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Abstract 

We study the congruence moduli n, the arithmetic function and we study the 

basic properties of congruence , and we prove some theorems we study the 

Chinese remainder theorem and some of it’s application, we define the 

fermat number , Euler function and the relation between them we study 

multiplicative and we prove Euler theorem, Gauss theorem. 
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Chapter ONE 

The theory of congruence 

  



 

 

Chapter (1) 

The Theory of Congruences 

In these Chapter we study the congruence moduli n, the arithmetic 

function , and study the basic properties of congruence , and we prove some 

theorems , we study the Chinese Remainder theorem and some of it's 

applications   

Carl Friedrich Gauss: 

 Another approach to divisibility question is through the 

arithmetic of remainders, or the theory of congruences as it is now 

commonly known. The concept and the notation that makes it such a 

powerful tool, was first introduced by the German mathematician Carl 

Friedrich Gauss (1777-1855) in his Disquisitions Arithmetic ; this 

monumental work, which appeared in 1801 when Gauss was 24 years old, 

laid the foundations of modern number theory. Legend has a large part of the 

Disquisitions Arithmeticae had been submitted as memoir to the French 

Academy the previous year and had been rejected in a manner that, even if 

the work had been as worthless as the referees believed, would have been 

inexcusable.  

 Gauss was one of those remarkable infant prodigies whose natural 

aptitude for mathematics soon becomes apparent. As a child of age three, 

according to a well-authenticated story, he corrected an error in his father’s 

payroll calculations. His arithmetical powers so overwhelmed his 



 

schoolmasters that, by the time Gauss was 7 years old, they admitted that 

there was nothing more they could teach the boy. It is said that in his first 

arithmetic class Gauss astonished his teacher by  

instantly solving what was intended to be a “busy work” problem: Find the 

sum of all the numbers from 1 to 100. The young Gauss later confessed to 

recognized the pattern 

                                        

Because there are 50 pairs of numbers, each of which adds up to 101, the 

sum of all the numbers be            . This technique provides 

another way of deriving the formula  

          
 (   )

 
 

for the sum of the first   positive integers. One need only display the 

consecutive integers 1 through   in two rows as follows: 

                          
                   

 

Addition of the vertical columns produces   terms, each of which is equal to 

   : when these terms are added, we get the value  (   ). Because the 

sum is obtained on adding the two rows horizontally, what occurs is the 

formula  (   )   (         ). 

 Gauss went to a succession of triumphs, each new discovery 

following on the heels of a previous one. The problem of constructing 

regular polygons with only “Euclidean tools”, that is to say, with ruler and 

compass alone, had long been laid aside in the belief that the ancients had 



 

exhausted all the possible constructions. In 1796, Gauss showed that the 17-

sides regular polygon is so constructible, the first advance in this area since 

Euclid’s time. Gauss’s doctoral thesis of 1799 provided a rigorous proof of 

the Fundamental Theorem of Algebra, which had been started first by Girard 

in 1629 and then proved imperfectly by d’Alembert (1746), and later by 

Euler (1749). The theorem (it asserts that a polynomial equation of degree   

has exactly   complex roots) was always a favorite of Gauss’s, and he gave, 

in all, four distinct demonstrations of it. The publication of Disquisitions 

Arithmetic in 1801 at once placed Gauss in the front rank of mathematicians. 

 The most extraordinary achievement of Gauss was more in the realm 

of theoretical astronomy than of mathematics. On the opening night of the 

19th century, January 1, 1801, the Italian astronomer Piazzi discovered the 

first of the so-called miner planets (planets or asteroids), later called Ceres. 

But after the course of this newly found body – visible only by telescope – 

passed the sum, neither Piazzi nor any other astronomer could locate it 

again. Piazzi’s observations extended over a period of 41 days, during which 

the orbit swept out an angle of only nine degrees. From the scanty data 

available, Gauss was able to calculate the orbit of Ceres with amazing 

accuracy, and the elusive planet was rediscovered at the end of the year in 

almost exactly the position he had forecasted. The success brought Gauss 

worldwide fame, and led to his appointment as director of Gottingen 

Observatory. 

 By the middle of the 1th century, mathematics had grown into an 

enormous and unwieldy structure, divided into a large number of fields in 

which only the specialist knew his way. Gauss was the last complete 

mathematician, and it is no exaggeration to say that he was in some degree 



 

connected with nearly every aspect of the subject. His contemporaries 

regarded him as Princeps Mathematicorum (Prince of Mathematicians), on a 

par with Archimedes and Isaac Newton. This is revealed in a small incident: 

On being asked who was the greatest mathematician in Germany, Laplace 

answered, “Why Pfaff.” When the questioner indicated that he would have 

thought Gauss was, Laplace replied, “Pfaff is by far the greatest in Germany, 

but Gauss is the greatest in all Europe”. 

 Although Gauss adorned every branch of mathematics, he always held 

number theory in high esteem and affection. He insisted that, “Mathematics 

is the Queen of the Sciences, and the theory of numbers is the Queen of 

Mathematics”. 

Basic Properties of Congruence: 

         In the first chapter of Disquisitions Arithmeticae, Gauss introduces the 

concept of congruence and the notation that makes it such a powerful 

technique (he explains that he was induced to adopt the symbol ≡because of 

the close analogy with algebraic equality). According to Gauss, “if a number 

  measures the difference between two numbers   and  , then   and   are 

said to be congruent with respect to  ; if not, incongruent”. Putting this into 

the form of a definition, we have Definition (1.1). 

Definition (1.1): 

 Let   be a fixed positive integer. Two integers   and   are said to be 

congruent moduli  , symbolized by 

    (     ) 



 

if   divides difference    : that is, provides that        for some 

integer  . To fix the idea, consider    . It is routing to check that 

   (     )            (     )             (     ) 

because      (  )         (  ) , and     (   )     . 

When   (   ), we say that   is incongruent to   moduli  , and this case 

we write    (     ). For example:        (     ), because 7 fails to 

divide         . 

It is to be noted that any two integers are congruent moduli 1, whereas 

two integers are congruent moduli 2 when they are both even or both odd. 

Inasmuch as congruence moduli 1 is not particularly interesting, the usual 

practices is to assume that    . 

Given an integer  , let   and   be its quotient and remainder upon 

division by  , so that 

                    

Then by definition of congruence,    (     ). Because there are   

choices for  , we see that every integer is congruent moduli   to exactly one 

of the values            ; in particular,    (     ) if and only if    . 

The set of   integers             is called the set of least nonnegative 

residues moduli  . 

In general, a collection of   integers            is said to form a 

complete set of residues (or a complete system of residues) moduli   if 

every integers is congruent moduli   to one and only one of the   . To put it 



 

another way            are congruent moduli   to            , taken 

in some order. For instance, 

                      

constitute a complete set of residues moduli 7; here we have 

                                                           

all moduli 7. An observation of some importance is that any   integers form 

a complete set of residues moduli   if and only if no two of the integers are 

congruent moduli  . We shall need this fact later. 

Our first theorem provides a useful characterization of congruence 

moduli   in terms of remainders upon division by  . 

Theorem (1.2): 

           For arbitrary integers   and  ,    (     ) if and only if   and   

leave the same nonnegative remainder when divided by  . 

Proof: 

 First take    (     ), so that        for some integer  . 

Upon division by     leaves a certain remainder ; that is,       , 

where      . Therefore,  

       (    )     (   )    

which indicates that   has the same remainder as  . 

 On the other hand, suppose we can write         and       

 , with the same remainder  (     ). Then  



 

    (     )  (     )  (     )  

whence      . In the language of congruences, we have     (     ). 

Congruence may be viewed as a generalized form of equality, in the 

sense that its behavior with respect to addition and multiplication is 

reminiscent of ordinary equality. Some of the elementary properties of 

equality that carry over to congruences appear in the next theorem. 

Theorem (1.3): 

 Let     be fixed and         be arbitrary integers. Then the 

following properties hold: 

a)     (     ). 

b) If     (     ), then     (     ). 

c) If     (     ) and    , then     (     ). 

d) If     (     ) and     (     ), then         (     ) 

and       (     ). 

e) If     (     ), then         (     ) and    

   (     ). 

f) If     (     ), then      (     ), for any positive integer  . 

Proof: 

 For any integer  , we have      , so that     (     ). Now if 

    (     ), then        for some integer  . Hence,     

 (  )  (  )  and because –   is an integer, this yields property (b). 



 

 Property (c) is slightly less obvious. Suppose that     (     ) and 

also     (     ). Then there exist integers   and   satisfying     

   and       . It follows that  

    (   )  (   )        (   )  

which is     (     ) in congruence notation. 

 In the same vein, if     (     ) and     (     ), then we are 

assured that         and         for some choice of    and   . 

Adding these equations, we obtain  

(   )  (   )  (   )  (   ) 

         (     )  

or, as congruence statement,         (     ). As regards the second 

assertion of property (d), note that 

   (     )(     )     (            )  

Because               is an integer, this say that       is divisible 

by  , whence       (     ). 

The proof of property (e) is covered by (d) and the fact that   

 (     ). Finally, we obtain property (f) by making an induction argument. 

The statement certainly holds for    , and we will assume it is true for 

some fixed  . From (d), we know that     (     ) and    

   (     ) together imply that         (     ), or equivalently 

         (     ). This is the form the statements should take for    , 

and so the induction step is complete. 



 

Before going further, we should illustrate that congruences can be great help 

in carrying out certain types of computations. 

 In theorem (1.2) we saw that if     (     ), then    

   (     ) for any integer  . The converse, however, fails to hold. As an 

example, perhaps as simple as any note that        (     ), whereas 

   (     ). In brief: One cannot unrestrictedly cancel a common factor 

in the arithmetic of congruences. 

 With suitable precautions, cancellation can be allowed; one step in 

this direction, and an important one, is provided by the following theorem. 

 

Theorem (1.4): 

 If       (     ), then     (       ), where      (   ). 

Proof: 

 By hypothesis, we can write 

 (   )           

for some integer  . Knowing that    (   )    there exist relatively prime 

integers   and   satisfying          . When these values are 

substituted in the displayed equation and the common factor   canceled, the 

net result is 

 (   )     

Hence,    (   ) and    (   )   . Euclid’s lemma yields      , which 

may be recast as     (     ); in other words,     (       ). 



 

Theorem (1.4) gets its maximum force when the requirement that 

   (   )    is added, for then the cancellation may be accomplished 

without a change in modulus.  

Corollary (1.5): 

 If       (     ) and    (   )   , then     (     ). 

We take a moment to record a special case of Corollary (1.5) that we shall 

have frequent occasion to use, namely, Corollary (1. 6). 

Corollary (1.6): 

 If       (     ) and    , where   is a prime number, then 

    (     ). 

Proof: 

 The conditions     and   a prime imply that    (   )   . 

Binary and Decimal Representations of Integers: 

One of the more interesting applications of congruence theory involves 

finding special criteria under which a given integer is divisible by another 

integer. At their heart, these divisibility testes depend on the notational 

system used to assign “names” to integers and, more particularly, to the fact 

that 10 is taken as the base for our number system. let us, therefore, start by 

showing that given by an integer    , any positive integer   can be 

written uniquely in terms of powers of   as  

            
         

         



 

where the coefficients    can take on the   different values            . 

For the Division Algorithm yields integers    and    satisfying 

                    

If     , we can divide once more, obtaining 

                     

Now substitute for    in the earlier equation to get 

  (      )        
         

As long as     , we can continue in the same fashion. Going one more 

step:          , where       , hence 

     
     

         

Because             is a strictly decreasing sequence of integers, 

this process must eventually terminate, say, at the (   )th stage, where  

                           

and       . Setting      , we reach the representation  

            
             

which was our aim. 

 To show uniqueness, let us suppose that   has two distinct 

representations, say,  

                              



 

with        for each   and         for each   (we can use the same 

  by simply adding terms with coefficients      or     , if necessary). 

Subtracting the second representation from the first gives the equation  

                

where          for          . Because the two representations for   

are assured to be different, we must have      for some value of  . Take   

to be the smallest subscript for which     . Then  

              
       

  

and so, after dividing by   , 

     (               ) 

This tell us that     . Now the inequalities        and        lead 

us to           , or       . The only way of recording the 

conditions       and        is to have     , which is impossible. From 

this contradiction, we conclude that the representation of   is unique. 

The essential feature in all of this is that the integer   is completely 

determined by the ordered array                 of coefficients, with the 

plus signs and the powers of   being superfluous. Thus, the number  

            
         

     

may be replaced by the simpler symbol  

  (             )  

(the right-hand side is not to be interpreted as a product, but only as an 

abbreviation for  ). We call this the base   place-value notation for  . 



 

Small values of   give rise to lengthy representation of numbers, but 

have the advantage of requiring fewer choices for coefficients. The simplest 

case occurs when the base    , and the resulting system of enumeration is 

called the binary number system (from the Latin binaries, two). The fact that 

when a number is written in the binary system only the integers 0 and 1 can 

appear as coefficients means that every positive integer is expressible in 

exactly one way as a sum of distinct powers of 2. For example, the 105 can 

be written as  

                                   

            

or, in abbreviated form       

    (       )  

In the other direction, (       )  translates into 

                                  

The binary system is most convenient for use in modern electronic 

computing machines, because binary numbers are represented by strings of 

zeros and ones; 0 and 1 can be expressed in the machine by a switch (or a 

similar electronic device) being either on or off. 

 We shall frequently wish to calculate the value of    (     ) when   

is large. Is there a more efficient way of obtaining the least positive residue 

than multiplying   by itself   times before reducing moduli  ? One such 

procedure, called the binary exponential algorithm, relies on successive 

squaring, with a reduction moduli   after each squaring. More specially, the 



 

exponent   is written in binary form, as   (             ), and the 

values     (     ) are calculated for the powers of 2, which correspond to 

the 1’s in the binary representation. These partial results are then multiplied 

together to give the final answer. 

An illustration should make this process clear. 

We ordinary record numbers in the decimal system of notation, where 

    , omitting the 10-subscript that specifies the base. For instance, the 

symbol 1492 stands for the awkward expression 

                   

The integers        and   are called the digits of the given number, 1 being 

the thousands digit, 4 the hundred digit, 9 the tens digit, and 2 the units digit. 

In technical language we refer to the representation of the positive integers 

as sums of powers of 10, with coefficients at most 9, as their decimal 

representation (from the Latin decem, ten). 

 We are about ready to derive criteria for determining whether an 

integer is divisible by 9 or 11, without performing the actual division. For 

this, we need a result having to do with congruences involving polynomials 

with integral coefficients.      

Theorem (1.7): 

 Let  ( )  ∑    
  

    be a polynomial function of   with integral 

coefficient   . If     (     ), then  ( )   ( ) (     ). 

Proof: 



 

  Because     (     ), part (f) of theorem (1.3) can be applied to 

give       (     ) for          . Therefore,  

   
     

  (     ) 

for all such  . Adding these     congruences, we conclude that 

∑    
 

 

   

 ∑    
 

 

   

 (     ) 

or in different notation,  ( )   ( ) (     ). 

If  ( ) is a polynomial with integral coefficients, we say that   is a solution 

of the congruence  ( )    (     ) if  ( )    (     ). 

 

 

 

Corollary (1.8): 

 If   is a solution of  ( )    (     ) and     (     ), then   

also is a solution. 

Proof: 

 From the last theorem, it is known that  ( )   ( ) (     ). Hence, 

if   is a solution of  ( )    (     ), then  ( )   ( ) (     ), making 

  a solution. 



 

One divisibility test that we have in mind is this. A positive integer is 

divisible by 9 if and only if the sum of the digits in its decimal representation 

is divisible by 9.  

Theorem (1.9): 

 Let                             be the decimal 

expansion of the positive integer          , and let         

    . Then     if and only if    . 

Proof: 

 Consider  ( )  ∑    
  

   , a polynomial with integral coefficients. 

The key observation is that      (     ), whence by theorem (1.7), 

 (  )   ( )(      ). But  (  )    and  ( )             

 , so that     (     ). It follows that     (     ) if and only if 

    (     ), which is what we wanted to prove. 

Theorem (1.7) also serves as the basis for a well-known test for divisibility 

by 1: an integer is divisible by 11 if and only if the altering sum of its digits 

is divisible by 11. We state this more precisely by theorem (1.10). 

 

Theorem (1.10): 

 Let                             be the decimal 

expansion of the positive integer          , and let         

     (  )   . Then      if and only if     . 

Proof: 



 

 As in the proof of theorem (1.9), put  ( )  ∑    
  

   . Because 

       (      ), we get  (  )   (  ) (      ). But  (  )   , 

whereas  (  )             (  )     , so that   

  (      ). The implication is that either both   and   are divisible by 11 

or neither is divisible by 11. 

 Congruence theory is frequently used to append an extra check digit 

to identification numbers, in order to recognize transmission errors or 

forgeries. Personal identification numbers of some kind appear on passports, 

credit cards, bank accounts, and a variety of other settings. 

 Some banks use an eight-digit identification number         

together with a final check digit   . The check digit is usually obtained by 

multiplying the digits   (     ) by certain “weights” and calculating 

the sum of the weighted products moduli 10. For instance, the check digit 

might be chosen to satisfy 

                                   (      ) 

The identification number 81504216 would then have check digit 

                                  

   (      ) 

so that 815042169 would be printed on the check. 

This weighted scheme for assigning check digits detects any single-

digit error in the identification number. For suppose that the digit    is 

replaced by a different    . By the manner in which the check digit is 

calculated, the difference between the correct    and the new     is 



 

        (      )  (      ) 

where   is 7, 3, or 9 depending to the position of    . Because  (      )  

  (      ), it follows that        and the error is apparent. Thus, it is the 

valid number 81504216 were incorrectly entered as 81504316 into a 

computer programmed to calculate check digits, an 8 would come up rather 

than the expected 9. 

The moduli 10 approach is not entirely effective, for it does not 

always detect the common error of transporting distinct adjacent entries   

and   within the string of digits. To illustrate the identification numbers 

81504216 and 80504261 have the same check digit 9 when our example 

weights are used: (The problem occurs when        ). More 

sophisticated methods are available, with larger moduli and different 

weights, that would prevent this possible error. 

Linear Congruences and the Chinese Remainder Theorem: 

 This is a convenient in our development of number theory at which to 

investigate the theory of linear congruences: An equation of the form 

     (     ) is called a linear congruence, and by a solution of such an 

equation we mean an integer    for which       (     ). By definition, 

      (     ) if and only if         or, what amounts to the same 

thing, if and only if           for some integer   . Thus, the problem 

of finding all integers that will satisfy the linear congruence    

  (     ) is identical with that for obtaining all solutions of the linear 

Diophantine equation        . 



 

It is convenient to treat two solutions of      (     ) that are 

congruent moduli   as being “equal” even though they are not equal in the 

usual sense. For instance,     and      both satisfy the congruence 

     (      ); because      (      ), they are not counted as 

different solutions. In short: When we refer to the number of solutions of 

     (     ), we mean the number of incongruent integers satisfying 

this congruence. 

With these remarks in mind, the principal result is easy to state. 

Theorem (1.11): 

 The linear congruence      (     ) has a solution if and only if 

   , where      (   ). If    , then it has   mutually incongruent 

solutions moduli  . 

Proof: 

 We already have observed that the given congruence is equivalent to 

the linear Diophantine equation        . It is known that the latter 

equation can be solved if and only if    ; moreover, if it is solvable and 

      is one specific solution, then any other solution has the form 

     
 

 
           

 

 
  

For some choice of  . 

Among the various integers satisfying the first of these formulas, 

consider those that occur when   takes on the successive values   

            : 



 

      
 

 
    

  

 
      

(   ) 

 
 

We claim that these integers are incongruent moduli   and all other such 

integers   are congruent to some one of them. If it happened that 

   
 

 
      

 

 
   (     ) 

where            , then we would have 

 

 
   

 

 
   (     ) 

Now    (    ⁄ )     , and therefore by theorem (1.4) the factor     

could be canceled to arrive at the congruence 

      (     ) 

which is to say that        . But this is impossible in view of the equality 

         . 

It remains to argue that any other solution    (   ) is congruent 

moduli   to one of the   integers listed above. The Division Algorithm 

permits us to write   as       , where        . Hence 

   
 

 
     

 

 
(    ) 

       
 

 
  

    
 

 
  (     ) 



 

With    (   )  being one of our   selected solutions. This ends the 

proof.   

The argument that we gave in theorem (1.11) brings out a point worth 

stating explicitly: If    is any solution of      (     ), then the   

   (   ) incongruent solutions are given by 

      
 

 
     (

 

 
)       (   ) (

 

 
) 

For the reader’s convenience, let us also record the form theorem 

(1.11) takes in the special case in which   and   are assumed to be relatively 

prime.  

Corollary (1.12): 

 if    (   )   , then the linear congruence      (     ) has a 

unique solution moduli  . 

Given relatively prime integers   and  , the congruence    

  (     ) has a unique solution. This solution is sometimes called the 

(multiplicative) inverse of a  moduli  . 

Having considered a single linear congruence, it is natural to turn to 

the problem of solving a system of simultaneous linear congruences: 

       (      )       (      )          (      )  

We shall assume that the moduli    are relatively prime in pairs. 

Evidently, the system will admit no solution unless each individual 

congruence is solvable; that is, unless       for each  , where    

   (     ). When these conditions are satisfied, the factor    can be 



 

canceled in the  th congruence to produce a new system having the same set 

of solution as the original one: 

        (      )          (      )           (      ) 

where          and    (     )    for    ; in addition, 

   (      )   . The solution of the individual congruences assume the 

form 

     (      )      (      )       (      ) 

Thus, the problem is reduces to one of finding a simultaneous solution of a 

system of congruences of this simpler type. 

 The kind of problem that can be solved by simultaneous congruence 

has a long history, appearing in the Chinese literature as early as the 1st 

century A.D. Sun-Tsu asked : Find a number that leaves the remainders 2, 3, 

2 when divided by 3, 5, 7, respectively. (Such mathematical puzzles are by 

no means confined to a single cultural sphere, indeed, the same problem 

occurs in the Introduction Arthemeticae of the Greek mathematician 

Nicomachus, circa 100 A.D.). In honor of their early contribution, the rule 

for obtaining a solution usually goes by the name of the Chinese Remainder 

Theorem.      

Theorem (1.13): Chinese Remainder Theorem 

 Let            be positive integers such that    (     )    for 

   . Then the system of linear congruences 



 

     (      )

     (      )
 

     (      )

 

has a simultaneous solution, which is unique moduli the integer        . 

Proof: 

  We start by forming the product          . For each   

        let 

   
 

  
                

In words,    is the product of all the integers    with the factor omitted. By 

hypothesis, the    are relatively prime in pairs, so that    (     )   . 

According to the theory of a single linear congruence, it is therefore possible 

to solve the congruence       (      ); call the unique solution   . Our 

aim is to prove that the integer 

 ̅                         

is a simultaneous solution of the given system. 

 first, observe that      (      ) for    , because       in this 

case. The result is 

 ̅                         (      ) 

But the integer    was chosen to satisfy the congruence       (      ), 

which forces 

 ̅          (      ) 



 

This shows that a solution to the given congruences exists. 

 As for the uniqueness assertion, suppose that    is any other integer 

that satisfies these congruences. Then 

 ̅       (      )                

and so    x-x' for each value of  . Because    (     )   . Corollary (1. 6) 

supplies us with the crucial point that          ̅    ; hence  ̅  

  (     ). With this, the Chinese Remainder Theorem is proven. 

In analogy with theorem (1.11), such a congruence has a solution if and only 

if    (     ) divides  . The condition for solvability holds if either 

   (   )    or    (   )   . Say    (   )   . When the congruence 

is expressed as 

        (     ) 

the corollary to theorem (1.11) guarantees a unique solution   for each of the 

  incongruent values of  . Take as a simple illustration       

  (      ), that would be treated as         (      ). Substitution 

of     (      ) gives        (      ); but is equivalent to 

        (      ) so that     (      ). It follows that   

  (      )     (      ) is one of the 12 incongruent solutions of 

        (      ). Another solution having the same value of   is 

   (      )     (      ). 

The focus of our concern here is how to solve a system of two linear 

congruences, in two variables with the same modulus. The proof of the 



 

coming theorem adopts the familiar procedure of eliminating one of the 

unknowns. 

Theorem (1.14): 

 The system of linear congruences 

        (     ) 

        (     ) 

has a unique solution moduli   whenever    (       )   . 

 

 

 

Proof: 

 Let us multiply the first congruence of the system by   in the second 

congruence by  , and subtracting the lower result from the upper. These 

calculations yield 

(     )        (     )                         ( ) 

The assumption    (       )   ensures that the congruence 

(     )    (     ) 

possesses a unique solution; denote the solution by: When congruence (1) is 

multiplied by  , we obtain 

   (     ) (     ) 



 

A value for   is found by a similar eliminate process. That is, multiply the 

first congruence of the system by  , the second one by  , and subtract to end 

up with 

(     )           (     )                       ( ) 

Multiplication of this congruence by   leads to 

   (     ) (     ) 

A solution of the system is now established. 

  



 

 

Chapter Two 

 

Euler's Generalization of 

Fermat's Theorem 

  



 

 

 

Chapter (two) 

Euler's function and Fermat's Theorem 

 In this chapter we  define the Fermat number Euler function and the 

Relation between them , we study the multiplicative and prove some 

theorem ,we prove Euler theorem , Gauss theorem . 

Euler's Generalization of Fermat's Theorem 

The importance of Fermat work resides not so much in any 

contribution to the mathematics of this own day, but rather in its animating 

effect on later generations of mathematicians. Perhaps the greatest 

disappointment of Fermat's career was his inability to interest  others in his 

new number theory. A century was to pass before a first-class 

mathematician, Leonhard-Euler (1707-1783), either understood or 

appreciated its significance. Many of the theorems announced without proof 

by Fermat yielded to Euler's skill, and it is likely that the arguments devised 

by Euler were not substantially different from those that Fermat said he 

possessed. 

The key figure in 18th century mathematics, Euler was the son of a 

Lutheran pastor who lived in the vicinity of Basel, Switzerland. Euler's 

father earnestly wished him to enter the ministry and sent his son, at the age 

of 13, to the University of Basel to study theology.  



 

Where the 17th century had been an age of great amateur 

mathematicians, the 18th century was almost exclusively an era of 

professionals- university professors and members of scientific academies. 

Many of the reigning monarchs delighted in regarding themselves as patrons 

of learning, and the academies served 

as the intellectual crown jewels of the royal courts. Although the 

motives of these rulers may not have been entirely philanthropic, the fact 

remains that the learned societies constituted agencies for the promotion of 

science. They provided salaries for distinguished scholars, published 

journals of research papers on a regular basis, and offered monetary prizes 

for scientific discoveries. Euler was at different times associated with two of 

the newly formed academies, the Imperial Academy at St. Petersburg (1727-

1741; 1766-1783) and the Royal Academy in Berlin (1741-1766). In 1725, 

Pater the Great founded the Academy of St. Petersburg and attracted a 

number of leading mathematicians to Russia, including Nicolaus and Daniel 

Bernoulli. On their recommendation, an appointment was secured of Euler. 

Because of his youth, he had recently been denied a professorship in physics 

at the University of Basel and was only too accept the invitation of the 

Academy. In St. Petersburg, he soon came into contact with the versatile 

scholar Christian Goldbach (of the famous conjecture), a man who 

subsequently rose from professor of mathematics to Russian Minister of 

Foreign Affairs. Given his interests, it seems likely that Goldbach was the 

one who first drew Euler's attention to the work of Fermat on theory of 

numbers. 

Euler eventually tried of the political repression in Russia and 

accepted the call of Frederick the Great to become a member of the Berlin 



 

Academy. The story is told that, during a reception at Court, he was kindly 

received by the Queen Mother who inquired why so distinguished a scholar 

be so timid and reticent; he replied, "Madame, it is because I have just come 

from a country where, when one speaks, one is hanged." However, flattered 

by the warmth of the Russian feeling toward him and unendurably offended 

by the contrasting coolness of Frederick his court, and unendurably offended 

by the contrasting of Frederick and his court, Euler returned to St. 

Petersburg in 1766 to spend his remaining days. Within two or three years of 

his return, Euler became totally blind. 

However, Euler did permit blindness to retard his scientific work; 

aided by a phenomenal memory his writings grew to such enormous 

proportions as to be virtually unmanageable. Without a doubt, Euler was the 

most prolific written in the entire history of mathematics. He wrote or 

dictated over 700 books and papers in his lifetime, and left so much 

unpublished material that the St. Petersburg Academy did not finish printing 

all his manuscripts unit 47 years after his death. The publication of Euler's 

collected works was begun by the Swiss Society of Natural Sciences in 1911 

and it is estimated that more than 75 large volumes will ultimately be 

required for the completion of his monumental project. The best testament to 

the quality of these papers may be the fact on 12 occasions they won the 

coveted biennial prize of the French Academy in Paris. 

During his stay in Berlin, Euler acquired the habit of writing memoir 

after memoir, placing each when finished at the top of a manuscripts. 

Whenever material was needed to fill the Academy's journal, the printers 

helped themselves to a few papers from the top of the stack. As the height of 

the pile increased more rapidly than the demands made upon it, memoirs at 



 

the bottom tended to remain in place a long time. This explains how it 

happened that various papers of Euler were published, when extensions and 

improvements of the material in them had previously appeared in print under 

his name. we might also add that the manner in which Euler made his work 

public contrasts sharply with the secrecy customary in Fermat's time. 

This chapter deals with that part of the theory arising out of the result 

known a Euler's Generalization of Fermat's Theorem. In a nutshell, Euler 

extended Fermat's theorem, which concerns congruences with prime moduli, 

to arbitrary moduli . while doing so, he introduced an important number-

theoretic, described in Definition (2.1). 

Definition (2.1): 

For    , let  ( ) denoted the number of the number of positive 

integers not exceeding   that relatively prime to  . 

As an illustration of the definition, we find that  (  )   ; for, 

among the positive integers that do not exceed   , specifically, 

                      

Similarly, for the first few positive integers, the reader may check that 

 ( )     ( )     ( )     ( )     ( )     ( )     ( )      

Notice that  ( )   , because    (   )   . In the even    , then 

   (   )     , so that  ( ) can be characterized as the number of 

integers less than   and relatively prime to it. The function   is usually 

called the Euler phi function (sometimes, the indicator or totient) after its 

originator, the functional notation  ( ), however is credited to Gauss. 



 

If   is a prime number, then every integer less than   is relatively 

prime to it; whence,  ( )     . One the other hand, if     is 

composite, then   has a divisor   such that      . It follows that there 

are at least two integers among           that are not relatively prime to  , 

namely,   and   itself. As a result,  ( )     . This proves that for 

   , 

 ( )                                   

The first item on the agenda is to derive a formula that will allow us to 

calculate the value of  ( ) directly from the prime-power factorization of  . 

A large step in this direction stems from Theorem (2.2). 

Theorem (2.2): 

If   is a prime and    , then 

 (  )            (  
 

 
) 

Proof: 

Clearly,    (    )    if and only if    . there are      integers 

between   and    divisible by  , namely, 

          (    )  

Thus, the set *        + contains exactly         integers that are 

relatively prime to   , and so by the definition of the phi-function,  (  )  

       . 

For an example, we have 



 

 ( )   (  )         

the six integers less than and relatively prime to   being            . To give 

a second illustration, there are   integers that are less than    and relatively 

prime to it; they are                   . Theorem (2. 2) yields the same 

count: 

 (  )   (  )               

We now know how to evaluate the phi-function for prime powers, and 

our aim is not obtain a formula for  ( ) based on the factorization of   as a 

product of primes. The missing link in the chain is obvious: Show that   is a 

multiplicative function. We pave the way with an easy lemma. 

Lemma (2.3):  

  Give integers          (    )    if and only if    (   )    and 

   (   )   . 

Proof: 

First suppose that    (    )   , and          (   ). Then     

and    , whence     and     . This implies that    (    )   , which 

forces    . Similar reasoning gives rise to the statement    (   )   . 

For the other direction, take    (   )       (   ) and assume 

that    (    )      . Then    must have a prime divisor  . Because 

     , it follows that     ; in consequence,     or    . If    , then (by 

virtue of the fact    ) we have    (   )      contradiction. In the same 

way, the condition     leads to the equally false conclusion that    (   )  

 . Thus,      and the lemma is proven. 



 

Theorem (2.4): 

The function   is a multiplicative function. 

Proof: 

It is required to show that  (  )   ( ) ( ), wherever   and   

have no common factor. Because  ( )   , the result obviously holds if 

either   or   equals  . Thus, we may assume that     and    . 

Arrange the integers from   to    in   columns of   integers each, as 

follows: 

                                             
                                        
    

 
(   )   

   
 

(   )   

 
 
 

                       
                  

(   )                

  
 

  

 

We know that  (  ) is equal to the number of entries in this array that are 

relatively prime to   ; by virtue of the lemma, this is the same as the 

number of integers that are relatively prime to both   and  . 

Before embarking on the details, it worth commenting on the tactics to 

be adopted: Because    (      )     (   ), the numbers in the  th 

column are relatively prime to   if and only if   itself is relatively prime to 

 . Therefore, only  ( ) columns contain integers relatively prime to  , 

and every entry in the column will be relatively prime to  . The problem is 

one of showing that in each of these  ( ) columns there are exactly  ( ) 

integers that are relatively prime to  ; for then altogether there would be 

 ( ) ( ) numbers in the table that are relatively prime to both   and  . 



 

Now the entries in the  th column (where it is assumed that 

   (   )   ) are 

           (   )    

There are   integers in this sequence and no two are congruent moduli  .  

indeed, if 

         (     ) 

with        , it would follow that      (     ). Because 

   (   )   , we would cancel   from both sides of this congruence to 

arrive at contradiction that    (     ). Thus, the numbers in the  th 

column are congruent moduli   to            , in some order. But if 

   (     ), then    (   )    if and only if    (   )   . The 

implication is that the  th column contains as many integers that are 

relatively prime to   as does the set *           +, namely,  ( ) 

integers. Therefore, the total number of entries in the array that relatively 

prime to both   and   is  ( ) ( ). This completes the proof of the 

theorem. 

With these preliminaries in hand, we now can prove Theorem (2. 5). 

Theorem (2.5): 

If the integer     has the prime factorization     
    

     
  , 

then 

 ( )  (  
     

    
)(  

     
    

) (  
     

    
) 



 

  (  
 

  
) (  

 

  
) (  

 

  
) 

Proof: 

We intend to use induction on  , the number of distinct prime factors 

of  . By Theorem (2.2), the result is true for    . Suppose that it holds for 

   . because 

   (  
    

     
       

    )    

the definition of multiplicative function gives 

 ((  
     

  )    
    )   (  

     
  ) (    

    ) 

  (  
     

  )(    
         

      
) 

Invoking the induction assumption, the first factor on the right-hand side 

becomes 

 (  
    

     
  )  (  

     
    

)(  
     

    
) (  

     
    

) 

and this serves to complete the induction step, and the proof. 

Theorem (2.6): 

For      ( ) is an even integer. 

Proof: 

First, assume that   is a power of  , let us say that     , with   

 . By Theorem (2. 5), 



 

 ( )   (  )    (  
 

 
)       

an even integer. If   does not happen to be a power of  , then it is divisible 

by an odd prime  ; we therefore may write   as      , where     and 

   (    )   . Exploiting the multiplication nature of the phi-function, we 

obtain 

 ( )   (  ) ( )      (   ) ( ) 

which again is even because      . 

We can establish Euclid's theorem on the finitude of prime in the 

following new way. As before, assume that there are only a finite number of 

primes. Call them            and consider the integer          . We 

argue that if      , then    (   )   . For the Fundamental Theorem 

of Arithmetic tell us that   has a prime divisor  . Because            are 

the only primes,   must be one of these   , whence    ; in other words, 

   (   )   . The implication of all this is that  ( )   , which clearly is 

impossible by Theorem (2. 6). 

As remarked earlier, the first published proof of Fermat's theorem 

(namely that       (     ) if    ) was given by Euler in 1736. 

Somewhat later, in 1760, he succeeded in generalizing Fermat's theorem 

from the case of a prime   to an arbitrary positive integer  . This landmark 

result states: If    (   )   , then   ( )   (     ). 

For example, putting      and     , we have 

   (  )      (   )  (   )      (      ) 



 

As a prelude to launching our proof of Euler's generalization of 

Fermat's theorem, we require a preliminary lemma. 

Lemma (2.7): 

 Let     and    (   )   . If           ( ) are the positive 

integers less than   and relatively prime to  , then 

             ( ) 

are congruent moduli   to           ( ) n some order. 

Proof: 

Observe that no two of the integers              ( ) are congruent 

moduli  . For if        (     ), with        ( ), then the 

cancellation law yields      (     ), and thus      , a contradiction. 

Furthermore, because    (    )    for all   and     (   )   , the 

lemma preceding Theorem (2. 4) guarantees that each of the     is relatively 

prime to  . 

Fixing on a particular    , there exists a unique integer  , where 

     , for which      (     ). Because 

   (   )     (     )    

  must be one of the integers           ( ). All told, this proves that the 

numbers              ( ) and the numbers           ( ) are identical 

(moduli  ) in a certain order. 

Theorem (2.8): Euler Theorem 



 

If     and    (   )   , then   ( )   (     ). 

Proof: 

There is no harm in taking    . Let           ( ) be the positive 

integers less than   that are relatively prime to  . Because    (   )   , it 

follows from the lemma that              ( ) are congruent, not 

necessarily in order of appearance, to           ( ). Then 

      
 (     )

      
 (     )

              
   ( )    ( )

 (     )

 

where   
    

      ( )
  are the integers           ( ) in some order. On 

taking the product of these  ( ) congruences, we get 

(   )(   ) (   ( ))    
   

    ( )
 (     ) 

                                                     ( )(     ) 

 

and so 

  ( )(       ( ))         ( ) (     ) 

Because    (    )    for each  , the lemma preceding Theorem (2. 4) 

implies that    (       ( ))   . Therefore, we may divide both sides of 

the foregoing congruence by the common factor        ( ), leaving us 

with 

  ( )   (     ) 



 

This proof can best be illustrated by carrying it out with some specific 

numbers. Let    , for instance. The positive integers less than and 

relatively prime to   are 

            

These play the role of the integers           ( ) in the proof of Theorem 

(2. 8). If     , then the integers     are 

                      

where, moduli  , 

                                                      

When the above congruences are all multiplied together, we obtain 

(  )(  )(   )(   )(   )(   )              (     ) 

which becomes 

(           )(  )  (           )(     ) 

Being relatively prime to  , the six integers             may be canceled 

successively to give 

(  )   (     ) 

The validity of this last congruence is confirmed by the calculation 

(  )     (  )      (     ) 



 

Note that Theorem (2.1.8) does indeed generalize the one credited to 

Fermat, which we proved earlier. For if   is a prime, then  ( )     ; 

hence, when    (   )   , we get 

       ( )   (     ) 

and so we have the following corollary. 

 

Corollary (2. 9): Fermat Theorem 

If   is a prime and    , then       (     ). 

There is another path to Euler's theorem, one which requires the use of 

Fermat's theorem. 

Second proof of Euler's Theorem: 

To start, we argue by induction that if     (  a prime), then 

  (  )   (      )                  ( ) 

When    , this assertion reduces to the statement of Fermat's theorem. 

Assuming the truth of Equation (1) for a fixed value of  , we wish to show 

that it is true with   replaced by    . 

Because Equation (1) is assumed to hold, we may write 

 (    )           (       )    (  ) 

Using these fact, along with the binomial theorem, we obtain 

  (    )     (  ) 



 

                      (  (  ))
 

 

                          (     )  

   (
 
 
) (   )  (

 
 
) (   )    (

 
   

) (   )    (   )  

   (
 
 
) (   )(        ) 

But   (
 
 
), and so      (

 
 
) (   ). Thus, the last-written congruence 

becomes 

  (    )   (        ) 

completing the induction sep. 

Let    (   )    and   have the prime-power factorization   

  
    

     
  . In view of what already has been proven, each of the 

congruences 

 
 (  

  )
  (      

  )                        ( ) 

holds. Noting that  ( )is divisible by  (  
  ), we may raise both side of 

Equation (2) to the power  ( )  (  
  ) and arrive at 

  ( )   (      
  )               

Inasmuch as the moduli are relatively prime, this us leads us to the relation 

  ( )   (      
    

     
  ) 

or   ( )   (     ). 



 

The usefulness of Euler's theorem in number theory would hard to 

exaggerate. It leads, for instance, to a different proof of the Chinese 

Remainder Theorem. In other words, we seek to establish that if 

   (     )    for    , then the system of linear congruences 

    (      )               

admits a simultaneous solution. Let          , and put       ⁄  for 

         . Then the integer 

      
 (  )

     
 (  )

       
 (  ) 

fulfills our requirements. To see this, first note that     (      ) 

whenever    ; whence, 

      
 (  )(      ) 

But because    (     )   , we have 

  
 (  )   (      ) 

and so     (      ) for each  . 

As a second application of Euler's theorem, let us show that if   is an 

odd integer that is not a multiple of  , then   divides an integer all of whose 

digits are equal to   (for example,         ). Because    (    )    and 

   (    )   , we have    (     )   . Quoting Theorem (2. 8), again, 

   (  )   (      ) 

This says that    (  )        for some integer   or, what amounts to 

the same thing, 



 

   
   (  )   

 
 

The right-hand side of this expression is an integer whose digits are all equal 

to  , each digit of the numerator being clearly equal to  . 

The next theorem points out a curious feature of the phi-function; 

namely, that the sum of the values of  ( ), as   ranges over the positive 

divisors of  , is equal to   itself. This was first noticed by Gauss. 

Theorem (2. 10): Gauss Theorem 

 For each positive integer    , 

  ∑ ( )

 

   

 

the sum being extended over all positive divisors of  ,                                  

Proof: 

The integers between   and   can be separated into classes as follows: 

If   is a positive divisor of  , we put the integer   in the class    provided 

that    (   )   . Stated in symbols, 

      *     (   )           + 

Now    (   )    if and only if    (  ⁄    ⁄ )   . Thus, the number 

of integers in the class    is equal to the number of positive integers not 

exceeding   ⁄  that are relatively prime to   ⁄ ; in other words, equal to 

 (  ⁄ ). Because each of the   integers in the set *       + lies in exactly 

one class   , we obtain the formula 



 

  ∑ (
 

 
)

 

   

  

But as   runs through all positive divisor of  , so does   ⁄ ; hence, 

∑ (
 

 
)

 

   

 ∑ ( )

 

   

 

which proves the theorem. 

It is instructive to give a second proof of theorem (2. 10), this one 

depending on the fact that   is multiplicative. The details are as follows. If 

   , then clearly 

∑ ( )

 

   

 ∑ ( )

 

   

  ( )      

Assuming that    , let us consider the number-theoretic function 

 ( )  ∑ ( )

   

 

Because   is known to be a multiplicative function, asserts that   is also 

multiplicative. Hence, if     
    

     
   is the prime factorization of  , 

then 

 ( )   (  
  ) (  

  )  (  
  ) 

For each value of  , 

 (  
  )  ∑  ( )

    

  

 



 

  ( )   (  )   (  
 )   (  

 )     (  
  ) 

   (    )  (  
    )  (  

    
 )    (  

     
    

) 

   
   

because the terms in the foregoing expression cancel each other, save for the 

term   
  . knowing this, we end up with 

 ( )    
    

     
     

and so  

  ∑ ( )

   

 

as desired. 

We should mention in passing that there is another interesting identity 

that involves the phi-function. 

Theorem (2.11): 

For    , the sum of the positive integers less than   and relatively 

prime to   is 
 

 
  ( ). 

Proof: 

Let           ( ) be the positive integers less than   and relatively 

prime to  . Now because    (   )    if and only if    (     )   , 

the numbers                 ( ) are equal in some order to 

          ( ). Thus, 



 

          ( )  (    )(    ) (    ( )) 

  ( )  (          ( )) 

Hence, 

 (          ( ))   ( )  

leading to the stated conclusion. 

This is a good point at which o give an application of the Möbius 

inversion formula. 

Theorem (2.12): 

 For any positive integer  , 

 ( )   ∑
 ( )

 
   

 

Proof: 

The is deceptively simple. If we apply the inversion formula to 

 ( )    ∑ ( )

   

 

the result is 

 ( )  ∑ ( )

   

 (
 

 
) 

 ∑ ( )

   

 

 
 



 

Let again illustrate the situation where     . As easily can be seen, 

  ∑
 ( )

 
   

   *( )  
 ( )

 
 

 ( )

 
 

 (  )

  
+ 

   *  
(  )

 
 

(  )

 
 

(  ) 

  
+ 

   [  
 

 
 

 

 
 

 

  
]     

 

 
    (  ) 

Starting with Theorem (2. 12), it is an easy matter to determine the 

value of the phi-function for any positive integer  . Suppose that the prime-

power decomposition of   is     
    

     
  , and consider the product 

  ∏( ( )  
 (  )

  
   

 (  
  )

  
  

)

    

 

Multiplying this out, we obtain a sum of terms of the form 

 ( ) (  
  ) (  

  )  (  
  )

  
    

     
  

             

or, because   is known to be multiplicative, 

 (  
    

     
  )

  
    

     
  

 
 ( )

 
 

where the summation is over the set of divisors     
    

     
  , of  . 

Hence,   ∑  ( )     . It follows from Theorem (2. 12) that 



 

 ( )   ∑
 ( )

 
   

  ∏( ( )  
 (  )

  
   

 (  
  )

  
  

)

    

 

But  (  
  )    whenever     . As a result, the last-written equation 

reduces to 

 ( )   ∏( ( )  
 (  )

  
)

    

  ∏(  
 

  
)

    

 

which agree with the formula established earlier by different reasoning. 

What is significant about this argument is that no assumption is made 

concerning the multiplication character of the phi-function, only of  . 

  



 

Number Theory Problems 

1) Find the primes P for which  
      

 
 is square. 

Solution: 

Suppose 
      

 
     for some positive integer then            

Clearly both p and n must be odd let p = 2k + 1 for some positive integer k 

then    
  = pn

2
 that is (2

k
-1) (2

k
+1) = pn

2
 since 2

k
 -1 and 2

k
+1 must be a 

perfect square suppose 2
k
-1 is a perfect square r

2
 

2
k
 – 1 = r

2
 

2
k
 = r

2
 +1 

then is 

2
p-1

 = (r
2
+1)

2 

Since r≥ 1 and is odd r = 2i+ 1 for some integer ≥0 then 2
k
 = (2i + 1)

2
 = 

2(2i
2
+2i+1) this is possible if and only if i = 0 then r = 1 so 2

p-1
 = (1

2
+1)

2
 = 4 

and hence p=3 

Suppose 2
k
+1 is a perfect square s

2
  

2
k
 + 1 = s

2
 

2
k
 = s

2
 – 1 

That is 2
p-1 

= (s-1)
2
(s+1)

2
 since s≥3 and is odd s= 2i +1 for some i≥I then 

2
k
=(2i+1)

2
-1 = 4i(i+1) 



 

That is 2
k-2

 = i(i+1) this is possible if and only if is i= 1 then s=3 and hence 

2
p-1

= 2
2
.4

2
 = 2

6
 so p=7 

Thus p must be 3 or 7 

 

2) Find the remainder when 24
1947

 is divisible by 17. 

 Solution: 

24 ≡ 7 (mod 17) 

There 24
1947 

≡ 7
1947

 (mod 17) 

But by fermat's little theorem 

7
16

 ≡ 1 (mod 17) so 

7
1947 

≡ 7
16.121+11

 ≡ (7
16

)
121

. 7
11

 

≡ 1
121

.7
11

 ≡ 7
11

 (mod 17) 

But z
7
 ≡ -2 (mod 17) 

So 7
11

 ≡ (7
2
)

5
.7 ≡ (-2)

5
. 7 ≡-32-7  

≡ 2.7 ≡ 14 (mod 17) 

Thus when 24
1947

 is divided by 17 

The remainder is 14. 

 

 

 



 

3) solve the congruence: 12 x ≡ 48 (mod 18)  

 Solution: 

Since (12,18) = 6 and  6/48 the congruence has six incongruent solutions 

modulo 6 6 they are given by x = x0 + (m/d)t = x0+( 18/6)t = x0 + 3t 

Where x0 is a particular solution and 0≤t<6 by trial and error x0 = 1 is a 

solution thus the six incongruent solution modulo 18 are 1 + 3t where 0≤t<6 

that is 1,4,7, ,10,13 and 16. 

 

4) find all positive integer n such that n
2
+1 is divisible by n+1 

Solution: 

There is only one such positive integer n=1 in fact n
2
+1 = n (n+1) – (n-1) 

thus if n+1/n
2
+1 then n + 1/ n-1 which for positive integer n is possible only 

if n-1 so hence if n=1. 

 

5) Find all integers n >1 such that 1
n
 + 2

n
 +….+ (n-1)

n
 is divisible by n. 

Solution: 

For positive integer n we have 

1
3
+ 2

3
+ …+n

3
 = n

2
 (n+1)

3
/n 

By induction we obtain also the indentity. 

1
5
+2

5
 + … n

5
 = 1/12 n

2
 (n+1)

2
 (2n+2n-1) 



 

For all positive integer n it follows from these formula that  3(1
5
+ …+ n

5
)/ 

(1
3
+2

3
+…+n

3
) = 2n

2
+ 2n+1 

Which prove the desired property. 

 

6) solve the linear system 

X ≡ 1 (mod 3), x ≡ 2(mod 4), and x ≡ 3(mod 5). 

Solution: 

Here m = 3.4.5=6,  m1=m/3 = 20, m2=m/4=15 and m3 = m/5 = 12  the 

unique solutions of the congruences m1,y1 ≡  1(modm1), m2 y2 ≡ 1(modm2) 

and m3y3 ≡ 1(modm3), that is 20y1 ≡ (mod3), 15y2 ≡ 1(mod4), and 12y3 ≡ 

1(mod5) are 2,3 and 3, respectivelty thus by the CRT. 

  ∑      (    )

 

   

 

≡ 1.20.2 +2.15.3+3.12.3 (mod 60) 

≡ 58(mod 60) 

 

7) the largest integer the scientific calculator casio fx 330 A can handle 

is the eight – digit number 99, 999,999. Compute the exact value of 2
31

 

using this calculator and the CRT. 

Solution:  

To compute the value of x = 2
31

, we select k pairwise relatively prime 

numbers m1,m2, ….,mk 



 

Where m =  m1,m2, ….,mk > x, and then compute the least residue. 

 )                     ( )  ∑ (*
 

 
+  [

   

 
])

 

   

 

Solution: 

Note that  

*
 

 
+  *

   

 
+  ,

     
 

 
               

             
  

Hence  

∑ (*
 

 
+  [

   

 
])

 

   

  ∑   ( ) 

Remarks it is clear that is n aprime if  and only if T(n) = 2 hence  

∑ (*
 

 
+  [

   

 
])

 

   

    

If and only if n is prime 

 

9) For any n≥ 2  
 ( )

 ( )
 √  

Solution: 

Let d1,d2, …., d T(n) nethe  divisors of n they can be rewritten as 

 

  
 

 

  
   

 

  ( )
 



 

Hence  

 ( )    (          ( )) (
 

  
 

 

  
     

 

  ( )
)   nT (n)2 and the 

conclusion follows. 

 

10) Prove that there are infinitely many positive integers n such that. 

Ø(n) = n/3. 

Solutions: 

Let n = 2.3m where mis appositive integer then Ø(n) = Ø (2.3
m
) = Ø(2) 

Ø(3
m
) = 3

m
 – 3

m-1
 = 2.3

m-1
 = n/3 

For infinitely many values of n as desired.  
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