Sudan University of Science and Technology College of Engineering School of Mechanical Engineering – Department of production Engineering A Thesis submitted for the Honor Degree of BACHELOR of mechanical Engineering

Title:

Position Control of a Micro Electro Mechanical Actuator By Using MATLAB And ANSYS

Prepared by:

- 1. Altayeb Abdalla Altayeb Alhaj Ali
- 2. Ezzaddein Adam Edreis Hammad
- 3.Saddam Mohamed Salih Osman

Supervised by:

Dr. Musaab Abdallah Hassan Zaroug

August 2014

Content

Title	Page
CHAPTER ONE	1
Introduction	
1.1 Introduction	2
1.2 Research problem	3
1.3 Objective	3
1.4 The methodology	4
CHAPTER TWO	5
Theoretical Background & Literature Review	
2.1Actuator	6
2.2 Electrostatic MEMS actuator	6
2.3 Applications of MEMS Electrostatic Actuators	7
2.3.1 MEMS Micro grippers	7
2.3.2 Deformable Mirror Device (DMD)	8
2.3.3 Comb-drive electrostatic actuator	8
2.4 Control system	9
2.4.1Open loop systems	10
2.4.2 Closed-loop systems	10
2.4.3 PID Controller	11
2.4.3.1 Proportional Control	12
2.4.3.2 Integral Control	12
2.4.3.3 Derivative Control	12
2.5 Software used	12
2.5.1 MATLAB	12
2.5.2 MATLAB SIMULINK	13
2.5.3ANSYS	13
2.6 Literature Reviews	14
2.6.1 Modeling and feedback control of a MEMS electrostatic	14
actuator	
2.6.2 Leverage bending	14
2.6.3 Open-loop versus closed-loop control of MEMS devices	15
choices and issue	
2.6.4 Closed form models for pull-in voltage of	15
electrostatically actuated cantilever beams and comparative	
analysis of cantilevers and microgripper	
CHAPTER THREE	17
Actuator Modeling	

3.1 Mathematical Modeling	18
3.1.1 First Principles Modeling	22
3.2 Equation Normalization	24
3.2.1 Normalization Results of the Nonlinear Model of the	25
Electrostatic Actuator	
3.3 Model Linearization	25
3.3.1 Standard Model	26
3.4 Transfer Function Derivation	28
3.5 MATLAB m file	30
3.6 ANSYS Model	31
3.6.1 The main part of electrostatic actuator	31
3.6.1.1 Base layer	31
3.6.1.2 Isolator layer	31
3.6.1.3 Actuator layer	32
3.6.1.4 Pad layer	32
3.6.2 The programming	32
3.6.2.1 Pre-process	32
3.6.2.1.1 Element type	32
3.6.2.1.2 Material properties defining	33
3.6.2.1.3 Geometry	33
3.6.2.1.4 Mesh	34
3.6.2.1.5 Load definition	34
3.6.2.2 Solution	35
3.6.2.3 Post process	35
3.6.3 The flow chart	35
CHAPTER FOUR	37
Result and Decision	
4.1 Introduction	38
4.2 MATLAB results	38
4.2.1 Open loop	38
4.2.2 Close loop with PID controller	40
4.2.2.1 The parameters of PID	40
4.2.2.2 Close loop with PID controller Result table	41
4.3 ANSYS results	42
4.3.1 ANSYS results table	43
4.4 Other MATLAB results for different actuator parameters	44
4.4.1 Changing length	44
4.4.2 Changing thickness	44

4.4.3 Changing gap	45
CHAPTER FVE	46
Conclusion and Recommendations	
5.1 Conclusion	47
5.2 Recommendation	47
Reference	48

List of Figures

Figures	Title	Page
Figure (2.1)	Electrostatic cantilever	6
Figure (2.2)	MEMS Micro grippers	7
Figure (2.2)	DMD Pixel Array	8
Figure(2.3)	A single DMD Pixel	8
Figure (2.5)	Comb-drive electrostatic actuator	9
	concept	
Figure (2.6)	Simplified description of a control	9
	system	
Figure (3:1)	Parallel-Plate Capacitor	18
Figure (3:2)	Two Port Capacitor	21
Figure (3:3)	Electrostatic Actuator Model	21
Figure (3:4)	An Electromechanical System	22
Figure (3:5)	A Free-body Diagram of the	23
	Electrostatic Actuator	
Figure (3:6)	Transfer Function Equivalent Model of	29
	the Electrostatic Actuator	
Figure (3:7)	Actuator main parts	32
Figure (3.8)	ANSYS Drawn geometry for	33
	electrostatic actuator	
Figure (3:9)	Attributed mesh	34
Figure (3:10)	The geometry after applying loads	34
Figure (3:11)	ANSYS program flow chart	36
Figure (4.1)	Open loop actuator	38
Figure (4.2)	Open loop actuator result at voltage	39
	(10V)	
Figure(4.3)	Plotting open loop actuator result	40
Figure (4.4)	Close loop actuator with PID controller	40
Figure (4.5)	tune and block response	41
Figure (4.6)	Actual output form MATLAB	42

Figure (4.7)	The geometry after applying voltage	42
Figure (4.8)	Plotting ANSYS results	43

List of table

Tables	Title	page
Table (3.1)	Partial derivatives	28
Table (3.2)	Material properties of Silicon ,Silicon oxide, and Cupper	33
Table (4.1)	Open loop actuator result	39
Table(4.2)	Close loop with PID controller results	41
Table (4.3)	ANSYS results	43
Table (4.4)	Changing length (L=140 µm)	44
Table (4.5)	Changing thickness ($t_{Si}=1\mu m$)	44
Table (4.6)	Changing gap (g=6µm)	45

List of Abbreviations and acronyms

MEMS	Micro Electro Mechanical System.
ANSYS	Analysis System.
DMD	Deformable Mirror Device.
DLP	Digital Light Processing.
SGI	Silicon Graphics International.
MATLAB	Matrix Laboratory.
PID	Proportional Integral Derivative.
3D	Three Dimension.
FEM	Finite Element Method.

ME Memorable Entertainment.

List of symbols

Q	Charge.

- C Capacitance.
- V Voltage.
- W Potential energy.
- I Current.
- R Resistance.
- F The electrostatic force acting between the plates.
- □ Air permittivity.
- A Surface area of movable plate.
- g Gap between parallel plate.
- F_e The nonlinear electrostatic force.
- F_b Linear squeeze film damping force.
- F_k Linear mechanical spring force.
- m The mass of movable plate.
- 1 The length of movable plate.

t	The thickness of movable.
W	The Width of movable.
b	Viscous damping coefficient.
μ	Dynamic viscosity for air.
K	Spring constant.
Е	Elasticity modules.
Vs	Normalized source voltage.
V _{eq}	Equilibrium source voltage.
V _{act}	Voltage across actuator.
W	Natural frequency.
X	Displacement.
X	Equilibrium displacement.
Р	Power function (d the dissipation of energy in the system).
V _{pi}	Pull-in voltage.
q_{pi}	Pull-in charge.

Abstract

Electrostatic actuators have a large effect in many MEMS devices, e.g. sensors, actuators. The amount of applied voltage to an electrostatic actuator has a direct impact in the displacement of the cantilever between the movable plate and fixed plate, which affects on the displacement of the movable plate of electrostatic actuator. This research aims to control this displacement (position).

المستخلص

الصغر الميكانيكية متناهية الكهربائية الانظمة من كثير في هاما دورا الالكتروستاتيكي للمحرك مقدار الفولتية التي يتم تسليطها على المحرك الالكتروستاتيكي .والمحركات الحساسات المثال سبيل علي تؤثر على ازاحة (موضع) اللوح المتحرك . هذا البحث يهدف للتحكم في موضع هذا اللوح المتحرك باستخدام برنامج الماتلاب .

1.1 Introduction:

MEMS has been identified as one of the most promising technologies for the 21st Century and has the potential to revolutionize both industrial and consumer products by combining silicon-based microelectronics with micromachining technology. Its techniques and microsystem-based devices have the potential to dramatically affect of all of our lives and the way we live [1]. MEMS include different type of actuator such as electrostatic, electrothermal, and piezoelectric. This study well focus on electrostatic actuators (parallel plate type).

MEMS is:

- Micro (small)
- Electro (electric components/functionality)
- Mechanical (mechanical components/functionality)
- Systems (integrated, system-like functionality)

It also describes the range of MEMS sensors and actuators, the phenomena that can be sensed or acted upon with MEMS devices, and outlines the major challenges facing the industry.

A control system consists of subsystems and processes (or plants) assembled for the purpose of obtaining a desired output with desired performance. control system has ability to compensate for disturbances. Typically, control system used to control such variables as temperature in thermal systems, position and velocity in mechanical systems, and voltage, current, or frequency in electrical systems. The system must be able to yield the correct output even with a disturbance [7].

Position control of a micro electromechanical actuator is aimed to control the position of movable plate of two parallel actuator.

1.2 Research problem:

MEMS capacitive type transducer are used in many application that use micro system actuator including robots particularly micro robots with characteristic dimension less than 1mm the term can also be used for robots capable of handling micro size.

One of the largest challenges in developing micro robots or all micro systems are they require to control their voltage that apply to the actuator so that to give the optimum performance (mechanical function such as displacement).

1.3 Objective:

- Modeling and analysis electrostatic actuator by using ANSYS.
- Position control of a micro-electrostatic actuator.

4 The methodology:

This project is sequenced as following:

- ANSYS software had used to model the electrostatic actuator.
- MATLAMB SIMULINK had used to model the open loop and close loop system.
- PID controller had been used to achieved close loop system.
- Many references and papers are used to model the equation of the transfer function.