بسم الله الرحمن الرحيم

Sudan University of Science and Technology

College of Engineering

School of Mechanical Engineering

Production Engineering Department

Research Title:

Study method of manufacturing water

bottles

Prepared By:

- 1. Almohtde Abody Mahmmoud Hassan
- 2. Moayed Omer El-Tayeb Mahmmoud
- 3. Rami Salah Nasur Mohammedden

Supervised By:

Mr. Jafar Abd-Alhamid

August /2014

يهدف هذا البحث إلي تصميم قالب لانتاج قوارير المياه ذات حجم 500 مل ونوع البلاستيك المستخدم في تصنيعها (بولي ايثيلين تيرفتاليت).

تم اختيار مقاسات القالب القياسية تم تحديد المادة المستخدم فيها والعملية المستخدمة في ذلك عملية القولبة بالنفخ. ايضاً تم التطرق في كيفية استخدام الحاسوب والبرامج المصممة خصيصاً والملائمة لرسم وتطبيق القالب وأجزاءه.

Abstract:

This research aims to design a template to produce water bottles with volume of (500 ml) and the type of plastic used in the manufacturing pet . size was selected according to standard template all the parts and dimensions were identified.

Contents

Content	No
الآية	I
الإهداء	II
شکر وعرفان	III
التجريد	IV
Abstract	IV
Contents	V
Chapter One: introduction	
1-1 introduction	1
1-2 project Importance	1
1-3 project problem	1
1-4 project Objective	1
1-5 methodology	2
Chapter two: theoretical background	
2-1 Introduction	3
2-2 Basic Blow Moulding Process	3
2-3 Extrusion Blow Moulding	3
2-4 Injection Blow Moulding	4
2-5 Extrusion Stretch Blow Moulding	6
2-6 Polymers used for Blow Moulding Process	7
2-7 Requirements for Blow Moulding Materials	8
2-8 Process Based Requirements for Material Suitability	8
2-9 Coextrusion blow moulding	9
2-10 Selection of Material for Packaging Application	9
2-11 processing polypropylene	11
2-12 Hot Die Steel	13
2-13 Die Coatings And Surface Treatments	20

2-14 Bottle	20	
2-15 Types Of Blow Molding	21	
2-16 Computer-aided design (CAD)		
2-17 Types of CAD Software		
2-18 the reliability of product	31	
2-19 summary and conclusions	35	
Chapter Three: Practical study of mold parts		
3-1 introduction	36	
3-2 bottle specifications	36	
3-3 material selection	36	
3-4drawing	37	
3-5 The cooling process	42	
Chapter four: Thermal Analysis		
4-1 design equation	45	
4-2 calculation of thermal stress	46	
Chapter five		
5-1 Conclusion	49	
5-2 Recommendation	49	
5-3 References	50	

Table of symbols

Та	Class transition tomporature
Tg T-	Glass transition temperature
Тс	Crystallization temperature
Tm	Melting temperature
I.V	Intrinsic viscosity
Ex	Thermal strain on horizontal axis
Еу	Thermal strain on perpendicular axis
Ez	Thermal strain on angular axis
ΔT	The difference between temperature degrees
6	Thermal stress
6	Compressive stress
E	Young modulus
α	Coefficient thermal expansion
V	Passion ratio
E ₂₂	Axial stress
ε ₁₁	Lateral stress
λ	Failure rate
А	Constant depends on die material for HDS (1-2.5)
Ea	Activation energy for particular failure mechanism(0.5-1.2)
Т	Temperature in Kelvin
К	Boltzmann constant (8.63*.00001)
λ_1	Failure rate at test temperature
λ ₂₂	Failure rate at used temperature
Lc	Cooling temperature
h	Plate thickness
A _w	Mold wall temperature
te	Ejection temperature

Chapter One

1-1 introduction:

Plastic industerlization has became developmentaly and broadly the curcial industry, perhaps, because the plastic ability to reshape and easy to be manufactured, also its available which mean uncostly in manufacturing process.

Making dies to produce very complex part can be achieved through the different molding types, which can not be achieved by other manufacturing methods, nevertheless, designing dies according to standard specification will result in economically and industrially self-satisfaction.

1-2 project Importance:

We live in increasingly globalized world in which the production and manufacturing of plastic are taking place in broad application, the manufacturing of plastic bottles and their molds is not applicable in our society and by designing our mold we will accomplish necessary part in satisfying the society economically and industrially.

1-3 project problem:

We have replaced the material of mould which was stainless steel with hot die steel which is a combination of several elements for better mechanical and thermal properties, and changed volume to 500 ml as it will be explained in the following chapters.

1-4 project Objectives:

Die design to produce water's bottles for specific specification.

1-5 methodology:

- Collecting data across visiting factories, relative ministries (PEPSI, PESIGHANOS).
- Drawing die's dimensions according to specification.
- Part assembly.

Applying geometric design to die parts.