
13

4.1 INTRODUCTION
After analyzing the SUT, this chapter will explain the process of model-

based testing and the designation of test calculation process, then the

conversion of the model into java class and generate test input and test oracle

for salary calculation stub, also the offline test execution tool will be developed

to execute all generated test cases to the salary calculation stub and report of

pass/fail verdict will be generated.

4.2 MBT PROCESS

— Figure (4.1) below shows the process of model-based testing.

 Figure (4.1): model based testing process

13

4.2.1 OFFLINE TESTING

Model-based testing wherein the complete test suite is generated first,

then executed later. It decouples the test generation and test execution

environments and tools.

4.2.2 TEST STUB
 Stubs are computer programs that act as replacement for a called module

and give the same output as the actual product or software. In this research the

salary calculation method and the employee registration method will be

replaced with stubs that act as the actual calculation method and employee

registration method of SUT because of the actual method queries a database to

obtain the information of each employee, in this case, the query may be slow

and consumes a large number of system resources. This reduces the number of

test runs per day. Secondly, tests may need to include values outside those

currently in the database. The method (or call) used to perform this is

get_salary(), For testing purposes, the source code in get_salary() and can be

replaced with a simple statement that returns a specific value. That is what will

be explained in the section of applying of generated test cases to the salary

calculation stub which shown below.

4.2.2.1 SALARY CALCULATION STUB

public class CalculationStub {

 public static int salaryStub(int main,int premium,int

deduction){

 int salary=main+premium-deduction;

 return salary;

 }

}

 4.2.3 DESIGNING OF FSM MODEL

FOR SALARY CALCULATION

PROCESS (OFFLINE TESTING)
This section describes the salary calculation model of SUT, which is

based on finite state machines (FSMs). Each node of an FSM corresponds to a

particular state of the SUT and each arc corresponds to an action of SUT, so to

generate test sequences we can just traverse the FSM. From figure (3.17) in

11

chapter 3 the model will be rearranged with actual instances to design the FSM

model. Figure (4.2) below shows the finite state machine of salary calculation

process with random test instances for main salary, premiums and deductions

values.

The offline testing technique is used when every input has a specific

output, which means that there is no more than one output for a specific input.

 Figure (4.2) FSM

 stm salaryCalc

initial

salary = 0

salary = salary + mainSalary

salary = salary + totalPremiums

salary = salary - totalDeductions

Final

[subTotalDeductions]

[addTotalPremiums]

[addMainSalary]

13

4.2.4 CONVERTION OF MODEL

INTO JAVA CODE, GENERATION

OF TEST CASES AND

DETERMIATION OF ORACLE

PROBLEM.
The operation of writing an EFSM in the ModelJUnit style, the model

will be converted into an EFSM and then generate a small test suite from the

model.

4.2.4.1 CONVERTION OF MODEL TO

EFSM IN THE MODELJUNIT STYLE

import java.sql.*;

import java.util.Random;

//import junit.framework.Assert;

import nz.ac.waikato.modeljunit.*;

import nz.ac.waikato.modeljunit.coverage.TransitionCoverage;

/** A model of a set with four states : zero salary,add premium

state,add deduction state and add main salary state.

 *

 *zero salary describes the initial state of salary

 *add premium state for adding total premiums to the salary.

 *add deduction state for adding total deductions to the salary.

 *add main salary state for adding the main salary to the salary.

 *after generation of testcases all of them will be inserted in

database table

 *and used to test the salaryStub method(stub).

 */

public class SalaryTestCases implements FsmModel

{

static int salary;

static int main;

static int premiums;

static int deductions;

public enum state

{

 zero,mainSalary,Premiums,Deductions;

};

private state current;

 public SalaryTestCases()

 {

 salary=0;

13

 current=state.zero;

 }

 public Object getState()

 {

 return salary;

 //return current;

 }

 public void reset(boolean testing)

 {

salary=0;

current=state.zero;

 }

 public boolean addMainSalaryGuard()

 {return current==state.zero;}

 @Action public void addMainSalary()

 {

 Random r=new Random();

 main=r.nextInt(500);

 salary+=main;

 current=state.mainSalary;

 }

 public boolean addPremiumsGuard()

 {return current==state.mainSalary;}

@Action public void addPremiums()

{

 Random r1=new Random();

 premiums=r1.nextInt(100);

 salary+=premiums;

 current=state.Premiums;

}

public boolean addDeductionsGuard()

{return current==state.Premiums;}

@Action public void addDeductions()

{

 Random r2=new Random();

 deductions=r2.nextInt(50);

 salary-=deductions;

 // System.out.println(main+"+"+premiums+"-

"+deductions+"="+salary);

 current=state.Deductions;

 try

 {

 Connection c;

 Statement s;

 //ResultSet r;

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 c=DriverManager.getConnection("jdbc:odbc:Testdb");

 s=c.createStatement();

 String s1="INSERT INTO testcases

VALUES("+main+","+premiums+","+deductions+","+salary+")";

 s.executeUpdate(s1);

13

 c.close();

}catch(Exception e){}

}

 /** Check that the SUT is in the expected salary. */

 /** An example of generating tests from this model. */

 public static void main(String[] args)

 {

 Tester tester = new GreedyTester(new SalaryTestCases());

 //tester.buildGraph(); // to get better statistics

 tester.addListener(new VerboseListener());

 // uncoment this line if you want to stop when the first error is

found.

 // tester.addListener(new StopOnFailureListener());

 tester.addCoverageMetric(new TransitionCoverage());

 tester.generate(30);

 tester.printCoverage();

 }

}

4.2.4.2 GENERATION OF TEST CASES

FROM EFSM
Figure (4.3) below illustrates the generation of test cases process from the

model.

Figure (4.3), the process of generation of test cases.

13

4.2.4.3 THE TEST ORACLE

 Test oracle is the instance that decides whether a test case passed or failed.

From the previous model, the test cases will be stored into database with its test oracle

to decide whether the test cases passed or failed.

4.2.4.3.1 THE TEST ORACLE FOR

GENERATED TEST CASES
 Table (4.3) shows sample of test cases that generated from the model

and its test oracle.

Testcases

mainSalary premiums deductions
Result

(test oracle)

107 11 46 372

390 19 27 382

311 75 29 357

131 51 2 180

497 58 9 546

81 36 44 73

252 46 45 253

Table (4.1)

Now each test case will be passed if and only if its output equals its test

oracle, otherwise it will be failed. The first test oracle in the table is 72 actually,

but it has been modified with invalid test oracle to show fail verdict in the

execution later.

13

4.2.5 APPLYING OF TEST CASES TO

SALARY CALCULATION STUB

 In this section the test cases that stored in a database will be applied to

the salary calculation stub then the results will be shown in a GUI window.

4.2.5.1 OFFLINE TEST CASES

EXECUTION TOOL

In this phase, the offline test cases execution tool is developed to

execute all test cases stored in database automatically. This tool receives the

class name, method name and the name of database table that hold test cases to

be executed to the method and then returns a report showing the pass/fail

verdict of each test cases.

4.2.5.1.1 OFFLINE TEST CASES

EXECUTION TOOL – START WINDOW
Figure (4.4) below shows the start window of the tool.

Figure (4.4): start window

13

4.2.5.1.2 OFFLINE TEST CASES

EXECUTION TOOL – REPORT WINDOW

When the “run tests” button is clicked, the offline execution tool will execute

all tests on the method specified and generate the execution report with

pass/fail verdict as shown below in figure (4.5).

Figure (4.5): test execution report window

4.3 CONCLUSION
This chapter illustrated the process of model based testing, the design of

salary calculation process model, the conversion of the model into java code

and then generation of test cases (test inputs and test oracles), also showed the

developed offline test execution tool that uses stored test cases to execute it

automatically to the method specified, finally, we thank god for help us in

proving that the model based testing reduces costs and efforts ,this approach

should be the future approach to use in software testing according to its

benefits that is proved in this project.

