ D(v)) + R(v+ ®P(v)), (6)
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which should be valid for all v in a neighborhood of 0. Our purpose it to determine @

and N from this equality. By identifying the Taylor expansions on both sides, we obtain

at order 2

DD, (v )Lv — Ld,(v?) = Ry (v®P) — N,(v®), (7)
and then at any order q, 3 < q < p, we have

DO, (v@)Lv — Lo, (v®) = R, (v®) = N, (v®), (8)
with

Q@) = = D" Db (VOINg s (VT +

25t=q-1
+ Z R @, (v), @, (v?) .., & (v
ry+Ery=q

ri=>1,...

where we have set®,(v) = v. Notice that if ®; and N; are known for any |,
2 <1<gq-1, then Q4 is known. Therefore, we can determine ® and N by
successively finding (®,,N,), (®3,N3), and so on, from (7) and (8).
The equations (7) and (8) have the same structure, more precisely, they are both
of the form
AL®q = Qg —Ng, (9)
in which A}, is a linear map (also called “homological operator”) acting on the space of
polynomials @ : R™ — R" through
(AL ©)(v) = DO(v)Lv — LO(v). (10)
A key property of Ap is that it leaves invariant the subspaceH, of homogeneous
polynomials of degree q, for any positive integer q. In the equality (9), Q, is known, and
we have to determine @, and Ng. Itis clear that if A, | H, is invertible, then we can take
Ng = 0, which gives the simplest solution here. However, this isnot always the case, and
the condition for solving (9) is thatQ, — Ng lies in therange of the operator A;,. We
claim that this condition is achieved when (6), or equivalently (5), is satisfied by N.
Indeed, we define below a scalar product in the space H of polynomials of degree p,

such that the adjoint operator (A; )* of A;, with respect to this scalar product is Ay -,
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where L* is the adjoint of L with respect to the canonical Euclidean scalar product in R™.
Then Q, — Ngbelongs to the range of Apif Q,— qukerAL*) (L =im,y or,
equivalently,per (ar+)(Qq — Ng) = O,where per (aL+) is the orthogonal projection
on ((ker (AL = ) in the space H of polynomials of degree p. It is then natural to choose
Ng = Prer aL+)Qq-

Ofcourse, this choice is not unique, since we can add to Ngany term in the range of A .
leaves invariant the subspace Hg, so that Nq€keryy,. |Hgy. In particular, this shows that
(5) holds for Ng. With this choice forNg, we can now solve (9) and obtain a solution &,
which is determined up to an arbitrary element in the kernel of AL. A possible, but not
unique, choice is to choose the unique solution @, orthogonal to kery, inH,.
Summarizing, this shows that (9) possesses a solution ( ®,, Ng) with Ny satisfying (5).
Solving successively for g = 2, . . ., p, we obtain the polynomials ® and N in the
Theorem, with N satisfying (5). To finish the proof, it remains to define the scalar
product in the space H such that (AL)* = ALx , (11) and to check that the orthogonal
projection P yer (aL«) On Ker (AL xleaves invariantthe subspace H,. For a pair of scalar
polynomials P,P’ : R™ — R we define

def(plp") = P(OWP'(W)|u =0, (12)
where u = (u4,...,u,) € R"*anddu = (0 /0uy,...,0 /0uy). The equality (12)
defines a scalar product in the linear space of scalar polynomials P : R™ — R. consisting

o«

of monomials uf . ..uy .n,and

<ui‘ ....u;‘f|uf u£>= a!...a,!6 )

ayf1 = YanPn

where 6 wp; = lifa; = p;, and 5«,-[?,- = (0 otherwise. (Notice that this scalar product
can be extended to complex-valued polynomials P : C" — C by taking

def (P|p’) = P(0u)P’'(u)|u =0,
Finally, the identity above also holds in the subspacesH,of homogeneous polynomials of
degree q, which are all invariant under the actions of both AL and AL*. Consequently,

ker o« jupy = Ker ap. N Hy,
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and since monomials with different degrees are orthogonal to each other, this implies
the invariance of Hp under the orthogonal projection Pyerar«This ends the proof of
Theorem (1) [30]
Theorem 4.2.2[13,14] There exists a composition of near identity changes of variables
of the form

x=y+&W (13)
where the components of &k are homogeneous polynomials of degree k, such that the

vector field X is transformed into[2]

T
Y(y) = Ay+ Z gk (y) + O(ly|™*1) where gk € Gk,
k=2

k=2,...,r.
in the latter case one can let r—>co and obtaina normal form on the level of formal
Taylor series (also called o~-jets). we can assume that A is an upper triangular matrix.

[2] Let the eigenvaluesbe 4,,..., 4,. It can be calculated that the eigenvalues of L,, as

an operatorH* — H¥ are then the numbers < 4, @ > —Awhere aeN“,Z a;=k, and
j=l

1 < j < n. Hence, if these would all be nonzero then B¥ = H* and then we have an
ideal simplification i.e. allg"equal to zero. However, if such a number is zero, that is,
<l,a>-4=0 (14)
this is called a resonance between the eigenvalues. In such a case we have tochoose a
complementary space G*. From linear algebra it follows that one canalways choose [2]
G* =ker(Ly ) (15)
where A*is the adjoint operator. But this choice of equation (3) is not unique and isfrom
the computational point of view not always optimal, especially if thereare nilpotent
blocks. This fact has been exploited by many authorsYu, 1999, Yu &Yuan, 2001, Yuan &
Yu, 2001[17]. A typicalexample for this is the case where A = yd/ dx. On the other
hand if A issemi-simple we can choose the complementary space to be ker(LA), so

Lag, = Owe can assume it to be the (complex) diagonal[Ay, . . ., Ap]. In that case we

64



canbe more explicit as follows. Let e; = 3/0x; denote the standard basis on C". For a
monomial one can calculate that

La(x%ej) = (<A, ai>—Aj)x e (16)
If the latter is zero, then the monomial is called resonant. This implies that the normal
form can be chosen so that it only contains resonant monomials. Putting a system into
normal form not only simplifies the original system, it also gives more geometric insight
on the Taylor series. To be more precise, suppose (for simplicity: this can be generalized
that A is semi simple. One can calculate that the condition [2] Lygx = 0 implies:
exp(—At)gx(exp(At)x) = gg(x) for all t € R. This means that gy is invariant for the 1-
parameter group exp(At). A typical example in the plane is: A has eigenvalues iA, —iAl.
Note that the (only) resonances are < (iA,—ild),(p+1,p)>—id =0 and <
(i1, —id),(p,p + 1) + i1 = Ofor all peN. We suppose that the original system was real
i.e. on R%;we can choose linear coordinates such that forz = x + iy, Z = x — iy
the linearpart is A =diagonal[iA,-iL]. Applying the remarks above we conclude that the
normal form only contains the monomials (zZ)pzd/0z and (zZ)pzd/dz. Thegeometric
interpretation here is that these monomials are invariant for rotationsaround (0, 0). This
can also be seen on the real variant of this: the Taylorseries of the (real) normalized
system has the form (A +f(x?+ y?))(xd/dy —yd/ox) + g(x?y?)(xd/ ox +
yd/ dy) and is invariant for rotations. Warning the dynamic behavior of a formal
normal form in the central manifold can be very different from that of the original
vector field, since we are only looking at the formal level. A trivial example is (take f =
g = 0in the foregoing example)

X(x,y) = Mxady — yox) — exp(—1/(x?)) 3/ 9%,

where orbits near (0, 0) spiral to(0, 0), whereas the normal form is just a linear rotation.
This difference is due to the so called flat terms , i.e. the difference between the
transformed vector field and a C” realization of its normalized Taylor series (or
polynomial).One could roughly say that, in the central manifold, the normal form has
too much symmetries and is too poor to model more complicated dynamics of the

system, which can be ’hidden in the flat terms’. To quote In the theory of normal forms
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of analytic differential equations, divergence is the rule and convergence the exception,
to use changes of variables like where &k is then generated and this will guarantee that
all changes of variables are compatible’ with the extra structure The question of an
analytic normal form, also in the hyperbolic case, leads to convergence questions and
calls upon so called small divisor problems. The classical results are due to Poincace and
Siegel; let us summarize them; they are formulated in the complex analytic setting:[2]
Theorem 4.2.2 (a) If the convex hull of the spectrum of A does not contain 0€C then X
can locally be put into normal form by an analytic change of variables. [2]
Moreover this normal form is polynomial.
(b) If the spectrum {A44,..., 4,,} of A satisfies the condition that there existsC > 0 and p>

0 such that for any m eN" with
c
m; =2| < h(Ay, i, Ap)ym> —4; |2+—— 17
D™ 220 < Al ) 2 (17)

for1 <j < n,then X can be locally linearized by an analytic change of variables.

Note that case (a) contains the case where 0 is a hyperbolic source or sink. This
case (a) in Theorem 4.2.2 can be extended if there are parameters: if X depends
analytically on a parameter ¢ € CP near € = 0 then the change of variables isalso
analytic in € moreover the normal form is then a polynomial in the space variables
whose coefficients are analytically dependent on the parameter €. For case (b) this is
surely not the case, since the condition (4.2.6) is fragile, a small distortion of the
parameter generically causes resonances, be it of a high order. To fix the ideas: consider
n = 2 and suppose A; < 0 < A,. By a genericbut arbitrary small perturbation we can
have that the ratio of these eigenvalues becomes a negative rational number - p/q,
which gives a s of the form (2)< A4, 7> —A4; withj=1and a =(q+1,p) < 0, so
(4.2.6) is violated (succeed) .[2]Soanalytic linearization, or even a polynomial analytic
normal form, is un-generic for families of such hyperbolic stationary points. The search
for analytic normal forms, i.e. simplified models, for families is still under investigation.
A first simplification is obtained via the stable and unstable manifold from theorem 4.13
below , that is: the graphs of ¢_and ¢ . When Xis analytic near 0 then these manifolds
are also analytic. So up to an analytic change of variables we can assume that E; and E,
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are invariant, which gives a simplification of theexpression of X. Moreover there is
analytic dependence on parameters. For local diffeomorphisms there are completely
similar theorems about all the above.
Theorem 4.2.3 Let the vector field (X-invariant manifolds in the neighborhood of 0) be
of class C"(1< r<1). There exist map germs O :(Es,0) > Ec ®Eu,0,. :
(Es ®Ec,0) » Eu, Ouu : (Eu,0) > Es@®Ec ,0., : (Ec®Eu,0) » Es and
@c : (Ec,0) — Es@®Euof classC" such that the graphs of these maps are invariant for
the flow of X. Moreover these maps are of classC", and their linear approximation at 0 is
zero, i.e. their graphs are tangent to respectivelyEs, Es @Ec, Eu, Ec @FEu and Ec. If X is
of classC'then@®,, and @, are also of classC!. If X is analytic then@,;and@,,, are also
analytic.So analytic linearization, or even a polynomial analytic normal form, is un-
generic for families of such hyperbolic stationary points.

The basic idea of normal form theory is to find a near-identity nonlinear

transformation [17]

x=y+h(y) = y+h,()+hs(y)+-+h(y)+ (2)
such that the resulting system
y=Ly+g=Ly+g.(y) +9:(0) + . +gk(y) + (3)

becomes as simple as possible. Here h,(y) and g,(y)denote the kth order vector
homogeneous polynomials of y.
To apply normal form theory, first define an operator as follows:

Ly : Hy = Hy ,

U € Hy = Li(Uy) = [Uy,v1] € Hy, (4)
where H,, denotes a linear vector space consistingof the kth-order vector homogeneous
polynomialsThe operator [Uy, v4] is called Lie bracket, definedas

[Uy, v1] = Dv,.Uk — DU,. vy, (5

Next, define the space R}, as the range of L, and the complementary space of Ry as Kj.
Thus,

Hy = Ry ©Kj, (6)

and we can then choose the basis for R, and K. Consequently, a vector homogeneous

polynomial f,, € Hj can be split into two parts: one is spannedon the basis of R; and
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the other on that ofK),. Normal form theory shows that the part of f,belonging to Ry
can be eliminated while the part belonging to K; must be retained, which is called
normal form. [17]

Example 4.2.1

Consider the following general system with randomly chosen coefficients up to

seventhorder
o 2, 1 2 3,1 2 5 2 1.3 5yt 1.3
X;1 = X2 +Xx7 +toXiXp + 2x5 + 2x3 toXiX, +oXx ox5 X1+ XX,
7 1 7 1
15x2x2 +§X1X§ + 2x3 — 2x3 + 5xix, + ZX%X% + x%x3 +ZX1X§ + 20x3 + Exf +
5

2 1 7 1
SX1Xp — X1x5 + gxfxg + 2x%x3 + gxlxg —2x$ + 2x] + x6x, — 5x3xZ + EX‘{XS +

7
3x3x5 + Exfxg + 5%,X5 + x2;

: 2 1 2,2 3 2 2. Y 3.5 4 25
X, = —Xq + 3x7 +ZX1X2 + 5x5 +§X1 + 3x7x, + 10x,X5 +;X2 +§X1 ~3XiX;

2,2 3 4 s_3 4 2033, a1 s

+ 10xix5 + 3x1X5 + X; + 7%3 ~gXiX; + 7x1X; +ZX1X2 +§X2

1 1
—2x% + 5x3x, + §X1‘X§ + 7x3%x5 + 4x%x5 — gxlxg + 3x§ + x]

5 1 5
+ 5x$x, + §X§X§ + Exfxg —3x3x5 + 7x3x3 + gxlxg + 3x3

The linearized system of example(4.1)above about the equilibrium x; = x, = O has a
pair of purely imaginary eigenvaluestI ,The Maple program is executed on a PC

machineto obtain the followingsimplest normal form(SNF) in the complex form
47 N .2336511 , 25933399
336 ' ' 13440 | " 1354752 ¢

which can be directly transformed to the polar form using the real and imaginary parts:

o 47 &3 25933390R5 P 233651
336 1354752 '~ 13440

Since the coefficient of R3is nonzero, this is Hopfbifurcation.

u

u=iu —

Example 4.2.2: The following system, described by a CNF (given in Cartesian

coordinates), was obtained from a five dimensional system
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, 3 14867 26912070343
d1 =y 55 O+ xp)xy — eoneo O + x3)%x — e eag (W T+ X2
8114283157415584063 (7 b 2 4
19110912837120000000 -1 + *2/ %1
7 8093503
_ 2 2 T 2 2\2
12 (x1 + xz)xz + 14688000 (x1 + xz) X3
1887495055097
_ 2 2\3
3895257600000 X1 T ¥1)7x2

765399818373406351207
1375985724272640000000

2+ x2)*x, +..

14867
68000

3
X =X +E(xf + x3)x; — (xf + x3)x,

26912070343
1038736000
811428315584063
©1911091283720000000
R = iR3 _ 14867R5 .0 =1 _le.
40 68000’ 12
Since the coefficient of R3is nonzero, this is Hopfbifurcation.

(xZ + x2)3x,

GG +x3) %%, + -
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Chapter 5

Normal Form theory in local bifurcation

Section (5.1): Introduction:
The theory of normal forms and bifurcations of nonlinear difference equations is
well known [17], [21], [25], [29], it is as follows. Consider two smooth (C*) n-

dimensional difference equations with equilibrium points

xt = fx) (1)
0 = f(0)

and
zt = g(2) (2)

0 = g(0) where x*(t) = x(t + 1). These are locally diffeomorphic if there exists a
local diffeomorphism

z = P(x) (3)

0 =0(0)
which carries (1) to (2),

g@x)) = O(f(x)).
Such a local diffeomorphism carries trajectories x(t) in its domain onto trajectories z(t) in
its range,
z(t) = 0(x(1);

hence the two dynamics are locally smoothly equivalent. There is a weaker notion of
equivalence; (1) is locally topologically conjugate to (2) if there is a local
homeomorphism (3) which carries trajectories x(s) in its domain onto trajectories z(t) in
its range while preserving the orientation of time, but not the exact time. The linear

approximation of (1) around the fixed point x =0 is
+- 9
Sx* = —-(0)6x (4)
and this is a hyperbolic fixed point if g—i(O) has no eigenvalues on the unit circle.

Thediscrete time Grobman—Hartman theorem states that if the equilibrium x = 0 of (1) is

hyperbolic, then it is locally topologically conjugate to its linear approximation
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(4). A related theorem is that two hyperbolic equilibria are locally topologically
conjugate if their linear approximations have the same number of eigenvalues strictly
inside the unit circle, the signs of their products are the same, and the same number of
eigenvalues strictly outside and the signs of their products are the same [20]. A
parameterized system

xt = f(x,p) (5)
can have a locus of equilibria

Xe = f(Xerlte):
It undergoes a local bifurcation at an equilibrium xe, u, that is not locally topologically
conjugate to every nearby equilibrium. In light of the above, such a bifurcation can
happen only if one or more eigenvalues of the linearized system cross the unit circle, or
the sign of the product of the strictly stable eigenvalues changes, or the sign of the
product of the strictly unstable eigenvalues changes. A standard approach to analyzing
the behavior of the parameterized system (5) around a bifurcation point is to add the
parameter as an additional state with trivial dynamics [25].
ut = p (6)

The next step is to compute the Poincar’e normal form of the center manifold dynamics.

+

This is a normal form under smooth changes of coordinates

z = Px) = Tx — o2 (x) —oBl(x) —-, (7)
where 0l4l(x) denotes a vector field that is a homogeneous polynomial of degree din x.
The linear part of the change of coordinates T puts the linear part of the center
manifold dynamics in Jordan form. The quadratic, cubic, and higher parts of the change
of coordinates @!?land @3] simplify the quadratic, cubic, and higher parts of the center
manifold dynamics by putting them in Poincare normal form. From its normal form the
bifurcation is recognized and understood. Examples are the fold (or saddle-node), the
flip, and the Neimark—Sacker bifurcations. The first depends on thenormal form of
degree two, and the last two depend on the normal form of degree three. These are the
only ones that are generic and of codimension 1, i.e., depend on a single parameter, so

these are the most important.
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Kang and Krener [22] developed a quadratic normal form for continuous time nonlinear
systems whose linear part is controllable. This was extended to discrete time systems by
Barbot, Monaco, and Normand-Cyrot[18]. These authors considered a larger group of
transformations to bring the system to normal form, including invertible state feedback
as well as change of state coordinates. Kang [23], [24] also developed a quadratic
normal form for continuous time nonlinear systems whose linear part may have
uncontrollable modes. Krener, Kang, and Chang [26], [20] described the quadratic and
cubic normal forms of continuous time nonlinear control systems and also their
bifurcations. we will develop quadratic and cubic normal forms for discrete time
nonlinear control systems of the form
x* = f(x,u) = Ax + Bu + fl(x,u)

+£Bl(x,u) + 0(x,u)4, (8)
where x,u are of dimensions n, 1 and fl4(x,u) denotes a vector field that is a
homogeneous polynomial of degree d in x,u. We do not assume that the linear part of
the system is controllable. Moreover, our linear and quadratic normal forms differ from
that of [18] for linearly controllable systems.

We also describe some of the simplest bifurcations of discrete time nonlinear
control systems. A control system does not need a parameter to bifurcate; the control
can play the same role. The equilibria of a controlled difference equation,

xt = f(x,u), (9)
are those values of x,,u, such that f(x,,u,) = x,. The equilibria are conveniently
parameterized by u or one of the state variables. Two key facts differentiate
bifurcationsof a control system (5.1.8) from that of a parameterized system (5.1.5). The
first is thatfor the latter the structural stability of the equilibria is the crucial issue, but
for the former the stabilizability by state feedback is the crucial issue. A control system
(5.1.8) is linearly controllable (linearly stabilizable) at x,,u, if the local linear

approximation

of

oxt = £ (X, U)OX
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is controllable (stabilizable). If the linear approximation is stabilizable, then the
nonlinear system is locally stabilizable. If the linear approximation is not stabilizable,
then the nonlinear system may or may not be locally stabilizable, depending on higher
degree terms. A control bifurcation of (8) takes place at an equilibrium where the linear
approximation loses stabilizability. Notice that this is different from the bifurcation of a
parameterized system (5), which takes place at an equilibrium where thereis a loss of
structural stability with respect to parameter variations. To emphasize this distinction,
we shall refer to the latter as a classical bifurcation.

The other difference between control and classical bifurcations is that when
bringing the control system into normal form, a different group of transformations is
used.

For classical bifurcations, we use parameter dependent change of state
coordinates and change of parameter coordinates, but for control bifurcations we use
change of state coordinates and state dependent change of control coordinates

(invertible state feedback) to simplify the dynamics.

Section (5.2): Quadratic normal form:
Consider a smooth (C3) system of the form (5.8)under the action of linear and
quadratic change of state coordinates and state feedback
z =0(x) = Tx — @lPl(x), (5.2.1)
v =x (x,u) = Kx + Lu —«?l (x,u), (5.2.2)
where T, L are invertible. It is well known that there exist a linear change of coordinates

T and a linear feedback K, L that transform the system into the linear normal form
x{“] _ [f1(x1:x2:u)] [ ]
[x; T (g, xp0) 0 A, [ ] [Bz] ut

2]
lf (21,22, 4) + 0(xq, x5, u)3 (5.2.3)
7 (x1, x2,0)

where x4,x; are nq,n,dimensional, n; + n, = n, A; is in Jordan form, and A,, B,are

in controller (Brunovsky) form:
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01 *~ 0
Y/
00 ~ 1

!

Theorem 5.2.1 Consider the system (5.2.3), where A;is diagonal and A,, B,are in

The following result generalizes [27].

Brunovsky form. There exist a quadratic change of coordinates and a quadratic
] [x1 (xllxz)]
](x1:x2)
v=u—? (x1,Xp,U)

which transform the system (5.2.3) into the quadratic normal form

[2]_[0 alla]+ 5]
[fl[z ](Z1:Z2:v)+fl ](Z1:Z2:v)+fl ](Z1:Z2:v)

+0(21,2,,1)% (5.2.4)
0 +0 + fl0%(z,, 2,,v) voz

[dy,d . . . .
Where fi[ ! 2](21,22,17) is a polynomial vector field homogeneous of degree d; inz;
and homogeneous of degreed, inz,v. For notational convenience, we define
Zz,nz + 1 = V.

The vector field fl[z’o]is in the quadratic normal form of Poincare,

72,0 ik i ,
1200 = Z Bl¥eiz,, iz, k (5.2.5)
A=AjA
where A4, ..., 4,1 are the eigenvalues ofAy, ey

is the ith unit vector inz,space, and z, ;is the ith component of z,.. The other vector

fields are as follows:

nz +1

[11] = ZZ Z V’ 91Z1122k
Z Z V’ €212, (5.2.6)

n2+1

fl02 = Z Z §1%el 2, 125, (5.2.7)

Xizo Ajzo
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n; -1 n; +1

= Z Z Eilk ei222’122’k (5.2.8)
i=1 k=i+2

fZ[O,Z]

The normal form is unique; that is, each system (5.2.4) can be transformed into only one
such normal form (5.2.5) to (5.2.8) by a quadratic change of coordinates (5.2.2) and
guadratic feedback (5.2.3). This follows from the fact that the numbers in the above,
ﬁijk , A{k ,61-1" ,eil"for the indicated indices, are moduli, i.e., continuous invariants

ofthe system (5.2.4) under a quadratic change of coordinates and quadratic feedback.

Section (5.3): Cubic normal form:
We present the cubic normal form of a system that is already in linear and quadratic
normal form.

Theorem 5.3.1 Consider a smooth (C*) system (5.2.5)

[2]:[2&1213] 0 alll+[s)e

[0,2]
+ [f1[2’0] (X1, X2, u)] + [f1[1'1] (X1, X3, u)] + £ (%1, X2, 1)
0 0 fz[O’Z] (X1, Xz, 1)

f[3] ,Xo, U
[1 ) + 0(xq, Xz, w)*

£131 (x4, %5, 1)

where A; is diagonal,A4,,B, are in Brunovsky form, and the quadratic terms are in the

normal form of Theorem 5.2.1 There exist a cubic change of coordinates and a cubic

feedback
[x1] _ (353](?51:?52)
Yol |05 (2, x5)
v=u-—xBl(x;,x,,u)

which transform the system (5.2.5) into the cubic normal form

[2*] [o Az][ ]+[ng]”

+ []cl[z,o](z1 7, ,v)] N []01[1,1](21 7, ,v)]
0 0
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[ ~[0,1] ] _ .
floz (zy,2,,v) ]01[3'0](21,22,1])
fz[ ' ](Z1:Z2:v)_ ' 0

_ . [ 7[1,2] ]
fi[z,l](zllZZlv) n f;l (ZIIZZ ,U)

0 - _132[1'2] (z1,2;,v)]
]31[0'3] (21,23,v)
| 203]
fo (21,25 ,V)

The vector field f1 %is in the cubic normal form of Poincar’e,(5.2.6)

s[3;0] FRL %
fi = E ﬁi € 21,5 Z1.k 21,1

A=A ApAl

+ 0(zy,2, v)*

and the other vector fields are as follows

reo+1

kI
; S ’}’j elzljzlkZQz

sz Ao Agch 3—

k1 i
-+ S SJ Y3 e, Z1 5 21,k 22,1,

Aﬁéo Xy A £O
re+1ng+1

ZEED DD S Sl S LR PR

=0 X;=0 k=1 I=k
tio+1
F18 4
+ > D> > M el 21, 221 22y,
A5£0 X540 I=1
o+1ro+1
F10;3] 1&1
fi S S S €5 613213213323;
X ;éo k= 1 z_
The normal form is unique, that is, each system (5.3.1) can be transformed in to only

one such normal form (5.3.2) to(5.3.8). This follows from the fact that the numbers in
the aboveﬁijkl ,A{kl , 01K glkl 5{” , ¥ for the indicated indices, are moduli of
thesystem (5.2.3) under a cubic change of coordinates and cubic feedback. Let j = 6 if

j = k = land gj; = 0j,0y,0j otherwise. These moduli are defined as follows:
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1 0 fr
T4kl 83:1)3-83:1);38:51),;
for 1 <, 1,k,0 <mny, and Aj = Aj AR A,

3
NC 1 0" f1,4
i
F ik 83:133-8:1:1);383:2);

ﬁgkl — (0: 0, 0)

(0,0,0)

)\j)\k 83:1,38551);?33:2,“1

Tk r=0
forliignla 1§J<_'/‘k<_:nlv and/\tAjAka:O?

1 0° 1
TRl 8561}3'81132};38232}5
Jor1<q, < n, 1 <k<I{<na+1, and Ay = A; =0,

-

i L ngil (ﬁ)i & i (0,0,0)

' R U —— )\j awl)ja$2,1+ra$2);+r T
for 1 <4, 5<ny, 1 <k<mg+1, and MAjA #0,

o —i+1 3
Z Afr‘ a f]. i
lea —0 " Oy 1+r3$2 k+ra$2 I+r

5% = (0,0,0)

(0,0,0)

f@rlii{ni, 1<k<l i4+2<!l<ng4+1, and »; #0,

g & for
}.t " Y T
T oy Z 7 B34 ;820 140070 14y

f@rlizing—l, i+2<l<ny+1, and A #0,

(0,0,0)

o —I41 3
1 ™ &y
18] Zitr
i _ L 0,0,0
" T ; 915 14,023 ptr OT2 -5+“-"I: )

for l<i<ng—1, 1<&<l, andi+2 <[ <ns+ 1.
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Remarks. Once again, if some of the eigenvalues of A;are complex, then a linear
complex change of coordinates is required to bring it to Jordan form. In this case, some
of the coordinates of z; are complex conjugate pairs, and some of the coefficients in the
normal form are complex. These complex coefficients occur in conjugate pairs so that
the real dimension of the coefficient space of the normal form is unchanged. In the
normal form of Poincar’e (5.2.6), the eigenvalues satisfying 4; = A;4,A,are said to be
in cubic resonance.

The basic idea of normal form theory consists of employing successive, near
identity nonlinear transformations to eliminate the so-called non-resonant nonlinear
terms, and the terms called resonant which cannot be eliminated are remained in
normal forms.

For computing the normal form of systems with bifurcation
(perturbation)parameters, one usually takes two steps. First, at a critical point (at which
the dynamic system has a singularity) one sets the parameters to zero to obtain a so
called “reduced” (or “simplified”) system and then normal form theory is applied to this
system to obtain the normal form. Having found the normal form of the reduced
system, one adds “unfolding” terms to get a parametric normal form for bifurcation
analysis. However, this way one usually does not know the relationship between the

original system parameters and the unfolding.

Section (5.4): Hopf Bifurcation: [16]
Now suppose that system (5.1.1), which is rewritten below for convenience,

x = f(x,u),x € R, ueR,f: R"1 > R", (5.1.1)
has an equilibrium, given by x = p(u). Suppose the Jacobian, Df (u,), of the system
evaluated on the equilibrium at a critical point pgyhas a simple pair of purely imaginary
eigenvalues, +iw(w > 0), and no other eigenvalues with zero real part. The implicit
function theorem guarantees (since Df (u)is invertible) that for each w near p, there
will be an equilibrium p(u) near p(ug)which varies smoothly with p. Nonetheless, the
dimensions of stable and unstable manifolds of p(u) do change if the eigenvalues of

Df (p(w)) cross the imaginary axis at f.
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This qualitative change in the local flow near p(u) must be marked by some
other local changes in the phase portraits not involving fixed points.A clue to what
happens in the generic bifurcation problem involving an equilibriumwith purely
imaginary eigenvalues can be gained from examining linear systems in which there is a
change of this type. For example, consider the system X = ux — wy,

y = wx +uy, (5.1.2)

whose solutions have the form

x(t))_ ut [ €Os wt — sin wt] (¥o
<}’(t) - [sin wt  cos wt (}’o) (5.1.3)

When u < 0, solutions spiral into the origin, and when u > 0, solutions spiral away from
the origin. When u = 0, all solutions are periodic. Even in a one-parameter family of
equations, it is highly special to find a parameter value at which there is a whole family
of periodic orbits, but there is still a surface of periodic orbits which appears in the
general problem.

The normal form theorem gives us the required information about how the
generic problem differs from system (5.1.2). By smooth changes of coordinates, the
Taylor series of degree 3 for the general problem can be brought to the following form

x =[du+ a(x?® +y)]x —[w + cu+b(x? +y?)]y,
y =[w+cu+bx?+yH)]x+ [du+ alx? + y?)]y,) (5.1.4)
which is expressed in polar coordinates as
7 = (du+ ar?)r,
0 = w +cu+ br. (5.1.5)
Since the 1 equation in (5.5) separates from 6 , we see that there are periodic orbits of

(5.1.4) which are circles r = const., obtained from the nonzero solutions of ¥ = 0Qin

(5.1.5). If a # 0and d # 0 these solutions lie along the parabola u = —(% )r2. This

implies that the surface of periodic orbits has a quadratic tangency with its tangent
plane © = 0inR? X R.

In the following, we first introduce the Hopf bifurcation theorem and then
discuss in detail the computation of normal forms associated with various singularities
(including Hopf bifurcation)..[16]
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Theorem 5.2.1 Suppose that the systemx = f(x, ),

x € R%, pn € R, has an equilibrium (xg, 1y) at which the following properties are
satisfied.

(H1) D,f (X, o) has a simple pair of purely imaginary eigenvalues and no other
eigenvalues with zero real parts.

Then (H1) implies that there is a smooth curve of equilibria (x(p), p) with x(ly) = Xg-
The eigenvalues A(j), A() of

Dxf (x(W), Wo), which are imaginary at p = p,, vary smoothly with p. If, moreover,
(H2) d—i(Re A ey, = d # 0,
then there is a unique three-dimensional center manifold passing through (x,, 1) in
R" X R and a smooth system of coordinates (preserving the planes 1 = const.)
for which the Taylor expansion of degree 3 on the center manifold is given by (5.1.4). If
a # 0, there is a surface of periodic solutions in the center manifold which has
quadratic tangency with the eigenspaces of A(l,), A(11o) agreeing to second order with
the paraboloid

u= —%(X2 + y2). (5.1.6)
If a < 0, then these periodic solutions are stable limit cycles, while if a > 0, the

periodic solutions are repelling.[16]

Im
“hf/
N
—_————— ° Rf:
/’_ ,A-"'“_‘?\

Fig 5.1 Transversality of Hopfbifurcation
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Fig 5.2 Post-critcal Bifurcation Path for A Hopfbifurcation

(a) Stable
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The transversality conditions given in (H1) and (H2) are illustratedin Fig. 5.1. The
parameter—amplitude relation (5.1.6) is shown in Fig.5.2, where r = \/m, and

the bifurcating periodic solutions depicted in three dimensional space are given [16] in

Fig. 5.3.
=
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Fig 5.3 BirfurcatingPeriodic solutions (limit cycles)(a)stable(b)unstable
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Chapter 6

Applications

Section (6.1): Introduction:

The numerical analysis of bifurcation problems is concerned with the stable,
reliable and efficient computation of solutions to multi-parameter nonlinear problems.
We shall consider numerical methods for solving nonlinear equations of the form

F(x,A) = 0, (6.1)
whereFis a smooth operator in an appropriate Banach space setting, xis a state variable
andArepresents one or more parameters. In applications the main interest is often the
determination of qualitative changes in xas Avaries. Problems like (6.1) arise in the
consideration of steady states of the dynamical system

Z+ F(x, 1) =0, (6.2)
and indeed the study of the solution set of (6.1) is usually the first step in an analysis of
the behavior of solutions to (6.2).

The material in this review is applicable to a wide range of problems although we
shall concentrate on problems arising in fluid dynamics, and so for us (6.2) represents
the dynamical Navier—Stokes equations. The nonlinear character of the Navier—Stokes
equations gives rise to multiple solutions and possibly complicated dynamics and this
nonlinear behavior is central to problems in fluid dynamics, where the idea of dynamical
similarity introduces various non-dimensional groups. In fluid mechanics we are
therefore confronted with nonlinear partial differential equations that depend on a
number of parameters. This is precisely the domain of bifurcation [15] theory. The
overall goal, when studying a fluid mechanics problem, is to understand the complete
behavior of the system as a ‘function’ of the parameters. Relevant questions are. How
many steady states are there? Are they stable or unstable? (It is important to have
theability to compute unstable steady states as well as stable ones, since solutions
arising from bifurcations along unstable branches often interact with stable solutions

producing otherwise inexplicable phenomena.) How does the structure of the steady
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state solution set change as the parameters are varied? Do solutions always respect the
symmetry of the domain or is there symmetry breaking? How do time-dependent
solutions arise? We shall address some aspects of these questions in this study. Other
very important questions about which we have nothing to say here include: How do the
initial conditions affect the evolution of the system? What types of long-term dynamical
behavior are possible? How does fluid turbulence arise? In fluid mechanics the
nonlinearity of the governing equations combined with the nontrivial geometry of the
domain means that there are many problems where limited progress can be made with
analytical techniques and one needs to use numerical methods. There are two main
numerical approaches to help answer some of the above questions for the Navier—
Stokes equations. Either the time-dependent problem is discretized in space and the
resulting system of ordinary equations is evolved forwards in time for various fixed
values of the parameters. This approach is called ‘simulation’, and is the main technique
used in the computational fluids community. The alternative approach is to discretize
the steady problem to obtain a system of nonlinear equations, and then use methods
from nonlinear analysis (e.g., the implicit function theorem, singularity theory) to
compute paths of steady solutions and provide stability assignment using numerical
continuation methods and eigenvalue information. We shall concentrate on the latter
approach here. The numerical analysis of continuation methods was developed though
many of the key ideas appear earlier in applications .Several codes were then [15]
developed for numerical continuation and bifurcation analysis, the earliest being once
reliable algorithms for numerical path following and simple bifurcation phenomena
were devised then attention naturally shifted to multi-parameter problems and the
construction of numerical approaches based on the use of singularity theory.

At the same time the convergence theory for discretization methods was
concerned with the obvious questions: If a continuous problem has a particular
singularity, under what conditions can it be guaranteed that the discretized problem has

a singularity of the same type? Does the numerical method converge with the same rate
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of convergence as at nonsingular points? Do we observe superconvergence when using
projection methods [15]

One of the successes of numerical bifurcation techniques has been the ability to
reproduce and help understand experimental results of the Taylor—Couette flow of a
fluid confined between two concentric cylinders. Because this flow may be controlled
quite precisely in the laboratory it provides anopportunity for rigorous experimental and
numerical comparison. Of course the numerical techniques have been applied in a wide
variety of other problems in fluid mechanics and have contributed significantly to the
theoretical understanding of confined flows. The detailed plan of this study is as follows.
some of the main ideas in singularity theory are outlined first for scalar equations,

thenfor multi-parameter problems and problems with a simple reflection symmetry.

Section (6.2): Singularity theory: [15]

Gives a comprehensive account of numerical methods for bifurcation problems
using singularity theory and minimally extended systems with bordered systems playing
a key role in the linear algebra. There are many different aspects to singularity theory
for bifurcation problems and we cannot hope to cover them all in this study, rather we
concentrate on a few ideas to help motivate the material in later sections. However, we
believe that a good understanding of the concepts and techniques is essential in order
to develop reliable numerical techniques for multipara meter nonlinear problems.

The Lyapunov-Schmidt reduction procedure is a process by which information
about solutions near a singular point of a nonlinear problem defined on a Banach space
may be obtained by studying an equivalent reduced problem on a space of, typically,
very small dimension. In fact,if the singularity is such that the linearization of the
problem evaluated at the singularity has a one-dimensional kernel, then the reduced
problem isone-dimensional. Thus, it is appropriate to study nonlinear scalar problemsof
the form

flx,A,x)=0,f: R X R X RP > R, (6.2.1)
where x is a scalar state variable, A a distinguished parameter, and a € RPa vector of

control parameters. It is important to note that the view taken in the singularity theory
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is that in applications one will wish to plot the state variable x against the special
parameter A for several fixed values of a. Thus we do not interchange A with one of the
& and A plays a different role than the other ‘control’ parameters. This approach leads
to a different classification of singularities than that obtained from standard singularity

theory.

Section (6.3): Scalar problems: [15]

In this section we consider the numerical calculation of singular points of the

scalar problem
f(x,A) = 0,x € R,A€ R, (6.3.1)
where f(x, 1) is sufficiently smooth. Analysis of this very simple case introduces some
important ideas and provides considerable insight into the behavior of more
complicated equations. First, note that it is convenient to write f° for
f(x0, 20), f for fi(x0, A9), etc. Now, if f© = Oandf,Y # Oexistence of a smooth path,
x(A), near (x4, Ag)satisfying f(x(1),A) = 0. In this case we call (x,, 4¢) a regular point.
Of more interest are singular points where f2 = 0. Consider the calculation of a

singular point of (6.2.2). It is natural to form the system

F(y) = [f];(();/}l))] =0erty =()) (6.3.2)

and seek a zero of F(y). A solution y, is regular if Fy(y,) is nonsingular, which, as is
easily checked, holds provided ff3 # 0, or, equivalently,f # 0 and f3 #
0.(6.2.4)

If (6.2.3) and (6.2.4) hold then (x(, 4¢) is a quadratic fold point. The reasonfor the name

is clear when one sketches the solution curve near (xg, 4y), noting that near (x,, 4y),

. d dy? ey
A= A(x) with A(xg) = Ag,and 2 (x0) = 0 25 (xp) = —%(6.3.4)

We call (6.2.3) an extended system, and (6.2.4) provides two side constraints.
Together, (6.3.2) and (6.3.3) provide the defining conditions for a quadratic fold point.

Quadratic fold points have several nice properties. First, Newton’s method
applied to (6.2.3) will converge quadratic ally for a sufficiently accurate initial guess.

Second, a sensitivity analysis shows they are stable under perturbation. Assume f(x, 1)
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is perturbed tof (x,1, &) = f(x,A) + ep(x, 1) and consider F(y,&) = (f + ep, fx +
epx) = 0. Now F(y,,0) = 0 andﬁy(yO,O) is nonsingular and so it shows that
y = y(e) near e = 0, with y(¢) = y, + 0(¢), andFy(y(e), enonsingular. Hence the
perturbed problem f(x,4,€) = 0 has a quadratic fold point (x(&), A(¢)) satisfying
x(e) =x0+0(e), A(e) =2y + 0(¢).

This type of sensitivity analysis is common in structural mechanics where the various
physical imperfections in a system are ‘lumped together’ as asingle artificial parameter.
One might also consider & = hmwheref is a discretization of f, his a stepsize andmis
the order of consistency. Clearly quadratic folds in fare preserved in fand it is not
surprising that a similarresult holds for more general problems under certain
assumptions.
Multi-parameter problems 6.2.2 [15]: Let us change perspective now, and think of €in
the previous section as acontrol parameter to be varied rather than merely a
perturbation parameter. The above analysis still applies, and provided
F(x(€),A(€),€) # 0andfe,(x(€),A(€), € # 0 there is no requirement that eremain
small. Thus, we change notation by setting ¢ = «, and dropping the *** symbol over the
f, and consider the two-parameter problem

fl, L, a) =0, x,A, «a €R. (6.2.6)
Provided the side constraints f; # 0 and f,, # Ocontinue to hold, then a path of

quadratic fold points can be computed using Newton’s method applied to

Fly,a) = []];((z’;‘;))] =0, y=(3) (6.2.7)

Since the side constraints appear in F,, they can be easily monitored. If a zero occurs in
a side constraint then a higher-order singularity has beendetected.

Possible types of behavior of solutions of (6.2.1) near a singular point are
classified according to contact equivalence, namely, equivalence up to a smooth change
of coordinates. This classification associates a number, the codimension, with each
singularity, and if the codimension is finite then the singularity is equivalent to a

polynomial canonical form. For example, the simplest singularity is the quadratic fold
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point, which has canonical form f(x,A) = x? — Aand has codimension zero. Clearly at
Yo = (x0,40)T = (0,0)T then (6.2.3) and (6.2.4) are satisfied , conversely any f
satisfying (6.2.3) and (6.2.4) is contact equivalent to x2 — A. In Jepson the singularities
of codimension less than 4 are arranged in a hierarchy and this was used to provide an
algorithm to obtain suitable extended systems and side constraints for the calculation of
the singularities. For example, there are two codimension 1 singularities: a transcritical
bifurcation (¢ = 0in Figure 6.1below) that arises in a path of fold points when f; = 0;
and a hysteresis bifurcation (¢ = 0in Figure 6. 2) below, that arises in a path of fold
points when f,, = 0. To compute a transcritical bifurcation in a stable manner we
need 2 parameters, namely A and @, and the extended systemis F(y) = (f, fr, f)T =
0,y = (x,4a)T . A transcritical bifurcation point, y, = (xo, ¢, @) say, will be a

regular solution if (a) fy # 0, and (b)the side constraints £ # 0 and (£)% —

3% # 0 hold. The canonicalform is f(x,1) = x? - A2. The condition f;° # 0 is a
universal unfoldingcondition that, roughly speaking, ensures that the control parameter
a entersin f in such a way as to provide all qualitatively distinct solutions of f (x, A, @) =
0 as «a varies near a,. The transcritical bifurcation has codimensionl, since 1 control
parameter is needed in the universal unfoldingf(x,A, &) = 0. Figure 6.1 shows the
unfoldingof a trans critical bifurcation, and Figure 6.2 shows the unfolding of a
hysteresis point (also of codimensionl) which has extended system F(y) =
(f, for fex)T = 0 and side constraints f; # 0, fixx # 0. It is important to note that one
would not expect to see the codimension 1 singularities, that is, trans-critical or
hysteresis bifurcation points, in a oneparameter physical problem. Rather, two
parameters are needed to observe them and to locate them numerically. Also, as we see
in Figures 6. 1 and 6. 2, they are destroyed by perturbations. It is not surprising, then,
that the convergence theory of discretizations near bifurcation points in one-parameter

,problems proves very technical and is perhaps of limited usefulness. [15]
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1 _

A ag o ) a>0

Figure 6.1 Solution diagrams for f(x,A, o) = x? —2% + o =0 . The transcritical
bifurcation point is destroyed for a+ 0

L S 7 7

<0 &= o]

Fig.6. 2. Solution diagrams forf(x,4, @) = x3 + ax — A = 0. The hysteresis point

isdestroyed for x= 0 and there are no singular points for a > 0

Problems with reflection symmetry (6.2.3) [15]: A classification of singularities
satisfying various symmetries can also be given. We content ourselves here with a few
remarks about the simpleZ, (i.e., reflection) symmetry. Iff(x, 1) satisfies the
equivariance (symmetry) condition

f(—x,2) = —f(x,A), (6.2.8)
then a classification of singularities arises that reflects the symmetry in the problem and
is different from that for problems with no symmetry. First note that if (6.2.8) is satisfied
then f(x,A)is odd in x and so we may write f(x,A)=xa(x?2)for some
functionsa(x?,1). Also, if (x,1) satisfiesf(x,A) = 0then so does (—x,A). Thus the
solution diagrams are symmetric about the Aaxis: see Figure 6.3. The simplest singularity
(i.e., codimension 0) has the canonical form f(x,A) = x3 —Ax = x(x? — A) and gives
rise to the common symmetric pitchfork bifurcation diagram (see Figure 6.3(a)). The
singularities given in Figure 6.3(b), (c) and (d) have codimension 1 and typically will only

be observed in a two-parameter setting .
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(a) (b) (c) (d)

Fig. 6.3. Canonical solution diagrams for Z-symmetric singularities ofcodimension <
1: ()f(x,A) = x3 —Ax = 0,

(b) f(x,A) = x> —Ax = 0,a quadratic symmetry breaking bifurcation, (c) f(x,A) =
x3 —A%x = 0,a C-coalescence point, and (d)F(xA) = x>+ A%’x = 0, aC+
coalescencepoint. Unfolding's of (b), (c) and (d) are given on Golubitsky and Schaeffer
(1985) theory for Hopf bifurcation is intimately connected to that for Z,-symmetric
problems. In particular, small amplitude periodic orbits of an autonomous system of
ODEs are in one-to-one correspondence with zeros of a nonlinear problem that satisfies
the Z-equivariance condition (6.2.8). The simplest Hopf bifurcation corresponds to a
codimension0 singularity and hence is likely to be observed in one-parameter problems.
Non-linear model[10]

In the field of mechanical engineering, the non-linear dynamical system defined
in Figure (6.4) is a classic example of friction-induced vibrations in a brake system. It
presents the grabbing vibration in heavy trucks that results from coupling between the
normal mode (kq,m;) of the brake control and the torsion mode of the front axle
(k,,m;). In order to simulate a braking system placed crosswise due to overhanging
caused by a static force effect, we consider the moving belt slopes with an angle 8 This
slope couples the normal and tangential degree-of-freedom induced only by the friction
coefficient u that is assumed to be constant. The braking force Fbrake transits through
the braking command, that has non-linear behavior. Therefore, we consider the
possibility of a non-linear contribution. This non-linearity is applied in order to indicate
the influence and the importance of non-linear terms in under-standing the dynamic

behavior of systems with non-linear phenomena, the prediction of dangerous or
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favorable conditions, and the exploitation of the full capability of structures by using
systems in the non-linear range. In this study, the nonlinear behavior dynamic of the
brake command of the system (k;,m;), and the non-linear behavior dynamic of the
front axle assembly and the suspension (k,,m,) are concerned, respectively. These
non-linearities are defined as non-linear stiffness's. The non-linear behavior is then
expressed as a quadratic and cubic polynomial in the relative
displacement:
ky = ki + ki (Y — ) + kis(Y — p)?
ky, = ky, + kX + ky3X? (6.2.9)

Figure 6. 4: Non-linear model of the braking system

With reference to Figure 4, and considering the non-linear expression of the stiffnesses
defined in equations (6.2.9), the three equations of motion can be expressed as

(m1Y te(Y—y) + k(Y = ) + ko (Y — )2+ ky3(Y — y)® = —Fbrake

MyX + X + korX + kpoX? + ky3X® = —Nsind + T cos6 (6.2.10)

k myy + c;(y— V) + kpy(y — Y)+ k(v = Y)? + kyz(y—Y)3
= Ncos@ + T sin@

Considering Coulomb’s friction law T = uN, and the transformations y = X tan 6 and
x = {X Y}T,the nonlinear 2-degrees-of-freedom system is given by

Mi+ Cx+Kx = F + FNL(x) ( 6.2.11)
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where X,x and x define the acceleration, velocity, and displacement response 2-
dimensional vectors of the degreesof- freedom, respectively. M, C and K are the mass,
damping and stiffness matrices of the mechanical system. Fdefines the vector due to
the brake force, and FNL(x) is the vector containing all the non-linear terms of the
system (6.2.10). By considering the equations of (6.2.10) the expressions of all the
matrices and vectors are

my(tan?6 +1) 0

M = 0 , (6.2.12)
2 _ —
C= [Cl(tan O —ptan)+ ¢ (1 + ptan®) ¢ (~tan_ + ”)] (6.2.13)
—c, tan 0 cl
2 _ —
K = [k21 (1 + ptan 0) + kq;(tan? 6 — utan®)  kq,(—tand + ”)] (6.2.14)
—ky, tan 0 ki1
(—tan® + W) (k;, (X tan® — Y )?+k,;3(X tan® — Y )3)
Fy, = +k,, (1 + ptan@)X? + k,3(1 + ptanf)X3 (6.2.15)
_klz (Y - Xtae)z - k13(Y - Xtan9)3
_ 0
F={_rprake) (6.2.16)

The general form of the equation of motion for the non-linear system is given in the

following way:
.o . 17 ..k
MX+ Cx+Kx = F + X%, X3, f; xix; + XPo, X3, Xy fa) xixiXi (6.2.16)
where £ and fik are the vectors of quadratic and cubic non-linear terms,
) 3)

respectively [10]
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