الإستهلال

(وَقُلِ اعْمَلُوا فَسنيرَى اللهُ عَمَلَكُمْ وَرَسنُولُهُ وَالْمُؤْمِنُونَ) [التوبة:105]

الأهداء

الي

أمماتنا

وأبائنا

وأخوتنا وأحبتنا

شكر وعرفان

نتقدم بالحمد والشكر للمولي عز وجل الذي وفقنا لإنجاز هذا العمل

والصلاة والسلام علي الحبيب المصطفي (صلي الله عليه وسلم)

> شكر جميل صنعكم بدمي ودمع العين مقياس الشعور

نتقدم بجزيل الشكر لكل من ساهم في وصول هذا البحث ونخص بالشكر الدكتور /

عباس موسى يعقوب

الذي تفضل بالإشراف على هذا البحث الى ان رأي النور فله كل الشكر و التقدير.

Abstract

This research presents an overview of petrophysical research and exploration achievements of low resistivity pay (LRP) zone in Hadida oil field in Block VI is located in the southwest of Sudan, in the northwest of the Muglad basin, and covers an area of 59,000 sq. km. Hadida Field is located in the northwest of Block 6, between Nugara and Sufyan field.

It includes geological characteristics and characteristics of well log response of the low resistivity pay zones, as well as the problems in recognizing and evaluating low resistivity pay zones by well logs. The main methodology which stablished in this research to identify the LRP zone is to use the Software Interactive petrophysics (IP) to identify the pay zone (Well Log) in general and then make a well correlation between geological column data (Masterlog) and well log.

According to the planetology studies in core, one can classified two Low resistivity pay zones in Hadida, the first interval is Bentiu Formation which classified as Aptian-Cenomanian age. The second interval is Abu Gabra Formation which classified as Neocomian age.

Clay minerals distribution are the primary cause of the low resistivity in Bentiu sand and it formed during and after deposition. They are distributed in the formation as laminar shale. Shale volume ,fine grain and High invasion are the primary cause of the low resistivity in Abu Gabra zone.

The petrophysical research concerning recognition and evaluation of the low resistivity pays, based on their genetic types.

التجريد

يقدم هذا البحث نظرة بتروفيزيائية عامة لما تم انجازه من عمل استكشافي لطبقات النفط ذات المقاومة المنخفضة في حقل حديدة النفطي الواقع في مربع(6) في الجنوب الغربي من السودان ويقع ضمن حوض المجلد ويغطي مساحة 59000 كيلومتر مربع ويقع بين حقلي نقارة وسفيان.

يتضمن البحث الخصائص الجيولوجية وخصائص تسجيلات الابار للطبقات ذات المقاومة المنخفضة ومعرفة وتقييم طبقات المقاومة المنخضة .

الطريقة الرئيسية المعتمدة للتعرف على الطبقات ذات المقاومة المنخفضة هو استخدام برنامج(IP) لتسجيل البئر

ثم عمل مضاهاة بن العمود الجيولوجي والتسجيل البئري.

تبعا للدر اسات الاحاثية التي اخزت من اللباب الصخري يمكن تصنيف طبقتين من طبقات المقاومة المنخفضة النطاق الاول هو تكوين بانتيو في العمر السيموني والنطاق الثاني هو تكوين ابوجابرة في العمر اليوسيني.

معادن الطين وتوزيعها هو السبب الاساسي لانخفاض المقاومة في تكوين بانتيو وتشكل الطين اثناء و بعد الترسيب في شكل طبقات رقيقة .

حجم الطين والحبيبات الناعمة و الرشح العالي هو السبب الاساسي لانخفاض المقاومة في تكوين ابوجابرة .

هذا البحث يقوم بتعريف و تقييم طبقات المقاومة المنخفضة اعتمادا على الخصائص الوراثية.

CONTENTS

الاستهلال	Ι
Dedication	II
Acknowledgement	III
Abstract	IV
التجريد	V
Contents	VI
List of Figures	XI
List of Tables	XIII
CHAPTER ONE	XIV
INTRODUCTION	1
1.1 Problem	1
1.2 Objective	1
1.3 Methodology	1
1.4 Interactive Petrophysics IP	2
1.5 Data Used	2
1.6 Petrophysical Evaluation	2
1.7 Basic Resistivity Concepts	2
1.8 Resistivity Logging	3

1.9 Dual lateral log	3
1.10 Dual lateral log Theory	4
1.11Micro Laterolog/Micro Spherically Focused Logs	5
1.12 Micro Laterolog Theory	5
1.13 Induction Logging	6
1.14 Applications of Resistivity Logs	7
1.15 Invasion Profiles	7
1.15.1 Typical invasion profiles	8
1.16 logging while drilling Resistivity Measurements	9
CHAPTER TWO	
IDENTIFICATION AND EVALUATION OF LOW	
RESISTIVITY PAY ZONES	
2.1Distribution of low-resistivity pay zones China as an	11
example)	
2.2 Genetic types of low-resistivity pays	11
2.2.1 Conductivity of clay	11
2.2.2 Micro porosity and high irreducible water saturation	14
2.2.3 Deep invasion of high salinity filtrate	14
2.3 Distribution of low-resistivity pays in Sudan in Block(6)	14
2.3.1 Low resistivity in Aradeiba reservoir:	14

2.3.2 Main reasons for the low resistivity in Aradeiba	16
reservoir:	
2.3.3 Low contrast resistivity in AbuGabra reservoir	16
2.3.4 Main reasons for the low contrast resistivity in Abu	18
Gabra reservoir:	
2.4 Forming Mechanism of Low Resistivity Oil Zone	19
2.4.1 High salinity formation water	19
2.4.2 high irreducible water saturation	20
2.4.2.1 Property of low resistivity oil zone:	20
2.4.3 High excess conductivity of clay	21
2.4.4 Clay mineral component and content	21
2.4.5 Fine-grained sands	22
CHAPTER THREE	
Geology Back Ground	
3.1 Structural setting	24
3.2 Hadida Traps and wells:	26
3.2.1 Hadida Traps	26
3.2.2 Hadida wells	26
3.3 Stratigraphic and sedimentary setting	26
3.3.1 Rifts in Hadida	26

3.3.2 Hadida formations	27
3.3.2.1 Abu Gabra Formation	27
3.3.2.2 Bentiu Formations	29
3.3.2.3 Aradeiba Formations	29
3.4 Reservoir subdivision and Correlation	29
3.5 Reservoir Lithology	32
CHAPTER FOUR	
LOW RESISTIVITY MEASURMENT	
4.1 Application	34
4.1.1 Program work flow	34
4.1.2 step one	35
4.1.3 step two	35
4.1.4 step three	38
4.1.5 step four	39
4.2 Hadida low resistivity pay zone	40
4.2.1 Low resistivity pay zone in Hadida N-8	40
4.2.2 Cutoff summary	45
4.3 Low resistivity pay zone in Hadida N-2	46
4.1 Cutoff summary	48

CHAPTER FIVE	
RESULT AND RECOMMENDATION	NS
5.1 Result	49
5.2 Recommendations	50
Reference	51

LIST OF FIGURES

Figure	Title	Page
	CHAPTER ONE	
(1.1)	Dual Lateral Log	4
(1.2)	Micro Laterolog Device	6
(1.3)	Invasion Profiles	8
(1.4)	Typical Invasion Profiles	9
	CHAPTER TWO	
(2.L)	Log Response Of Low-Resistivity Pay In Neogene sandstone.	12
(2.2)	Relative Content Of Clay In Neogene Sandstone From.	12
(2.3)	Composite Log Curves Of Low-Resistivity Pay In Triassic sandstone.	13
(2.4)	Master Log Of Low Resistivity Oil Zone In Aredeiba Reservoir.	15
(2.5)	Well Log Of Low Resistivity Oil Zone In Aredeiba Reservoir.	16
(2.6)	Master Log Low Contrast Resistivity In Abugabra.	18
(2.7)	Well Log Low Contrast Resistivity In Abugabra.	18
(2.8)	The relationship among formation water resistivity and salinity	20
(2.9)	shows high conductive shale component	21

(2.10)	shows low conductive shale component	21
(2.11)	wireline logs from a fairly clean, fined grained reservoir	23
	CHAPTER THREE	
(3.1)	Hadida Position In Block VI.	24
(3.2)	Tectonic Model Of CASZ Rift System.	25
(3.3)	Stratigraphic Column	28
(3.4)	Log Curve Feature At Reservoir Intervals (Well H-1) Stratigraphic Column	31
(3.5)	Abu Gabra1B Reservoir Lithology From Field Lithology Log	32
(3.6)	Abu Gabra 1E Reservoir Lithology From Field Lithology Log	33
	CHAPTER FOUR	
(4.1)	Work Flow Using IP.	34
(4.2)	Showing Data Load	35
(4.3)	GR Method Relationships	36
(4.4)	Reasonable Zonation	37
(4.5)	An Example Explaining How The Net Reservoir Woud Be	39
(4.6)	Hadida N-8master Log	41
(4.7)	Hadida N-8 Well Log	42
(4.8)	Hadida Well Log Interval 3094.47-3119.7	43
(4.9)	Hadida N-8well Log Abu Gabra Formation (Neocomian)	44
(4.10)	Interval Of LRLC In Hadida N-2 (1948.5-1952.6).	46

(4.11)	Master Log For Hadida N-2 For The Interval Of LRLC	47
	(1948.5-1952.6).	

LIST OF TABLES

TABLE	TITLE	PAGE
4.1	Hadida N-8 (625.0 – 3224.7m) Net Pay Cutoffs	45
4.2	Hadida N-2 (525.5-3250.0m) Net Pay Cutoffs	48