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Abstract 

The aim of this study is to introduce tools from local bifurcation theory which will 

be necessary in the following sections for the study of neural field equations. In a first 

step, we deal with a basic manifold, elementary bifurcations in low dimensions such as 

saddle-node, trans critical, pitchfork and Hopf bifurcations. Bifurcation analysis for 

infinite dimensional systems is subtle and can lead to difficult problems. If it is possible, 

the idea is to locally reduce the problem to a finite dimensional one. This reduction is 

called the center manifold theory and it will be the main theoretical result of this study. 

The center manifold theory requires some functional analysis tools which will be 

recalled, especially the notions of linear operator, spectrum, resolve, projectors etc... 

We also present some extensions of the center manifold theorem for parameter-

dependent and equivarient differential equations. Directly related to the center 

manifold theory is the normal form theory which is a canonical way to write differential 

equations. We conclude this study by some applications.  
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 الخلاصة

التي الهدف من هذه الدراسة هو ایجاد طریقة أو وسیلة بنظریة أنظمة التفرعات الموضعیة 
المفاهیم الأساسیة  ،تبدأ بالخطوة الأولى ،یكون لها أهمیة في دراسة المجال الحیادي للمعادلات

أنظمة ، المذراة و عبر الحرجة، لمتعددات الطیات في أقل الإحداثیات مثل شكل سرج صهوة الفرس
تؤدي  ذات الإحداثیات اللانهائیة التي تحلیل أنظمة التفرعات الموضعیة). Hopf(التفرعات لهوبف 

رتبة النظم اللانهائیة الى ) تخفیض(الفكرة هي تنزیل  ،إذا كان من الممكن. الى صعوبة المسائل
هذا التخفیض یسمى متعددة الطیات المركزیة  ،منتهیة مع الحفاظ على دور تمثیل النظام الأساسي
نظریة متعددة الطیات المركزیة التي . هذه الدراسة في التفرعات الموضعیة وهي النظریة الأساسیة في

أیضاً نوجد و ... فكرة المؤثر الخطي، الطیف، تتطلب بعض طرق التحلیل الدالي التي تسترجع خاصة
مباشرةً الى مبرهنة الصیغ . المعادلات التفاضلیةبعض التوسیعات لنظریة الطیات المركزیة وثوابت 

ثم نختتم هذه ) الأساسیة(عادلات التفاضلیة في صورتها القانونیة الناظمة التي تساعد في كتابة الم
  .الدراسیة ببعض التطبیقات
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Introduction 

     In this study we focus on two specific methods that arise in the analysis of 

local bifurcations in infinite-dimensional systems, namely the center manifold reduction 

and the normal form theory. Center manifolds provide a powerful method of analysis of 

such systems, as they allow one to reduce, under certain conditions, the infinite-

dimensional dynamics near a bifurcation point to a finite-dimensional dynamics, 

described by a system of ordinary differential equations. An efficient way of studying 

the resulting reduced systems is with the help of normal form theory, which consists in 

suitably transforming a nonlinear system, in order to keep only the relevant nonlinear 

terms and to allow easier recognition of its dynamics. The combination of these two 

methods led over the recent years to significant progress in the understanding of 

various problems arising in applied sciences, and in particular in the study of nonlinear 

waves. A common feature of many of these problems is the presence of symmetries, as 

for instance reversibility symmetries. It turns out that both the center manifold 

reduction and the normal form transformations preserve symmetries, allowing an 

efficient treatment of such problems. In addition, they provide a detailed 

comprehensive study near a singularity in the solution set of the system, which might 

also orient a numerical treatment of such problems. The study is organized as follows. 

We start in Chapter one with a manifolds, define basic concepts, chart and atlas and 

differentiable manifolds. Chapter two  bifurcations for one- and two-dimensional 

ordinary differential equations, Elementary  bifurcation and Stability Test, saddle-node, 

pitchfork, Hopf, and steady bifurcations in the presence of a simple symmetry group. 

The purpose of this particular choice is to some of the techniques and notations used in 

the next chapters. Chapter three is devoted to the center manifold theory. Linear 

systems. We present the strategy for center manifold reduction for infinite-dimensional 

systems, together with simple examples and exercises illustrating the variety of possible 

applications. 

The aim is to declare that the subject to use this reduction method simply by 

checking some clear assumptions. Chapter four is concerned with the normal form 
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theory. In particular, we show how to systematically compute the normal forms in 

concrete situations. We illustrate the general theory on different bifurcation problems, 

for which we provide explicit formulas for the normal form, allowing one to obtain 

quantitative results for the resulting systems. In Chapter five the normal form theory is 

applied to the study of reversible bifurcations, which appear to be of particular 

importance in applications, as this is shown in Chapter six. We focus on bifurcations of 

co-dimension 1, i.e., bifurcations involving a single parameter, which arise generically 

for systems in dimensions 2, 3, and 4. In all cases, we give the normal forms and collect 

some known facts on their dynamics. Finally, in Chapter six we present some 

applications of the methods described. 

Historical Background: Many authors refer to the work of C. G. J. Jacobi from 

1834, on equilibria of self gravitating rotating ellipsoids, as a first reference in the field 

of bifurcation theory. However, it seems that the first serious works on bifurcation 

problems were by Archimedes and Apollonius over 200 years BCE. Archimedes studied 

the equilibria of a floating paraboloid of revolution. In today’s terminology his results 

would correspond to a pitchfork bifurcation which breaks a flip symmetry, or to a steady 

bifurcation with O(2) symmetry, when taking into account the invariance under 

rotations about the paraboloid axis. Apollonius studied the extreme a of the length of 

segments joining a point of the plane to a given conic . The number of solutionschanges 

from one to three in crossing the envelope of the normal to the conic. Here again, due 

to the symmetry of the conic, we have an example of a pitchfork bifurcation. Finally, it 

seems that the French word “bifurcation” was introduced by Poincaré in 1885 

Intuitively, a manifold is a generalization of curves and surfaces to higher dimensions. It 

is locally Euclidean in that every point has a neighborhood, called a chart, 

homeomorphic to an open subset of ܴ௡. The coordinates on a chart allow one to carry 

out computations as though in a Euclidean space, so that many concepts from ܴ௡, such 

as differentiability, point-derivations, tangent spaces, and differential forms,carry over 

to a manifold. Like most fundamental mathematical concepts, the idea of a manifold did 

not originate with a singlepers on, but is rather the distillation of years of collective 
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activity. In his masterpiece Disquisitiones generales circa superficies curvas (“General 

Investigations of Curved Surfaces”) published in 1827, Carl Friedrich Gauss freely used 

local coordinates on a surface, and so he already had the idea of charts. Moreover, he 

appeared to be the first to consider a surface as an abstract space existing in its own 

right, independent of a particular embedding in a Euclidean space. Bernhard Riemann’s 

inaugurallecture ÜberdieHypothesen, welche der Geometriezu Grundeliegen (“On the 

hypotheses that underliegeometry”) in Göttingen in 1854 laid thefoundations of higher-

dimensional differential geometry. Indeed, the word “manifold” is a direct translation of 

the German word “Mannigfaltigkeit,” which Riemann used to describe the objects of his 

inquiry. This was followed by the work of Henri Poincaré in the late nineteenth century 

on homology, in which locally Euclidean spaces figured prominently. The late nineteenth 

and early twentieth centuries were also a period of feverish development in point-set 

topology. It was not until 1931 that one finds the modern definition of a manifold based 

on point-set topology and a group of transition functions Normal form theory for 

differential equations can be traced back to the original work of one hundred years ago, 

and most credit should be given to Poincaré [1879]. 
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Chapter 1 

Manifold Theory 
 

The notion of a manifold S defined in the following chapter assumes S to be a 

subset of a Euclidean space ܴ௡. However, a more axiomatic and abstractapproach to 

differential geometry is possible, and in many ways preferable. 

Of course, a manifold in ܴ௡ must satisfy the axioms that we set up for anabstract 

manifold. Our axioms will be based on properties of charts. From the point of view of 

differential geometry the most important property of a manifold is that it allows the 

concept of a smooth function. We will define this notion and the more general notion of 

a smooth map between abstract manifolds. 
 

Section (1.1): Basic Concepts:  

The study of curves and surfaces in Geometry was mainly through 

parameterizations  and measures, important examples of curves and surfaces arise 

more naturally as level sets, for example the circle {(ݔ, , ଶݔ	(ݕ + ଶݕ = 1} and the 

sphere {(ݔ, ,ݕ ଶݔ	(ݖ + ଶݕ + ଶݖ = 1}. In order to deal with such sets, we shall define a 

notion of manifolds, which applies to subsets in Rn without the specification of a 

particular parameterization. The new notion will take into account the possibility that 

the given subset of ܴ௡ is not covered by a single parameterization. It is easy to give 

examples of subsets of ܴଷ that we imagine  as surfaces, but whose natural 

parameterizations do not cover the entire set (at least if we require the 

parameterizations to be regular) For example, we have seen that for the standard 

spherical coordinates on the sphere there are two singular points, the poles. In order to 

have a regular parameterization we must exclude these points. A variation of the 

standard spherical coordinates with interchanged roles of y and z will have singular 

poles in two other points. The entire sphere can thus be covered by spherical 

coordinates if weallow two parameterizations covering different, overlapping subsets of 

the sphere. 
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Definition (1.1.1). A parameterized manifold in ܴ௡ is a smooth map ݂:ܷ → ܴ௡ , where 

ܷܴ௠ is a non-empty open set. It is called regular at ݔ ∈ ܷ if the ݉ × ݊ Jacobi matrix 

 has rank m (that is, it has linearly independent columns), and it is called regular if (ݔ)݂ܦ

this is the case at all ݔ ∈ ܷ. An m-dimensional parameterized manifold is a 

parameterized manifold ݂: ܷ → ܴ௡ with ܷܴ௠, which is regular (that is, regularity is 

implied at all points when we speak of the dimension) 

Clearly, a parameterized manifold with ݉ = 2	ܽ݊݀	݊ = 3is the sameas a 

parameterized surface, and the notion of regularity is identical to theone introduced in 

Geometry. For ݉ = 1 there is a slight difference withthe notion of parameterized 

curves, because in Geometry  we have requireda curve ߛ: ܫ → ܴ௡ to be defined on an 

interval, whereas herewe are justassuming ܷ to be an open set in ܴ. Of course there are 

open sets in ܴ which are not intervals, for example the union of two disjoint open 

intervals. Notice however, that if ߛ: ܷ → ܴ௡ is a parameterized manifold with ܷ	ܴ, 

then for each ݐ଴ ∈ ܷ there exists an open interval ܫ around ݐ଴ in ܷ, and there striction 

of ߛ to that interval is aparameterized curve in the old sense. Infuture, when we speak 

of a parameterized curve, we will just assume that itis defined on an open set in 

ܴ.Perhaps the case ݉ = 0 needs some explanation. By definition ܴ଴ is thetrivial vector 

space {0}, and a map ݂: ܴ଴ → ܴ௡ has just oneݑ value ݌ =  By definition the map .(ݔ)݂

0 →  is smooth and regular, and thus a 0-dimensionalparameterized manifold in ܴ௡is a ݌

point݌ ∈ ܴ௡	[9] 

Example (1.1.1). Let ݑ)ߪ, (ݒ = (cosݑ	, sin ,	ݑ cos ,	ݒ sin (	ݒ ∈ ܴସ	. Then 

,ݑ)߲ܦ (ݒ =

⎝

⎜
⎛

sin 0
cos 0

0 sin
0 cos

u
u

v
v





⎠

⎟
⎞

 

has rank 2, so that ߪ is a 2-dimensional manifold in ܴସ. [9] 

Example (1.1.2). The graph of a smooth function ℎ:ܷ → ܴ௡ି௠, is manifold in ܴ௡. 

Let(ݔ)ߪ = ൫ݔ, ℎ(ݔ)൯ ∈ ܴ௡, then (ݔ)ߪܦ is an ݊ × ݉ matrix, of which the first mrows 

comprise a unit matrix. It follows that (ݔ)ߪܦ has rank m for all x, sothat ߪ is regular. 
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Many basic results about surfaces allow generalization, often with proof 

sanalogous to the 2-dimensional case. Below is an example. By definition, are-

parameterization of a parameterized manifold ߪ:ܷ → ܴ௡ is a parameterizedmanifold of 

the form ߬ = ܹ:∅ ∅ where		ߪ → ܷ is a diffeomorphism of open sets. 

Definition (1.1.2). Is a differentiable mapping that has a differentiable inverse. Two sets 

are diffeomorphically equivalent if there is a diffeomorphism of one onto the other. For 

example, the reals and the interval (0,) are diffeomorphically equivalent, since the 

diffeomorphism [9] 

							݂ ∶ 	ܴ (ݔ)݂	:(∞,0	) 		= 		 ݁௫ 	

has an inverse݃ ∶ 	 (0,∞) 	ܴ ∶ (ݔ)݃	 		=  ݔ݃݋݈		

Theorem (1.1.1). Let ߪ:ܷ → ܴ௡ be a parameterized manifold with ܷ	ܴ௠, and assume 

it is regular at ݌ ∈ ܷ. Then there exists a neighborhood of p in U, such that the 

restriction of ߪ to that neighborhood allows are parameterization which is the graph of 

a smooth function, where n-m among the variables ݔଵ, … ,  ௡ are considered asݔ

functions of the remaining m variables. 

Definition (1.1.3). Let ܣ	ܴ௠ :݂ ܴ௡. A mapܤ	݀݊ܽ	 ܣ →  which iscontinuous, bijective ܤ

and has a continuous inverse is called a homeomorphism. 

The sets A and B are metric spaces, with the same distance functions as the 

surrounding Euclidean spaces, and the continuity of f and ݂ିଵ isassumed to be with 

respect to these metrics. [9] 

Definition (1.1.4). A regular parameterized manifold ߪ:ܷ → ܴ௡ which is 

ahomeomorphism ܷ →  is called an embedded parameterized manifold. We shall ,(ܷ)ߪ

define a concept of manifoldswhich applies to subsets of ܴ௡ rather than to 

parameterizations. In orderto understand the definition properly, we begin by the case 

of curves in ܴଶ. 

The idea is that a subset of ܴଶ is a curve, if in a neighborhood of each of itspoints 

it is the image of an embedded parameterized curve 

Example (1.1.4). The graph of a smooth function ℎ:ܷ → ܴ௡ି௠, where ܷܴ௠ is open, is 

an embedded parameterized manifold in ܴ௡. It is regular by Example 1.1.2, and it is 
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clearly injective. The inverse map (ݔ)ߪ →  of the projection (ܷ)ߪ isthe restriction to ݔ

ܴ௡ ∋ 	ݔ → ,	ଵݔ) . . . , (௠ݔ ∈ ܴ௠ on the first m coordinates. Hence this inverse map is 

continuous.  

Example (1.1.5). Consider the parameterized curve (ݐ)ߛ = (cos ,	ݐ cos ݐ sin  ଶ. Itܴ	݊݅	(	ݐ

is easily seen to be regular, and it has a self-intersection in (0, 0), which equals ߛ ቀ௞గ
ଶ
ቁ for 

all odd integers k (see the figure below).The interval ܫ = ቃିగ
ଶ
	 , ଷగ

ଶ
ቂ  contains only one of 

the values ௞గ
ଶ

,  and the restriction of ߛtoI is an injective regular curve. The image (ܫ)ߛ is 

the fullset C in the figure.1 below.[9] 

 

 

 

 

 

 

 

 

         Shows γ|I is not an embedded parameterized curve 

 

 

 

The restriction ߛI is not a homeomorphism from I to C. The problem occurs in the point 

(0,0) = ߛ ቀగ
ଶ
ቁ. Consider an open interval ܸ = ቃగ

ଶ
− ߳	, గ

ଶ
+ ߳ቂ where 0 < ߳ <π. The image 

 ,ܴଶ	is shown in the figure, and it does not havethe form C∩W for any open set ܹ(ܸ)ߛ

because W necessarily contains points from the other branch through (0, 0). Hence ߛܫ 

is not an embeddedparameterized curve. 

It is exactly the purpose of the homeomorphism requirement to exclude the 

possibility of a ‘hidden’ self-intersection, as in Example 1.1.4 Based on the example one 

can easily construct similar examples in higher dimension. 

Figure 1. 
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Definition (1.1.5). A curve in ܴଶis a non-empty set ܥܴଶ satisfying thefollowing for 

each݌ ∈ ܫ an open set ,	݌	݂݋	There exists an open neighborhood ܹܴଶ .ܥ ⊂ ܴ, and an 

embedded parameterized curve ߛ: ܫ → ܴଶ withimage 

(ܫ)ߛ = ܥ ∩ܹ. 

 

 

 

 

 

 

           

 
 

 

 

Shows an embedded parameterized curve. 

The definition of a curve allows the following useful reformulation [9]. 

Example (1.1.6). The image C = γ(I) of an embedded parameterized curveis a curve. In 

the condition above we can take ܹ	 = 	ܴଶ. 

Example (1.1.7). The circle ܥ	 = 	ܵଵ 	= 	 ,ݔ)} ଶݔ	|	(ݕ 	+ ଶݕ	 	= 	1}is a curve. In order to 

verify the condition in Definition 1.1,5 let ݌ ∈  be given. For simplicity we assume that ܥ

	݌ = 	 ,଴ݔ) ଴ݔ ଴) withݕ > 	0. 

Example (1.1.8). An 8-shaped set like the one in Example 1.1.5 is not a curve in ܴଶ. In 

that example we showed that the parameterization by (cos t, cos t sin t) was not 

embedded, but of course this does not rule out that some other parameterization could 

satisfy the requirement in Definition 1.1.5 That this is not the case can be seen from 

Lemma 1.1.1 below. 

It is of importance to exclude sets like this, because there is not a well defined 

tangent line in the point p of self-intersection. If a parameterization is given, we can 

distinguish the passages through p, and thus determine a tangent line for each branch. 

W 

C 
P 

x 

y 

Figure 2. 
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However, without a chosen parameterization both branches have to be taken into 

account, and then there is not a unique tangent line in p. The definition of a curve 

allows the following useful reformulation. 

Lemma (1.1.1). Let ܥܴଶ be non-empty. Then C is a curve if and only if it satisfies the 

following condition for each ݌ ∈ 	ܹ There exists an open neighborhood :ܥ ⊂ ܴଶ of p, 

such that ܥ	 ∩ 	ܹ is thegraph of a smooth function h, where one of the variables x1, x2 is 

considered a function of the other variable. 

Proof. Assume that C is a curve and let ݌ ∈ 	ܫ	:ߛ Let .ܥ → ܴଶ be an embedded 

parameterized curve satisfying Definition (1.1.5) and with γ(t଴) 	= 	p. By the following 

Theorem 1.1.1 Let ߪ:	Uܴଶ be a parameterized manifold d with U ⊂ ܴଶ, and assume it 

is regular at ݌	 ∈ 	ܷ. Then there exists a neighborhood of p in U, such that the restriction 

of σ to that neighborhood allows a reparameterization which is the graph of a smooth 

function, where (n – m) among the variables (x1, . . . , xn) are considered as functions of 

the remaining m variables) in the special case m = 1, we find that there exists 

neighborhood V of t0in I such that ߛ|ܸ allows a re-parameterization as a graph. It follows 

from Theorem (1.1.1) that there exists an open set W'⊂ R2 such that  ߛ(ܸ	) 	= (ܫ)ߛ 	∩

	ܹ′	 = 	ܥ	 ∩ ܹ	 ∩ ܹ′. The set ܹ	 ∩ܹ′ has all the properties desired ofW in the lemma. 

Conversely, assume that the condition in the lemmaholds, for a givenpoint p say 

withܥ	 ∩ ܹ	 = 	 ,ݐ)} ℎ(ݐ))	|	ݐ	 ∈ 	ܫ where ,{ܫ	 ⊂ 	ܴ is open and ℎ:	ܫ	 → 	ܴ is smooth. The 

curve ݐ → 	 ,ݐ) ℎ(ݐ)) has the image ܥ ∩ܹ, and according to parameterized manifold in 

Rn it is an embedded parameterizedcurve. Hence the condition in definition 1.1.1 holds, 

and C is a curve. [9] 

Theorem (1.1.2). Let ݂: 	ߗ → 	ܴ be a smooth function, where ߗ	 ⊂ ܴଶ is open, and let 

ܿ	 ∈ 	ܴ. If it is not empty, the set ܥ	 = 	 	݌} ∈ (݌)݂	|		ߗ 	= 	ܿ,  is a {	݈ܽܿ݅ݐ݅ݎܿ	ݐ݋݊	ݏ݅	݌

curve in R2 

Proof. By continuity of the partial derivatives, the set of non-critical points in Ω is an 

open subset. If we replace ߗ by this set, the set C can be expressed asa level curve 

	݌} ∈ (݌)݂	|		ߗ 	= 	ܿ}, to which we can apply the implicit functiontheorem. It then 

follows from Lemma 1.1.1that C is a curve 
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Example (1.3.9). The set ܥ	 = 	 ,ݔ)} ଶݔ	|	(ݕ + ଶݕ 	= 	ܿ} is a curve in R2 for each ܿ	 > 	0, 

since it contains no critical points for ݂(ݔ, (ݕ = 	 ଶݔ 	+    ଶ  [9]ݕ

Definition (1.1.6). A surface in R3 is a non-empty set ܵ	 ⊂ ܴଷ satisfying thefollowing 

property for each point p ∈ S. There exists an open neighborhoodܹ	 ⊂ ܴଷ of p and an 

embedded parameterized surface ߪ:	ܷ	 → ܴଷ with imageߪ(ܷ) 	= 	ܵ	 ∩ ܹ 

 

 

 

 

 

 

 

 

 

Fig 3 

Shows for a given point p with S ∩W the surface has image according to Lemma 1.1.1 is 

non-empty 

Example (1.1.10). The image ܵ	 =  of an embedded parameterized surfaceis a (ܷ)ߪ	

surface in R3. In the condition above we can take ܹ	 = 	ܴଷ 

Theorem (1.1.3). Let ݂: 	ߗ → 	ܴ be a smooth function, where ߗ	 ⊂ ܴଷ is open,and let 

ܿ	 ∈ 	ܴ. If it is not empty, the set 

ܵ	 = 	 	݌} ∈ (݌)݂	|	ߗ 	= 	ܿ,  .is a surface in ܴଷ {	݈ܽܿ݅ݐ݅ݎܿ	ݐ݋݊	ݏ݅	݌

Proof. The proof, which combines geometry,with Lemma 1.1.2 below, is entirely similar 

to that of Theorem 1.1.2 

Example 1.1.11 Let us verify for the sphere that it contains no criticalpoints for the 

function ݂(ݔ, ,ݕ (ݖ 	= ଶݔ 	+ ଶݕ	 	+ 	ݔ′݂ ଶ. The partial derivativesareݖ = ,ݔ2	 	ݕ′݂ =

,ݕ2	 	ݖ′݂ = ,ݔ)	and they vanish simultaneously only at ,ݖ2	 ,ݕ (ݖ 	= 	 (0, 0, 0). This point 

does not belong to the sphere, hence it is asurface. The verification for the cylinder is 

similar 

Z 

x 

y 

P 
W 

S 



17 
 

Lemma 1.1.2. Let ܵ	 ⊂ ܴଷ be non-empty. Then S is a surface if and only ifit satisfies the 

following condition for each ݌	 ∈ 	ܵ: There exist an open neighborhood ܹ	 ⊂ ܴଷ of p, 

such that ܵ	 ∩ 	ܹ isthe graph of a smooth function h, where one of the variables 

,ଵݔ ,ଶݔ  .ଷ is considered a function of the other two variables [9]ݔ
 

Section (1.2): Chart and atlas: 

As mentioned in the introduction there exist surfaces, for example the sphere, 

which we have seen that for the standard spherical coordinates on the sphere there are 

two singular points, the poles. In order to have a regular parameterization we must 

exclude these points. A variation of the standard spherical coordinates with 

interchanged roles of y and z will have singular poles in two other points. The entire 

sphere can thus be covered by spherical coordinates if we allow two parameterizations 

covering different, overlapping subsets of the sphere. Note that in contrast, the 

standard parameterization of the circle by trigonometric coordinates is everywhere 

regular, in general overlapping, parameterizations. This makes the following concepts 

relevant [9] 

Definition of chart 1.2.1 another word for graph (Differential geometry) also called 

(local) coordinate system. a neighborhood of a point in a manifold together with its 

mapping into Euclidean n-space; formally, a pair (U୪, f୪)where U୪ is an element of a 

cover of the manifold and , f୪is a homeomorphism that maps it to an open subset of R୬. 

A collection of charts that cover the manifold is called an atlas. 
 

Definition1.2.2 Let S be a surface inܴଷ. A chart on S is an injective regular 

parameterized surface σ:	U	 → Rଷ with image σ(U) 	⊂ 	S. A collectionof charts 

σi:	Ui → R3 on S is said to cover S if S	 = 	Uiσi(Ui). In that casethe collection is called an 

atlas of S. 

Example1.2.1. The image S	 = 	σ(U) of an embedded parameterized surfaceas in 

Example 1.1.7 has an atlas consisting just of the chart �  itself. 

Example 1.2.2. The mapσ(u, v) 	= 	 (cos	v, sin	v,u),u, v	 ∈ 	R is regular and covers the 

cylinder S = {(x, y, z)	|	xଶ 	+ yଶ = 	1}, but it is notinjective. Let U୧ = {(u, v) ∈ Rଶ| − π <

ݒ < π},Uଶ = {(u, v) ∈ Rଶ|	0 < 	ݒ	 < ௜ߪ and let,{ߨ2	  denote the restriction of ߪ to ௜ܷ  for 
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i	 = 	1, 2. Then ߪଵ and ߪଶ areboth injective,ߪଵ covers S with the exception of a vertical 

line on the backwhere ݔ	 = 	−1, andߪଶ covers with the exception of a vertical line on 

the frontwhere ݔ	 = 	1. Together they cover the entire set and thus they constitute 

anatlas 

 

 

 

 

 

 

 

 

 

 
 

describes  cylinder  S copse of  two charts  ߪଵ  and  ߪଶ as described in Example 1.2.2 

Example 1.2.3. The spherical coordinate map[9] 

σ(u, v) 	= 	 (cos	u	cos	v, cos	u	sin	v, sin	u),  
షಘ
మ < 	ݑ	 < ಘ

మ   ,షಘమ < 	ݒ	 < ಘ
మ,and its variation 

σ෥(u, v) 	= 	 (cos	u	cos	v, sin	u, cos	u	sin	v), 
షಘ	
మ < 	ݑ	 < 	ಘ

మ0	 < 	ݒ	 < 	2π, 
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are charts on the unit sphere. The restrictions on u and v ensure that they are regular 

and injective. The chart ߪ covers the sphere except a half circle (a meridian) in the xz-

plane, on the back where ݔ ≤ 0, and the chart ߪ෤similarly covers with the exception of a 

half circle in the xy-plane, on the front where 	ݔ	 ≥ 	0 (half of the ‘equator’). As seen in 

the figure5 theexcepted half-circles are disjoints. Hence the two charts together cover 

thefull sphere and they constitute an atlas 

Theorem 1.2.1 Let S be a surface. There exists an atlas of it. 

Proof: For each ݌	 ∈ 	ܵ we choose an embedded parameterized surface σ as in [9] 

Definition 1.2.3 Since a homeomorphism is injective, this parameterization isa chart on 

S. The collection of all these charts is an atlas 

Definition 1.2.4 An m-dimensional manifold in ܴ௡ is a non-empty setS	 ⊂ R୬ satisfying 

the following property for each point݌	 ∈ 	ܵ. There existsan open neighborhoodW	 ⊂ R୬ 

of p and an m-dimensional embedded follows from Definition1.2.2parameterized 

manifold σ:	U → R୬ with image σ(U) = S ∩W. 

The surrounding space ܴ௡ is said to be the ambient space of the manifold. 

Example 1.2.4. The case ݉	 = 	0. It was explained in Section 1.1 that a0-dimensional 

parameterized manifold is a map  ܴ଴ 	= 	 {0} 	→ ܴ௡, whose imageconsists of a single 

point p. An element p in a set ܵ	 ⊂ ܴ௡ is called isolatedif it is the only point from S in 

some neighborhood of p, and the set S iscalled discrete if all its points are isolated. By 

going over Definition 1.2.1 forthe case ݉	 = 	0	it is seen that a 0-dimensional manifold 

in ܴ௡is the same asa discrete subset. 

Example 1.2.5 If we identify ܴ௠ with the set {(ݔଵ, . . . , ௠ݔ , 0	. . . , 0)} 	⊂ ܴ௠,it is an m-

dimensional manifold in ܴ௡ . 

Example 1.2.6 An open set ߗ ⊂ ܴ௡is an n-dimensionalmanifold in ܴ௡. Indeed, we can 

take ܹ = 	and σ		ߗ = 	the	identitymap in Definition 1.2.1. 

Example 1.2.7 Let	ഥܵ ⊂ 	ܵ	be a relatively open subset of an m-dimensionalmanifold in 

ܴ௡. Then ܵ′ is an m-dimensional manifold in ܴ௡. 

The following lemma generalizes Lemmas 1.1.2 and 1.2.1 
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Lemma 1.2.1 Let ܵ	 ⊂ ܴ௡be non-empty. Then ܵ is an m-dimensionalmanifold if and only 

if it satisfies the following condition for each ݌	 ∈ 	ܵ: There exist an open neighborhood 

[9].	ܹ	 ⊂ ܴ௡of p, such that ܵ	 ∩ 	ܹ is thegraph of a smooth function ℎ, where ݊	 − 	݉ 

of the variables ݔଵ, . . . ,  .variables	௡ are considered as functions of the remaining ݉ݔ

Proof. The proof is entirely similar to that of Lemma 1.2.1 

Theorem 1.2.2 Let f:	ߗ → ܴ௞be a smooth function, where k ≤ n and whereΩ ⊂ R୬is 

open, and let	c	 ∈ R୩. If it is not empty, the set S	 = 	 {p	 ∈ Ω		|	f(p) 	= 	c, rank	Df(p) 	=

	k}is an (݊ − ݇) −dimensional manifold in ܴ௡.[9] 

Proof. Similar to that of Theorem 1.2.1 for curves, by means of the implicit function 

theorem and Lemma (1.1.1) [8]. 

Intuitively, a smooth manifold is a space that, when examined closely enough, 

looks like Euclidean space. In this regard, manifolds provide a natural setting for defining 

many of the usual notions of calculus, including differentiation, tangent spaces, vector 

fields, differential forms, and integration. To begin our discussion, we need the 

definitions of a diffeomorphism and a k-dimensional manifold in Rn: 

Definition 1.2.5 If ܷ and ܸ are open sets in ܴ௡, a diffeomorphism is a smooth(i.e., 

infinitely differentiable) function h ∶ 	U	V with a smooth inverse ℎିଵ ∶ 	ܸ	ܷ. 

Definition 1.2.6 A subset M of R୬ is called a k − dimensional manifold (in R୬)if for 

every point x	M, there is an open set U containing x, an open set V	R୬and a 

diffeomorphism	h ∶ 	U	V such that 

h(U	M) = 	V		(R୩ × {0}) = {(yଵ, . . . , y୬)	V ∶ y୩ାଵ =··	= y୬ = 	0}. 

In other words,U	M is equivalent to R୩, ‘up todiffeomorphism.We will use this 

definition of a manifold as we formally build up the machinery required to integrate on 

a manifold. However, it should also be noted that our definition need not rely (depend) 

on R୬ as an ambient (surround )space. In fact, it is possible to define diffeomorphism 

and manifolds in this abstract sense: 

Definition 1.2.7A function f is a diffeomorphism if it is bijective and smooth and if its 

inverse is also smooth. 
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Section (1.3): Differentiable manifolds:  

Definition 1.3.1 An abstract manifold of dimension k is a second countableHausdorff 

space M, together with an open cover (U୧) of M, and homeomorphisms φ୧ ∶ 	 U୧R୩ 

such that each φ୨	and	φ୧
ିଵisadiffeomorphismfromφ୧	(U୧U୨)	to	φ୨(U୧U୨	). 

Now, for a subset in R୬, the Euclidean definition of a manifold and the abstract 

definition of a manifold (Definition 1.3.1) are equivalent. Onedirection of this fact is 

proven below: 

Theorem 1.3.1. Suppose M is a set in R୬. If M satisfies the Euclidean definitionof a 

manifold, then M satisfies the abstract definition of a manifold as well. 

Proof. We know that for each point x		M, there is a diffeomorphism 	h ∶ 	U		V 

between sets	U, V	R୬as in Definition 1.3.1 (Note that here we are 

using“diffeomorphism” as we have defined it in Definition 1.3.1). Take (u୧)୧J , which 

isan open cover of M. For each U௜ i, we define ୧ 	= 	h|U୧M ∶ 	U୧M	V୧	(R୩ × {0}). 

Clearly is a bijective, continuous function whose inverse is also continuous. Thus୧J is a 

collection of homeomorphisms. For alli, j		J, we have the map୎&୨
ିଵdefined on an 

open subset ofV୨(R୩ × {0}). We can extend this map’s domain to anopen subset of ௜ܸ  

with the functionh  and  hିଵ. Since this function is a diffeomorphism,one can show that 

its restriction ᵠ୨&ᵠ୧ିଵis also diffeomorphism.  

The other direction of the proof – that Definition 1.5 implies Definition 1.2– 

makes use of the Whitney embedding theorem, which states that any manifold can be 

smoothly embedded in ܴ௡ [8] 

Definition 1.3.3. A coordinate chart on a set X is a subset UX  together with abijection 

: U	(u)R୬  on to an open set  ∅(ݑ) in ܴ௡  we now consider the situation where X 

is covered by  such a chart and satisfies some consistency(strong) condition we have 

Definition 1.3.4. An n-dimensional atlas on X is a collection of coordinate 

charts{	ܷ∝, ߮ఈ 	}		ܫ			such that  

1- X is covered by the{	U஑}I 

2- For each,I	,(u)u)   is open in ܴ௡ 
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3- The map φஒφ஑
ିଵ ∶ φ஑(u஑ ∩ φ஑)φஒ	(u஑ ∩ φஒ) is ܥஶwithܥஶinverse  

Definition 1.3.5. two atlases {(u஑,஑)		, {	V୧	,୧}are compatible if their union is on 

atlases. 

It means that the extra maps ,୧φ஑
ିଵmust be smooth compatibility is clearly an 

equivalence relation and we have the following  

Definition 1.3.6. A differentiable structure on X is an equivalence class of atlas. Finally 

we come to the definition of a manifold: 

Definition 1.3.7. An n-dimensional differentiable manifold is a space X with 

differentiable structure. 

To prove something is a manifold, all you need is to find one atlasthe definition 

of manifold take in to account the existence of more atlases. 

Proposition 1.3.8. with the topology above: u(u)  is homeomorphism [1] . 

Proof. if V	U∝  is open thenφ∝	(V) 	= φ∝(v ∩ Uఈ) is open by the definition of the 

topology (the intersection of any two open set is open) so φ஑
ିଵis certainly continuous . 

Now we letݓ߮( ܷ)be an open set, thenφ஑
ିଵ(w) ܷand Uα is open in M	 so 

we need to prove that the φ஑
ିଵ(w)	is open in M. But 

φஒ ∩ (φ஑
ିଵ(w) ∩ Uஒ) 	= φஒφ஑

ିଵ(w ∩ φ஑(U஑ ∩ Uஒ))	                                  (1) 

From definition φ஑ ∩ (U∝ ∩	Uஒ	)	is open and hence its intersection with the open set w 

is open .Now φஒφ஑
ିଵ	is	Cஶinverse and so certainly a homeomorphism , and it follows 

the right hand side of equation (1) is open thus the left hand sideφஒ	 ∩ (φ஑
ିଵ(w) ∩

Uஒ)	is open and by definition of topology ,this means that φ஑
ିଵ(w) is open henceφ஑ is 

continuous. To make any reasonable further progress, we have to make two 

assumptions about this topology which will hold for the rest of these notes the manifold 

topology is Hausdorff (any two separated sets there existxV	, yU. (	V ∩ U = Ø)in this 

topology we have countable basis  of an open sets . Without these assumptions 

manifold are not even metric spaces, and there is not much analysis that can reasonably 

be done on them. [1] 
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Basic Definitions (1.3.8): An- manifold M, is a topological space with a maximal atlas or 

a maximal smooth structure. 

There are two virtually identical definitions. The standard definition is as follows: 

There is an atlas A consisting of maps ܨ∝ ∶ 	ܷ∝ܴ௡α such that 

(1) ܷ∝is an open covering of ܯ. 

 (∝ܷ)∝ܨ=.is a homeomorphism on to its image ∝ܨ	 (2)

(3) The transition functions 

:ଵି∝ܨܱ∝ܨ (ܷఈ	ఉܨ ∩ ఉܷ) 	→ ఈ(ܷఈܨ ∩ ఉܷ) arediffeomorphism. 

In condition 3 it suffices to show that the transition functions are smooth as they 

are already forced to be homeomorphisms. 

A smooth structure is a collection ܦ consisting of continuous functions whose 

domains are open subsets of M with the property that, For each ݌ܯ, there is an open 

neighborhood ݌ܷ and functions ௜ܺܦ, ݅	 = 	1, . . . , ݊ such that 

(1) The domains of Xi contain U. 

(2) The map ܨ	 = 	 ,ଵݔ) . . . , (௡ݔ ∶ 	ܷ	ܴ௡ is a homeomorphism  or each ݂ ∶ 	ܱ		ܴ in 

A there is a smooth function	ℎ ∶ 	ܸ ∩ 	݂ ܴ such that		(ܱ)	ܨ = 	ℎ	(ݔଵ, . . . ,  ௡) onݔ

ܷ	 ∩ 	ܱ. 

Note that ℎ	 =  ଵ in condition 3, but it is usually possible to findℎ withouthaving toିܨ°	݂	

invert ܨ. The map in 2 in both definitions is called a chart or coordinatesystem on ܷ. The 

topology of ܯ is recovered by these maps. 

Note that it is very easy to see that these two definitions are virtually identical.  

Definition 1.3.9 (i) A topological manifold of dimension m is a topological space with the 

property that every point has a neighborhood homeomorphic to an open set in Rm. It is 

usual to insist also that M be Hausdorff and second-countable (i.e. having a countable 

dense subset), and we will impose this requirement. We will also impose the 

requirement that M be para compact: every open cover has a locally finite refinement 

(A refinement of an open cover {ܷ} is an open cover {V} such that each V lies entirely in 

some U). Every subset of RNis Hausdorff, second countable and Para compact, so these 

requirements hold automatically for the manifolds contained in RN. [1] 
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(ii) A homeomorphism ߮ ∶ 	ܷ	 → 	ܸ, where U is open in M and V is open in Rm, is called a 

chart, and a collection 	ܣ	 = 	 {߮ఈ ∶ 	ܷఈ 	→ 	 ఈܸ} of charts such that M = Uα is called an 

atlas for M. 

(iii) An atlas {φα: Uα → Vα} is smooth if whenever Uα ∩ UβØ, the crossover 

homeomorphism  φβ ◦ ߮ఈିଵ: φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)  is smooth. 

(iv) If M is a manifold equipped with a smooth atlas A, then a map f : M → Rk is smooth 

with respect to A at a point ݔ	 ∈ °߮ఈିଵis smooth, where߮	if ݂ ܯ	 	 ∈  is a chart defined	ܣ	

onsome neighborhood of x. And a map f : Rk → M is smooth with respect to A 

at	ݕ	 ∈ 	ܴ௞ if(φα ◦ f )is smooth at y, for some chart φα whose domain contains 

f(y).Because of the smoothness of the crossover maps of charts in A, the criteria for 

smoothness described in (iv) are independent of the choice of chart ߮ఈ ∈  used to	ܣ	

verify them.When ܯ	 ⊂ 	ܴே is a manifold, any two of its charts (whichwe required to be 

smooth (new)) automatically enjoyed the crossover property described in (i) and so an 

atlas of such charts was automatically smooth in the sense of (iii). Here, in our new 

more abstract situation, it makes no sense to speak of smooth (new or old) maps from 

M to Rk without reference to the charts of a smooth atlas, because M is not embedded 

in any bigger space already equipped with a notion of differentiability. 

Examples of manifolds: We need better ways of recognizing manifolds than struggling 

to find explicit coordinate charts. 

 

 

 

 

 

 

 

 

 

 Figure 6 
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Figure 6 shows how  we can use stereographic projection to get an atlas. 

For example, the sphere is amanifoldand although we can use stereographic 

projection to get an atlas, there are other ways. Here is one. [1] 
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Theorem 1.3.2 Let ܨ ∶ ܷ	 → ܴ௠  be a C∞function on an open set ܷ	ܴ௠ା௡ andtake 

ܿ	ܴ௠. Assume that for ݁ܽܿℎ		ܽ	ିܨଵ(ܿ), the derivativeܨܦ௔ ∶ ܴ௠ା௡ → ܴ௠is surjective. 

Then ିܨଵ(ܿ) has the structure of an n-dimensional manifold which is  Hausdorff and has 

a countable basis of open sets. 

Proof: Recall that the derivative of F at a is the linear map ܨܦ௔ ∶ ܴ௡ା௠ 	→ 	ܴ௠such that 

ܽ)ܨ	 + 	ℎ) = (ܽ)ܨ	 + (ℎ)ܽܨܦ + ܴ(ܽ, ℎ) where 

ܴ(ܽ, ℎ)/||ℎ||0	ܽݏ	ℎ0. 

If we write ݔ)ܨଵ, . . . , (௡ା௠ݔ 	= 	 ,ଵܨ) . . . ,  ௠) the derivative is the Jacobian matrixܨ
డி೔
డ௫ೕ

(ܽ)1≤i ≤ m, 1≤j ≤ n+m that this is surjective, so the matrix has rank ݉. Therefore 

byreordering the coordinates ݔଵ, . . . , ௠ା௡we may assume that the square matrix డி೔ݔ
డ௫ೕ

(ܽ) 

1≤i ≤ m, 1≤j ≤ mis invertible. 

Now define 

ܩ ∶ 	ܷ → ,ଵݔ)ܩ ௡ା௠ byܨ . . . (௡ା௠ݔ 	= 	 ,ଵܨ) . . . , ௠ܨ , ,௠ାଵݔ . . . ,            (2)	௠ା௡).ݔ

Then ܽܩܦ is invertible. We now apply the inverse function to ܩ, a proof of which is 

given, tells us that there is a neighborhood ܸ	ofܽ, and ܹ of ܩ(ܽ) such that ܩ ∶ 	ܸܹ is 

invertible with smooth inverse. Moreover, the formula (2) showsthat	ܩ maps 
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:ܴ௡ା௠	ݔ} ଵ(ܿ) to the intersection of ܹ with the copy of ܴ௡ given byିܨ	\	ܸ ௜ݔ 	=

ܿ௜, 1	 ≤ 	݅	 ≤ 	݉}. This is therefore a coordinate chart  If we take two such charts 

߮ఈ,߮ఉ then߮ିଵis a map from an open set in {ݔ	ܴ௡ା௠: ௜ݔ 	= ܿ௜ , 1	 ≤ 	݅	 ≤ 	݉} to 

another one which is the restriction of the map ܩ∝ܩఉିଵ of (an open set in) ܴ௡ା௠to itself. 

but this is an invertible ܥଵmap and so we have the requisite conditions for an atlas. 

Finally, in the induced topology fromܴ௠ା௡ ,  is a homeomorphism, so open ߙܩ

setsin the manifold topology are the same as open sets in the induced topology. 

Sinceܴ௠ା௡is Hausdorff with a countable basis of open sets, so is ିܨଵ(ܿ) has structure of 

m-dimensional manifold,We can now give further examples of manifolds [1] 

Examples 1.3.1: Letݏ௡ 	= 	 	ݔ} ∈ 	ܴ௡ାଵ ∶ ∑ ௜ଶݔ = 	1௡ାଵ
ଵ } be the unit n-sphere. Define 

௡ାଵܴ	:	ܨ → (ݔ)ܨ	ݕܾ	ܴ	 	= ∑ ௜ଶ.௡ାଵݔ
ଵ  

This is aܥஶmap andܨܦ௔(ℎ) 	= 	2∑ ܽ௜ℎ௜௜ is non-zero (and hence surjective in the 

1-dimensional case) so long as a is not identically zero. If ܨ(a 	) 	= 	1, then∑ ௜ଶݔ =௡ାଵ
ଵ

1 ≠ 0 so ܽ ≠ 0 and we can apply Theorem 1.3.2 and deduce that the sphere is a 

manifold. 

Example 1.3.2: Let ܱ(݊) be the space of n × n orthogonal matrices: ்ܣܣ = 	1. Take the 

vectorspace Mn of dimension ݊ଶ of all real n × n matrices and define the function 

(ܣ)ܨ 	=  to the vector space of symmetric n × n matrices. This has dimension்ܣܣ	

n(n + 1)/2. Then ܱ(݊) 	=  .(ܫ)ଵିܨ

Differentiating F we have DF஺(H) 	= 	HA் 	+ 	AH் and putting H	 = 	KA this 

isKAA் 	+ 	AA்K் 	= 	K	 + 	K்  if AA் 	= 	I, i.e. if ܣ	 ∈  But given any symmetric .(ܫ)ଵିܨ	

matrix S, taking K	 = 	S/2shows that ܨܦூ is surjective and so, applying Theorem 2.2 we 

find that O(n) is amanifold. Its dimension is݊ଶ − 	݊(݊	 + 	1)/2	 = 	݊(݊	 − 	1)/2.[1] 
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Chapter 2 

Bifurcation Theory 
 

          The goal of this chapter is to study the bifurcation relating with manifold, which 

allows us to introduce  centre manifold (CM) theory and its importance in normal form 

theory.  
 

Section (2:1) Elementary bifurcation: 

Definition 2.1.1: In dynamical systems, a bifurcation occurs when a small smooth 

change made to the parameter values (the bifurcation parameters) of a system causes a 

sudden qualitative" or topological change in its behavior. Generally, at a bifurcation, the 

local stability properties of equilibria, periodic orbits or other invariant sets changes [5]. 

The change in the qualitative character of a solution as a control parameter is varied is 

known as a bifurcation. This occurs where a linear stability analysis yields an instability 

(characterized by a growth rate σ of a perturbation of the base solution with Re	σ	 = 0). 

The connection is through the implicit function theorem, the solution can be continued 

smoothly except where the Jacobean is singular. Typically a new solution develops at 

this point. 

In practical applications that involve differential equations is very often happens 

that the differential equation contains parameters and the value of these parameters 

are often only known approximately. In particular they are generally determined by 

measurements which are not exact. For that reason it is important to study the behavior 

of solutions and examine their dependence on the parameters. This study leads to the 

area referred to as bifurcation theory. It can happen that a slight variation in a 

parameter can have significant impact on the solution. Bifurcation theory is a very deep 

and complicated area involving lots of current research. A complete examination of the 

field would be impossible. A fixed point (or equilibrium point) of a differential equation 

	′ݕ = (ݕ)݂ is a root of the equation (ݕ)݂	 	= 	0. As we have already seenfor 

autonomous problems fixed points can bevery useful in determining the long time 

behavior of solutions.Qualitative information about the equilibrium points of the 
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differential equation ݕ଴ 	=  can be obtained from special diagrams called phase(ݕ)݂	

diagrams. 

line segment with labels for so-called sinks, sources or nodes , one for each root 

(ݕ)݂ = 0 i.e. each equilibrium. 

                                      Sources                                      sink 

 

 ଴ݕଵݕ                                             

The names are borrowed from the theory of fluids and they are defined as follows  

1. Sink an equilibrium y0 which attracts nearby solutions at   

ݐ = 	∞ i.e., there existsܯ > 0	so that if |(0)ݕ − |଴ݕ < (ݔ)ݕ| then ,ܯ 	− |଴ݕ 	→

ݐ	ℎ݁݊ݓ				0 → ∞ 

2. Source an equilibrium ݕଵ which repels nearby solutions at  

	ݐ = 	∞i.e., here exists	ܯ	 > 	0 so that if |(0)ݕ	− |ଵݕ 	< (ݔ)ݕ| then	,ܯ	 	−  |ଵݕ

increases as	ݐ	 → ∞.	

3. Node An equilibrium y2 which is neither a sink or a source. In fluids, sink means 

fluid is lost and source means fluid is created 
 

Section (2.2): Stability Test:  

The term stable means that solutions that start near the equilibrium will stay 

nearby as ݐ	 → ∞. The term unstable means not stable. Therefore, a sink is stable and a 

sourceis unstable. Precisely, an equilibrium ݕ଴ is stable provided for given	߳	 >

	0	thereexists some ߜ	 > 	0 such that 	|(0)ݕ 	− |଴ݕ 	<  exists for (ݐ)ݕ	implies ߜ	

	ݐ ≥ (ݐ)ݕ|	0ܽ݊݀ − |଴ݕ 	< 	߳. 

Lemma 2.2.1 If a system is structurally stable in a region D଴ with the boundary B଴ and 

all its orbits point strictly inside ܤ଴, then it is strictly structurally stable in U	 = 	D଴.  

(Proof of Lemma 2.2.1): (a) Prove that a smooth planar system ݔ˙	 = 	ݔ ,(ݔ)݂	 ∈ ܴଶ,is 

topologically equivalent (in fact, diffeomorphic) in a region U, that is, free of equilibria 

and periodic orbits and is bounded by two orbits and two smooth curves transversal to 

orbits to the system 
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ଵ˙ݕ 	= 	1,		 

ଶ˙ݕ 	= 	0, 

 

 

 

 

 

 

 

 

 

Fig 2.1: Phase portraits in U and V are equivalent. 

 

 

 

 

 

 

 

Fig. 2.2 Saddles are topologically equivelent. 

(a) in the unit square ܸ	 = 	 ,ଵݕ)} (ଶݕ ∶ 	 |ଵݕ| 	≤ 	1, |ଶݕ| 	≤ 	1} (Figure 2.1) 

(b) Generalize this result to n-dimensional systems and prove Lemma 2.2.1. 

(c) Prove, using part (a),that two hyperbolic saddle points on the plane have locally 

topologically equivalent phase portraits. Figure 8Where is the differentiability 

lost? 

Lemma 2.2.2 The system 

	˙ݔ = 	ߙ	 ଶݔ	+ 	+ 	(1)                                                (ଷݔ)ܱ	

is locally topologically equivalent near the origin to the system 

	˙ݔ = 	ߙ	 +  ଶ.                                                        (2)ݔ	
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Proof: The proof goes through two steps. It is based on the fact that for scalar systems a 

homeomorphism mapping equilibria into equilibria will also map their connecting orbits. 

Step 1 (Analysis of equilibria). Introduce a scalar variable y and write the first system as 

	˙ݕ = ,ݕ)ܨ	 (ߙ 	= 	ߙ	 ଶݕ	+ 	+ ,ݕ)߰	  (3)                                          ,(ߙ

where ψ = O(yଷ) is a smooth functions of (y,α) near (0, 0). Consider  the equilibrium 

manifold of (2.2.3) near the origin (0, 0) of the (y,α)-plane,ܯ	 = 	 ,ݕ)} (ߙ ∶ ,ݕ)ܨ	 (ߙ 	=

	ߙ	 ଶݕ	+ 	+ ,ݕ)߰	 ,0)ܨ The curve M passes through the origin.{0 = (ߙ 0) 	= 	0. By the 

Implicit Function Theorem (since 0)ߙܨ, 0) 	= 	1),it can be locally parameterized by y: 

	ܯ = 	 ,ݕ)} ,(ߙ 	ߙ =  ,{(ݕ)݃	

where g is smooth and defined for small |ݕ|. Moreover, 

(ݕ)݃ 	= ଶݕ−	 	+ 	(ଷݕ)ܱ	

Thus,for any sufficiently small ߙ < 	0,there are two equilibria of (3) near the origin in 

 yଵ(α),which are close to the equilibria of (1),i.e., xଵ(α) = +√−∝and xଶ(α)	and (ߙ)ଵݕ ,(3)

= −√−∝,for the same parameter value . fig 9 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.3 Fold bifurcation for the perturbed system. 

Step 2 (Homeomorphism construction). For small |ߙ|,construct a parameter- dependent 

map y = hα(x) as following. For ߙ ≥ 	0 take the identity map ℎ∝(ݔ) 	= ߙ For .ݔ	 < 	0 
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take a linear transformation ℎ∝(x) =	ܽ(ߙ) 	+  x, where the coefficients a, b are(ߙ)ܾ	

uniquely determined by the conditions 

h∝(ݔ௝(ߙ)) = y୨(α), j = 1, 2,                                                     (4) 

 The constructed map h∝ :Rଵ→Rଵ is a homeomorphism mapping orbits of   x˙ = α + xଶ≡ 

f(x, α). (3) near the origin into the corresponding orbits of (3), preserving the direction of 

time. Although it is not required in the study for the homeomorphism h∝to depend 

continuously on α,this property holds here, since hα tends to the identity map as 

negative  

α→ 0. 

Theorem 2.2.1 (Stability Conditions). Let ݂	and ݂′ be continuous. The equation 

	′ݕ = 	ݕ	has a sink at(ݕ)݂	 = (଴ݕ)݂	଴ providedݕ 	= 0	 and ݂′	(ݕ଴) 	< 	0. An equilibrium 

	ݕ = (ଵݕ)݂	ଵis a sourceprovidedݕ	 	= 	0 and ݂′	(ݕଵ) 	> 	0. There is no test when ݂′	is 

zero at an equilibrium. 

Equilibria.[5] 

ݔ̇					ݐ݈݁ 	= …	(ݔ)݂	 . .																																																					(5)	

where x is the variable subject to change. Note, that when x depends on time t, we call 

Equation (1) an autonomous system If we know the value of x at time t = 0, we have an 

initial value problem 

ݔ̇ 	= ,	(ݔ)݂	 (0)ݔ 	= 	 ଴ݔ 	…																																																			(6) 

 where x0 is the known value. When we plot the change in ݔ	during time we have an 

orbit  .All orbits together with the direction of arrows gives a phase portrait. It is 

possible that for	ݐ	 → ∞ all orbits converge to a single value of x, denoted as ݔ∗. We call 

this value a stable equilibrium of Eqn. (5). Equilibria can also be unstable; orbits then go 

into the direction away from x∗. Of course, when time is reversed the equilibrium can be 

perceived as stable again. To find an equilibrium all one has to do is set Eqn. (5) equal to 

zero and solve the resulting equation. To investigate the stability of the found equilibria 

linearization is needed, i.e. we need to differentiate the function. Now, if ݂′(ݔ) 	< 	0, 

the equilibrium is stable. Vice versa, if f′(ݔ) 	> 	0 the equilibrium is unstable. If 

(ݔ)′݂ 	= 	0 we cannot sayanything about the equilibrium at this point.[5] 
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Now consider a dynamical system that depends on parameters. In thecontinuous-time 

case we will write it as 

	˙ݔ = ,ݔ)݂	  (6)																																																															,(ߙ

while in the discrete-time case it is written as 

	x → 	f(x, α),																																																															(7)	

where ݔ	 ∈ ܴ௡ and ߙ ∈ ܴ௠  represent phase variables and parameters, respectively. 

Consider the phase portrait of the system. (consider the phase portrait in a parameter-

dependent region ܷ∝ ⊂ ܴ௡.) As the parametersvary,the phase portrait also varies. 

There are two possibilities: either thesystem remains topologically equivalent to the 

original one,or its topology changes. 

Definition 2.2.1. The appearance of a topologically nonequivalent phase portrait under 

variation of parameters is called a bifurcation. 

Thus, a bifurcation is a change of the topological type of the system as its 

parameters pass through a bifurcation (critical) value.  

Example 2.2.1. Consider the following planar system that depends on one parameter: 

ଵݔ̇ 	= ଵݔߙ	 − ଶ	ݔ	 − ଵଶݔ)ଵݔ	 	,(ଵଶݔ	+

ଶݔ̇ 	= ଵݔ 	+ ଶݔߙ − ଵଶݔ)ଶݔ + ଶ	ଶݔ )                                               (8) 

Equivalence and Bifurcations: in polar coordinates (ߩ,  it takes the form (ߠ

	˙ߩ = ߙ)ߩ	 − ,(ଶߩ 	˙ߠ = 	1,                                                   (9)	

and can be integrated explicitly , Since the equations for 

 

 

 

 

 

 

 

α< 0α = 0α> 0 

FIGURE 2.4. Hopf bifurcation. 
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ρ and θ are independent in (2.2.9),we can easily draw phase portraits of the system in a 

fixed neighborhood of the origin, which is obviously the only equilibrium point (see 

Figure 2.4). For α≤ 0,the equilibrium is a stable focus, since ρ˙ < 0 and  ρ(t) → 0,if we 

start from any initial point. On the other hand, if α> 0,we have ρ˙ > 0 for small ρ> 0 (the 

equilibrium becomes an unstable focus),and ρ˙ < 0 for sufficiently large ρ. It is easy to 

see from (2.2.9) that the system has a periodic orbit for any ߙ > 	0 of radius ߩ଴ 	=  ߙ√	

(at ߩ	 = 	˙ߩ  ଴we haveߩ = 	0). Moreover,this periodic orbit is stable,since ߩ˙	 > 	0 inside 

and ߩ˙	 < 	0 outside the cycle. Therefore, ߙ	 = 	0 is a bifurcation parameter value. 

Indeed,a phase portraitwith a limit cycle cannot be deformed by a one-to-one 

transformationinto a phase portrait with only an equilibrium. The presence of a limit 

cycleis said to be a topological invariant. As ߙincreases and crosses zero, wehave a 

bifurcation in system (2.2.8) called the Andronov-Hopf bifurcation.[12] 

It leads to the appearance, from the equilibrium state, of small-amplitude 

periodic oscillations. As should be clear, an Andronov-Hopf bifurcation can be detected 

if we fix any small neighborhood of the equilibrium. Such bifurcations are called local. 

One can also define local bifurcations in discrete-time systemsas those detectable in any 

small neighborhood of a fixed point. We will often refer to local bifurcations as 

bifurcations of equilibria or fixed points, although we will analyze not just these points 

but the whole phase portraits near the equilibria. Those bifurcations of limit cycles 

which correspond to local bifurcations of associated Poincare maps are called local 

bifurcations of cycles. 

There are also bifurcations that cannot be detected by looking at small 

neighborhoods of equilibrium (fixed) points or cycles. Such bifurcations are called 

global. 

Example 2.2.2. (Heteroclinic bifurcation) Consider the following planar system that 

depends on one parameter: 

ଵݔ̇ = 	1 − ଵଶݔ − 	,ଶݔଵݔߙ

ଶݔ̇ 	= 	 ଶݔଵݔ 	+ 	1)ߙ	 −  (10)																																																ଵଶ).ݔ
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The system has two saddle equilibria  (1)ݔ = (−1, 0), (2)ݔ 	= 	 (1, 0),for all values of α 

(see Figure 2.2). At α = 0 the  

 

 

 

 

 

 

 

 

α > 0α = 0α < 0 

FIGURE 2.5. Heteroclinic bifurcation [12] 

horizontal axis is invariant and, therefore, the saddles are connected by an orbit that is 

asymptotic tone of them for  t → +∞and to the other for t→−∞. Such orbits are called 

heteroclinic. Similarly,an orbit that is asymptotic to the same equilibriumas t → +∞ and 

t→−∞ is called homoclinic. For α = 0, the ݔଵ-axis is nolonger invariant,and the 

connection disappears. This is obviously a globalbifurcation. To detect this bifurcation 

we must fix a region U covering bothsaddles.  

There are global bifurcations in which certain local bifurcations are involved .In 

such cases, looking at the local bifurcation provides only partial information on the 

behavior of the system. The following example illustrates this possibility. 

Example 2.1.3. (Saddle-node homoclinic bifurcation) Let us analyze the following system 

on the plane:[12] 

ଵݔ̇ 	= 	ଵ(1ݔ	 − ଵଶݔ − (ଵଶݔ 	− 	ଶ(1ݔ	 + 	ߙ	 	,(ଵݔ	+

ଶݔ̇ = 	ଵ(1ݔ	 + 	ߙ	 + +	(ଵݔ	 	ଶ(1ݔ	 − ଵଶݔ	 −  ଶଶ),                             (11)ݔ	

where α is a parameter. In polar coordinates (ρ, θ) system (9) takes the form ̇ߩ 	=

	1)ߩ	 − 	,(ଶߩ

ߠ̇ 	= 	1 + 	ߙ + 	(12)																																															.ߠ	ݏ݋ܿ	ߩ	



35 
 

Fix a thin annulus U around the unit circle {(ߩ, (ߠ ∶ 	ߩ	 = 	1}. At ߙ = 	0, there is a no 

hyperbolic equilibrium point of system (2.2.10) in the annulus:			ݔ଴ = 	 ,଴ߩ) (଴ߠ 	=

	(1, ଵߣ It has eigenvalues .(see Figure 2.3)(ߨ 	= 	0, ଶߣ 	= 	−2 For small positive values of 

α the equilibrium disappears, while for small negative α it splits into a saddle and a node 

(this bifurcation is called a saddlenodeor fold bifurcation[12]	

 

 

 

 

 

 

 

α < 0 α = 0 α > 0 

FIGURE 2.6. Saddle-node homoclinic bifurcation 

Local Bifurcation Theorem: In scientific fields as diverse as fluid mechanics, electronics, 

chemistry and theoretical ecology, there is an application of what is referred to as 

bifurcation analysis; the analysis of a system of ordinary differential equations (ODE’s) 

under parameter variation. Performing a local bifurcation analysis is often a powerful 

way to analysis the properties of such systems, since it predicts what kind of behavior 

(system is in equilibrium, or there is cycling) occurs where in parameter space. With 

local bifurcations linearization in state space at the critical point of the parameter space 

provides sufficient information..[7] 

In this chapter we formulate conditions defining the simplest bifurcationsof 

equilibrium in n-dimensional continuous-time systems: the fold and the Hopf 

bifurcations. Then we study these bifurcations in the lowest possible dimensions: the 

fold bifurcation for scalar systems and the Hopf bifurcation for planar systems.[6] 
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Section (2.3): Simplest bifurcation conditions: 

Consider a continuous-time system depending on a parameter 

ᇱݔ 	= ,ݔ)݂	 ,(ߙ ݔ ∈ ܴ௡ , ߙ ∈ ܴଵ,	

where	݂ is smooth with respect to both ݔ and ݐ݁ܮ .ߙ	ݔ	 =  ଴ be aݔ	

hyperbolicequilibrium in the system for ߙ	 =  ଴. under a small parameter variation theߙ

equilibrium moves slightly but remains hyperbolic. Therefore, we can vary the 

parameter further and monitor the equilibrium. It is clear that there are, generically only 

two ways in which the hyperbolicity condition can be violated. Either a simple 

realeigenvalue approaches zero and we haveߣଵ = 	0 (see Figure 2.4(a)),or apair of 

simple complex eigenvalues reaches the imaginary axis and we have λ1,2 =iω0, ω0> 0 (see 

Figure 2.4(b)) for some value of the parameter. It is obvious (and can be rigorously 

formalized) that we need more parameters to allocate extra eigenvalues on the 

imaginary axis. Notice that this mightnot be true if the system has some special 

properties, such as a symmetry 

One-Parameter Bifurcations of Equilibrium 

 

 

 

 

 

 

 

 

FIGURE 2.7 Codim 1 critical cases. 

Definition 2.3.1 The bifurcation associated with the appearance of λ1 = 0is called a fold 

(or tangent) bifurcation. 

Remark: This bifurcation has a lot of other names, including limit point, saddle 

nodebifurcation, and turning point.  

λ1 

λ2 

λ1 

a 

b 
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Definition 2.3.2 The bifurcation corresponding to the presence of ଵ,ଶ = ±		݅߱଴, ߱଴ >

	0, is called a Hopf (or Andronov-Hopf) bifurcation. 

Notice that the tangent bifurcation is possible if n ≥ 1,but for the Hop bifurcation 

we need n ≥ 2.[6] 

Definition 2.3.3. The appearance of a topologically nonequivalent phaseportrait under 

variation of parameters is called a bifurcation. 

Thus, a bifurcation is a change of the topological type of the system as itsparameters 

pass through a bifurcation (critical) value. [6]. 

Saddle Node Bifurcation: We begin with the Saddle Node bifurcation (also called the 

blue sky bifurcation) corresponding to the creation and destruction of fixed points. The 

normal form for this type of bifurcation is given by the exampleݔᇱ 	= 	ݎ	 +  ଶݔ

The three cases of	ݎ	 < 	ݎ ,0	 = 	0	and ݎ	 > 	0 give very different structure for 

the solutions. 

 

 

 

 

 

 

	ݎ < 	ݎ0	 = 	ݎ	0	 > 	0 

Figure 2.8 

We observe that there is a bifurcation at ݎ = 0. For ݎ < 0 there are two fixed points 

given ܾݕ	ݔ	 = 	ݔ	 The equilibrium .ݎ−√±	 =  is stable, i.e., solutions beginning ݎ−√−	

near this equilibrium converge to it as time increases. Further, initial conditions near 

	ݎ divergefrom it.At				ݎ−√ = 	0 there is a single fixed point at ݔ	 = 	0 and initial 

conditions less than zero givesolutions that converge to zero while positive initial 

conditions give solutions that increase without bound. 

Finally if ݎ	 > 	0 there are no fixed points at all. For any initial condition solutions 

increasewithout bound.[6] 
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There are several ways we depict this type of bifurcation one of  which is the so 

called bifurcation diagram 

 

 

 

 

 

 

 

 

Figure 2.9 

Note that if instead we considerݔ଴ 	= 	ݎ	 −  ଶ the the so-called phase line can be drawnݔ

as 

 

 

 

 

Figure 2.10 

We return now to a general discussion of bifurcations in a parameter-dependent system 

(1) (or (2)). Take some value ߙ	 =  ଴ and considera maximal connected parameter setߙ	

(called a stratum) containing ݔ଴ andcomposed by those points for which the system has 

a phase portrait that is topologically equivalent to that at ߙ଴. Taking all such strata in 

the parameter space ܴ௠, we obtain the parametric portrait of the system. For example, 

system (5) exhibiting the Andronov-Hopf bifurcation has a parametric portrait with two 

strata: {ߙ ≤ 	0} and {α> 0}. In system (7) there are three strata: {ߙ < 	ߙ} ,{0	 = 	0},and 

ߙ} > 	0}. Notice, however, that the phase portrait of figure (2.1) for ߙ < 	0 is 

topologically equivalent to that for ߙ > 	0.  The parametric portrait together with its 

characteristic phase portraits constitute a bifurcation diagram. 



39 
 

Definition 2.3.5. A bifurcation diagram of the dynamical system is a stratification of its 

parameter space induced by the topological equivalence, together with representative 

phase portraits for each stratum. 

It is desirable to obtain the bifurcation diagram as a result of the qualitative 

analysis of a given dynamical system. It classifies in a very condensed way all possible 

modes of behavior of the system and transitions between them (bifurcations) under 

parameter variations. Note that the bifurcation diagram depends, in general, on the 

region of phase space considered. 

Remark: If a dynamical system has a one- or two-dimensional phase space and depends 

on only one parameter, its bifurcation diagram can be visualized in the direct product of 

the phase and parameter spaces, ܴଵ,ଶ × ܴଵ with the phase portraits represented by 

one- or two-dimensional slices α = const.Consider,for example,a scalar system [6] 

̇	ݔ = 	ݔߙ	 − ,ଷݔ 	ݔ ∈ ܴଵ, ߙ ∈ ܴଵ 

̇	ݔ =0, simply ݔଵ,ଶ 	= ଴ݔ This system has an equilibrium ߙ√∓	 	= 	0 for all α. This 

equilibrium is stablefor ߙ < 	0 and unstable for ߙ > 	0 (α is the eigenvalue of this 

equilibrium). For ߙ > 	0,there are two extra equilibria branching from the origin 

(namely, ݔଵ,ଶ 	=  which are stable. This bifurcation is often called a (ߙ√∓	

pitchforkbifurcation,the reason for which becomes immediately clear if one has a look 

at the bifurcation diagram of the system presented in (ݔ,  .space(see Figure 2.11)-(ߙ

Notice that the system demonstrating the pitchfork bifurcation is invariant under the 

transformation  

	ݔ →  .ݔ−

 

 

 

 

 

Figure 2.11 
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In the simplest cases, the parametric portrait is composed by a finite number of regions 

in ܴ௠. Inside each region the phase portrait is topologicallyequivalent. These regions 

are separated by bifurcation boundaries, which are smooth submanifolds in ܴ௠(i.e., 

curves,surfaces). The boundaries can intersect, or meet. These intersections subdivide 

the boundaries in to subregions, and so forth. A bifurcation boundary is defined by 

specifying phase object (equilibrium, cycle, etc.) and some bifurcation conditions 

determining the type of its bifurcation (Hopf, fold, etc.). For example, the Andronov-

Hopf bifurcation of an equilibrium is characterized by one bifurcation condition namely 

,the presence of a purely imaginary pair of eigenvalues of the Jacobian matrix evaluated 

at this equilibrium ܴ݁	ߣଵ,ଶ = 	0.When a boundary is crossed, the bifurcation occurs. 

Example 2.3.1 (Saddle fixed points ݅݊	ܴଶ) Suppose in ݔ଴ 	= 	0 is a fixed point of a two-

dimensional discrete-time system (now ݊	 = 	2). Assume that݊ି 	= 	 ݊ା 	= 	1,so that 

there is one (real) multiplier ߤଵoutside the unit circle (|ߤଵ| 	> 	1) and one (real) 

multiplierߤଶ inside the unit circle(|ߤଶ| 	< 	1). In our case,there are two invariant 

manifolds passing throughthe fixed point,namely the one-dimensional manifoldWୱ(x଴) 

formed byorbits converging to ݔ଴ under iterations of f,and the one-dimensional 

manifoldܹ௨(ݔ଴) formed by orbits tending to ݔ଴ underiterations of fିଵ. Recallthat the 

orbits of a discrete-time system are sequences of points. All orbitsnot belonging to the 

aforementioned manifolds pass near the fixed pointand eventually leave its 

neighborhood in both “time” directions. Figure 2.9 shows two types of saddles in ܴଶ. In 

the case (a) of positivemultipliers,0	 < ଶߤ < 	1	 <  ଵ,an orbit starting at a point onߤ

ܹ௦(ݔ଴)converges to ݔ଴ monotonously. Thus,the stable manifold ܹ௦(ݔ଴) is formedby 

two invariant branches, ܹ௦
ଵ,ଶ(ݔ଴),separated by ݔ଴. The same can besaid about the 

unstable manifold ܹ௨(ݔ଴) upon replacing f by its inverse. 

The restriction of the map onto both manifolds preserves orientation. If the 

multipliers are negative (case (b)figure 4), ߤଵ < −1	 < ଶߤ < 	0,the orbits on the 

manifolds “jump” between the two components ܹ௦,௨
ଵ,ଶseparated by ݔ଴. The map 

reverses orientation in both manifolds. The branches ܹ௦,௨
ଵ,ଶare invariant with respect 

to the second iterate݂ଶ of the map.[6] 
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FIGURE 2.12. Shows Invariant manifolds of saddle fixed points on the plane: (a) 

positive multipliers; (b) negative multipliers 
 

Definition 2.3.6. The codimension of a bifurcation in system (2.2.3) or (2.2.5) is the 

difference between the dimension of the parameter space and the dimension of the 

corresponding bifurcation boundary. Equivalently, the codimension (codim for short) is 

the number of independent conditions determining the bifurcation. This is the most 

practical definition of the codimension. It makes it clear that the codimension of a 

certain bifurcation is the same in all generic systems depending on a sufficient number 

of parameters. 

Remark: The bifurcation diagram of even a simple continuous-time system in a bounded 

region on the plane can be composed by an infinite number of strata. The situation 
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becomes more involved for multidimensional continuous-time systems (with n > 3). In 

such systems the bifurcation values can be dense in some parameter regions and the 

parametric portrait can have a Cantor (fractal) structure with certain patterns repeated 

on smaller and smaller scales to infinity. Clearly, the task of fully investigating such a 

bifurcation diagram is practically impossible. Nevertheless, even partial knowledge of 

the bifurcation diagram provides important information about the behavior of the 

system being studied.[6] 
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Chapter 3 

Centre Manifold  
 

Center manifolds theory is of fundamental importance in the study of nonlinear 

dynamical systems when analyzing bifurcations of a given type. In fact, this theory 

allows us to reduce the study of a differential equation with delay near a non-hyperbolic 

equilibrium point to that of an ordinary differential equation on a finite-dimensional 

invariant manifold. 

One of the most useful non-linear methods to reduce systems at near-

equilibrium point is the centre manifold approach [10]. This approach assumes that then 

on-linear dynamical system at near-equilibrium point is governed by the dynamics on 

the centre manifold when certain eigenvalues have zero real parts (and all other 

eigenvalues have negative real parts). It may be noted that the centre manifold appears 

to be an extremely powerful method due to the fact that if m eigenvalues of the n 

eigenvalues of the non-linear system have zero real parts, then the number of equations 

for the non-linear system is reduced to( n − m )by applying the centre manifold 

approach. However, this method can only be used for model reduction when the system 

has an eigenvalue with zero real parts at an equilibrium point. Usually, the centre 

manifold has complicated non-linear terms. In this case, the non-linear system can be 

simplified by using further non-linear coordinate transformations [10]. The normal form 

theory is often applied after the centre manifold approach. The main objective of the 

method of normal forms is to obtain the simplest possible non-linear system by the use 

of successive non-linear co-ordinate transformations [10]. At the end of these non-linear 

transformations, only the resonant terms are retained: they cannot be eliminated and 

are essential to the non-linear system dynamics.(we will discus Normal forms in chapter 

four).  

Section (3.1): Linear systems [4]: 

Consider the following system of linear differential equations: 

	˙ݔ =  ܴ௡.                                                          (1)	ݔ				,ݔܣ	
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where ܣ	ܴ௡×௡. The global behavior of equation (1) and the stability ofthe zero 

solution are completely determined by the eigenvalues of A, let (ܣ)ߪdenote the 

spectrum of A(the value of all eigenvalues of ). Then we have 

σ(A) 	= σ௦(A)	σ௨(A)	σ௖(A), where 

σ௦(A) 	= 	 {σ(A)		Re	 < 	0}	

(ܣ)௨ߪ 	= 	 {	(ܣ)ߪ		Re	 > 	0}	

σ௖(A) 	= 	 {	σA)		Re	 = 	0}	

 let the corresponding (generalized) eigenspaces be denotednow suppose that we add 

nonlinear terms to Eq (1) 

	˙ݔ = 	ݔ()ܣ	 + ,(,ݔ)݂	 ܴ௨	ݔ ,			ܴ௞                                              (2) 

where ݂(ݔ, )	ܥ௞, ݇	 ≥ 	2, and ݂(0, 0) 	= ,0)݂ܦ	 0) 	= 	0. Then 0 is still a solutionto 

equation (2). We now must ask how the behavior of the nonlinear system (2) is related 

to that of the linear system (1). The answer is easy if the system is hyperbolic 

(ܣ)௖ߪ 	= Ø ;), the phase portraits are topologically equivalent by theGr¨obman-

Hartman theorem. The answer is not so simple if ߪ௖ܣ	Ø, This isthe topic of the center 

manifold (CM) theory.[4] 

In the non-hyperbolic case there exists invariant manifolds Ms, Mu, and 

Mcanalogous to the generalized eigenspaces.Since we are usually interested in the 

stability of the zero solution, it willbe assumed that ߪ௨ܣ	 = Ø	;. While this assumption is 

notnecessary for theformulation of the center manifold theorem, ߪ௨ܣ	Ø; guarantees 

that the zerosolution is unstable.It can be useful to include this case since an 

unstablesolution can undergo a secondary bifurcation and become stable. 

We write ܴ௡ 	= ௖ܧ  ௨ and rewrite equation (2) asܧ	⨁	

	˙ݔ = 	ݔܣ	 + ,ݔ)݂	  (ݕ

	˙ݕ = 	ݕܤ	 + ,ݔ)݃	  (3)                                                        (ݕ

where ܣߪ	 = 	ܤߪ and ܣ௖ߪ	 = ,Note that we still have ݂(0 .ܤ௦ߪ 0) 	= 	݃(0, 0) 	= 	0 and 

,0)݂ܦ 0) 	= ,0)݃ܦ	 0) 	= 	0. The re-use of the matrix A is clearlyan abuse of notation, 

but its use should be clear in context. We assume ܣ	ܴ௖×௖and ܤ	ܴ௦×௦where 

	݊	 = 	ܿ +  .We can now state the center manifold theorem [4] .ݏ
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Theorem 3.1.1: (Center Manifold Theorem). Given system (3) with the zero solution and 

	ܣߪ = 	ܤߪ and	ܣ௖ߪ	 =  then there exists (locally) aninvariant center manifold ,ܤ௦ߪ	

 ௖(0) that can be represented asܯ

௖(0)ܯ = ,ݔ)} 	ݕ	|	(ݕ = 	ℎ(ݔ), ℎ(0) 	= ℎ(0)ܦ	 	= 	0, |ݔ| 	<  {ߪ	

for some sufficiently small ߪ. Moreover, ܯ௖(0)	ܥ௞, same as ݂, ݃.The notation 

 is used to emphasize the local nature of the center manifold.From now on it will	௖(0)ܯ

simply be referred to as ܯ௖.A few notes on the CM theorem:[4] 

1. With ݕ	 = 	ℎ(ݔ), we can reduction of the dynamics of (2) to the CM isgiven by:    

	˙ݑ = 	ݑܣ	 + ,ݑ)݂	 ℎ(ݑ)). 

The use of the variable u is to emphasize the fact that the CM is in generalnot a linear 

subspace. Use of the variable x would not make this specific. 

2. The condition that ℎ(0) 	= ℎ(0)ܦ	 	= 	0	implies that the CM is tangent toܿܧ at the 

origin. 

3. The CM is ܥ௞ whenever ݂, ݃	ܥ௞with the exception of some cases when݇	 = 	∞	,this 

is due to the local nature of the CM. as݇	∞, theneighborhood on which the CM is 

defined can shrink such that a C1manifold does not exist. 

4. The center manifold is not unique! However, in practice this non-uniquenessdoesn’t 

really pose a problem. 

5. The CM has similar properties to that of ܧ௖:	ܯ௖ must contain all solutionscontained in 

a small neighborhood of zero, including fixed points,small periodic solutions, homo- and 

hetero-clinic orbits.let ݔ଴be a point of the intersection. By Definition,it belongs to both 

invariant manifolds. Therefore, the orbit starting at this point converges to the saddle 

point ݔ଴under repeated iteration of either ݂ or݂ିଵ ∶ 	 ݂௞(ݔ଴) 	→ 	݇	 ଴ asݔ → ∓∞. Each 

point of this orbit is a point of intersection ofܹ௦(ݔ଴) and	ܹ௨(ݔ଴). This infinite number 

of intersections forces the manifolds to “oscillate” in a complex manner Near ݔ଴,as 

sketched in Figure 3.1(b). The resulting “web” is called the Poincare homoclinic 

structure. 
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The orbit starting atݔ଴is said to be homoclinic to ݔ଴. It is the presence of the homoclinic 

structure that can make the intersection of ܹ௦  with any neighborhood of the	(଴ݔ)ݑ,

saddle ݔ଴highly  nontrivial.[4] 

 

 

 

 

 

Y=h(x) is (CM) 

  

Figure 3.2  [4] 

Theorem (Local Center Manifold Theorem) 3.1.2: Let ݂	ܥ௥(ܧ), where ܧ is an open 

subset of Rn containingthe origin and ݎ ≥ 1. Suppose that ݂(0) = 0	and that (0)݂ܦ	has 

c eigenvalues with zero real part, andݏ = 	݊ − 	ܿ	eigenvalues with negative real part. 

The system (1) then can be written in diagonal form 

	′ݔ = 	ݔܥ	 + ,ݔ)ܨ	  (ݕ

	′ݕ = 	ݕܲ	 + ,ݔ)ܩ	  (4)                                                          (ݕ

where (ݔ, ܴ௖ܴ௦	(ݕ ,  is a square matrix with c eigenvalues with zero real parts, P is a ܥ

square matrix with s eigenvalues with negative real parts, and (0)ܨ = (0)ܩ =

(0)ܨܦ,0 = (0)ܩܦ = 0; furthermore, there exists 	ߪ > 0	and a function ℎ	ܥ௥(ܰ(0)ߪ),

ℎ(0)	0, ℎ(0)ܦ = 0 defines the local center manifold Wୡ(0):= 	(x; 	y)RୡRୱy	 =

	h(x)	forx <  and satisfiesߪ	

,ݔ)ܨ	ݔܥ]	(ݔ)ℎܦ ℎ(ݔ))] = ܲ. ℎ(ݔ) + ,ݔ)ܩ ℎ(ݔ))                                  (5) 

for ݔ <  and the flow on the center manifold ܹ௖(0) is defined by the system of ;ߪ	

differential equations 

′ݔ = 	ݔܥ	 + ,ݔ)ܨ	 ℎ(ݔ))                                                         (6) 

for all ݔ	ܴ௖  with x <  .ߪ	

This theorem can be used to determine the flow near nonhyperbolic equilibrium points.  
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Section (3.2): The strategy: 

To do this: 

(1) Convert the equation (1) in diagonal form equation (4) 

(2) Use a series expansion for the components of h(x) (up to the degree ܿof 

accuracy we need, providedthat ݎ is sufficiently large) 

(3) Determine the components of the expansion of h(x)(without constants a linear 

terms in order to satisfy) using (5) 

(4) Substitute this approximate expression of h(x) into (6) to determine the flow.[3] 

To solve equation (5), equate the coefficient of different term in the polynomials 

on both sides and we obtain a system of algebraic equations for the coefficients of the 

polynomial. By solving these equations, we obtainan approximation to the centre 

manifold ݕ	 = 	ℎ	(ݔ). After h is identified, the reduced order structural dynamicmodel, 

which is only a function of ݔ′ , is given byx′ = 	Cx	 + 	F(x, h(x))[10] 

Example 3.1.1 [11]: Consider the systemẋ 	= 	axଶ + 	xb୘ 	y	 + 	cxଷ	+	. . . , x	 ∈ 	Rଵ, 

	ẏ 	= 	By	 + 	dxଶ	+	. . . , y ∈ R୫. Where B is a matrix without imaginary eigenvalues. The 

Taylor expansion for center manifold should have form     

y	 = h(x) = σxଶ 	+ 	O(xଷ) 

with yet unknown vector coefficient ߪ.ẏ = 2σxẋ + O(xସ) 

Substitute  this ̇ݕ into the second equation of the system, we get 

2σx(axଶ + xb୘y + cxଷ+	. . . )+	. . . = B(σxଶ + O(xଷ)) + 	dxଶ	+	..	). 

Equating terms of order	ݔଶ we get ߪܤ	 + 	݀	 = 	0. Thus ߪ =  .ଵ݀ିܤ−	

Reduced onto the center manifold equation is 

̇	ݔ	 = ଶݔܽ	 	+ 	(ܿ	 − ଷݔ(݀ܤܾܶ	 	+  .(ସݔ)ܱ	

Example 3.1.2: Consider an ODĖݔ 	= 	ݔܣ	 + ,(ଶ|ݔ|)ܱ	 	ݔ ∈ 	ܴ௡ with the right hand side 

of smoothness ܥ௥ 	ݎ ,  < 	1. Assume that the matrix A has݊௦ ,݊௨ and݊௖ eigenvalues in 

the left complex half-plane, right complex half-plane and on imaginary axis 

respectively, ݊௦ 	+ 	݊௨ 	+ ݊௖ 		= 	݊. Denote ܶ௦ ,ܶ௨and ܶ௖ the corresponding invariant 

planes of A . (Note: “s” is for “stable”, “u” is for “unstable”, “c” is for “center ”). 
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Local Center Manifolds: 

Hypotheses: 

Let X , Z , Y be (real or complex) Banach spaces such that 

ܼ	 → ܻ	 → ܺ	,	

with continuous embeddings. We consider a differential equation in X of the form 
ௗ௨
ௗ௧
= ݑܮ	 +  (7)                                                         ,(ݑ)ܴ

in which we assume that the linear part ܮ	and the nonlinear part ܴare such that the 

following holds. 

Hypothesis 3.1 We assume that L and R in (7) have the following properties: 

(i)	L	 ∈ 	L(Z	, X	) 

(ii) for some k ≥ 2, there exists a neighborhood V	 ⊂ 	Z of 0 such that R	 ∈ C୩	(V	, Y	)and   

R(0) 	= 	0, DR(0) 	= 	0. 

Hypothesis 3.2 (Linear equation) For any η	 ∈ 	 [0, γ	] and any  

f	 ∈ L஗	(R, Y୦)the linear problem 

ୢ୳౞
ୢ୲

= 	L୦u୦ + 	f	(t),                                                        (8) 

has a unique solution u୦ 	= 	K୦	f	 ∈ L஗	(R, L୦). Furthermore, the linear map Khbelongs 

to L(L஗	(R, Y୦), L஗	(R, Z୦)), and there exists a continuous map C ∶ 	 [0, γ	] → 	R such that 

ห|K୦|หL(L஗	(R, Y୦), L஗	(R, Z୦)) 	≤ L஗. 

Theorem (3.1.3) (Center manifold theorem) Assume that Hypotheses 3.1, 3.2, and 

spectrum of A hold. Then there exists a mapΨ	 ∈ L୩	(E଴, Z୦), with 

Ψ(0) 	= 	0, DΨ(0) 	= 	0,                                                    (9) 

and a neighborhood O of 0 in Z such that the manifold 

M଴ = 	{u଴ + Ψ(u଴), u଴ ∈ E଴} 	⊂ 	Z                                          (10) 

has the following properties: 

(i) M଴ is locally invariant, i.e., if u is a solution of (7) satisfying u(0) 	∈ M଴ ∩ O 

and u(t) ∈ O for all t ∈ [0,T], then u(t) ∈M0 for all t ∈ [0,T]. 

(ii)M଴ contains the set of bounded solutions of (7) staying in O for all t ∈ R, i.e., if u is a 

solution of (3.1.7) satisfying u(t) ∈ O for all t ∈ R, then u(0) ∈M଴. 
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Proof of theorem (3.1.3) (Center Manifolds) 

Consider system (7), and assume that Hypotheses 3.1, 3.2, and spectrum of A 

hold. For any u ∈ Z we set 

u	 = 	u଴ + uh	 ∈ 	Z	, u଴ 	= 	P଴u	 ∈ E଴, u୦ 	= 	 P୦u	 ∈ 	Z୦, 

and rewrite the system (7) as 

du଴
ݐ݀ − L଴u଴ 	= 	 P଴R(u)	

ୢ୳౞
ௗ௧

− L୦u୦ 	= 	 P୦R(u). (B.1) 

Modified System 

We take a cut-off function χ ∶ E଴ → R of class ܥ such that 

(0ݑ)߯ 	= ൜	1	݂ݎ݋|
|u଴|| 	≤ 	1

0	for	||u଴|| 	≥ 	2
�	

χ(u଴) 	∈ 	 [0,1] for all u଴ ∈ E଴. 

Since E଴ is finite-dimensional such a function always exists. We use this function to 

modify the nonlinear terms R(u) outside a neighborhood of the origin, in order to be 

able to control the norm of the u0-component of the system (B.1) in the space of 

exponentially growing functions L஗ (R,E଴). We set 

Rக	(u) =߯(୳బ
க
)R(u) for all ε	 ∈ 	 (0, ε଴), 

where ε଴ is chosen such that 

൛ݑ	 = ଴ݑ	 + ,	௛ݑ ଴ܧ||଴ݑ|| ≤ ,଴ߝ2	 ห|ݑ௛|หܼ௛ ≤ ଴ൟߝ ⊂ 	ܸ , 

with V the neighborhood of the origin in Hypothesis 3.1. Then Rக is well definedin the 

closed set 

Oக 	= 	 E଴ × Bக	(Z୦), Bக (ܼ௛) = {ݑ௛∈ܼ௛ ,  ห|ݑ௛|ห≤ε }, 

and satisfies 

Rக(u) 	= 	R(u)for all u	 ∈ Oக , ||u଴||≤ε . 

Consider the modified system 

du଴
ݐ݀ − L଴u଴ 	= 	 P଴Rக(u)	

ୢ୳౞
ௗ௧

− L୦u୦ 	= 	 P୦Rக(u). (B.2) 

The nonlinear terms in this system now satisfy 
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(	ߝ)଴ߜ ≝ ௨∈୓಍(ห|P଴R݌ݑݏ	
க(ݑ)|ห)ܧ଴ ,||P୦Rக(ݑ)|| ௛ܻ) 	=  (	ଶߝ)ܱ	

P଴Rݑܦ||)௨∈୓಍݌ݑݏ	(	ߝ)ଵߜ
க(ݑ)||ܮ(ܼ	,  ,(଴ܧ

,	ܼ)ܮ||(ݑ)	P୦Rகݑܦ|| ܻℎ)|| 	=  (B.3) .(	ߝ)ܱ	

We prove below the existence of a “global” center manifold for this system which,due 

to the fact that Rக and R coincide for ||u଴||ܧ଴ ≤ 	ε , will give the local centermanifold for 

the system (7) in the Theorem). 

Integral Formulation: 

We replace system (B.2) by the integral formulation 

u଴(ݐ) = 	ܵ଴,ఌ ,ݑ)	 ,ݐ u଴(0)) 	≝ 	 ݁௅బ௧u଴(0) + න݁௅బ(௧ି௦)P଴Rக	((ݏ)ݑ)݀ݏ
௧

଴

	

u୦ 	= 	 S୦,க	(u ≝ K୦P଴Rக	(u). (B.4) 

The first equation in this system is obtained by the variation of constant formula from 

the first equation in (B.1). Here u଴(0) 	∈ E଴is arbitrary, and the exponential ݁௅బ௧ exists 

since E଴ is finite-dimensional. The second equation in (B.4) is obtained from Hypothesis 

3.2, used with f	 ∈ L஗	(R, y୦).. It is now straightforward to checkthat this integral system 

is equivalent to (B.2) for 

u	 = 	 (u଴, u୦) 	∈ N஗,க ≝	L஗	(R, E଴) × L஗(R, B	க(Z୦)), 

with 0	 < 	ߟ ≤ γ and ε	 ∈ 	 (0, ,(R	଴). Notice that Nη,ε is a closed subspace ofL஗ߝ Z) so 

that it is complete when equipped with the norm ofL஗	(R, Z). 

Fixed Point Argument: 

Our aim now is to show that (B.4) has a unique solution u = (u଴, u୦) 	∈ N஗,க,for any 

u଴(0) 	∈ E଴. For this we use a fixed point argument for the map 

Sக	(୳,୳బ(଴)) 	≝ 	 (S଴,க	൫୳,୳బ(଴)൯S୦,க	(୳))	, Sக	(୳బ(଴)) ∶ N	஗,க → N	஗,க 

We show that Sக	(୳బ(଴)) is well defined and that it is a contraction with respect to the 

norm ofL஗	(R, Z). for ߟ	 ∈ 	 (0,  with γ the constant in Hypothesis 3.2, and εsufficiently ,[	ߛ

small. 

First, Hypothesis 2.4 implies that for any δ	 > 	0 there is a constant cδ	 > 	0 such 

that 
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||݁௅బ௧||ܮ(ܧ଴) 	≤ 	ݐ	݈݈ܽ	ݎ݋݂	||௧	ఋ݁	ߜܿ	 ∈ 	ܴ. (B.5) 

Using this equality with δ =η, we find 

sup୲∈ୖ(eି஗|୲|ห|݁௅బ௧u଴(0)|หܧ଴) 	≤ L஗||u଴(0)||ܧ଴ , 

which shows that the first term in S଴,க	൫୳,୳బ(଴)൯belongs to L஗	(R, E଴), for any η	 > 	0. 

Next, for any u	 ∈ N஗,க , we have the estimates 

ห|P଴Rக(ݑ)|หE଴ ≤ δ଴(ε	),						|หP୦Rக൫u(t)൯ห|Y୦ ≤ δ଴(ε	), 

which together with (B.5) for δ	 = η/2, and Hypothesis 3.2 imply 

sup୲∈ୖ(eି஗|୲|||න ݁௅బ(௧ି௦)P଴Rக൫(ݏ)ݑ൯݀ݏ
௧

଴
	 ||୉బ) ≤ cஔδ଴(ε	)sup୲∈ୖ(eି஗|୲|න eஔ	|୲ିୱ|ds

௧

଴

≤
2cη/2δ0(ε	)

η 	, 

and 

||K୦P୦Rக	(u)||L஗	(R, Z௛) 	≤ C(0)δ଴(ε	). 

This shows that Sக	(୳బ(଴)) ∈ N஗,க, providedC(0)δ଴(ε	)) 	≤  which holds for εsufficiently ,	ߝ

small since δ଴(ε	) 	= 	O(εଶ	). 

Now we show that the map Sக	(୳బ(଴)) is a contraction with respect to the norm 

ofL஗	(R, Z)	 for ߟ	 ∈ 	 (0,  and sufficiently small ε . From equality (B.3) we find that [	ߛ

ห|ܴఌ(ݑଵ) − ܴఌ(ݑଶ)|หL஗(R, y) = sup୲∈ୖ(eି஗|୲| ቚหRக൫ݑଵ(t)൯ − Rக൫ݑଶ(t)൯หቚ Y) 

																							≤ 	δଵ(ε	)sup୲∈ୖ൫eି஗|୲|ห|uଵ(t) − uଶ(t)|หZ൯ 

≤ 	δଵ(ε)||uଵ − uଶ||L஗	(R, Z)	

for any ݑଵ,ݑଶ∈N஗,க. Now, using (B.5) with δ =η/2 we obtain 

||S଴,க	(୳భ,୳బ(଴)) − S଴,க	൫୳మ,୳బ(଴)൯||L஗	(R,  (଴ܧ

≤ cஔ	δଵ(ε)sup୲∈ୖ(eି஗|୲|(| ∫ e஗|ୱ|ାஔ	|୲ିୱ|ds|)௧
଴  ||uଵିuଶ||L஗	(R, Z)) 

																							≤ ଶୡ஗/ଶஔ଴(க	)
஗

	 ||uଵ − uଶ||L஗	(R, Z), 

and using the estimate in Hypothesis 3.2 we find 

||S଴,க	(୳భ) − S଴,க	(୳మ)||L஗	(R, ܼ௛) 

≤C(η)	δଵ(ε)	||uଵ − uଶ||L஗	(R, Z), 

Since 	δଵ(ε) = O(ε ) for any η	 ∈ 	 (0, γ	], we can choose ε small enough such that 
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||S଴,க	(୳భ,୳బ(଴)) − S଴,க	൫୳మ,୳బ(଴)൯||L஗	(R, ܼ) ≤
ଵ
ଶ
||uଵ − uଶ||L஗	(R, Z). 

Consequently, the map ܵఌu଴(0)) is a contraction in the complete metric space N஗,க . 

Applying the fixed point theorem we now have the existence of a unique solution of 

(B.4), 

u	 ≝ 	Φ(u଴(0)) 	∈ N஗,க 	

for any u଴(0) ∈ܧ଴, for any η	 ∈ 	 (0, γ	], and ε sufficiently small. Clearly, this is also a 

solution of (B.2). 

Properties of Φ: Recall that ε is chosen such that 

C(0)δ଴(ε	)) 	≤ 	ε	,
2cη/2δଵ(ε	)

η ≤
1
2 , C(η)δଵ(ε	) 	≤

1
2	

Then the conƟnuity on [0,γ ] of the map η →C(η) in Hypothesis 3.2 implies that for 

anyηො ∈ 	 (0, γ	), we can choose ε > 0 such that these inequalities hold for all  η	 ∈

	[ηො, γ].Consequently, for anyߟ	̂ ∈ 	 (0,  there exists ε > 0 such that the uniquefixed ,(	ߛ

point Φ(u଴(0)) belongs to N஗,கfor any η	 ∈ 	 [ηො, γ]. This property is used later when 

showing that the center manifold is of class C	௞ . 

Next, notice that the map u଴(0) → ܵ	଴,ఌ(ݑ, u଴(0)) is Lipchitz from ܧ଴into  

L஗	(R, ଴) , so that the mapu଴(0)ܧ → ܵ	଴,ఌ(ݑ, u଴(0)) is also Lipchitz. Consequently, Φ is a 

Lipchitz map. In addition, the uniqueness of the fixed point implies that 

Φ(0) 	= 	0.	

Construction of Ψ: We define now the mapΨ ∶ ଴ܧ	 → Z୦in the Theorem, through 

(଴ݑ)ߖ,(0)	଴ݑ) 	≝ ଴ݑ	݈݈ܽ	ݎ݋݂	(0)(଴ݑ)ߔ ∈  ,଴ܧ

i.e., by taking the component inZ୦ of the fixed point Φ(ݑ଴)(0)) at t = 0. Since Φ is a 

Lipchitz map, we have thatΨ is also a Lipchitz map, and since Φ(0) 	= 	0, we have 

Ψ(0) = 0. 

We prove now thatΨ has the properties (i) and (ii) in the theorem. 

First, we show that the manifold 

M஗,க 	= 	 ,	(଴ݑ)ߖ,(0)	଴ݑ)} ଴ݑ ∈  {଴ܧ

is a global invariant manifold for the flow defined by (B.2). We define the shiftoperator 

Γ	ୱthrough 
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(Γ	su)(t) 	= 	u(t	 + s) for all t, s	 ∈ R. 

Since system (B.2) is autonomous, it is equivarient under the actionΓ s for any s ∈R, so 

that if u is a solution of (B.2), then 	Γ	su is also a solution of (B.2). Moreover,Γ	su	 ∈ N஗,க 

when  

u	 ∈ Nη, ε	.	

Consider a solution u of (B.2) with u(0) = {(u଴(0),Ψ(u଴)	(0)) for someݑ଴(0) ∈  ଴. Thenܧ

u = Φ(ݑ଴(0)) ∈ Nη, ε , and since ߁	ݑݏ	 ∈ Nη, ε	is also a solution, from the uniqueness of 

the fixed point we conclude that 

Γ	su	 = Φ(ݑ଴(s)) for all s	 ∈ R. 

Consequently, 

u(s) = (ݑ଴ (s),	Ψ(u଴) (s)) for all s ∈R, 

which shows thatM஗,க is globally invariant under the flow defined by (B.2). Sincethe 

system (B.1) coincides with (B.2) in Oக 	= 	B	க(E଴) × Bக	(Z୦),this proves part (i) of the 

Theorem with M଴ 	= M஗,கand O	 = 	Oக. Indeed, assume that u is a solution of (B.1) such 

that u(0) 	∈ M଴ ∩ O and u(t) 	∈ O for all t	 ∈ [0,T]. 

Then u satisfies (B.2) for all t ∈[0,T], and since u(0) ∈M஗,கand M஗,க  is an invariant 

manifold, we have u(t) 	∈ M஗,க = M଴for all t ∈[0,T]. 

Consider now a solution u of (B.1) which belongs to O	 = 	Oக for all t ∈R. Then 

u	N஗,கand it is also a solution of (B.2). Consequently, u	 = Φ(ݑ଴(0)), so that u(0) 	∈

M஗,க 	= M଴ which proves part (ii) of the Theorem 

Regularity of Ψ: We have proved so far thatΨ is a Lipchitz map. Notice that for this 

proof we have only used the fact that R is of class C	ଵ. It remains to show thatΨ is of 

class C	௞when R is of class C	௞ . For this, it is enough to prove that Φ is of class C	௞ . 

The major difficulty in proving this property comes from the fact that the 

Nemitsky operator 

Rக ∶ 	 L஗	(R, Z) → L஗	(R, y) 

is not continuously differentiable, due to the growth of  

	ݑ ∈ L஗	(R, Z)	ܽݏ	ݐ	 → ±∞.	
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(i)Rக ∶ 	 L஗	(R, Z) → ,(R	ܮ y is continuous for any η	 ≥ 	0 and ζ	 > 	0; 

(ii)Rக ∶ 	 L஗	(R, Z) → ,(R	ܮ y is of class C k for any	0	 ≤ η	 <  .and ζ > 0	݇/	ߞ

We point out that the kth order derivative exists for η	 = 	ζ	/k,	but this derivative is 

continuous only if η	 <  .݇/	ߞ

the integral system (B.4) is written as 

u	 = 	S௨బ(0) + KRக(u),(B.6) 

with S and K linear maps defined by 

(	S௨బ(0)(t) = e୐బ୲ݑ଴(0),	

and 

(Kv)(t) 	= ∫ e୐బ(୲ିୱ)P଴(v(s))ds	
௧
଴ + (K୦P୦(v))(t). 

We already showed that 

S	 ∈ 	L ቀE଴, L஗ෝ(R, E଴)ቁ,			ቚหS୳బ(0)หቚ L஗	(R, E଴) 	≤ C஗ ଶ⁄ ||u଴(0)||E଴, and that KRக ∶

	N஗,க → N஗,க is a contraction for anyη	 ∈ 	 [ηො, γ], when  ηො ∈ (0, γ)and ε is sufficiently 

small. 

The idea is to consider the fixed point u	 = Φ(ݑ଴(0) 	∈ N஗,க⊂L஗	(R, Z) of 

(B.4)found for η	 ∈ 	 [ηො, γ], witĥߟtaken such that  0	 < 	ηෝ <  and to show that the ,݇/	ߛ

map Φ ∶ 	E଴ → L஗	(R, Z	) is of class C௞  for all η	 ∈ 	 (k	ηො, γ], with 

D୮Φ(ݑ଴(0)) 	∈ 	L୮ 	(E଴, L୩	஗ෝ (R, Z	)).	

Here 	L୮ 	(E଴, L୩	஗ෝ (R, Z	)) denotes the Banach space of p-linear continuous maps from E଴ 

into L୩	஗ෝ (R, Z	). Several proofs of this result are available in the literature, all being quite 

long and technical. While we refer to these works for further details, we only point out 

that the derivative Φ(ݑ଴(0))is the fixed point in  L	(E଴, L୩	஗ෝ (R, Z	)) of the linear 

equation 

DΦ(ݑ଴(0)) 	= 	S + KD୳Rக(Φ(ݑ଴(0))DΦ(ݑ଴(0)),	

which may be differentiated up to order k. In particular, this implies thatDP௛Φ(0) = 	0 

and DΨ(0) 	= 	0, and ends the proof of Theorem 3.1.2.[30] 

Theorem 3.1.3 (The center manifold theorem: Pliss-Kelley-Hirsch-Pugh-Shub)In some 

neighborhood ܷ of the origin this ODE has ܥ௥-smooth invariant manifolds ܹ௦  , ܹ௨ and 
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௥ିଵ-smooth invariant manifold ܹ௖ܥ , which are tangent at the origin to the planes ܶ௦ , 

ܶ௨ andܶ௖respectively. Trajectories in the manifolds ܹ௦  and ܹ௨ exponentially fast tend 

to the origin as ݐ	 → +∞ and ݐ → −∞	respectively. Trajectories which remain in ܷ for all 

	ݐ ≥ 	ݐ)	0	 ≤ 0)	tend to ܹ௖  as ݐ	 → 	ݐ)	∞+	 → −∞).ܹ௦  , ܹ௨ andܹ௖are called the 

stable, the unstable and a center manifolds of the equilibrium zero respectively.[11] 

Remarks: Behavior of trajectories on ܹ௖  is determined by nonlinear terms 

 

 

 

 

 

 

 

 

 

Figure 3.3 

1- If the original equation has smoothnessܥஶ or ܥఠ, then ܹ௦and ܹ௨ also have 

smoothness ܥஶ or ܥఠ. However ܹ௖  in general has only a finite smoothness. 

2- If ݊௦ 	= 	0	or ݊௨ 	= 	0	and the original equation has smoothness ܥ௥ , 	ݎ < 	∞	, then 

ܹ௖  has smoothness ܥ௥  .[11] 

Theorem 3.1.4 The smooth system 

	˙ݕ =	∝ ଶݕ	+ 	+  (6)                                                            (ଷݕ)ܱ	

is locally topologically equivalent near the origin to the system 

	˙ݔ =∝  ଶ.                                                                     (7)ݔ	+	

Proof: The proof involves two steps. It is based on the fact that for scalar systems a 

homeomorphism mapping equilibria onto equilibria will automatically map their 

connecting orbits onto each other 

Step 1 (Analysis of equilibria). Write system (6) as 

	˙ݕ = ,ݕ)ܨ	 ∝) =	∝ ଶݕ	+	 	+  (7)                                      		,(∝,ݕ)ଷݕ	
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where   is a smooth function of (ݕ,∝) near (0, 0). Consider the equilibrium manifold of 

(7) near the origin (0, 0) of the (y, _)-plane: 

	ܯ = 	 (∝,ݕ)} ∶ ,ݕ)ܨ	 ∝) 	=∝ ଶݕ	+	 	+ ,ݕ)	ଷݕ	 ∝) 	= 	0}. 

The curve M passes through the origin (F(0, 0) = 0). By the Implicit Function 

Theorem, it can be locally parameterized by y (since 0)∝ܨ, 0) 	= 	1	 ≠ 	0) 

	ܯ = 	 (∝,ݕ)} ∶	∝	= 	,{(ݕ)݃	

where g is smooth and defined for small |y|. Moreover, 

g(y) 	= 	−yଶ 	+ 	O(yଷ).	

Thus, for any sufficiently small ∝	< 	0, there are two equilibria of (3.1.7) near the 

origin,  ∝−√− =(∝)ଵݔ ,.ଶ(∝), which are close to the equilibria of (3.1.6), i.eݕ ଵ(∝) andݕ

and ݔଶ(∝) = 	√−∝, for the same parameter value. 

Step 2 (Homeomorphism construction). For small | ∝ |, construct a parameter-

dependent map ݕ	 = 	ℎ∝(ݔ) as follows. For ∝	≥ 	0 take the identity map   h∝(x) 	= 	x. 

For ∝	< 	0 take a linear transformation 

ℎ∝(ݔ) 	= +	(∝)ܣ	 	,ݔ(∝)ܤ	

where the coefficients A,B are uniquely determined by the conditions ℎ∝(ݔ௝(∝)) 	=

 .௝(∝), j = 1, 2ݕ	

Namely, 

(∝)ܣ 	=
+	(∝)ଶݕ (∝)ଵݕ	

2 	

(∝)ܤ	 	=
−	(∝)ଶݕ (∝)ଵݕ	

2 	

Notice that	ܣ(∝) 	→ 	0 and	ܤ(∝) 	→ 1 as	∝	↑ 	0. The map ℎ(∝) ∶ 	ܴ	 → 	ܴthus, 

constructed is a homeomorphism mapping orbits of (7) near the origin into the 

corresponding orbits of (3.1.8), preserving the direction of time. 

Remarks: 

(1) Although we do not require for the homeomorphismℎ(∝)to depend continuously on 

∝, this property holds here. In particular, ℎ(∝) tends to the identity map ܽݏ	 ∝	↑ 	0. 

(2) The equivalence between y˙	 =∝ −yଶ + O(yଷ)	and ݔ˙	 =	∝  ܿan be				ଶݔ−

established by similar arguments.  
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Theorem 3.1.5 Suppose that a one-dimensional system 

	˙ݔ = ,(∝,ݔ)݂	 	ݔ ∈ 	ܴ, ∝	∈ 	ܴ,                                               (8) 

with smooth f, has at ∝	= 	0 the equilibrium ݔ	 = 	0, and is such that  =	 ௫݂(0, 0) 	= 	0. 

Assume that the following two conditions are satisfied: 

(A.1)	 ௫݂௫(0, 0) 	≠ 	0; 

(A.2) ∝݂(0, 0) 	≠ 	0. 

Then there are invertible smooth coordinate and parameter changes transforming the 

system into 

	˙ݕ = ߚ ± ଶݕ	 	+  (9)                                                      .(ଷݕ)ܱ	

Remark: One can reformulate the statement of the theorem by saying that near the 

origin (8) is locally smoothly conjugate to (9).  

Proof of Theorem 3.1.5: 

Step 0 (Taylor expansion). Write the right-hand side of (8) as݂(ݔ, ∝) = 	 ଴݂(∝) +

	 ଵ݂(∝)ݔ	 +	 ଶ݂(∝)ݔଶ 	+  where ,(ଷݔ)ܱ	

଴݂(0) 	= 	݂(0, 0) 	= 	0, ଵ݂(0) 	= 	 ௫݂(0, 0) 	= 	0,	

ଶ݂(0,0) =
1
2 		 ௫݂௫(0, 0).	

Step 1 (Shift of the coordinate). Perform a linear coordinate shift by introducing a new 

variable : 

	ݔ = 		 +  (10)                                                          ,ߜ	

Where ߜ	 =  is an a priori unknown function that will be defined later. We will  see (ߙ)ߜ	

that ߜ	 = as∝→0. The inverse coordinate transformation is (ߙ)ܱ	 = –	ݔ	  Substituting ߜ	

(10) into (8) we find 

̇ = 	˙ݔ	 = 	 ଴݂(∝) +	 ଵ݂(∝)(	 + (ߜ	 + 

	 ଶ݂(∝)(	 + ଶ(ߜ	 	+	··· 

Therefore, 

̇ = [ ଴݂(∝)	+	 ଵ݂(∝)ߜ	 + 	 ଶ݂(ߙ)ߜଶ	 +  +	[(ଷߜ)ܱ	

[ ଵ݂(ߙ) + 	2 ଶ݂(ߙ) + 	[(ଶߜ)ܱ	 +	

[ ଶ݂(ߙ) + ଶ[(ߜ)ܱ	 	+ ܱ(ଷ).	

Assumption (A.1) implies that 



58 
 

ଶ݂(0) 	=
1
2 ௫݂௫(0, 0) 	≠ 	0.	

Then, according to the Implicit Function Theorem, there is a smooth function (ߙ)ߜthat 

annihilates the_-term in the equation above for all sufficiently small	| ∝ |. Indeed, the 

condition for the _-term to vanish can be written as 

,∝)ܨ (ߜ 	≡ 	 ଵ݂(ߙ) 	+ 	2 ଶ݂(ߙ)ߜ	 ,∝)ଶߜ	+ (ߜ 	= 	0	

with some smooth function  . We have 

,0)ܨ 0) = 	0, Fஔ(0, 0) = 	2fଶ(0) ≠ 	0, 	F∝(0, 0) = 	fଵᇱ(0)					 

which implies (local) existence and uniqueness of a smooth function ߜ	 =  such that(ߙ)ߜ

(0)ߜ = 0	and ߙ)ܨ, ((ߙ)ߜ 	≡ 	0. It follows that (ߙ)ߜ 	= 	ି௙భ
ᇲ(଴)

ଶ௙మ(଴)
	ߙ +  The .(cf. (5.7)) (ଶߙ)ܱ	

equation for  now no longer contains any -term. Since fଵ(_) = fଵᇱ(0) + 	O(∝ଶ), we can 

write	

̇ =	 [f଴ᇱ(0) 	+ 	O(∝ଶ)] 	+ 	 [fଶ(0) 	+ 	O(∝)]ଶ 	+ 	O(ଷ).                         (11) 

Step 2 (Introduce a new parameter). Consider as a new parameter ߤ	 =  the (∝)ߤ	

constant (-independent) term of (11), that we can write in the form 

	ߤ = 	 ଴݂
ᇱ(0) ∝ 	+	∝ଶ ∅(∝),	

for some smooth function	∅. We have: 

(a) (0)ߤ 	= 	0; 

(b) ̇(0)ߤ 	= 	 ଴݂
ᇱ(0) 	= 	f∝(0, 0).	

Since ∝݂(0, 0) ≠ 	0 due to (A.2), the Inverse Function Theorem implies local existence 

and uniqueness of a smooth inverse function ∝	=	∝ ∝ with (ߤ) (0) 	= 	0. Therefore, 

equation (11) now reads 

̇ = 	ߤ	 + ଶ(ߤ)ܽ	 	+ 	ܱ(ଷ), 

where	ܽ(ߤ) is a smooth function with due to the first assumption	ܽ(0) 	= 	݂2(0) 	≠

0(A.1). 

Step 3 (Final scaling). Let ݕ	 = 	 	ߚ  and|(ߤ)ܽ| = 	  Then we get .ߤ|(ߤ)ܽ|

	˙ݕ = 	ߚ	 + ଶݕݏ	 	+  ,(ଷݕ)ܱ	

where ݏ	 = (0)ܽ	݊݃݅ݏ	 	= 	±1. This is equation (11). 
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Chapter 4 

Normal Forms Theorem 
 

Section  (4.1): The Normal forms simplification: 

As explained in chapter 3, the centre manifold reduces the non-linear system on 

the centre variables. However, the associated centre manifold equations can have 

complicated on-linear terms due to the approximation of the stable variables in a power 

series in centre variables and their substitutions in the centre manifold equations. For 

such systems, non-linear successive coordinate transformations can be used to reduce 

this non-linear system to its simplest form, called the normal form. The idea of the 

normal transformation comes from Poincare in year ([145] and [146]). The main idea of 

the normal form approach is to eliminate as many non-linear terms as possible through 

a non-linear change of variables [10]. 

This normal forms theory is a very powerful tool for the analysis of the local 

dynamical behavior near a singularity. 

The general idea of normal form is to put a complicated system into a form as 

simple as possible by means of change of coordinates. depending on the  purpose of 

simplification and this concept may vary greatly. It depend on the change of coordinates 

that are tolerated( linear, polynomial, formal series, smooth , analytic) and on the 

possible structures that preserved (i.e. simplistic, volume-preserving, symmetric, 

reversible)[2] 

Definition 4.1.1. A cycle is a periodic orbit, namely a non -equilibrium orbit ܮ଴, such that 

each point ݔ଴ ∈ ଴ satisfies ߶௧ାܮ బ்ݔ଴ 	= 	߶௧ݔ଴ withsome ଴ܶ > 	0, for all ݐ	 ∈ 	ܶ [12]. 

Let us restrict on local normal forms, i.e. in the vicinity of a stationary point of a 

vector field or a diffeomorphism (the latter can be applied to the Poincare 1879 [17] 

map of a periodic orbit) .We concentrate on the simplification of the Taylor series. The 

general idea is to apply consecutive polynomial changes of variables; at each step we 

simplify terms of a degree higher than in the step before. The ideal simplification would 

be to put all higher order terms to zero, which would (at least at the level of formal 
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series) linearize the system. But as soon as there are resonances, this is impossible the 

planar system  2ݔ߲/߲ݔ + ݕ) +  .cannot be formally linearized ݕ߲/߲(ଶݔ
 

Section (4.2) Setting:  

Let ܺ be a ܥ௥ାଵvector field defined on a neighborhood of0 ∈ ܴ௡, and denote 

ܣ = ݀ܺ(0)	(its linear approximation at ݋ݎ݁ݖ). The Taylorexpansion of ܺ at 0 takes the 

form 

(ݔ)ܺ = .ܣ ݔ + 	
2

r

k 
 ܺ௞(ݔ) 	+  (1)                                       (௥ାଵ|ݔ|)ܱ	

Where ܺ௞ ∈ ௞ܪ , the space of vector fields whose components are homogeneous 

polynomials of degree ݇. The classical formal normal form theorem is as follows.We 

define the operatorܮ஺onܪ௞by putting ܮ஺ℎ(ݔ) = 	݀ℎ(ݔ). .ܣ ݔ − .ܣ ℎ(ݔ) , onecalls ܮ஺ the 

homological operator. One checks that ܮ஺(ܪ௞)ܪ௞ . One alsodenotes this by add 

஺, i.e. ܴ௞ܮ Let Rk be the range of .(ݔ)(ℎ)ܣ 	=  Let Gk denote any complementary .(௞ܪ)௞ܮ

subspace toܴ௞ in ܪ௞ . The formal normal form theorem states, under the above 

settings.[2] 

Main Theorem: We consider a differential equation in Rn of the form 

ݑ݀
ݐ݀ 	= ݑܮ	 + 	(2)																																																									,(ݑ)ܴ

in which L and R represent the linear and nonlinear terms, respectively. More precisely, 

we assume that the following holds. 

Hypothesis 4.1 Assume that L and R in (2) have the following properties: 

(i) L is a linear map in ܴ௡ 

(ii) for some ݇	 ≥ 	2, there exists a neighborhood ܸ	 ⊂ ܴ௡ of 0 such that ܴ	 ∈

,	ܸ)	௞ܥ ܴ௡)and  ܴ(0) = 	0, (0)ܴܦ 	= 	0. 

Our purpose is to transform this system, in a neighborhood of the origin, in such 

a way that the Taylor expansion of the transformed nonlinear vector field contains a 

minimal number of terms at every order. The following result shows the existence of a 

polynomial change of variables leading to a transformed vector field, has this property. 

Theorem 4.2.1(Normal form theorem) Consider the system (2) and assume that 
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Hypothesis 4.1 holds. Then for any positive ݅݊ݎ݁݃݁ݐ	,݌	2 	 ≤ 	݌	 ≤ 	݇, there exists a 

polynomial ߔ ∶ 	ܴ	௡ → ܴ௡of degree p, with   (0)ߔ 	= 	0, (0)ߔܦ 	= 	0,   and such that 

the change of variable 

	ݑ = ݒ	 +  (3)                                                               (ݒ)ߔ

defined in a neighborhood of the origin in ܴ୬ transforms the equation (2) into the  

“normal form” 
ௗ௩
ௗ௧
= ݒܮ	 + (ݒ)ܰ +  (4)                                                       ,(ݒ)ߩ

with the following properties: 

(i)N ∶ 	R	௡ → R௡ is a polynomial of degree p, satisfying 

ܰ(0) 	= 	0, (0)ܰܦ 	= 	0.	

(ii) The equality 

ܰ(݁௧௅∗ݒ) 	= 	 ݁௧௅∗ܰ(ݒ),                                                   (5) 

holds for all (ݐ, (ݒ 	∈ 	ܴ × ܴ௡, where L∗ represents the adjoint of L. 

(iii) ρ is a map of class ܥ௞ in a neighborhood of 0, such that 

ρ(v) 	= 	o(|v|୮).	

Proof of Theorem 4.2.1: Consider the Taylor expansion of R, 

(ݑ)ܴ 	= ෍ ܴ௤(ݑ(௤)) + (௣||ݑ||)݋
ଶஸ௤ஸ௣

	

for a given p,	2	 ≤ 	݌	 ≤ 	݇, whereݑ(௤) 	= 	 ,ݑ) . . . , (ݑ 	 ∈ (ܴ௡)௤, with ݑ	 ∈ ܴ௡ repeated q  

times, and ܴ௤ is the q-linear symmetric map on (ܴ௡)௤ given through 

ܴ௤(ݑ(௤)) 	=
1
!ݍ ܦ

(௤)ܴ(0)(ݑ(௤)).	

Similarly, we write the polynomials Φ and N in the form 

Φ(v) 	= 	 ෍ Φ୯(v(୯)),
ଶஸ௤ஸ௣

N(v) 	= 	 ෍ N୯(v(୯))
ଶஸ୯ஸ୮	

, 

withߔ௤ and N୯q-linear symmetric maps on (ܴ௡)୯ Differentiating (3) with respect to t 

and replacing du/dt and dv/dt from (2) and (4), respectively, leads to the identity 

(I + DΦ(v))	(Lv + N(v) + ρ(v)) 	= 	L(v + Φ(v)) + R(v + Φ(v)),                 (6) 
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which should be valid for all v in a neighborhood of 0. Our purpose it to determine Φ 

and N from this equality. By identifying the Taylor expansions on both sides, we obtain 

at order 2 

DΦଶ൫v(ଶ)൯Lv − LΦଶ൫v(ଶ)൯ = 	Rଶ൫v(ଶ)൯ − Nଶ൫v(ଶ)൯,																															(7) 

and then at any order q, 3 ≤ q ≤ p, we have 

DΦ௤൫v(୯)൯Lv − LΦ௤൫v(୯)൯ = 	R௤൫v(୯)൯ − N௤൫v(୯)൯,																													(8) 

with 

ܳ௤(ݒ(௤)) 	= 	− ෍ DΦ௥(v(୰))N୯ି୰ାଵ(v(୯ି௥ାଵ
ଶஸ୰ஸ୯ିଵ

)) + 

+ ෍ R௟Φ୰భ൫v
(୰భ)൯,Φ୰మ൫v

(୰మ)൯
௥భା···ା௥೗ୀ௤

		 , … , Φ୰೗	(v
(୰೗) 

r௝ ≥ 1, . . . 	

where we have setߔଵ(ݒ) 	= Notice that if Φ௟ .ݒ	  and N୪ are known for any l, 

2	 ≤ 	݈	 ≤ ݍ	 − 1, then ܳ୯ is known. Therefore, we can determine Φ and N by 

successively finding (Φଶ, Nଶ), (Φଷ, Nଷ), and so on, from (7) and (8). 

The equations (7) and (8) have the same structure, more precisely, they are both 

of the form 

A୐	Φ୯ 	= 	Q௤ − N୯,                                                         (9) 

in which A୐	 is a linear map (also called “homological operator”) acting on the space of 

polynomials Φ ∶ 	R୬ → R୬ through 

(A୐	Φ)(v) 	= 	DΦ(v)Lv − LΦ(v).                                          (10) 

A key property of A୐	 is that it leaves invariant the subspaceܪ௤  of homogeneous 

polynomials of degree q, for any positive integer q. In the equality (9), Q௤ is known, and 

we have to determine Φ୯ and N୯. It is clear that if A୐	|ܪ௤  is invertible, then we can take 

N୯ = 0, which gives the simplest solution here. However, this isnot always the case, and 

the condition for solving (9) is thatQ௤ − N୯ lies in therange of the operator A୐	. We 

claim that this condition is achieved when (6), or equivalently (5), is satisfied by N୯. 

Indeed, we define below a scalar product in the space H of polynomials of degree p, 

such that the adjoint operator (A୐	)∗ of A୐	 with respect to this scalar product is A୐	∗ , 
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where ܮ∗ is the adjoint of ܮ with respect to the canonical Euclidean scalar product in ܴ୬. 

Then Q௤ − N୯belongs to the range of A୐	if  Q௤ − N୯∈݇݁ݎ୅ై	∗)	 (⊥ =	݅݉(୅ై	) or, 

equivalently,݌(୩ୣ୰	(୅୐∗	)(Q௤ − N୯) 	= 	0,where ݌(୩ୣ୰	(୅୐∗	) is the orthogonal projection 

on ((ker	(AL ∗ ) in the space H of polynomials of degree p. It is then natural to choose 

N୯ 	= 	 ௞ܲ௘௥	(஺௅∗	)ܳ௤ .	

Ofcourse, this choice is not unique, since we can add to N୯any term in the range of A୐	. 

leaves invariant the subspace ܪ௤ , so that N୯∈݇݁ݎ୅୐∗ |ܪ௤ . In particular, this shows that 

(5) holds for N୯. With this choice forN୯, we can now solve (9) and obtain a solution	ߔ௤, 

which is determined up to an arbitrary element in the kernel of AL. A possible, but not 

unique, choice is to choose the unique solution	ߔ௤,orthogonal to ݇݁ݎ୅୐ inܪ௤ . 

Summarizing, this shows that (9) possesses a solution (	ߔ௤ , N୯) with N୯ satisfying (5). 

Solving successively for q = 2, . . . , p, we obtain the polynomials Φ and N in the 

Theorem, with N satisfying (5). To finish the proof, it remains to define the scalar 

product in the space H such that (AL)∗ = AL∗ , (11) and to check that the orthogonal 

projection P	୩ୣ୰	(୅୐∗) on ker	(AL ∗leaves invariantthe subspace ܪ௤ .		For a pair of scalar 

polynomials P,Pᇱ ∶ 	 R	௡ → R we define 

⟨ᇱ݌|݌⟩݂݁݀ 	= ݑ|(ݑ)ᇱܲ(ݑ߲)ܲ	 = 0,                                    (12) 

where ݑ	 = 	 ,ଵݑ) . . . , (௡ݑ 	∈ ܴ௡and	߲ݑ	 = 	 ,ଵݑ	߲/	߲) . . . ,  ଵ). The equality (12)ݑ	߲/	߲

defines a scalar product in the linear space of scalar polynomials P ∶ 	R௡ → R. consisting 

of monomials	ݑଵ∝ . . .ݑ௡∝  .n , and  

ർݑଵ∝ … . ଵݑ௡∝ቚݑ
ఉ … . . ௡ݑ

ఉ඀ = …!ଵߙ	 . !௡ߙ ఈభఉభߜ ఈ೙ఉ೙ߜ…  

where δ	஑ೕஒ	ೕ = 	1 if ߙ௝ 	= ௝ߚ , and ߜ∝ೕఉೕ = 	0 otherwise. (Notice that this scalar product 

can be extended to complex-valued polynomials P ∶ 	 C୬ → C by taking 

def	⟨P|pᇱ⟩ = 	P(∂u)Pᇱ(u)|u = 0, 

Finally, the identity above also holds in the subspacesܪ௤of homogeneous polynomials of 

degree q, which are all invariant under the actions of both AL and AL∗. Consequently, 

ker	(୅୐∗	|ୌ୮) 	= 	 ker	୅୐∗ ∩ H୮,	
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and since monomials with different degrees are orthogonal to each other, this implies 

the invariance of Hp under the orthogonal projection P୩ୣ୰୅୐∗This ends the proof of 

Theorem (1) [30] 

Theorem 4.2.2[13,14] There exists a composition of near identity changes of variables 

of the form       

ݔ = ݕ	 + ௞(ݕ)                                                          (13) 

where the components of k are homogeneous polynomials of degree k, such that the 

vector field X is transformed into[2] 

Y	(y) = A. y +෍g௞(y)
௥

௞ୀଶ

+ O(|y|௥ାଵ)		where			g௞ ∈ G௞,	 

k = 2, . . . , r. 

in the latter case one can let r∞ and obtaina normal form on the level of formal 

Taylor series (also called ∞-jets). we can assume that A is an upper triangular matrix.   

[2]  Let the eigenvaluesbe ଵ, . . . , ௡. It can be calculated that the eigenvalues of ܮ஺, as 

an operatorܪ௞ → ௞ܪ ,are then the numbers < , 	ߙ > −jwhere ߙܰ௡,
1

n

j 
 αj=k, and 

1 < ݆ < ݊. Hence, if these would all be nonzero then ܤ௞ = ௞ܪ  and then we have an 

ideal simplification i.e. all݃௞equal to zero. However, if such a number is zero, that is, 

< 	, 	ߙ > 	−	௝ = 	0                                                         (14) 

this is called a resonance between the eigenvalues. In such a case we have tochoose a 

complementary space Gk. From linear algebra it follows that one canalways choose [2] 

∗஺ܮ)௞ = kerܩ  )                                                          (15) 

where ܣ∗is the adjoint operator. But this choice of equation (3) is not unique and isfrom 

the computational point of view not always optimal, especially if thereare nilpotent 

blocks. This fact has been exploited by many authorsYu, 1999, Yu &Yuan, 2001, Yuan & 

Yu, 2001[17]. A typicalexample for this is the case where A = 	y ∂/ ∂x. On the other 

hand if A issemi-simple we can choose the complementary space to be ker(LA), so 

 ஺݃௞ = 0we can assume it to be the (complex) diagonal[1, . . . , n]. In that case weܮ
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canbe more explicit as follows. Let ej = ∂/∂xj denote the standard basis on Cn. For a 

monomial one can calculate that 

LA(xαej) = (<, αi>−j)xαej                                              (16) 

If the latter is zero, then the monomial is called resonant. This implies that the normal 

form can be chosen so that it only contains resonant monomials. Putting a system into 

normal form not only simplifies the original system, it also gives more geometric insight 

on the Taylor series. To be more precise, suppose (for simplicity: this can be generalized 

that A is semi simple. One can calculate that the condition [2] ܮ஺݃௄ = 0	implies: 

(ݔ(ݐܣ)݌ݔ݁)௄݃(ݐܣ−)݌ݔ݁ = ݃௄(ݔ) for all  t ∈ R. This means that gk is invariant for the 1-

parameter group exp(At). A typical example in the plane is: A has eigenvalues	݅, −݅. 

Note that the (only) resonances are < (݅,−݅), ݌) + 1, (݌ > −݅	 =	0 and <

(݅, −݅), ,݌) ݌ + 1) + ݅ = 0for all ݌ܰ. We suppose that the original system was real 

i.e. on ܴଶ;we can choose linear coordinates such that for	ݖ	 = 	ݔ	 + ̅ݖ 		,ݕ݅	 	= 	ݔ	 −  ݕ݅	

the linearpart is A =diagonal[i,−i]. Applying the remarks above we conclude that the 

normal form only contains the monomials (̅ݖݖ)ݖ߲/߲ݖ݌	݀݊ܽ	̅ݖ߲/߲̅ݖ݌(̅ݖݖ). Thegeometric 

interpretation here is that these monomials are invariant for rotationsaround (0, 0). This 

can also be seen on the real variant of this: the Taylorseries of the (real) normalized 

system has the form  ( + f(xଶ + 	yଶ))(x ∂/ ∂y − y∂/ ∂x) + g(xଶ	yଶ)(x ∂/ ∂x +

	y ∂/ ∂y) and is invariant for rotations. Warning the dynamic behavior of a formal 

normal form in the central manifold can be very different from that of the original 

vector field, since we are only looking at the formal level. A trivial example is (take	݂ =

݃ = 0 in the foregoing example) 

ܺ(x, y) = (x ∂y − y∂x) − exp(−1/(xଶ)) ∂/ ∂x, 

 where orbits near (0, 0) spiral to(0, 0), whereas the normal form is just a linear rotation. 

This difference is due to the so called flat terms , i.e. the difference between the 

transformed vector field and a C∞ realization of its normalized Taylor series (or 

polynomial).One could roughly say that, in the central manifold, the normal form has 

too much symmetries and is too poor to model more complicated dynamics of the 

system, which can be ’hidden in the flat terms’. To quote In the theory of normal forms 
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of analytic differential equations, divergence is the rule and convergence the exception, 

to use changes of variables like where k is then generated and this will guarantee that 

all changes of variables are compatible’ with the extra structure The question of an 

analytic normal form, also in the hyperbolic case, leads to convergence questions and 

calls upon so called small divisor problems. The classical results are due to Poincace and 

Siegel; let us summarize them; they are formulated in the complex analytic setting:[2] 

Theorem 4.2.2 (a) If the convex hull of the spectrum of A does not contain 0C then X 

can locally be put into normal form by an analytic change of variables. [2] 

Moreover this normal form is polynomial. 

(b) If the spectrum {ଵ, . . . , ௡} of A satisfies the condition that there existsC > 0 and μ> 

0 such that for any m Nn with 

෍ m୨
୨

	≥ 2| < 	ℎ(ଵ, … ,௡ 	),݉ > 	−௝	|
			ࢉ
|݉|																							(૚ૠ)	

for 1		݆	 ≤ 	݊ , then ܺ can be locally linearized by an analytic change of variables. 

Note that case (a) contains the case where 0 is a hyperbolic source or sink. This 

case (a) in Theorem 4.2.2 can be extended if there are parameters: if X depends 

analytically on a parameter  ߝ ∈ ߝ ௣ nearܥ = 	0 then the change of variables isalso 

analytic in ε moreover the normal form is then a polynomial in the space variables 

whose coefficients are analytically dependent on the parameter ε. For case (b) this is 

surely not the case, since the condition (4.2.6) is fragile, a small distortion of the 

parameter generically causes resonances, be it of a high order. To fix the ideas: consider 

n = 2 and suppose ଵ < 0 < ଶ. By a genericbut arbitrary small perturbation we can 

have that the ratio of these eigenvalues becomes a negative rational number - p/q, 

which gives a s of the form (2)< , ߬ > −	௝ with j = 1 and ߙ = ݍ) + 1, (݌ ≤ 	0, so 

(4.2.6) is violated (succeed) .[2]Soanalytic linearization, or even a polynomial analytic 

normal form, is un-generic for families of such hyperbolic stationary points. The search 

for analytic normal forms, i.e. simplified models, for families is still under investigation. 

A first simplification is obtained via the stable and unstable manifold from theorem 4.13 

below , that is: the graphs of ௦௦and ௨௨. When ܺis analytic near 0 then these manifolds 

are also analytic. So up to an analytic change of variables we can assume that ܧ௦ and ܧ௨ 
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are invariant, which gives a simplification of theexpression of X. Moreover there is 

analytic dependence on parameters. For local diffeomorphisms there are completely 

similar theorems about all the above. 

Theorem 4.2.3 Let the vector field (X-invariant manifolds in the neighborhood of 0) be 

of class C୰(1 ≤ 	r < 1). There exist map germs ∅௦௦ ∶ ,ݏܧ) 0) → ௦௖∅,ݑܧ⨁	ܿܧ	 ∶

,ܿܧ⨁	ݏܧ) 0) → ௨௨∅ ,ݑܧ	 ∶ ,ݑܧ) 0) → ,			ܿܧ⨁ݏܧ	 ∅௖௨ ∶ 	 ,ݑܧ⨁ܿܧ) 0) 	→  and ݏܧ	

∅ܿ ∶ 	 ,ܿܧ) 0) 	→ ௥ܥof classݑܧ⨁ݏܧ	  such that the graphs of these maps are invariant for 

the flow of X. Moreover these maps are of classܥ௥, and their linear approximation at 0 is 

zero, i.e. their graphs are tangent to respectivelyݏܧ, ,ܿܧ⨁	ݏܧ ,ݑܧ  If X is .ܿܧ and ݑܧ⨁	ܿܧ

of classܥଵthen∅௦௦ and ∅୳୳ are also of classCଵ. If X is analytic then∅ୱୱand∅୳୳ are also 

analytic.So analytic linearization, or even a polynomial analytic normal form, is un-

generic for families of such hyperbolic stationary points.  

The basic idea of normal form theory is to find a near-identity nonlinear 

transformation [17] 

ݔ = ݕ + ℎ(ݕ) ≡ ݕ	 + ℎଶ(ݕ) + ℎଷ(ݕ) + ⋯+ ℎ௞(ݕ) +																													 (2)	

such that the resulting system 

ݕ̇ = ݕܮ + (ݕ)݃ ≡ ݕܮ + ݃ଶ(ݕ) + ݃ଷ(ݕ) + ⋯ (ݕ)݇݃+. +																										 (3)	

becomes as simple as possible. Here ℎ௞(ݕ) and ݃௞(ݕ)denote the kth order vector 

homogeneous polynomials of y. 

To apply normal form theory, first define an operator as follows: 

௞ܮ ∶ ௞ܪ	 	→ ௞ܪ	 			,	

௞ܷ 	 ∈ ௞ܪ	 	→ )௞ܮ ௞ܷ) = 	 [ ௞ܷ , [ଵݒ ∈ ௞ܪ ,                                         (4)	

where ܪ௡ denotes a linear vector space consistingof the kth-order vector homogeneous 

polynomialsThe operator [ ௞ܷ ,  ଵ] is called Lie bracket, definedasݒ

[ ௞ܷ, [ଵݒ	 = .ଵݒܦ	 ܷ݇	 − ܦ	 ௞ܷ . 	(5)																																						ଵ,ݒ

Next, define the space ܴ௞  as the range of ܮ௞, and the complementary space of R୩ as K୩. 

Thus, 

௞ܪ 	= 	ܴ௞ 	(6)																																																								௞,ܭ⨁	

and we can then choose the basis for ܴ௞  and ܭ௞. Consequently, a vector homogeneous 

polynomial  ௞݂ 	 ∈ ௞ܪ  can be split into two parts: one is spannedon the basis of ܴ௞  and 
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the other on that ofܭ௞. Normal form theory shows that the part of ௞݂belonging to ܴ௞  

can be eliminated while the part belonging to ܭ௞ must be retained, which is called 

normal form. [17] 

Example 4.2.1 

Consider the following general system with randomly chosen coefficients up to 

seventhorder 

ẋଵ = 	x2	 + xଵଶ +
ଵ
ଶ
xଵxଶ + 	2xଶଶ + 	2xଵଷ +

ଵ
଻
xଵଶxଶ +

ହ
ଷ
xଵxଶଶ +

ଵ
ଶ
xଶଷ + 							5xଵସ +

ଵ
ଷ
xଵଷxଶ −

15xଵଶxଶଶ +
଻
ଷ
xଵxଶଷ + 2xଶସ − 2xଶହ + 	5xଵସxଶ +

ଵ
ସ
xଵଷxଶଶ + xଵଶxଶଷ +

଻
ସ
xଵxଶସ + 	20xଶହ +

ଵ
ଶ
xଵ଺ +

ଶ
ହ
xଵହxଶ − xଵସxଶଶ +

ଵ
ଷ
xଵଷxଶଷ + 	2xଵଶxଶସ +

଻
ହ
xଵxଶହ − 2xଶ଺ + 	2xଵ଻ +	xଵ଺xଶ − 5xଵହxଶଶ +

ଵ
ଵ଴
xଵସxଶଷ +

	3xଵଷxଶସ +
଻
ଶ
xଵଶxଶହ + 	5xଵxଶ଺ + xଶ଻; 

ẋଶ = 	−xଵ + 	3xଵଶ +
1
4 xଵxଶ + 	5xଶଶ +

2
5 xଵ

ଷ + 	3xଵଶxଶ + 	10xଵxଶଶ +
4
7 xଶ

ଷ +
5
3 xଵ

ସ −
2
3 xଵ

ଷxଶ

+ 	10xଵଶxଶଶ + 3xଵxଶଷ +	xଶସ + 	7xଵହ −
3
5 xଵ

ସxଶ + 	7xଵଶxଶଷ +
3
4 xଵxଶ

ସ +
1
8 xଶ

ହ

− 2xଵ଺ + 	5xଵହxଶ +
1
3 xଵ

ସxଶଶ + 7xଵଷxଶଷ + 	4xଵଶxଶସ −
1
5 xଵxଶ

ହ + 	3xଶ଺ +	xଵ଻

+ 	5xଵ଺xଶ +
5
3 xଵ

ହxଶଶ +
1
2 xଵ

ସxଶଷ − 3xଵଷxଶସ + 	7xଵଶxଶହ +
5
8 xଵxଶ

଺ + 3xଶ଻ 

The linearized system of example(4.1)above about the equilibrium ݔଵ 	= ଶݔ	 	= 	0 has a 

pair of purely imaginary eigenvalues±I ,The Maple program is executed on a PC 

machineto obtain the followingsimplest normal form(SNF) in the complex form 

ݑ̇ = 	ݑ݅	 − ൤
47
336 + ݅

233651
13440 ൨ݑ

ଶݑത −
25933399
1354752 	തଶݑଷݑ

which can be directly transformed to the polar form using the real and imaginary parts: 

ܴ̇ = 	−
47
336ܴ

ଷ −
25933390
1354752 ܴହ	; ߠ̇ 	= 	1 −

233651
13440 ܴଶ 	

Since the coefficient of ܴଷis nonzero, this is Hopfbifurcation. 

Example 4.2.2: The following system, described by a CNF (given in Cartesian 

coordinates), was obtained from a five dimensional system 
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ଵݔ̇ = ଶݔ	 	+
3
40

ଵଶݔ) + ଵݔ(ଶଶݔ	 −
14867
68000

ଵଶݔ) + ଵݔଶଶ)ଶݔ	 −
26912070343
103873536000

ଵଶݔ) + ଵݔଶଶ)ଷݔ	

−
8114283157415584063
19110912837120000000

ଵଶݔ) + ଵݔଶଶ)ସݔ +⋯ 

																			−
7
12

ଵଶݔ) + ଶݔ(ଶଶݔ	 +
	8093503
14688000

ଵଶݔ) ଶݔଶଶ)ଶݔ	+

−
1887495055097
3895257600000

ଵଶݔ) + ଶݔଵଶ)ଷݔ

−
765399818373406351207
1375985724272640000000

ଵଶݔ) .+	ଶݔ	ଶଶ)ସݔ	+ .. 

̇	ݔ ଶ 	= ଶݔ− 	+
3
40

ଵଶݔ) + ଶݔ(ଶଶݔ	 −
14867
68000

ଵଶݔ)  ଶݔ(ଶଶݔ	+

−
26912070343
1038736000

ଵଶݔ) +  ଶݔଶଶ)ଷݔ	

−
811428315584063

1911091283720000000
(xଵଶ + xଶଶ)ସxଶ +⋯	 

Ṙ =
3
40R

ଷ −
14867
68000R

ହ	; 	θ	̇ = 	1	 −
7
12R

ଶ:	

Since the coefficient of ܴଷis nonzero, this is Hopfbifurcation. 
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Chapter 5 

Normal Form theory in local bifurcation 
 

Section (5.1): Introduction:  

The theory of normal forms and bifurcations of nonlinear difference equations is 

well known [17], [21], [25], [29], it is as follows. Consider two smooth (ܥସ)  n- 

dimensional difference equations with equilibrium points 

ାݔ 	=  (1)                                                              (ݔ)݂	

0	 = 	݂(0)  

and 

ାݖ 	=  (2)                                                 (ݖ)݃	

0	 = 	݃(0) where ݔା(ݐ) 	= 	ݐ)ݔ	 + 	1). These are locally diffeomorphic if there exists a 

local diffeomorphism 

	ݖ	 =  (3)                                                             (ݔ)∅	

0	 = ∅(0) 

which carries (1) to (2), 

((ݔ)∅)݃ 	=  .((ݔ)݂)∅	

Such a local diffeomorphism carries trajectories x(t) in its domain onto trajectories z(t) in 

its range, 

z(t) 	= 	∅(x(t)); 

hence the two dynamics are locally smoothly equivalent. There is a weaker notion of 

equivalence; (1) is locally topologically conjugate to (2) if there is a local 

homeomorphism (3) which carries trajectories x(s) in its domain onto trajectories z(t) in 

its range while preserving the orientation of time, but not the exact time. The linear 

approximation of (1) around the fixed point x = 0 is 

ାݔߜ =			 డ௙
డ௫
 (4)                                                      ݔߜ(0)

and this is a hyperbolic fixed point if ఋ௙
ఋ௫
(0) has no eigenvalues on the unit circle. 

Thediscrete time Grobman–Hartman theorem states that if the equilibrium x = 0 of (1) is 

hyperbolic, then it is locally topologically conjugate to its linear approximation 
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(4). A related theorem is that two hyperbolic equilibria are locally topologically 

conjugate if their linear approximations have the same number of eigenvalues strictly 

inside the unit circle, the signs of their products are the same, and the same number of 

eigenvalues strictly outside and the signs of their products are the same [20]. A 

parameterized system 

ାݔ 	= ,ݔ)݂	  (5)                                                 (ߤ

can have a locus of equilibria 

௘ݔ 	= ,௘ݔ)݂	 	.(௘ߤ

It undergoes a local bifurcation at an equilibrium xe, ߤ௘  that is not locally topologically 

conjugate to every nearby equilibrium. In light of the above, such a bifurcation can 

happen only if one or more eigenvalues of the linearized system cross the unit circle, or 

the sign of the product of the strictly stable eigenvalues changes, or the sign of the 

product of the strictly unstable eigenvalues changes. A standard approach to analyzing 

the behavior of the parameterized system (5) around a bifurcation point is to add the 

parameter as an additional state with trivial dynamics [25].  

μା 	= 	μ                                  (6) 

The next step is to compute the Poincar´e normal form of the center manifold dynamics. 

This is a normal form under smooth changes of coordinates 

	ݖ = 	∅x) 	= 	Tx	 − ∅[ଶ]](x) 	− ∅[ଷ](x) 	−···	,                                   (7) 

where ∅[ௗ](ݔ)	denotes a vector field that is a homogeneous polynomial of degree ݀in ݔ. 

The linear part of the change of coordinates ܶ puts the linear part of the center 

manifold dynamics in Jordan form. The quadratic, cubic, and higher parts of the change 

of coordinates ∅[ଶ]and ∅[ଷ] simplify the quadratic, cubic, and higher parts of the center 

manifold dynamics by putting them in Poincare normal form. From its normal form the 

bifurcation is recognized and understood. Examples are the fold (or saddle-node), the 

flip, and the Neimark–Sacker bifurcations. The first depends on thenormal form of 

degree two, and the last two depend on the normal form of degree three. These are the 

only ones that are generic and of codimension 1, i.e., depend on a single parameter, so 

these are the most important. 
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Kang and Krener [22] developed a quadratic normal form for continuous time nonlinear 

systems whose linear part is controllable. This was extended to discrete time systems by 

Barbot, Monaco, and Normand-Cyrot[18]. These authors considered a larger group of 

transformations to bring the system to normal form, including invertible state feedback 

as well as change of state coordinates. Kang [23], [24] also developed a quadratic 

normal form for continuous time nonlinear systems whose linear part may have 

uncontrollable modes. Krener, Kang, and Chang [26], [20] described the quadratic and 

cubic normal forms of continuous time nonlinear control systems and also their 

bifurcations. we will develop quadratic and cubic normal forms for discrete time 

nonlinear control systems of the form 

ାݔ	 	= ,ݔ)݂	 (ݑ 	= 	ݔܣ	 + 	ݑܤ	 +	݂[ଶ](ݔ,  (ݑ

									+݂[ଷ](ݔ, (ݑ 	+ ,ݔ)ܱ	  ସ,                                                        (8)(ݑ

where ݔ, ,ݔ)are of dimensions n, 1 and ݂[ௗ] ݑ  denotes a vector field that is a (ݑ

homogeneous polynomial of degree ݀ in ݔ,  We do not assume that the linear part of .ݑ

the system is controllable. Moreover, our linear and quadratic normal forms differ from 

that of [18] for linearly controllable systems. 

We also describe some of the simplest bifurcations of discrete time nonlinear 

control systems. A control system does not need a parameter to bifurcate; the control 

can play the same role. The equilibria of a controlled difference equation, 

ାݔ 	= ,ݔ)݂	  (9)                                                      ,(ݑ

are those values of ݔ௘, ,௘ݔ)݂ ௘ such thatݑ (௘ݑ 	= 	  ௘. The equilibria are convenientlyݔ

parameterized by ݑ or one of the state variables. Two key facts differentiate 

bifurcationsof a control system (5.1.8) from that of a parameterized system (5.1.5). The 

first is thatfor the latter the structural stability of the equilibria is the crucial issue, but 

for the former the stabilizability by state feedback is the crucial issue. A control system 

(5.1.8) is linearly controllable (linearly stabilizable) at ݔ௘,  ௘ if the local linearݑ

approximation 

ାݔߜ =
߲݂
ݔ߲ ,௘ݔ) 	ݔߜ(௘ݑ
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is controllable (stabilizable). If the linear approximation is stabilizable, then the 

nonlinear system is locally stabilizable. If the linear approximation is not stabilizable, 

then the nonlinear system may or may not be locally stabilizable, depending on higher 

degree terms. A control bifurcation of (8) takes place at an equilibrium where the linear 

approximation loses stabilizability. Notice that this is different from the bifurcation of a 

parameterized system (5), which takes place at an equilibrium where thereis a loss of 

structural stability with respect to parameter variations. To emphasize this distinction, 

we shall refer to the latter as a classical bifurcation. 

The other difference between control and classical bifurcations is that when 

bringing the control system into normal form, a different group of transformations is 

used. 

For classical bifurcations, we use parameter dependent change of state 

coordinates and change of parameter coordinates, but for control bifurcations we use 

change of state coordinates and state dependent change of control coordinates 

(invertible state feedback) to simplify the dynamics. 
 

Section (5.2): Quadratic normal form: 

Consider a smooth (ܥଷ) system of the form (5.8)under the action of linear and 

quadratic change of state coordinates and state feedback 

	ݖ = (ݔ)∅ 	= 	ݔܶ	 − ∅[ଶ](ݔ),                                  (5.2.1)	

	ݒ =∝ ,ݔ) (ݑ 	= 	ݔܭ	 + 	ݑܮ	 −∝[ଶ] ,ݔ)  (5.2.2)                            ,(ݑ

where T, L are invertible. It is well known that there exist a linear change of coordinates 

T and a linear feedback K, L that transform the system into the linear normal form 

൤ݔଵ
ା

ଶାݔ
൨ = ൤ ଵ݂(ݔଵ, ,ଶݔ (ݑ

ଶ݂(ݔଵ, ,ଶݔ (ݑ
൨ = ൤ܣଵ 0

0 ଶܣ
൨ ቂ
ଵݔ
ଶቃݔ + ቂ

݋
ଶቃܤ ݑ + 

ቈ ଵ݂
[ଶ](ݔଵ, ,ଶݔ (ݑ
ଶ݂
ଶ(ݔଵ, ,ଶݔ (ݑ

቉ + ,ଵݔ)ܱ ,ଶݔ 	ଷ                                        (5.2.3)(ݑ

where ݔଵ, ,ଵ are ݊ଵݔ ݊ଶdimensional, ݊ଵ 	+ 	݊ଶ 	= ,ଶܣ ଵ is in Jordan form, andܣ ,݊	  ଶareܤ

in controller (Brunovsky) form: 
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ଶܣ = ൥
0
⋱	
0

1 ⋱ 0
⋱ ⋱ ⋱
0 ⋱ 1

൩ܤଶ =	 ൥
0
⋱
1
൩ 

The following result generalizes [27]. 

Theorem 5.2.1 Consider the system (5.2.3), where		ܣଵis diagonal and ܣଶ,  ଶare inܤ

Brunovsky form. There exist a quadratic change of coordinates and a quadratic  

ቂ
ଵݖ
ଶቃݖ = ቂ

ଵݔ
ଶቃݔ − ൥

ଵݔ
[ଶ](ݔଵ, (ଶݔ
ଶݔ
[ଶ](ݔଵ, (ଶݔ

൩	

ݒ = ݑ −	∝ଶ ,ଵݔ) ,ଶݔ 	(ݑ

which transform the system (5.2.3) into the quadratic normal form 

൤ݖଵ
ା

ଶାݖ
൨ = ൤ܣଵ 0

0 ଶܣ
൨ ቂ
ଵݖ
ଵቃݖ + ൤ ଶܤ0

൨  ݒ

+൥
ሚ݂
ଵ
[ଶ,଴](ݖଵ, ,ଶݖ (ݒ + ሚ݂

ଵ
[ଵ,ଵ](ݖଵ, ,ଶݖ (ݒ + ሚ݂

ଵ
[଴,ଶ](ݖଵ, ,ଶݖ (ݒ

0																									 + 0																												 + ሚ݂
ଶ
[଴,ଶ](ݖଵ, ,ଶݖ (ݒ

൩+ܱ(ݖଵ, ,ଶݖ  (5.2.4)			ଷ(ݒ

Where ሚ݂௜
[ௗభ ,ௗమ](ݖଵ, ,ଶݖ  ଵݖis a polynomial vector field homogeneous of degree ݀ଵ in (ݒ

and homogeneous of degree݀ଶ inݖଶ,ݒ. For notational convenience, we define 

,ଶݖ ݊ଶ + 1	 =  .ݒ	

The vector field fሚଵ
[ଶ,଴]is in the quadratic normal form of Poincare, 

ሚ݂
ଵ
[ଶ,଴] = 	 ෍ ௜ߚ

௝௞݁ଵ௜ݖଵ, ,ଶݖ݆ ݇																															
೔ୀೕೖ

(5.2.5)	

ଵ, ݁௥௜ܣଵ, . . . ,௡1 are the eigenvalues of	݁ݎℎ݁ݓ  

is the ith unit vector inݖ௥space, and ݖ௥,௜ is the ith component of ݖ௥. The other vector 

fields are as follows: 

ሚ݂
ଵ
[ଵ,ଵ] 			= 			 ෍෍ ෍ ௜

௝௞
௡మ	శభ

௞ୀଵೕ೔ୀ଴

݁ଵ௜ݖଵ,௝ݖଶ,௞ 

+෍ ෍ ௜
௝ଵ݁ଵ௜ݖଵݖଶ,ଵ

ೕ	ஷ଴

																																										
೔ಯబ

(5.2.6)	 

fሚଵ
[଴,ଶ] = ෍ ෍ δ୧ଵ୩eଵ୧ zଶ,ଵzଶ,୩

୬మାଵ

ౠಯబ౟ಯబ

																																											(5.2.7) 

 



75 
 

fሚଶ
[଴,ଶ] 	= 	 ෍ ෍ ∈୧ଵ୩ eଶ୧ zଶ,ଵzଶ,୩

୬మାଵ

୩ୀ୧ାଶ

୬మିଵ

୧ୀଵ

																																									(5.2.8) 

The normal form is unique; that is, each system (5.2.4) can be transformed into only one 

such normal form (5.2.5) to (5.2.8) by a quadratic change of coordinates (5.2.2) and 

quadratic feedback (5.2.3). This follows from the fact that the numbers in the above, 

௜ߚ
௝௞ 		, ௜

௝௞ 		, ௜ଵ௞ߜ 		, ߳௜ଵ௞for the indicated indices, are moduli, i.e., continuous invariants 

ofthe system (5.2.4) under a quadratic change of coordinates and quadratic feedback. 
 

Section (5.3): Cubic normal form: 

We present the cubic normal form of a system that is already in linear and quadratic 

normal form. 

Theorem 5.3.1 Consider a smooth (ܥସ) system (5.2.5) 

ቂ
xଵ
xଶቃ = ൤fଵ

(xଵ, xଶ, u)
fଶ(xଵ, xଶ, u)

൨ = ൤Aଵ 0
0 Aଶ

൨ ቂ
xଵ
xଶቃ + ൤ 0Bଶ

൨ u 

 

+ ൤fଵ
[ଶ,଴](xଵ, xଶ, u)

0
൨ + ൤fଵ

[ଵ,ଵ](xଵ, xଶ, u)
0

൨ + ൥
fଵ
[଴,ଶ](xଵ, xଶ, u)
fଶ
[଴,ଶ](xଵ, xଶ, u)

൩ 

+ ൥
fଵ
[ଷ](xଵ, xଶ, u)
fଶ
[ଷ](xଵ, xଶ, u)

൩ + O(xଵ, xଶ, u)ସ	

where ܣଵ is diagonal,ܣଶ,ܤଶ are in Brunovsky form, and the quadratic terms are in the 

normal form of Theorem 5.2.1 There exist a cubic change of coordinates and a cubic 

feedback 

൤ܼଵܼଶ
൨ = ቂ

ଵݔ
ଶቃݔ − ൥

∅ଵ
[ଷ](ݔଵ, (ଶݔ
∅ଶ
[ଷ](ݔଵ, (ଶݔ

൩ 

ݒ = ݑ −	∝[ଷ] ,	ଵݔ) ,	ଶݔ 	(ݑ

which transform the system (5.2.5) into the cubic normal form 

൤ܼଵ
ା

ܼଶା
൨ 		= 	 ൤ܣଵ 0

0 ଶܣ
൨ ቂ
ଵݖ
ଶቃݖ + ൤ ଶܤ0

൨  ݒ

+൤ ଵ݂
[ଶ,଴](ݖଵ	, ,	ଶݖ (ݒ

0
൨ + ൤ ଵ݂

[ଵ,ଵ](ݖଵ	, ,	ଶݖ (ݒ
0

൨ 
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+൥ ଵ݂
[଴,ଵ](ݖଵ	, ,	ଶݖ (ݒ

ଶ݂
[଴,ଶ](ݖଵ	, ,	ଶݖ (ݒ

൩ + ൤ ሚ݂ଵ
[ଷ.଴](ݖଵ	, ,	ଶݖ (ݒ

0
൨ 

+൤ ሚ݂ଵ
[ଶ,ଵ](ݖଵ	, ,	ଶݖ (ݒ

0
൨ + ൥

ሚ݂
ଵ
[ଵ,ଶ](ݖଵ	, ,	ଶݖ (ݒ
ሚ݂
ଶ
[ଵ,ଶ](ݖଵ	, ,	ଶݖ (ݒ

൩ 

+ ൥
ሚ݂
ଵ
[଴,ଷ](ݖଵ	, ,	ଶݖ (ݒ
ሚ݂
ଶ
[଴,ଷ](ݖଵ	, ,	ଶݖ (ݒ

൩ + ,	ଶݖ)ܱ  ସ(ݒ	ଶݖ

The vector field ሙ݂ଵ
[ଷ,଴]is in the cubic normal form of Poincar´e,(5.2.6) 

 
and the other vector fields are as follows 

 

 

 

 

 

 

 

 

 

 

 

The normal form is unique,  that is, each system (5.3.1) can be  transformed in to only 

one such normal form (5.3.2) to(5.3.8). This follows from the fact that the numbers  in 

the aboveߚ௜
௝௞௟ 		, ௜

௝௞௟ 		, ௜ଵ௞௟ߜ 		, ∈௜ଵ௞௟		, ௜
௝ଵ௟ 		, ௜

ଵ௞௟ for the indicated indices, are moduli of 

thesystem (5.2.3) under a cubic change of coordinates and cubic feedback. Let ݆ = 6   if  

݆	 = 	݇	 = 	݈ and ߪ௝௞௟ 	= 	 ௝௟ߪ௞௟ߪ௝௞ߪ  otherwise. These moduli are defined as follows: 
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Remarks. Once again, if some of the eigenvalues of ܣଵare complex, then a linear 

complex change of coordinates is required to bring it to Jordan form. In this case, some 

of the coordinates of ݖଵ are complex conjugate pairs, and some of the coefficients in the 

normal form are complex. These complex coefficients occur in conjugate pairs so that 

the real dimension of the coefficient space of the normal form is unchanged.  In the 

normal form of Poincar´e (5.2.6), the eigenvalues satisfying ௜ 	= 	௝௞௟are  said to be 

in cubic resonance. 

The basic idea of normal form theory consists of employing successive, near 

identity nonlinear transformations to eliminate the so-called non-resonant nonlinear 

terms, and the terms called resonant which cannot be eliminated are remained in 

normal forms. 

For computing the normal form of systems with bifurcation 

(perturbation)parameters, one usually takes two steps. First, at a critical point (at which 

the dynamic system has a singularity) one sets the parameters to zero to obtain a so 

called “reduced” (or “simplified”) system and then normal form theory is applied to this 

system to obtain the normal form. Having found the normal form of the reduced 

system, one adds “unfolding” terms to get a parametric normal form for bifurcation 

analysis. However, this way one usually does not know the relationship between the 

original system parameters and the unfolding. 
 

Section (5.4): Hopf Bifurcation: [16] 

Now suppose that system (5.1.1), which is rewritten below for convenience, 

ݔ̇ 	= ,ݔ)݂	 ,(ߤ ݔ ∈ 	ܴ௡ , ߤ ∈ ܴ, ݂ ∶ 	ܴ௡ାଵ → ܴ௡ ,,                                 (5.1.1) 

has an equilibrium, given by ݔ	 =  of the system ,(଴ߤ)݂ܦ ,Suppose the Jacobian .(ߤ)݌	

evaluated on the equilibrium at a critical point ߤ଴has a simple pair of purely imaginary 

eigenvalues, ±݅߱(߱	 > 0), and no other eigenvalues with zero real part. The implicit 

function theorem guarantees (since ݂ܦ(ߤ଴)is invertible) that for each μ near ߤ଴ there 

will be an equilibrium (ߤ)݌ near ݌(ߤ଴)which varies smoothly with	ߤ. Nonetheless, the 

dimensions of stable and unstable manifolds of (ߤ)݌ do change if the eigenvalues of 

 .଴ߤ cross the imaginary axis at ((ߤ)݌)	݂ܦ
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This qualitative change in the local flow near ݌(μ) must be marked by some 

other local changes in the phase portraits not involving fixed points.A clue to what 

happens in the generic bifurcation problem involving an equilibriumwith purely 

imaginary eigenvalues can be gained from examining linear systems in which there is a 

change of this type. For example, consider the system  ̇ݔ = ݔߤ −  ,ݕ߱

ݕ̇ 	= 	ݔ߱	 +  (5.1.2)                                                           ,ݕߤ

whose solutions have the form 

൬(ݐ)ݕ(ݐ)ݔ൰= ݁ఓ௧ ቂ	ܿݏ݋	ݐ߱	 − ݐ߱	݊݅ݏ
ቃݐ߱	ݏ݋ܿ						ݐ߱	݊݅ݏ	 ቀ

଴ݔ
	଴ቁ                                     (5.1.3)ݕ

When ߤ < 0, solutions spiral into the origin, and when ߤ > 0, solutions spiral away from 

the origin. When ߤ	 = 	0, all solutions are periodic. Even in a one-parameter family of 

equations, it is highly special to find a parameter value at which there is a whole family 

of periodic orbits, but there is still a surface of periodic orbits which appears in the 

general problem. 

The normal form theorem gives us the required information about how the 

generic problem differs from system (5.1.2). By smooth changes of coordinates, the 

Taylor series of degree 3 for the general problem can be brought to the following form 

ݔ̇ 	= ߤ݀	] + ଶݔ)ܽ	 	+ 	ݔ[(ଶݕ − [߱	 + ߤܿ	 + ଶݔ)ܾ 	+  ,ݕ[(ଶݕ

ݕ̇ 	= [	߱ + ߤܿ + ଶݔ)ܾ + ݔ[(ଶݕ + ߤ݀] + ଶݔ)ܽ +  (5.1.4)                     (,ݕ[(ଶݕ

which is expressed in polar coordinates as 

ݎ̇ 	= 	 ߤ݀) +  ,ݎ(ଶݎܽ	

ߠ̇ 	= 	߱	 + ߤܿ +  ଶ.                                              (5.1.5)ݎܾ	

Since the ̇ݎ equation in (5.5) separates from ߠ , we see that there are periodic orbits of 

(5.1.4) which are circles ݎ	 = ݎ̇ obtained from the nonzero solutions of ,.ݐݏ݊݋ܿ	 	= 	0in 

(5.1.5). If ܽ	 ≠ 	0	and ݀ ≠	0 these solutions lie along the parabola ߤ = −(௔
ௗ
 ଶ. Thisݎ(	

implies that the surface of periodic orbits has a quadratic tangency with its tangent 

plane ߤ	 = 	0inܴଶ × 	ܴ. 

In the following, we first introduce the Hopf bifurcation theorem and then 

discuss in detail the computation of normal forms associated with various singularities 

(including Hopf bifurcation)..[16] 
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Theorem 5.2.1 Suppose that the system ẋ 	= 	f	(x, μ),  

x	 ∈ 	R୬, μ	 ∈ 	R, has an equilibrium (x଴, μ଴) at which the following properties are 

satisfied. 

(H1) D௫f	(x଴, μ଴) has a simple pair of purely imaginary eigenvalues and no other 

eigenvalues with zero real parts. 

Then (H1) implies that there is a smooth curve of equilibria (x(μ), μ) with x(μ଴) 	= 	x଴. 

The eigenvalues λ(μ), λത(μ) of 

Dxf	(x(μ), μ଴), which are imaginary at μ	 = 	μ଴, vary smoothly with	μ. If, moreover, 

(H2)																 	ୢ
ୢஜ
(Re	λ(μ))|ஜୀஜబ 	= 	d	 ≠ 	0, 

then there is a unique three-dimensional center manifold passing through (x଴, μ଴) in 

R୬ × 	R and a smooth system of coordinates (preserving the planes μ	 = 	const.) 

for which the Taylor expansion of degree 3 on the center manifold is given by (5.1.4). If 

a ≠ 0, there is a surface of periodic solutions in the center manifold which has 

quadratic tangency with the eigenspaces of λ(μ଴), λത(μ଴) agreeing to second order with 

the paraboloid 

μ = − ୟ
ୢ
(xଶ 	+ 	yଶ).                                                           (5.1.6) 

If a	 < 	0, then these periodic solutions are stable limit cycles, while if a	 > 0, the  

periodic solutions are repelling.[16] 

 

 

 

 

 

 

 

 

 

Fig 5.1 Transversality of Hopfbifurcation 
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Fig 5.2 Post-critcal Bifurcation Path for A Hopfbifurcation 

(a) Stable 

(b) unstable 

The transversality conditions given in (H1) and (H2) are illustratedin Fig. 5.1. The 

parameter–amplitude relation (5.1.6) is shown in Fig.5.2, where ݎ	 = ඥݔଶ 	+  ଶ, andݕ	

the bifurcating periodic solutions depicted in three dimensional space are given [16]  in 

Fig. 5.3. 

 

 

 

 

 

 

 

 

 

 

Fig 5.3 BirfurcatingPeriodic solutions (limit cycles)(a)stable(b)unstable  
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Chapter 6 

Applications 
 

Section (6.1): Introduction: 

The numerical analysis of bifurcation problems is concerned with the stable, 

reliable and efficient computation of solutions to multi-parameter nonlinear problems. 

We shall consider numerical methods for solving nonlinear equations of the form 

,ݔ)ܨ (ߣ 	= 	0,																																																										(6.1) 

whereܨis a smooth operator in an appropriate Banach space setting,  is a state variableݔ

andߣrepresents one or more parameters. In applications the main interest is often the 

determination of qualitative changes in ݔas ߣvaries. Problems like (6.1) arise in the 

consideration of steady states of the dynamical system  

  ௗ௫
ௗ௧
+ ,ݔ)ܨ	 (ߣ = 	0,																																																		(6.2) 

and indeed the study of the solution set of (6.1) is usually the first step in an analysis of 

the behavior of solutions to (6.2). 

The material in this review is applicable to a wide range of problems although we 

shall concentrate on problems arising in fluid dynamics, and so for us (6.2) represents 

the dynamical Navier–Stokes equations. The nonlinear character of the Navier–Stokes 

equations gives rise to multiple solutions and possibly complicated dynamics and this 

nonlinear behavior is central to problems in fluid dynamics, where the idea of dynamical 

similarity introduces various non-dimensional groups. In fluid mechanics we are 

therefore confronted with nonlinear partial differential equations that depend on a 

number of parameters. This is precisely the domain of bifurcation [15] theory. The 

overall goal, when studying a fluid mechanics problem, is to understand the complete 

behavior of the system as a ‘function’ of the parameters. Relevant questions are. How 

many steady states are there? Are they stable or unstable? (It is important to have 

theability to compute unstable steady states as well as stable ones, since solutions 

arising from bifurcations along unstable branches often interact with stable solutions 

producing otherwise inexplicable phenomena.) How does the structure of the steady 



83 
 

state solution set change as the parameters are varied? Do solutions always respect the 

symmetry of the domain or is there symmetry breaking? How do time-dependent 

solutions arise? We shall address some aspects of these questions in this study. Other 

very important questions about which we have nothing to say here include: How do the 

initial conditions affect the evolution of the system? What types of long-term dynamical 

behavior are possible? How does fluid turbulence arise? In fluid mechanics the 

nonlinearity of the governing equations combined with the nontrivial geometry of the 

domain means that there are many problems where limited progress can be made with 

analytical techniques and one needs to use numerical methods. There are two main 

numerical approaches to help answer some of the above questions for the Navier–

Stokes equations. Either the time-dependent problem is discretized in space and the 

resulting system of ordinary equations is evolved forwards in time for various fixed 

values of the parameters. This approach is called ‘simulation’, and is the main technique 

used in the computational fluids community. The alternative approach is to discretize 

the steady problem to obtain a system of nonlinear equations, and then use methods 

from nonlinear analysis (e.g., the implicit function theorem, singularity theory) to 

compute paths of steady solutions and provide stability assignment using numerical 

continuation methods and eigenvalue information. We shall concentrate on the latter 

approach here. The numerical analysis of continuation methods was developed though 

many of the key ideas appear earlier in applications .Several codes were then [15] 

developed for numerical continuation and bifurcation analysis, the earliest being once 

reliable algorithms for numerical path following and simple bifurcation phenomena 

were devised then attention naturally shifted to multi-parameter problems and the 

construction of numerical approaches based on the use of singularity theory. 

At the same time the convergence theory for discretization methods was 

concerned with the obvious questions: If a continuous problem has a particular 

singularity, under what conditions can it be guaranteed that the discretized problem has 

a singularity of the same type? Does the numerical method converge with the same rate 
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of convergence as at nonsingular points? Do we observe superconvergence when using 

projection methods [15] 

One of the successes of numerical bifurcation techniques has been the ability to 

reproduce and help understand experimental results of the Taylor–Couette flow of a 

fluid confined between two concentric cylinders. Because this flow may be controlled 

quite precisely in the laboratory it provides anopportunity for rigorous experimental and 

numerical comparison. Of course the numerical techniques have been applied in a wide 

variety of other problems in fluid mechanics and have contributed significantly to the 

theoretical understanding of confined flows. The detailed plan of this study is as follows. 

some of the main ideas in singularity theory are outlined first for scalar equations, 

thenfor multi-parameter problems and problems with a simple reflection  symmetry.  
 

Section (6.2): Singularity theory: [15] 

Gives a comprehensive account of numerical methods for bifurcation problems 

using singularity theory and minimally extended systems with bordered systems playing 

a key role in the linear algebra. There are many different aspects to singularity theory 

for bifurcation problems and we cannot hope to cover them all in this study, rather we 

concentrate on a few ideas to help motivate the material in later sections. However, we 

believe that a good understanding of the concepts and techniques is essential in order 

to develop reliable numerical techniques for multipara meter nonlinear problems. 

The Lyapunov–Schmidt reduction procedure is a process by which information 

about solutions near a singular point of a nonlinear problem defined on a Banach space 

may be obtained by studying an equivalent reduced problem on a space of, typically, 

very small dimension. In fact,if the singularity is such that the linearization of the 

problem evaluated at the singularity has a one-dimensional kernel, then the reduced 

problem isone-dimensional. Thus, it is appropriate to study nonlinear scalar problemsof 

the form 

,ݔ)݂				 ,ߣ ∝) = 	0, ݂ ∶ 	ܴ	 × 	ܴ	 × 	ܴ௣ → 	ܴ,																												(6.2.1)	

where ݔ is a scalar state variable, λ a distinguished parameter, and α	 ∈ R୮a vector of 

control parameters. It is important to note that the view taken in the singularity theory 



85 
 

is that in applications one will wish to plot the state variable x against the special 

parameter ߣ for several fixed values of ߙ. Thus we do not interchange ߣ with one of the 

∝௦ and ߣ plays a different role than the other ‘control’ parameters. This approach leads 

to a different classification of singularities than that obtained from standard singularity 

theory. 
 

Section (6.3): Scalar problems: [15] 

In this section we consider the numerical calculation of singular points of the 

scalar problem 

,ݔ)݂ (ߣ = 	0, 	ݔ ∈ 	ܴ, ߣ ∈ 	ܴ,																																									(6.3.1)	

where ݂(ݔ,  is sufficiently smooth. Analysis of this very simple case introduces some (ߣ

important ideas and provides considerable insight into the behavior of more 

complicated equations. First, note that it is convenient to write ݂଴ for 

,଴ݔ)݂ ,(଴ߣ ఒ݂
଴	݂ݎ݋	 ఒ݂(ݔ଴, ଴), etc. Now, if ݂଴ߣ 	= 	0and ௫݂

଴ 	≠ 0existence of a smooth path, 

,଴ݔ) near ,(ߣ)ݔ ,(ߣ)ݔ)݂ ଴)satisfyingߣ (ߣ 	= 0. In this case we call (ݔ଴,  .଴) a regular pointߣ

Of more interest are singular points where ௫݂
଴ 	= 	0. Consider the calculation of a 

singular point of (6.2.2). It is natural to form the system 

(ݕ)ܨ = 	 ൤ 	݂
,ݔ) (ߣ

,ݔ)ݔ݂ ൨(ߣ 		= 	0	 ∈ ܴଶ, 	ݕ = 	 ቀ	ݔ	ߣ ቁ																													(6.3.2)	

and seek a zero of (ݕ)ܨ. A solution ݕ଴ is regular if ݕܨ(ݕ଴) is nonsingular, which, as is 

easily checked, holds provided ఒ݂
଴
௫݂௫
଴ 	≠ 	0, or, equivalently, ఒ݂

଴ 	≠ 	0 and ௫݂௫
଴ 	≠

	0. (6.2.4) 

If (6.2.3) and (6.2.4) hold then (ݔ଴,  ଴) is a quadratic fold point. The reasonfor the nameߣ

is clear when one sketches the solution curve near (ݔ଴, ,଴ݔ) ଴), noting that nearߣ  ,(଴ߣ

ߣ = (଴ݔ)ߣ with	(ݔ)ߣ = ଴, and   ௗ௬ߣ
ௗ௫
(଴ݔ) = 	0			 ௗ௬

మ

ௗ௫మ
(଴ݔ) 	= 	−

௙ೣ ೣ
బ

௙ഊ
బ (6.3.4) 

We call (6.2.3) an extended system, and (6.2.4) provides two side constraints. 

Together, (6.3.2) and (6.3.3) provide the defining conditions for a quadratic fold point. 

Quadratic fold points have several nice properties. First, Newton’s method 

applied to (6.2.3) will converge quadratic ally for a sufficiently accurate initial guess. 

Second, a sensitivity analysis shows they are stable under perturbation. Assume ݂(ݔ,  (ߣ
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is perturbed to መ݂(ݔ, ,ߣ (ߝ = ,ݔ)݂	 (ߣ + ,ݔ)݌ߝ	 ,ݕ)෠ܨ and consider (ߣ (ߝ 	= 	 (݂	 + ,݌ߝ	 	ݔ݂ +

(ݔ݌ߝ	 	= 	0. Now ܨ෠(ݕ଴, 0) 	= 	0 andܨ෠௬(ݕ଴, 0) is nonsingular and so it  shows that 

	ݕ = 	ߝ near (ߝ)ݕ	 = 	0, with (ߝ)ݕ 	= ଴ݕ	 + ,(ߝ)ݕ)ݕ෠ܨand ,(ߝ)ܱ	  nonsingular. Hence theߝ

perturbed  problem መ݂(ݔ, ,ߣ (ߝ 	= 	0 has a quadratic fold point ((ߝ)ݔ,  satisfying ((ߝ)ߣ

(ߝ)ݔ = ଴ݔ + (ߝ)ߣ				,(ߝ)ܱ = ଴ߣ + 	.(ߝ)ܱ	

This type of sensitivity analysis is common in structural mechanics where the various 

physical imperfections in a system are ‘lumped together’ as asingle artificial parameter. 

One might also consider ߝ	 = 	ℎ݉where መ݂ is a discretization of ݂, ℎis a stepsize and݉is 

the order of consistency. Clearly quadratic folds in ݂are preserved in መ݂and it is not 

surprising that a similarresult holds for more general problems under certain 

assumptions. 

Multi-parameter problems 6.2.2 [15]: Let us change perspective now, and think of ߝin 

the previous section as acontrol parameter to be varied rather than merely a 

perturbation parameter. The above analysis still applies, and provided 

መ݂ఒ((ߝ)ݔ, ,(ߝ)ߣ (ߝ 	≠ 0	and መ݂௫௫((ߝ)ݔ, ,(ߝ)ߣ ߝ ≠ 0	there is no requirement that ߝremain 

small. Thus, we change notation by setting ߝ	 =  and dropping the ‘ˆ’ symbol over the ,ߙ	

݂, and consider the two-parameter problem 

,ݔ)݂ ,ߣ (ߙ = 	0, ,ݔ ,ߣ ߙ ∈ ܴ.																																												(6.2.6)	

Provided the side constraints ఒ݂ ≠ 	0 and ௫݂௫ ≠ 	0continue to hold, then a path of 

quadratic fold points can be computed using Newton’s method  applied to 

,ݕ)ܨ (ߙ = 	 ൤ ݂
,ݔ) ,ߣ (ߙ
௫݂(ݔ, ,ߣ (ߙ

൨ 	= 	0, 	ݕ = 	 ቀߣݔቁ.																												(6.2.7)	

Since the side constraints appear in ܨ௬, they can be easily monitored. If a zero occurs in 

a side constraint then a higher-order singularity has beendetected. 

Possible types of behavior of solutions of (6.2.1) near a singular point are 

classified according to contact equivalence, namely, equivalence up to a smooth change 

of coordinates. This classification associates a number, the codimension, with each 

singularity, and if the codimension is finite then the singularity is equivalent to a 

polynomial canonical form. For example, the simplest singularity is the quadratic fold 
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point, which has canonical form ݂(ݔ, (ߣ 	= 	 ଶݔ −   and has codimension zero. Clearly atߣ

଴ݕ 	= 	 ,଴ݔ) ்(଴ߣ 	= 	 (0, 0)்  then (6.2.3) and (6.2.4) are satisfied , conversely any	݂	 

satisfying (6.2.3) and (6.2.4) is contact equivalent to ݔଶ −  In Jepson the singularities .ߣ

of codimension less than 4 are arranged in a hierarchy and this was used to provide an 

algorithm to obtain suitable extended systems and side constraints for the calculation of 

the singularities. For example, there are two codimension 1 singularities: a transcritical 

bifurcation (ߙ	 = 	0in Figure 6.1below) that arises in a path of fold points when ఒ݂ 	= 	0; 

and a hysteresis bifurcation (ߙ	 = 	0	in Figure 6. 2) below, that arises in a path of fold 

points when ௫݂௫ 	= 	0. To compute a transcritical bifurcation in a stable manner we 

need 2 parameters, namely ߣ and ߙ, and the extended system is (ݕ)ܨ 	= 	(݂, ௫݂ , ఒ݂)் 	=

	ݕ ,0	 = ,ݔ)	 ,ߣ ଴ݕ ,A transcritical bifurcation point . ்(ߙ 	= ,଴ݔ)	 ,଴ߣ  ଴)்say, will be aߙ

regular solution if  (a) ఈ݂
଴ 	≠ 	0, and (b)the side constraints ௫݂௫

଴ 	≠ 	0 and ( ௫݂௬
଴ )ଶ −

௫݂௫
଴

ఒ݂ఒ
଴ 	≠ 	0 hold. The canonicalform is ݂(ݔ, (ߣ = 	 ଶ. The condition ఈ݂ߣ	–	ଶݔ

଴ 	≠ 	0 is a 

universal unfoldingcondition that, roughly speaking, ensures that the control parameter 

,ݔ)entersin f in such a way as to provide all qualitatively distinct solutions of݂ ߙ ,ߣ (ߙ =

	0 as ߙ varies near ߙ଴. The transcritical bifurcation has codimension1, since 1 control 

parameter is needed in the universal unfolding݂(ݔ, ,ߣ (ߙ 	= 	0. Figure 6.1 shows the 

unfoldingof a trans critical bifurcation, and Figure 6.2 shows the unfolding of a 

hysteresis point (also of codimension1) which has extended system (ݕ)ܨ =

	(݂, ௫݂ , ௫݂௫)் = 0 and side constraints ఒ݂ ≠ 0, ௫݂௫௫ ≠ 	0. It is important to note that one 

would not expect to see the codimension 1 singularities, that is, trans-critical or 

hysteresis bifurcation points, in a oneparameter physical problem. Rather, two 

parameters are needed to observe them and to locate them numerically. Also, as we see 

in Figures 6. 1 and 6. 2, they are destroyed by perturbations. It is not surprising, then, 

that the convergence theory of discretizations near bifurcation points in one-parameter   

,problems proves very technical and is perhaps of limited usefulness. [15] 
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Figure 6.1 Solution diagrams ܚܗ܎	ܠ)܎, ,) 	= ૛ܠ 	− ૛ 	+ 	 = ૙ . The transcritical 
bifurcation point is destroyed for 	૙ 

 

 

 

 

 

Fig.6. 2. Solution diagrams forࢌ(࢞, ,ࣅ (ࢻ 	= 	࢞૜ + 	࢞ࢻ − 	ࣅ = 	૙. The hysteresis point 

isdestroyed for ∝= 	૙ and there are no singular points for હ > 	0 
 

Problems with reflection symmetry (6.2.3) [15]: A classification of singularities 

satisfying various symmetries can also be given. We content ourselves here with a few 

remarks about the simpleܼଶ (i.e., reflection) symmetry. If݂(ݔ,  satisfies the (ߣ

equivariance (symmetry) condition 

f(−x, λ) 	= 	−f(x, λ),																																																		(6.2.8) 

then a classification of singularities arises that reflects the symmetry in the problem and 

is different from that for problems with no symmetry. First note that if (6.2.8) is satisfied 

then	f(x, λ)is odd in ݔ and so we may write ݂(ݔ, (ߣ = ,ଶݔ)ܽݔ  for some	(ߣ

functionsܽ(ݔଶ, ,ݔ) Also, if .(ߣ ,ݔ)satisfies݂ (ߣ (ߣ 	= 	0	then so does (−ݔ,  Thus the	.(ߣ

solution diagrams are symmetric about the ߣaxis: see Figure 6.3. The simplest singularity 

(i.e., codimension 0) has the canonical form f(x, λ) 	= 	 xଷ − λx	 = 	x(xଶ − λ) and gives 

rise to the common symmetric pitchfork bifurcation diagram (see Figure 6.3(a)). The 

singularities given in Figure 6.3(b), (c) and (d) have codimension 1 and typically will only 

be observed in a two-parameter setting . 
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(a) (b) (c) (d) 

Fig. 6.3. Canonical solution diagrams for Z-symmetric singularities ofcodimension	 ≤

1:	(a)f(x, λ) = 	 xଷ − λx	 = 	0,	 

(b)	f(x, λ) 	= 	 xହ − λx	 = 	0,a quadratic symmetry breaking bifurcation, (c)	f(x, λ) 	=

xଷ − λଶx	 = 	0,a C−coalescence point, and (d)	F(x, λ) 	= 	xଷ +	λଶx	 = 	0, a	C +

	coalescencepoint. Unfolding's of (b), (c) and (d) are given on Golubitsky and Schaeffer 

(1985) theory for Hopf bifurcation is intimately connected to that for ܼଶ-symmetric  

problems. In particular, small amplitude periodic orbits of an autonomous  system of 

ODEs are in one-to-one correspondence with zeros of a nonlinear problem that satisfies 

the ܼ-equivariance condition (6.2.8). The simplest  Hopf bifurcation corresponds to a 

codimension0 singularity and hence is likely to be observed in one-parameter problems. 

Non-linear model[10] 

In the field of mechanical engineering, the non-linear dynamical system defined 

in Figure (6.4) is a classic example of friction-induced vibrations in a brake system. It 

presents the grabbing vibration in heavy trucks that results from coupling between the 

normal mode (݇ଵ, ݉ଵ) of the brake control and the torsion mode of the front axle 

(݇ଶ,݉ଶ). In order to simulate a braking system placed crosswise due to overhanging 

caused by a static force effect, we consider the moving belt slopes with an angle ߠ This 

slope couples the normal and tangential degree-of-freedom induced only by the friction 

coefficient ߤ that is assumed to be constant. The braking force Fbrake transits through 

the braking command, that has non-linear behavior. Therefore, we consider the 

possibility of a non-linear contribution. This non-linearity is applied in order to indicate 

the influence and the importance of non-linear terms in under-standing the dynamic 

behavior of systems with non-linear phenomena, the prediction of dangerous or 



90 
 

favorable conditions, and the exploitation of the full capability of structures by using 

systems in the non-linear range. In this study, the nonlinear behavior dynamic of the 

brake command of the system (݇ଵ, ݉ଵ), and the non-linear behavior dynamic of the 

front axle assembly and the suspension (݇ଶ,݉ଶ) are concerned, respectively. These 

non-linearities are defined as non-linear stiffness's. The non-linear behavior is then 

expressed as a quadratic and cubic polynomial in the relative 

displacement: 

݇ଵ 	= 	݇ଵଵ 	+ 	݇ଵଶ	(ܻ	 − (ݕ	 	+ 	݇ଵଷ(ܻ	 −  ଶ(ݕ	

݇ଶ 	= 	 ݇ଶଵ +	݇ଶଶܺ	 +	݇ଶଷܺଶ                                          (6.2.9)                            

 

 

 

 

 

 

 

 

 

 

Figure 6. 4: Non-linear model of the braking system 

With reference to Figure 4, and considering the non-linear expression of the stiffnesses 

defined in equations (6.2.9), the three equations of motion can be expressed as 

⎩
⎨

⎧݉ଵܻ̈ + ܿଵ൫	ܻ̇ − ൯˙ݕ + ݇ଵଵ(ܻ − (ݕ	 + ݇ଵଶ(ܻ	 − ଶ(ݕ	 + 	݇ଵଷ(ܻ	 − ଷ(ݕ	 	= ݁݇ܽݎܾܨ−	
݉ଶܺ	̈ + ܿଶܺ̇ + 	݇ଶଵܺ + 	݇ଶଶܺଶ 	+ 	݇ଶଷܺଷ 	= 	ߠ݊݅ݏ	ܰ−	 + ߠݏ݋ܿ	ܶ	

݉ଶ̈ݕ 	+ 	ܿଵ(̇ݕ − 	˙ܻ) + 	݇ଵଵ(ݕ	 − 	ܻ	) + 	݇ଵଶ(ݕ	 − 	ܻ	)ଶ 	+ 	݇ଵଷ(ݕ − ܻ)ଷ
= 	ߠ	ݏ݋ܿ	ܰ	 + ߠ݊݅ݏ	ܶ	

� (6.2.10) 

Considering Coulomb’s friction law ܶ	 = 	ݕ and the transformations ,ܰߤ	 =  and ߠ	݊ܽݐ	ܺ	

	ݔ = 	 {ܺ			ܻ	}்  , the nonlinear 2-degrees-of-freedom system is given by 

ݔ̈ܯ + ݔ̇ܥ	 + 	ݔܭ = 	ܨ	 +  (6.2.11                                   ) (ݔ)ܮܰܨ	
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where ̈ݔ̇,ݔ and x define the acceleration, velocity, and displacement response 2-

dimensional vectors of the degreesof- freedom, respectively.ܥ ,ܯ and	ܭ are the mass, 

damping and stiffness matrices of the mechanical system.  defines the vector due toܨ

the brake force, and (ݔ)ܮܰܨ is the vector containing all the non-linear terms of the 

system (6.2.10). By considering the equations of (6.2.10) the expressions of all the 

matrices and vectors are 

	ܯ = 	 ൤݉ଶ(݊ܽݐଶߠ + 1) 0
0 ݉ଵ

൨                                                (6.2.12) 

C = ൤	cଵ(tan
ଶθ	 − μ	tan	) + 	cଶ	(1	 + 	μ	tan	θ)	 cଵ	(−tan	_ 	+ 	μ)

−cଵ	tan	θ	 c1 ൨                 (6.2.13) 

	ܭ = 	 ൤݇ଶଵ	(1 + 	tanߤ (ߠ + ݇ଵଵ(݊ܽݐଶ	ߠ − 	(ߠ݊ܽݐߤ ݇ଵଵ(−ߠ݊ܽݐ + (ߤ
−݇ଵଵ	݊ܽݐ	ߠ 	݇ଵଵ

൨					(6.2.14) 

Fே௅ = ቐ
(−tanθ + μ)(kଵଶ(X	tanθ − Y	)ଶ+kଵଷ(X	tanθ − 	Y	)ଷ)

+kଶଶ(1	 + 	μ	tanθ)Xଶ 	+ 	kଶଷ(1	 + 	μ	tanθ)Xଷ

−kଵଶ(Y	 − 	X	taθ)ଶ − 	kଵଷ(Y	 − 	X	tanθ)ଷ
ቑ												(6.2.15) 

F	 = ቄ 		0
−Fbrakeቅ                                            (6.2.16) 

The general form of the equation of motion for the non-linear system is given in the 

following way: 

Mẍ + 	Cẋ + Kx	 = 	F	 + ∑ ∑ ଶ݂
௜௝ଶ

௝ୀଵ
ଶ
௜ୀଵ x௜x௝ +∑ ∑ ∑ (݂ଷ)

௜௝௞ଶ
௞ୀଵ

ଶ
௝ୀଵ

ଶ
௜ୀଵ x௜x௝X௞ 		(	6.2.16) 

where f	(ଶ)
௜௝ and f(ଷ)

௜௝௞) are the vectors of quadratic and cubic non-linear terms, 

respectively [10] 
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