

5

2.1 GENERAL CONCEPTS

2.1.1 INTRODUCTION

This section defines the main techniques used in this project to fill full

the objectives that the project must address. It also shows the feasibility study

of applying model-based testing.

2.1.2 STATE MACHINE

A finite-state machine (FSM) is a mathematical model of computation

used to design both computer programs and sequential logic circuits. It is

conceived as an abstract machine that can be in one of a finite number of states.

The machine is in only one state at a time; the state it is in at any given

time is called the current state. It can change from one state to another when

initiated by a triggering event or condition; this is called a transition.

 A particular FSM is defined by a list of its states, and the triggering

condition for each transition, it allows to modeling the system under test before

generating of test cases
 [3]

.

While sequence diagrams are used to describe the interaction between objects,

state machines are used to define the behavior of one object (or a class of

objects)
 [4]

.

A state machine can be described as:

 An initial state or record of something stored someplace

 A set of possible input events

 A set of new states that may result from the input

 A set of possible actions or output events that result from a new state

A finite state machine can be used both as a development tool for

approaching and solving problems and as a formal way of describing the

solution for later developers and system maintainers. There are a number of

ways to show state machines, from simple tables through graphically animated

illustrations
 [5].

6

2.1.3 BLACK-BOX TESTING

Black box testing is a software testing techniques in which functionality

of the software under test (SUT) is tested without looking at the internal code

structure implementation details and knowledge of internal paths of the

software. This type of testing is based entirely on the software requirements

and specifications.

Black box testing method is applicable to all levels of the software

testing process:

 Unit Testing

 Integration Testing

 System Testing

 Acceptance Testing

This method of attempts to find errors in the following categories:

 Incorrect or missing functions

 Interface errors

 Errors in data structures or external database access

 Behavior or performance errors

 Initialization and termination errors
[6]

2.1.3.1 MODEL-BASED TESTING (MBT)

 model-based testing is the generation of executable test cases that

include oracle information, such as the expected output values of the SUT, or

some automated check on the actual output values to see if they are correct.

This is obviously a more challenging task than just generating test input data or

test sequences that call the SUT but do not check the results. To generate tests

with oracles, the test generator must know enough about the expected behavior

of the SUT to be able to predict or check the SUT output values. In other

words, with this definition of model based testing, the model must describe the

expected behavior of the SUT, such as the relationship between its inputs and

outputs. But the advantage of this approach is that it is the only one of the four

that addresses the whole test design problem from choosing input values and

generating sequences of operation calls to generating executable test cases that

include verdict information
 [6]

.

2.1.3.2 MODEL JUNIT

JUnit is a unit testing framework for the Java programming language.

Units are the smallest module of functionality in a computer program. These

are usually in the form of a method. Therefore, JUnit is most commonly used to

http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/integration-testing/
http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/acceptance-testing/

7

test the functionality of individual methods. Experience with JUnit has been

important in the development of Test-Driven Development
 [8]

.

ModelJUnit is a Java library that extends JUnit to support model-based testing.

Models are extended finite state machines that are written in a familiar and

expressive language: Java. ModelJUnit is an open source tool.

ModelJUnit allows you to write simple finite state machine (FSM) models or

extended finite state machine (EFSM) models as Java classes, then generate

tests from those models and measure various model coverage metrics
 [9]

.

2.1.4 ECLIPSE

Eclipse is a multi-language software development environment

comprising a base workspace and an extensible plug-in system for customizing

the environment. It is written mostly in Java. It can be used to develop

applications in Java and, by means of various plug-ins, other programming

languages including Ada, C, C++, COBOL, Fortran, Haskell, Perl, PHP and

Python. It can also be used to develop packages for the software Mathematical.

Development environments include the Eclipse Java development tools (JDT)

for Java and Scala, Eclipse CDT for C/C++ and Eclipse PDT for PHP, among

others.

The initial codebase originated from IBM Visual Age. The Eclipse

software development kit (SDK), which includes the Java development tools, is

meant for Java developers. Users can extend its abilities by installing plug-ins

written for the Eclipse Platform, such as development toolkits for other

programming languages, and can write and contribute their own plug-in

modules
[01]

.

2.1.5 UML LANGUAGE

 UML stands for “Unified Modeling Language”. It is an industry-

standard graphical language for analysing, describing and documenting the

artifacts of an object-oriented system under development or (under test). The

UML uses mostly graphical notations to express the OO analysis and design of

software projects.

The SUT analyzed using Use case, Sequence, Activity, Class and

Statechart diagrams to emphasize what must happen in the application being

modeled. These behavior and structural diagrams illustrate the behavior and

structure of a SUT
[10]

.

http://en.wikipedia.org/wiki/Model_based_testing
http://en.wikipedia.org/wiki/Software_development_environment
http://en.wikipedia.org/wiki/Workspace
http://en.wikipedia.org/wiki/Plug-in_%28computing%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Ada_%28programming_language%29
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Haskell_%28programming_language%29
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Mathematica
http://en.wikipedia.org/wiki/Codebase
http://en.wikipedia.org/wiki/IBM_VisualAge
http://en.wikipedia.org/wiki/Software_development_kit

8

2.1.5.1 ENTERPRISE ARCHITECT

 Is UML modeling tool to modify the diagrams that help in analysis

process.

2.1.5.1.1 USE CASE DIAGRAM

A use case is a description of some way in which a system or a business

is used, by its customers, users or by other systems. Mainly used for capturing

user requirements (describing a set of user scenarios) and it's Work like a

contract between end user and software developers.

2.1.5.1.2 CLASS DIAGRAM

Class diagram in UML is a type of static structure diagram that

describes the structure of a system by showing the system's classes, their

attributes, operations (or methods), and the relationships among objects.

2.1.5.1.3 SEQUENCE DIAGRAM

Sequence diagrams are used to represent the flow of messages, events

and actions between the objects or components of a system.

The horizontal dimension shows the objects participating in the interaction, and

the vertical arrangement of messages indicates their order.

2.1.5.1.4 ACTIVITY DIAGRAM

Activity Diagrams are a type of flowchart used to describe business

process or workflow of a system; that is, they show the flow of control from

activity to activity in the system, what activities can be done in parallel, and

any alternate paths through the flow.

2.1.5.1.5 STATECHART DIAGRAM

The statechart diagram models the different states that a class

can be in and how that class transitions from state to state. It can be

argued that every class has a state, but that every class shouldn't have a

statechart diagram. Classes with three or more potential states during

system activity should be modeled.

http://en.wikipedia.org/wiki/Class_%28computer_science%29

9

2.2 PREVIOUS STUDIES

The concept of Model Based testing is a brand new approach in software

testing and quality assurance techniques. Because of which, there are no major

(real) software products adopted the concept of MBT yet.

Manual testing is the current software testing technique in use in most of

software production companies.

2.3 FEASIBILITY STUDY

The feasibility study is an evaluation and analysis of the potential of a

proposed project which is based on extensive investigation and research to

support the process of decision making.

A feasibility study main goal is to assess the economic viability of the

proposed business. The feasibility study needs to answer the question: “Does

the idea make economic sense?”
[12]

.

2.3.1 ECONOMIC FEASIBILITY

STUDY

Analysis of a project costs and revenues in an effort to determine

whether or not it is possible to complete.

2.3.1.1 NET PRESENT VALUE

ANALYSIS

Net present value determines the profitability of the project in terms of

today's dollar values. Will tell you that if you invest in the proposed project,

after n years you will have $XXX profit/loss on your investment.

10

2.3.1.1.1 NET PRESENT VALUE WITH

USING MANUAL TESTING

 Year 0 Year 1 Year 2 Year 3 Year 4 total

Cost

Development cost 100,000

Operation and

maintenance cost

 15,000 20,000 25,000 30,000

Discount factor for

12%

1.000 0.893 0.797 0.712 0.636

PV for annual cost 100,000 13,395 15,940 17,800 19,080

Total PV of lifetime

costs

166,215

Benefits

Derived from

operation

0 50,000 65,000 70,000 80,000

Discount factor for

12%

1.000 0.893 0.797 0.712 0.636

PV for annual

benefits

0 44,650 51,805 49,840 50,880

Total PV of lifetime

benefits

197,175

Net present value 30,960

The net present value of the investment in the project after 5 years is

30,960.

2.3.1.1.2 NET PRESENT VALUE WITH

USING MODEL-BASED TESTING

 Year 0 Year 1 Year 2 Year 3 Year 4 total

Cost

Development cost 100,000

Operation and

maintenance cost

 10,000 15,000 20,000 25,000

Discount factor for

12%

1.000 0.893 0.797 0.712 0.636

PV for annual cost 100,000 8,930 11,955 14,240 15,900

Total PV of lifetime 151,025

11

costs

Benefits

Derived from

operation

0 50,000 65,000 70,000 80,000

Discount factor for

12%

1.000 0.893 0.797 0.712 0.636

PV for annual

benefits

0 44,650 51,805 49,840 50,880

Total PV of lifetime

benefits

197,175

Net present value 46,150

The net present value of the investment in the project after 5 years is

46,150.

The net present value of the project when using model-based testing is greater

than using manual testing, the reason is that model-based testing aims to test

the model of the system before coding process and detect bugs and errors early;

that leads to reduction of maintainability after implementation of the system

and hence reduction of total costs.

2.4 CONCLUSION
 This chapter explained the technologies and techniques that used

in this project; it also showed that there are not previous studies for this

field yet and proved that the model based testing saves costs and that is

illustrated in the feasibility study of using model-based testing result.

The next chapter will describe the structure and analysis of the salary

system case study using UML diagrams by enterprise architect tools.

